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Abstract
We compute the largeN limit of the partition function of the Euclidean Yang–Mills measure on orientable
compact surfaces with genus g � 1 and non-orientable compact surfaces with genus g � 2, with struc-
ture group the unitary group U(N) or special unitary group SU(N). Our proofs are based on asymptotic
representation theory: more specifically, we control the dimension and Casimir number of irreducible rep-
resentations of U(N) and SU(N) when N tends to infinity. Our main technical tool, involving ‘almost flat’
Young diagram, makes rigorous the arguments used by Gross and Taylor (1993,Nuclear Phys. B 400(1–3)
181–208) in the setting of QCD, and in some cases, we recover formulae given by Douglas (1995,Quantum
Field Theory and String Theory (Cargèse, 1993), Vol. 328 of NATO Advanced Science Institutes Series B:
Physics, Plenum, New York, pp. 119–135) and Rusakov (1993, Phys. Lett. B 303(1) 95–98).
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1. Introduction
In his seminal paper [15], ’t Hooft discovered that SU(N) and U(N) two-dimensional gauge the-
ories become easier to understand when considering the limit N→∞, thanks to combinatorial
simplifications. After that, the idea of studying large N limits of matrix models flourished, in par-
ticular not only in the case of Quantum Chromodynamics in two dimensions, or QCD2 [5, 10,
12], but also in Conformal Field Theory [6] and in Collective Field Theory [11]. Since then, math-
ematicians tried to derive rigorously some of the formulae used by these physicists, for instance [1,
2, 4, 7, 14, 16, 17, 18, 21, 22, 23, 24]. We will focus here on the asymptotics of partition functions of
the two-dimensional Yang–Mills model over a compact surface, written as sums over irreducible
characters of the structure group. Depending on the orientability and genus of the underlying
surface, we will link the limit of the partition function to several special functions from num-
ber theory and combinatorics: the Witten zeta function, the Jacobi theta function and the Euler
function.

1.1 The Yang–Mills partition function on a compact surface
Let λ= (λ1 � . . .� λN) ∈ZN be a non-increasing sequence of relative integers. We associate two
real numbers with λ : the dimension

dλ =
∏

1�i<j�N

λi − λj + j− i
j− i

=
∏

1�i<j�N

(
1+ λi − λj

j− i

)
, (1)
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which is indeed a positive integer, and the quadratic Casimir number

c2(λ)= 1
N

⎛⎝ N∑
i=1

λ2i +
∑

1�i<j�N
(λi − λj)

⎞⎠ . (2)

These definitions are dictated by the representation theory of the unitary group U(N): theN-tuple
λ, which we will also call a highest weight in this paper, labels (up to isomorphism) an irreducible
representation of U(N) with dimension dλ, and on which the Casimir operator of U(N), that is,
the Laplacian, acts by the scalar−c2(λ). We will use the notation

Û(N)= {(λ1, . . . , λN) ∈ZN :λ1 � . . .� λN}.
Throughout this article, a surface will denote a compact connected closed surface. A standard

classification theorem (see in [19] for instance) states that it is homeomorphic to either of the
following:

i. The connected sum of g tori,a

ii. The connected sum of g projective planes.

In the first case, the surface is said to be orientable; otherwise, it will be non-orientable, and in
either case, we will call g the genus of the surface. Given an orientable surface �g,T of genus g � 0
and total area T � 0, the partition function of the Yang–Mills theory on �g,T with structure group
U(N) is definedb by

ZN(g, T)=
∑

λ∈Û(N)

e−
T
2 c2(λ)d2−2gλ . (3)

If �−g,T is a non-orientable compact surface of area T homeomorphic to the connected sum of g
projective planes, then the partition function on �−g,T with structure group U(N) is definedc by

Z−N (g, T)=
∑

λ∈Û(N)

e−
T
2 c2(λ)d2−gλ (ιλ)g , (4)

where ιλ is the Frobenius–Schur indicator of an irreducible representation of U(N) with highest
weight λ, given by

ιλ=
∫
U(N)

χλ(g2)dg.

These partition functions admit a special unitary variant, which differs from them in two
aspects: the summation is restricted to the N-tuples λ= (λ1 � . . .� λN−1 � λN = 0) of which
the last element is 0, and the Casimir number is replaced by its special unitary version

c′2(λ)=
1
N

⎛⎝ N∑
i=1

λ2i −
1
N

( N∑
i=1

λi

)2

+
∑

1�i<j�N
(λi − λj)

⎞⎠ . (5)

a If g = 0, then by convention, it is a sphere; otherwise, it can also be seen as a torus with g handles.
bHere, we take it as a definition; however, it follows from lattice gauge theory axioms and is derived for example in

[8, 12, 28].
c See [28] for an explanation of the formula.
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It is worth emphasizing that c′2(λ) is a non-negative real number. Indeed, an application of the
Cauchy–Schwarz inequality shows that the first sum is larger than the absolute value of the second,
and the third one is non-negative by definition of λ. We introduce

ŜU(N)= {(λ1, . . . , λN) ∈ZN :λ1 � . . .� λN = 0},
which is in bijection with the irreducible representations of SU(N) and define

Z′N(g, T)=
∑

λ∈ŜU(N)

e−
T
2 c
′
2(λ)d2−2gλ , (6)

Z
′−
N (g, T)=

∑
λ∈ŜU(N)

e−
T
2 c
′
2(λ)d2−gλ (ι′λ)g , (7)

where ι′ is the Frobenius–Schur indicator of an irreducible representation of SU(N) with highest
weight λ. Let us notice that when T = 0, the summands in the cases of U(N) and SU(N) are the
same, and only the set of summation changes. In this ‘zero-temperature’ situation, the partition
function Z′N(g, 0) was already studied byWitten [28], and later by Zagier [29] who called itWitten
zeta function and denoted it by ζsu(N)(2g − 2). The denomination ‘zeta function’ comes from the
remark that Z′2(g, 0)= ζ (2g − 2), where ζ is the Riemann zeta function.

1.2 Statement of the results
The purpose of this paper is to establish the large N limit of the partition functions, depending
on the orientability and the genus of the underlying surface. The two following theorems state
the limit of orientable surfaces of genus 1 and higher, and non-orientable surfaces of genus 2
and higher. The next sections will then be devoted to prove these theorems. Before stating the
theorems, let us recall two special functions.

• The Jacobi theta function ϑ is defined, for (z, τ ) ∈C2 such that Im(τ )> 0:

ϑ(z;τ )=
∑
n∈Z

eiπn
2τ+2iπnz .

We will also denote a particular version of this function by θ(q)=∑n∈Z qn2 for q ∈C such
that |q|< 1.

• The Euler function φ is defined, for q∈C such that |q|< 1, as the infinite product

φ(q)= (q;q)∞ =
∞∏

m=1
(1− qm).

Theorem 1.1 (Orientable limits). Let � be an orientable surface of genus g and area T � 0. Set

q= e−
T
2 .

i. If g � 2 and T > 0, then the following convergences hold:
lim

N→∞ ZN(g, T)= θ(q) and lim
N→∞ Z′N(g, T)= 1.

Moreover, if g � 2 and T = 0, we have
lim

N→∞ Z′N(g, 0)= 1.
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ii. If g = 1 and T > 0, then the following convergences hold:

lim
N→∞ ZN(1, T)= θ(q)

φ(q)2
and lim

N→∞ Z′N(1, T)=
1

φ(q)2
.

Theorem 1.2 (Non-orientable limits). Let � be a non-orientable surface of genus g � 2 and area

T � 0. Set q= e−
T
2 .

i. If g � 3 and T � 0, then the following convergences hold:

lim
N→∞ Z−N (g, T)= Z

′−
N (g, T)= 1.

ii. If g = 2 and T > 0, then the following convergences hold:

lim
N→∞ Z−N (2, T)= lim

N→∞ Z
′−
N (2, T)= 1

φ(q2)
.

1.3 Comparison with other results
In our setting, we only consider the case of compact connected closed surfaces with a fixed area
T. In the orientable cases, this was already studied by Gross alone [10] as well as with Taylor [12]:
they found some results that we generalize here (see Section 2.2 for more details). The limit given
in Theorem 1.1 for g = 1 is also mentioned without proof in [6, Equation (3.2)], and the limit for
g > 1 is in adequation with a result by Rusakov [20]. Let us remark that Rusakov affirmed that
there is a nonzero free energy in the case of the torus, which is contradicted by the point (ii) of
Theorem 1.1. The asymptotic behaviour of the partition function on the sphere is very different
from the higher genus surfaces and needs more analytical tools. Its free energy was computed
rigorously by Boutet de Monvel and Shcherbina [2] and later by Lévy and Maïda [18], as well as
Dahlqvist and Norris [4]; in particular, Lévy and Maïda proved a phase transition conjectured
by Douglas and Kazakov [5]. We do not consider this case because it needs different tools than
the ones we use. We also leave aside the case of a non-orientable surface of genus 1, which is
homeomorphic to the projective plane, because our tools do not provide any concluding result;
we expect it to be more closely related to the case of the sphere because the dimensions of the
irreducible representations are raised to a positive power.

Although we do not consider surfaces with boundaries, there are plenty of works, in particu-
lar in physics, devoted to the partition function on a cylinder. For instance, Gross and Matytsin
[11] conjectured that there might be the same kind of phase transition for the cylinder with fixed
boundary conditions as the one happening for the sphere. However, they used non-rigorous tech-
niques leading to the asymptotic estimation of irreducible characters of SU(N) for which Tate and
Zelditch [26] exhibited a counterexample. Zelditch then obtained in [30] a different result, using
the so-called MacDonald identities, and computed the free energy on a cylinder with area T

N . In
the mathematical literature, Guionnet and Maïda [13] developed some character expansion tech-
niques that applied in this setting. Note here that the scaling regime is different from ours, and it
might be enlightening to see how the limits of partition functions change when the area depends
on N as in the works of Zelditch or Guionnet–Maïda.

1.4 General remarks
Before diving into the proofs of Theorems 1.1 and 1.2, let us state a few facts that we find
interesting around these Theorems.
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• The limit of the partition function in the unitary case for g � 2 is the common value of
Z1(g, T) for all g � 0. Indeed, the irreducible representations of U(1) are indexed by inte-
gers n ∈Z, and as U(1) is abelian, they all have dimension 1. Moreover, the Casimir number
c2(n) is simply equal to n2; therefore, the partition function Z1(g, T) can be written

Z1(g, T)=
∑
n∈Z

e−
T
2 n

2 = θ(q)

as expected. It could also be said that the limiting value of the partition functions Z′N(g, T) is
also the value Z′1(g, T), understood as the partition function associated with the trivial group
SU(1), with a unique irreducible representation of dimension 1 and Casimir number 0.

• In the case of orientable surfaces, it appears that the limits of ZN and Z′N always differ from
one factor, which is actually Z1(g, T). We can summarize this asymptotic factorization as
follows:

lim
N→∞ ZN(g, T)= lim

N→∞ Z1(g, T)Z′N(g, T). (8)

• Numerical simulations suggest that for all g � 2 and all T � 0, the sequences (ZN(g, T))N�2
and (Z′N(g, T))N�2 might be non-increasing. This would be an interesting fact, that we are
not yet able to establish.

• Using the Jacobi triple product formula∑
n∈Z

qn
2 =

∞∏
m=1

(1− q2m)(1+ q2m−1)2,

the limit of ZN(1, T) can be rewritten as an infinite product:

lim
N→∞ ZN(1, T)=

∞∏
m=1

(1+ qm)(1+ q2m−1)2

1− qm
.

It does not particularly enlightens the nature of the limit, but it makes it at least easier to
approximate numerically.

We now turn to the proofs of Theorem 1.1, which is given in Section 2, and Theorem 1.2, which
is given in Section 3.

2. Orientable surfaces
2.1 Orientable surfaces of genus g�2
2.1.1 The special unitary case
Wewill start by proving Theorem 1.1.(i) in the special unitary case. Let us first reduce the problem
to the case where T = 0 and g = 2.

Lemma 2.1. For all g � 0, all T � 0, and all N � 1, we have
1� Z′N(g, T)� Z′N(2, 0).

It follows from this lemma that the special unitary case of Theorem 1.1.(i) is implied by the
assertion

lim
N→∞ Z′N(2, 0)= 1, (9)

which we will prove in this section.

Proof of Lemma 2.1. The N-tuple (0, . . . , 0) has dimension 1 and Casimir number 0. Thus, it
contributes 1 to the partition function Z′N(g, T), which explains the first inequality. The second
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inequality is an immediate consequence of the fact that all Casimir numbers are non-negative and
that all dimensions are positive integers.

Our goal is now to prove (9). We will deduce it from the following fact about Witten zeta
functions.

Proposition 2.2. For all real s> 1, one has

sup
N�1

ζsu(N)(s)= sup
N�1

∑
λ∈ŜU(N)

d−sλ <∞.

More precisely,

lim
N→∞ ζsu(N)(s)= 1 and lim

N→∞
∑

λ∈ŜU(N)
λ�=(0,...,0)

d−sλ = 0.

The proof of this proposition relies on three lemmas.

Lemma 2.3. For all s> 1 and all N � 1, one has

∑
λ∈ŜU(N)

d−sλ �
N−1∏
k=1

∑
n�k

(
n
k

)−s
. (10)

Proof. Let us choose s> 1 and N � 1. In the left-hand side of (10), which is a sum over λ1 �
. . . λN � 0, let us make the change of variables

m1 = λ1 − λ2 + 1, . . . ,mN−1 = λN−1 − λN + 1.

The new variablesm1, . . . ,mN−1 are now independent and positive. Using (1), we find

dλ =
∏

1�i<j�N

mi + . . .+mj−1
j− i

, (11)

so that ∑
λ1�...�λN=0

d−sλ =
∑

m1,...,mN−1�1

∏
1�i<j�N

(j− i)s

(mi + . . .+mj−1)s

=
∑

m1,...,mN−1�1

N−1∏
k=1

k∏
i=1

(k− i+ 1)s

(mi + . . .+mk)s
(k= j− 1)

Sincemi + . . .+mk−1 � k− i, we obtain

∑
λ1�...�λN=0

d−sλ �
∑

m1,...,mN−1�1

N−1∏
k=1

k∏
i=1

(k− i+ 1)s

(mk + k− i)s

=
∑

m1,...,mN−1�1

N−1∏
k=1

(
k+mk − 1

k

)−s

=
N−1∏
k=1

∑
n�k

(
n
k

)−s
,

which is the announced upper bound.
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Lemma 2.4. For all real s> 1, ∑
k�1

∑
n>k

(
n
k

)−s
<∞.

Proof.We use the fact that for k between 2 and n− 2, the inequality
(n
k
)
�
(n
2
)
holds. Thus,∑

k�1

∑
n>k

(
n
k

)−s
� 2−s +

∞∑
n=3

(
2
ns
+ (n− 3)

2s

ns(n− 1)s

)
,

which is indeed finite for s> 1.

Lemma 2.5. Let λ be an element of ŜU(N). If λ= (0, . . . , 0), then dλ = 1. Otherwise, dλ �N.

Proof. Let us use again the variables m1, . . . ,mN−1 introduced in the proof of Lemma 2.3. It
manifests on the expression (11) of dλ that this dimension is increasing in each of the variables
m1, . . . ,mr. The case where each of these variables is equal to 1 is the case where λ= (0, . . . , 0)
and dλ = 1. Any other irreducible representation has a dimension that is at least equal to the
dimension of one of the representations

λ1 = (1, 0, . . . , 0), λ2 = (1, 1, 0, . . . , 0), . . . , λN−1 = (1, . . . , 1, 0).
These representations, which are the exterior powers of the standard representation of SU(N),
have dimensions

dλk =
(
N
k

)
�N, k ∈ {1, . . . ,N − 1}.

Thus, dλ �N, as expected.
We can now prove Proposition 2.2.

Proof of Proposition 2.2. The bound obtained in Lemma 2.3 can be rewritten as∑
λ1�...�λN=0

d−sλ �
N−1∏
k=1

[
1+

∑
n>k

(
n
k

)−s]
� exp

∞∑
k=1

∑
n>k

(
n
k

)−s
and this last bound, independent of N, is finite by Lemma 2.4. This proves the first assertion.

For the second, let us introduce a real s′ ∈ (1, s) and use Lemma 2.5. We find∑
λ∈ŜU(N)
λ�=(0,...,0)

d−sλ �N−(s−s
′) ∑

λ∈ŜU(N)

d−s
′

λ ,

which tends to 0 as N tends to infinity.

In order to prove (9), we need a last piece of information about the dimensions of the
irreducible representations of SU(N).

Proof of Theorem 1.1.(i) in the special unitary case. On one hand, Lemma 2.1 implies that
Z′N(2, 0)� 1. On the other hand,

Z′N(2, 0)=
∑

λ∈ŜU(N)

d−2λ = 1+
∑

λ�=(0,...,0)
d−2λ .

Using Lemma 2.5, we find

Z′N(2, 0)� 1+N−
1
2
∑

λ�=(0,...,0)
d−

3
2

λ � 1+N−
1
2 sup
N�1

∑
λ∈ŜU(N)

d−
3
2

λ .
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Thanks to Proposition 2.2, this implies

lim sup
N→∞

Z′N(2, 0)� 1

and this concludes the proof of (9), hence of Theorem 1.1.(i) in the special unitary case.

2.1.2 The unitary case
We treat the unitary case of Theorem 1.1.(i) using our understanding of the special unitary case
and the bijection

�:

⎧⎨⎩ ŜU(N)× Z
∼−→ Û(N)

(λ, n) 	−→ λ+ n= (λ1 + n, . . . , λN + n).

We will keep throughout this section the notation λ for an element of ŜU(N), n for an element of
Z, λ+ n for the corresponding element of Û(N), and |λ| = λ1 + · · · + λN . The first observation is
the following.

Lemma 2.6. We have the equality

c2(λ+ n)= c2′(λ)+
(
n+ |λ|

N

)2
.

Proof. The proof is a simple verification using the definitions (2) and (5) of c2 and c′2.

It is the contribution of the highest weights of the form 0+ n= (n, . . . , n) which produces the
Jacobi theta function in the unitary part of Theorem 1.1.(i). We will prove that the contribution
of all other elements of Û(N) vanishes in the large N limit.

Proof of Theorem 1.1.(i) in the unitary case. Let us consider g � 2 and T > 0, and set q= e−
T
2 .

We split the partition function ZN(g, T) into two parts

ZN(g, T)=
∑
n∈Z

qn
2 +

∑
λ∈ŜU(N)
λ�=(0,...,0)

∑
n∈Z

qc2(λ+n)dλ+n.

The first part corresponds to highest weights of the form (n, . . . , n), which have Casimir numbers
n2 and dimension 1, and is equal to θ(q). The second part is the contribution of all the other
highest weights. To compute it, we observe that dλ+n = dλ and we use Lemma 2.6. We find

0� ZN(g, T)− θ(q)�
∑

λ∈ŜU(N)
λ�=(0,...,0)

(∑
n∈Z

q(n+|λ|/N)2
)
qc
′
2(λ)d2−2gλ .

The sum between the brackets is bounded independently of N, for example, in a very elementary
way, by C= 1+ θ(q). Hence, the right-hand side is bounded by

C
∑

λ∈ŜU(N)
λ�=(0,...,0)

d2−2gλ =C
(
ζsu(N)(2g − 2)− 1

)
which, thanks to Proposition 2.2, converges to 0.

2.2 The torus
Our proof of the convergence of the partition function when g � 2 was based on our study of the
dimensions of the irreducible representations of SU(N), expressed in Proposition 2.2. A glance
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Figure 1. From two partitions α and β and an integer n ∈Z, we can form the highest weights λ(α, β, n)∈ Û(N) (on the left)
and λ(α, β) ∈ ŜU(N) (on the right).

at (3) shows that when g = 1, these dimensions do not appear anymore in the partition function,
and to treat this case, we need to use completely different estimates. In this section, we will prove
that ZN(1, T) still admits a finite limit for T > 0, but this limit turns out to be different: it will
involve the classical generating function of integer partitions. Recall that if we denote, for each
n� 0, by p(n) the number of partitions of the integer n, we have the equality of formal series in
the variable q: ∑

n�0
p(n)qn =

∞∏
m=1

1
1− qm

= φ(q)−1. (12)

Before entering the technical details, let us explain the idea of the proof of Theorem 1.1.(ii), at
least in the special unitary case. In the present situation where g = 1, the partition function is

Z′N(1, T)=
∑

λ∈ŜU(N)

e−c′2(λ)
T
2 =

∑
λ∈ŜU(N)

qc
′
2(λ),

using the notation q= e− T
2 . The problem is thus to identify which highest weights of SU(N) keep,

in the large N limit, a bounded quadratic Casimir number and bring a non-zero contribution to
the partition function.We claim, although this statement is not very precise at this stage, that these
highest weights are those depicted in Figure 1 (in the special unitary case, we need to look at the
right part of this figure). They are the highest weights that are flat up to a smalld perturbation at
each end, represented by two partitions α and β of length�N/2. Let us call these highest weights
almost flat. A similar description was proposed by Gross and Taylor in [12], but in the case where
the perturbations remain finite, their goal was rather to obtain a 1/N expansion of the partition
function than to find its large N limit. The smaller the length of α and β , the flatter the highest
weight: typically, we will consider α and β of length
√N. Using the notation λ(α, β) introduced
in Figure 1, and the notation |α| (resp. |β|) for sum of the components of α (resp. β), the main
estimate will be a refinement of the equality

c′2(λ(α, β))= |α| + |β| +O(N−1)
with an explicit expression of the error in terms of α and β . The outline of the proof is then the
following:

Z′N(1, T)�
∑

λ∈ŜU(N)
λ almost flat

qc
′
2(λ) �

∑
α,β of length
√N

qc
′
2(λ(α,β)) �

∑
α,β of length
√N

q|α|+|β|

and the last sum tends to the square of the generating function of integer partitions whenN→∞.
dSmall compared to N but not necessarily finite.
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Figure 2. On the left: the highest weight (4,0) can bewritten in several ways as λ2(α, β) with α and β of length 1. On the right:
the highest weight (4,3,3,2,1,1,0) is equal to λ7((2, 1, 1), (2, 1, 1)) as well as to λ7((3, 2, 2, 1), (1)).

Figure 3. Filling of the boxes of (3,3,2,1) with their respective contents. The Young diagram is represented here in the so-
called Russian way, where the content of a box is its abscissa.

2.2.1 Almost flat highest weights
From two integer partitions α= (α1 � · · ·� αr > 0) and β = (β1 � · · ·� βs > 0) of respective
lengths r and s, and an integer n ∈Z, we can form, for all N � r+ s+ 1, the highest weight

λN(α, β , n)= (α1 + n, . . . , αr + n, n, . . . , n︸ ︷︷ ︸
N−r−s

, n− βs, . . . , n− β1) ∈ Û(N),

which we also denote by λ(α, β , n) when there is no doubt on the value of N. We extend this
definition in the obvious way to the cases where one or both of the partitions α and β are the
empty partition.

We can also form the highest weight

λN(α, β)= λN(α, β , β1) ∈ ŜU(N),

with the convention that λN(α,∅)= λN(α,∅, 0)= (α1, . . . , αr , 0).
These constructions are illustrated in Figure 1 below. The reader may have noticed that the

definition of λN(α, β , n) still makes sense when N = r+ s and wonder why we exclude this case.
The reason is that under the stronger assumption N � r+ s+ 1, it is possible to recover α and β

unambiguously from the data of λN(α, β , n), r and s. A counterexample with r= s= 1 and N = 2
is given in Figure 2. Without the data of r and s, there are usually multiple ways of writing a
highest weight in the form λN(α, β , n), see also Figure 2. Finally, it should be emphasized that
every highest weight of U(N) or SU(N) can be written as λN(α, β , n) or λN(α, β).

The Casimir number of a highest weight can be expressed conveniently through this decompo-
sition, as we will show below. First, let us recall the definition of the content of a box of a diagram,
which is mentioned in particular in [25, 27].

Definition 2.7. Let α= (α1 � · · ·� αr � 0) be a non-increasing sequence of integers, seen as a
Young diagram. For any box (i,j) of this diagram, that is, any (i,j) such that j� αi, we call content
of the box (i,j) the quantity c(i, j)= j− i. We also define the total content K(α) of α as the sum of
the contents of the boxes of α.

An example is given in Figure 3.

https://doi.org/10.1017/S0963548321000262 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548321000262


154 T. Lemoine

The main result of this section is the following.

Proposition 2.8. Let α and β be two partitions of respective lengths r and s. Let n be an integer.
Then, provided N � r+ s, we have

c2(λ(α, β , n))= |α| + |β| + n2 + 2
N
(
K(α)+K(β)+ n(|α| − |β|)) (13)

in the unitary case, and

c′2(λ(α, β))= |α| + |β| +
2
N
(K(α)+K(β))+ 1

N2 (|α| − |β|)2 (14)

in the special unitary case.

Proof. Let us start with the unitary case. Using the definition of Casimir number and the definition
of λ(α, β , n), we obtain

Nc2(λ(α, β , n))=
r∑

i=1
α2
i +

∑
1�i<j�r

(αi − αj)+ 2n|α| +
s∑

i=1
β2
i +

∑
1�i<j�s

(βi − βj)− 2n|β|

+ |α|(N − r− s)+ |β|(N − r− s)+
∑

1�i�r
1�j�s

(αi + βj)+Nc2

=N(|α| + |β| + n2)+ 2n(|α| − |β|)+
r∑

i=1
α2
i +

∑
1�i<j�r

(αi − αj)− r|α|

+
s∑

i=1
β2
i +

∑
1�i<j�s

(βi − βj)− s|β|.

On the other hand,

K(α)=
r∑

i=1

αi(αi + 1)
2

− iαi = 1
2

⎛⎝ r∑
i=1

α2
i +

∑
1�i<j�r

(αi − αj)− r|α|
⎞⎠

and we find (13) as announced.
Concerning the special unitary case, we simply need to subtract from c2(λ) the quantity

1
N2
(∑

λi
)2, which leads to

c′2(λ(α, β))=c2(λ(α, β , β1))− 1
N2 (|α| − |β| +Nβ1)

2

from which (14) follows easily.

2.2.2 The special unitary case
In our treatment of the special unitary case, we want to adopt a systematic way of writing a highest
weight of SU(N) under the form λN(α, β). We do this in a way that depends on the parity of N,
but that in any case rests on the observation that for allM1,M2 � 0, the map

ŜU(M1 + 1)× ŜU(M2 + 1) ∼−→ ŜU(M1 +M2 + 1)
(α, β) 	−→ λM1+M2+1(α, β)

is a bijection.
In the case where N is odd, equal to 2M+ 1, we take M1 =M2 =M. When N = 2M is even,

and positive, we choose M1 =M− 1 and M2 =M. In this section, we will always write highest
weights of SU(N) as λ(α, β) and this will always refer to the decomposition just described.
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Figure 4. Two ways of listing the contents of the boxes of the diagram (3,3,2,1).

The proof of Theorem 1.1.(ii) will rely on two estimates of the Casimir number: one that helps
proving the convergence of the sum of qc′2(λ) over almost flat highest weights λ to the expected
limit, and one that helps controlling the sum over remaining highest weights.

Lemma 2.9. Let λ= λ(α, β)∈ ŜU(N). Set k= |α| + |β|. Then, the following inequalities hold:

k− k2

N
� c′2(λ(α, β))� k+ k2

N
+ k2

N2 , (15)

k
2
� c′2(λ(α, β)). (16)

Proof.We start from the expression of c′2(λ(α, β)) given by (14). The point is to bound K(α) and
K(β).

The list of the contents of the boxes of α taken row after row and from left to right in each row
(as on the left of Figure 4) is a sequence x1, . . . , x|α| such that |xi|� i− 1 for each i∈ {1, . . . , |α|}.
It follows that

−|α|(|α| − 1)� 2K(α)� |α|(|α| − 1).

This implies immediately

2|K(α)+K(β)|� k2,

and (15), after observing that 0� (|α| − |β|)2 � (|α| + |β|)2 = k2.
Let us turn to the proof of (16). We will establish a different lower bound on K(α) and K(β).

For this, let us list the contents of the boxes of α, now taken column after column and from top to
bottom in each column (as on the right of Figure 4). It is now a sequence x1, . . . , x|α| of integers
that along each column of α decreases by 1 at each step, and at each change of column jumps to a
positive integer. The crucial point is that the height of the columns of α is bounded by the integer
that we calledM1 at the beginning of this section, and that is in any case not greater than N

2 . The
contribution of each column is thus bounded below by −N

4 times the number of boxes in this
column. It follows that

K(α)�−N
4
|α|,

and a similar argument holds for β . The result follows again from (14).

Proof of Theorem 1.1.(ii) in the special unitary case. Let us fix a real γ ∈ (0, 12 ). Let us split the
set of highest weights of SU(N) in four disjoint subsets:

�N,1 = {λ(α, β):|α|�Nγ , |β|�Nγ },
�N,2 = {λ(α, β):|α|>Nγ , |β|�Nγ },
�N,3 = {λ(α, β):|α|�Nγ , |β|>Nγ },
�N,4 = {λ(α, β):|α|>Nγ , |β|>Nγ }.
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For each i ∈ {1, 2, 3, 4}, we define
S′N,i =

∑
λ∈�N,i

qc
′
2(λ),

so that

Z′N(1, T)= S′N,1+ S′N,2 + S′N,3 + S′N,4.
The set �N,1 is the set of highest weights that we think of as being almost flat and we will now
prove, in the first step, that they bring the only non-zero contribution in the limit where N tends
to infinity.

Let λ(α, β) be an element of �N,1. Then thanks to (15), we have

|α| + |β| − 4N2γ−1 � c′2(λ(α, β))� |α| + |β| + 4N2γ−1 + 4N2γ−2. (17)

For N large enough, any partition of an integer not greater thanNγ has less than N
2 positive parts.

Thus, if α and β are any two such partitions, the highest weight λN(α, β) is well defined and
belongs to �N,1. Thus, for N large enough,

S′N,1 =
∑

|α|,|β|�Nγ

qc
′
2(λ(α,β)).

From (17), we deduce that

q4N
2γ−1+4N2γ−2 ∑

|α|,|β|�Nγ

q|α|+|β| � S′N,1 � q−4N2γ−1 ∑
|α|,|β|�Nγ

q|α|+|β| .

Since 2γ − 1 is negative, the powers of q in front of the sums on either side tend to 1 as N tends
to infinity. On the other hand, the sum over α and β tends, as N tends to infinity, to the square of
the generating function of partitions. Hence,

lim
N→∞ S′N,1 = lim

N→∞
∑

|α|,|β|�Nγ

q|α|+|β| =
(∑

α

q|α|
)2
=
∞∏

m=1
(1− qm)−2.

In the second step, we prove that the three other contributions to Z′N(1, T) vanish asN tends to
infinity. For this, we use (16). Let us treat the case of S′N,2, the case of S

′
N,3 being perfectly similar,

and the case of S′N,4 even simpler. We have

0� S′N,2 �
∑

|α|�Nγ ,|β|>Nγ

q
1
2 (|α|+|β|) �

∑
α

q
1
2 |α|

∑
|β|>Nγ

q
1
2 |β| =

∑
α

q
1
2 |α|

∑
k>Nγ

p(k)q
k
2 .

The first sum is finite, and the second, as a remainder of a convergent series, tends to 0 as N tends
to infinity. This concludes the proof.

2.2.3 The unitary case
The proof of Theorem 1.1.(ii) in the unitary case will rely on the same tools as the special unitary
case, that is, the use of almost flat highest weights, combined with the bijection �:(λ, n) 	→ λ+ n
introduced in Section 2.1. In particular, Lemma 2.6 will be of great help in order to control the
convergence of ZN(1, T) using the convergence of Z′N(1, T).

Proof of Theorem 1.1.(ii) in the unitary case. Let λ(α, β) be an element of ŜU(N). Using Lemma
2.6 and Proposition 2.8, it appears that, for all n ∈Z,

c2(λ(α, β)+ n)= c′2(λ(α, β))+
(
n+ |λ(α, β)|

N

)2
= c′2(λ(α, β))+

(
n+ |α| − |β|

N
+ β1

)2
,
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so that we can write, up to a change of index n← n− β1,

ZN(1, T)=
∑

λ(α,β)∈ŜU(N)

(∑
n∈Z

q
(
n+|α|−|β|N

)2)
qc
′
2(λ(α,β)). (18)

The main difference with the case of SU(N) is the sum over n between the brackets, and we will
need to control it in order to get the convergence.

Let γ ∈ (0, 12 ), and the subsets (�N,i)1�i�4 of ŜU(N) as in the special unitary case. We define,
for 1� i� 4,

SN,i =
∑

λ∈�N,i

(∑
n∈Z

q
(
n+|α|−|β|N

)2)
qc
′
2(λ),

and we obtain the following decomposition:

ZN(1, T)= SN,1 + SN,2 + SN,3 + SN,4.

Let λ(α, β) be an element of �N,1. From the fact that
∣∣|α| − |β|∣∣� |α| + |β|� 2Nγ we get

n2 − 4nNγ−1 �
(
n+ |α| − |β|

N

)2
� n2 + 4nNγ−1 + 4N2γ−2. (19)

For the same reason as in the special unitary case, for N large enough, we have

SN,1 =
∑

|α|,|β|�Nγ

(∑
n∈Z

q
(
n+|α|−|β|N

)2)
qc
′
2(λ(α,β));

Then, equations (17) and (19) yield

q4N
2γ−1+4N2γ−2+4N2γ−2

(∑
n∈Z

qn
2+4nNγ−1

) ∑
|α|,|β|�Nγ

q|α|+|β| � SN,1 (20)

and

SN,1 � q−4N2γ−1
(∑
n∈Z

qn
2−4nNγ−1

) ∑
|α|,|β|�Nγ

q|α|+|β|. (21)

The sums
∑

n∈Z qn2±4nNγ−1 in both cases tend to
∑

n∈Z qn2 by dominated convergence because
γ − 1< 0. The remaining terms in both inequalities (20) and (21) behave in the same way as in
the proof of Theorem 1.1.(ii) in the special unitary case. This proves that

lim
N→∞ SN,1 =

∑
n∈Z

qn
2
∞∏

m=1

1
(1− qm)2

.

Now let us treat the cases of �N,2, �N,3 and �N,4. The arguments are the same for the three of
them, so we only choose to detail the case of �N,2. We have, using equation (16),

0� SN,2 �
∑

|α|�Nγ ,|β|>Nγ

(∑
n∈Z

q
(
n+|α|−|β|N

)2)
q
1
2 (|α|+|β|) ,
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and the sum between brackets can be bounded independently from N, |α| and |β| by C= 1+
ϑ(0;iT/2π ), thus

0� SN,2 �C
∑
α

q
1
2 |α|

∑
|β|>Nγ

q
1
2 |γ |

=C
∑
α

q
1
2 |α|

∑
k>Nγ

p(k)q
k
2 → 0, as N→∞.

This concludes the proof in the same way as in the special unitary case.

3. Non-orientable surfaces
Wenow turn to the study of non-orientable surfaces. Let us recall that any such surface can be con-
structed as the connected sum of g projective planes. In order to estimate the large N asymptotics
of its associated partition function, we need to compute the Frobenius–Schur indicator associated
with any highest weight.

3.1 Frobenius–Schur indicator of a highest weight ofU(N) or SU(N)
Let (ρ, V) a complex finite-dimensional representation of a compact groupG of character χV . The
Frobenius–Schur indicator

ιχV =
∫
G

χV (g2)dg

appears in particular in the study of symmetric and alternating parts of the tensor product
representation

V ⊗V = Sym2V ⊕
∧2

V.

Indeed, straightforward computations involving the canonical bases of V ⊗V, Sym2V and
∧2V

yield

χV(g2)= χV(g)2 − 2χ∧2V(g) (22)

and

χV (g2)= 2χSym2V (g)− χV (g)2. (23)

Furthermore, ρ is said to be:

i. Real if it exists a symmetric G-invariant nondegenerate bilinear form;
ii. Quaternionic if it exists a skew-symmetric G-invariant nondegenerate bilinear form;
iii. Complex if there is no G-invariant nondegenerate bilinear form.

The value of ιχV is actually based on this classification, as stated by the following Proposition.

Proposition 3.1. Let (ρ,V) be a complex finite-dimensional representation of a compact group G,
with character χ . Its Frobenius–Schur indicator satisfies the following equation:

ιχV =

⎧⎪⎪⎨⎪⎪⎩
1 if 〈χtriv, χSym2V〉 = 1, i.e. ρ is real;

−1 if 〈χtriv, χ∧2 V〉 = 1, i.e. ρ is quaternionic;

0 otherwise, i.e. ρ is complex.

(24)
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Proof. If we sum up equations (22) and (23), we have

2ιχV =
∫
G
2χSym2V (g)dg − 2

∫
G

χ∧2 V (g)dg = 2
(
〈χtriv, χSym2V〉 − 〈χtriv, χ∧2 V〉

)
.

Then, as Sym2V and
∧2 V are in direct sum, it appears that there are 3 cases:

• 〈χtriv, χSym2V〉 = 1 and 〈χtriv, χ∧2 V〉 = 0, which gives ιχ = 1;
• 〈χtriv, χSym2V〉 = 0 and 〈χtriv, χ∧2 V〉 = 1, which gives ιχ =−1;
• 〈χtriv, χSym2V〉 = 0 and 〈χtriv, χ∧2 V〉 = 0, which gives ιχ = 0.

As a consequence of this result, computing the Frobenius–Schur indicator of an irreducible
representation of U(N) or SU(N) can be done by determining whether the representation is real,
complex or quaternionic. The following theorem gives a classification depending on the highest
weight.

Theorem 3.2. Let λ ∈ ŜU(N) be a highest weight and n ∈Z be an integer.

i. If N = 2M+ 1 is odd and (α, β) ∈ ŜU(M + 1)2 such that λ= λ(α, β), then an irreducible
representation of SU(N) with highest weight λ is complex iff α �= β . Moreover, an irreducible
representation of U(N) with highest weight λ+ n is real if α= β and n=−α1, otherwise it
is complex.

ii. If N = 2M is even, (α, β) ∈ ŜU(M)× ŜU(M + 1) such that λ= λ(α, β), then set β̃ = (β1 −
βM , . . . , βM−1 − βM , 0) ∈ ŜU(M), and an irreducible representation of SU(N) with highest
weight λ is complex iff α �= β̃ . Moreover, an irreducible representation of U(N) with highest
weight λ+ n is real if α = β̃ and n=−α1, otherwise it is complex.

iii. If N is large enough and λ ∈�N,1 is an almost flat highest weight, then there is no
quaternionic irreducible representation of SU(N) with highest weight λ.

Note that when λ= λ(α, β) and α = β or α = β̃ (depending on the parity of N), the integer
λ1 = α1 + β1 = 2α1 is always even, so that the condition n= λ1

2 makes sense. The main point of
this theorem is that highest weights that are not symmetric are complex and therefore do not con-
tribute to the non-orientable partition function because their Frobenius–Schur indicator vanishes.
We can also notice that quaternionic representations of SU(N) with almost flat highest weight do
not appear in the large N scale and that the partition function becomes a sum of nonnegative
terms.

The proof of Theorem 3.2 will rely on two propositions.

Proposition 3.3. ([9], Proposition 26.24). Let λ= (λ1 � · · ·� λN = 0) be a highest weight of
SU(N). Let mi = λi − λi+1 ∈N for every i ∈ {1, . . . ,N − 1}. An irreducible representation of SU(N)
with highest weight λ is:

• Complex if there exists i such that mi �=mN−i;
• Real if for all i mi =mN−i and one of the following cases is satisfied:
• N is odd;
• N = 4k for a given k ∈N;
• N = 4k+ 2 for a given k∈N and m2k+1 is even;
• Quaternionic if for all i mi =mN−i, N = 4k+ 2 for a given k∈N and m2k+1 is odd.

Proposition 3.4 ([3], 5.2). Let (π ,V) be an irreducible representation of U(N) of highest weight λ.
If it is self-conjugate, that is, λi =−λN+1−i for all 1� i�N, then it is real, otherwise it is complex.
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Proof of Theorem 3.2. (i) and (ii) are direct consequences of Propositions 3.3 and 3.4. (iii) follows
from the fact that for N = 4k+ 2 with k large enough, if λ= λ(α, β) is almost flat, then there is no
‘jump’ between λ2k+1 and λ2k+2; thus,m2k+1 = 0 is always even.

3.2 Non-orientable surfaces of genus g� 3
3.2.1 The special unitary case
The proof of Theorem 1.2.(i) will be based on the same reasoning as for orientable surfaces of
genus g � 2, that is, using Proposition 2.2 to show that the contribution of all other highest weights
than (0, . . . , 0) vanishes in the large N limit. However, the case of non-orientable surfaces with
g = 3 will need a finer control, as we will see later. In particular, for even values of N and g = 3,
the following inequality is needed.

Proposition 3.5. Let N = 2M be an integer, α ∈ ŜU(M) and β ∈ ŜU(M + 1) be two highest weights.
We define λ(α, β) as in Section 2.2, and β̃ = (β1 − βM , . . . , βM−1 − βM , 0) ∈ ŜU(N). Then,

dλ(α,β) �
(
1+ βM

M

)M
dαdβ̃

.

Proof. Using equation (1) and the fact that

λ(α, β)= (α1 + β1, . . . , αM−1 + β1, β1, βM − β1, . . . , β2 − β1, 0),

it is clear that dλ(α,β) � dαdβ . Moreover,

dβ =
∏

1�i<j�M+1

(
1+ βi − βj

j− i

)

=
M∏
i=1

(
βi

M+ 1− i

)
d
β̃

�
(

βM
M

)M
dβ̃ .

Combining both inequalities gives the expected result.

Proof of Theorem 1.2.(i). The highest weight (0, . . . , 0) is associated with the trivial representa-
tion, which is real by Proposition 3.1 and has dimension 1 and Casimir number 0. We can then
rewrite

Z
′−
N (g, T)= 1+

∑
λ∈ŜU(N)
λ�=(0,...,0)

qc
′
2(λ)d2−gλ (ιλ)g ,

and the remaining sum can be bounded as follows:∣∣∣∣ ∑
λ∈ŜU(N)
λ�=(0,...,0)

qc
′
2(λ)d2−gλ ιλ

∣∣∣∣� ∑
λ∈ŜU(N)
λ�=(0,...,0)

qc
′
2(λ)d2−gλ .

If g � 4, then the right-hand side has been proved to converge to 0 as N→∞ in the proof of
Theorem 1.1, hence the result follows.

Now, if g = 3, we need to refine the analysis in order to get the convergence. From Theorem
3.2, it appears that λ ∈ SU(N) contributes to the partition function iff it is symmetric. The case
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N = 2M+ 1 is easier to prove, so we start with it. As ιλ= 0 if λ is associated with a complex
representation, we have

Z
′−
N (3, T)=1+

∑
λ∈ŜU(N)
λ�=(0,...,0)

λ is symmetric

qc
′
2(λ)d−1λ (ιλ)3,

which means that

|Z′−N (3, T)− 1| =
∣∣∣∣ ∑

α∈ŜU(M+1)
α �=(0,...,0)

qc
′
2(λ(α,α))d−1

λ(α,α)(ιλ(α,α))
3
∣∣∣∣

�
∑

α∈ŜU(M+1)
α �=(0,...,0)

qc
′
2(λ(α,α))d−2α

�ζsu(M)(2).

Then, lettingM tends to infinity and using Proposition 2.2, we have indeed

lim
M→∞ Z

′−
2M+1(3, T)= 1.

Now considerN = 2M. Let β̃ = (β1 − βM , . . . , βM−1 − βM , 0). Theorem 3.2 states that λ(α, β)
contributes to the partition function iff α = β̃ . It implies:

|Z′−N (3, T)− 1| =
∣∣∣∣ ∑
(α,β)∈ŜU(M)×ŜU(M+1)

α=β̃

qc
′
2(λ(α,β))d−1

λ(α,β)(ιλ(α,α))
3
∣∣∣∣.

We can then apply Proposition 3.5 to get

|Z′−N (3, T)− 1|�
∑

α∈ŜU(M+1)
α �=(0,...,0)

∑
n∈N

(
1+ n

M

)−M
d−2α

=
∑
n∈N

(
1+ n

M

)−M ∑
α∈ŜU(M+1)
α �=(0,...,0)

d−2α .

The first sum is bounded because
(
1+ n

M
)−M � e−n for any n,M, and the second one converges,

following the same argument as in the case N = 2M+ 1. We finally get

lim
M→∞ Z

′−
2M(3, T)= 1.

3.2.2 The unitary case
As for the special unitary case, the proof of the unitary case for non-orientable surfaces of genus
g � 3 is similar to the one of orientable surfaces of genus g � 2. Indeed, the point is to show that
only constant highest weights contribute to the large N limit.

Proof of Theorem 1.2.(i) in the unitary case. Let us consider g � 3 and T > 0. The only constant
highest weight of U(N) corresponding to a non-complex irreducible representation is (0, . . . , 0)
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and has Frobenius–Schur indicator equal to 1. We can then split the partition function Z−N (g, T)
into two parts:

Z−N (g, T)= 1+
∑

λ∈ŜU(N)
λ�=(0,...,0)

∑
n∈Z

e−
T
2 c2(λ+n)d2−gλ+nι

g
λ+n.

Now, given λ ∈ ŜU(N) and n ∈Z, we know that a necessary and sufficient condition for ιλ+n to be
nonzero is that λ1 =−2n; therefore, we have∣∣Z−N (g, T)− 1

∣∣= ∣∣∣∣ ∑
λ∈ŜU(N)
λ�=(0,...,0)
λ1 is even

qc2(λ−
λ1
2 )d2−gλ

∣∣∣∣� ∑
λ∈ŜU(N)
λ�=(0,...,0)

d2−gλ .

We are now in the same setting as in the special unitary case, and the convergence follows from
the same arguments.

3.3 The Klein bottle
The Klein bottle is the non-orientable equivalent to the torus, as we will see, in the sense that
the dimension of the irreducible representations does not appear in the formula of the partition
function. Hence, the proof of Theorem 1.2.(ii) is using almost flat highest weights as well.

3.3.1 The special unitary case
Proof of Theorem 1.2.(ii) in the special unitary case. Let γ ∈ (0, 12 ), and the subsets (�N,i)1�i�4
of ŜU(N) as in the case of the torus. We define, for 1� i� 4,

S′N,i =
∑

λ∈�N,i

ι2λ(α,β)q
c′2(λ) =

∑
λ∈�N,i

qc
′
2(λ),

and we obtain the following decomposition:

Z
′−
N (1, T)= S′N,1 + S′N,2 + S′N,3+ S′N,4.

Let λ(α, β) be an element of �N,1. We will discuss the case when N is even and the case when
it is odd and show that the subsequences (Z

′−
2M) and (Z

′−
2M+1) both converge to the same limit.

• If N = 2M+ 1, from Theorem 3.2, we know that ι2
λ(α,β)= 1 if α= β , and 0 otherwise. If this

is the case, we can simplify equation (14) into

c′2(λ(α, α))= 2|α| + 4K(α)
N

, (25)

for any α of length r and N � 2r. Let us recall the estimation
|2K(α)|� |α|(|α| − 1),

which leads for λ(α, α) ∈�N,1 to

|c′2(λ(α, α))− 2|α||� 4N2γ−1.
We then get the estimate

q4N
2γ−1 ∑

|α|�Nγ

q2|α| � S′N,1 � q−4N2γ−1 ∑
|α|�Nγ

q2|α|, (26)

and both bounds converge to the expected quantity
∏∞

m=1 1
1−q2m .
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• If N = 2M, let β̃ = (β1 − βM , . . . , βM−1 − βM , 0) as in the g � 3 case. We know from
Theorem 3.2 that ιλ(α,β) = 1 if α = β̃ and 0 otherwise, so we have

βM = 2(|β| − |α|)
N

.

The condition |α|, |β|�Nγ is then equivalent to⎧⎨⎩ |α| � Nγ

βM � 1
2N

γ−1 − |α|2N

.

Furthermore, equation (17) becomes

2|α| +MβM − 4N2γ−1 � c′2(λ(α, β))� 2|α| +MβM + 4N2γ−1 + 4N2γ−2.

We obtain that

S′N,1 � q−4N2γ−1 ∑
|α|�Nγ

( ∑
0�n� 1

2N
γ−1− |α|2N

qMn

)
q2|α|, (27)

S′N,1 � q4N
2γ−1+4N2γ−2 ∑

|α|�Nγ

( ∑
0�n� 1

2N
γ−1− |α|2N

qMn

)
q2|α|. (28)

The sums over n are bounded between 1 and
∑

n∈N qMn which is bounded because |qM|< 1
and converges to 1 as N tends to infinity (by dominated convergence). It finally appears that
both bounds of (27) and (28) converge to

∏∞
m=1 1

1−q2m .

By similar arguments as the ones used in the case of the torus, we can prove that S′N,2, S
′
N,3 and

S′N,4 all converge to 0 as the remainders of convergent series. This concludes the proof.

3.3.2 The unitary case
Proof of Theorem 1.2.(ii) in the unitary case. Let us start from the definition of Z−N (2, T). We
have

Z−N (2, T)=
∑

λ(α,β)∈ŜU(N)

∑
n∈Z

qc2(λ(α,β)+n)(ιλ(α,β)+n)2.

We know from Corollary 3.2 that ιλ(α,β)+n = 1 if λ(α, β) is symmetric and n=−λ
2 =−α1, and 0

otherwise. We can then simplify the formula into

Z−N (2, T)=
∑

λ(α,β)∈ŜU(N)
λ is symmetric

qc2(λ(α,β)−α1).

As in the special unitary case, we will distinguish between the odd and even values ofN, and prove
that

lim
M→∞ Z

′−
2M = lim

M→∞ Z
′−
2M+1 =

1
φ(q)2

,

which implies the convergence of (Z−N ).
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• If N = 2M+ 1, the symmetry condition is equivalent to α = β , and in particular
λ(α, β)− β1 = λ(α, β , 0). Its Casimir number is given in equation (13):

c2(λ(α, β , 0))= |α| + |β| + 2
N
(K(α)+K(β)).

Comparing with (14), we remark that c2(λ(α, β , 0))= c′2(λ(α, β)). Then,

Z−2M(2, T)= Z
′−
2M(2, T)

and we can conclude from the special unitary case.
• If N = 2M, let β̃ = (β1 − βM , . . . , βM−1 − βM , 0) as in the g � 3 case, then the symmetry
condition is equivalent to the fact that α= β̃ and we have

βM = 2(|β| − |α|)
N

.

Let γ ∈ (0, 12 ), and the subsets (�N,i)1�i�4 of ŜU(N) as usual. We define, for 1� i� 4,

SN,i =
∑

λ(α,β)∈�N,i
α=β̃

qc2(λ(α,β ,0)),

and we obtain the following decomposition:
Z−N (1, T)= SN,1 + SN,2+ SN,3 + SN,4.

The condition |α|, |β|�Nγ is then equivalent to⎧⎨⎩ |α| � Nγ

βM � 1
2N

γ−1 − |α|2N

.

From (13) and (14), we have

c2(λ(α, β , 0))= c′2(λ(α, β))−
(|α| − |β|)2

N2 = c′2(λ(α, β))− 4β2
M .

We can combine all these estimations with (17) to obtain
2|α| +MβM − 4N2γ−1 − 4β2

M � c2(λ(α, β , 0))� 2|α| +MβM + 4N2γ−1 + 4N2γ−2 − 4β2
M.

Recall that for λ(α, β) ∈�N,1, we have βM � 2N
γ−|α|
N � 2Nγ−1, which yields

β2
M � 4N2γ−2.

We obtain therefore new bounds for c2(λ(α, β , 0)):
2|α| +MβM − 4N2γ−1 − 4N2γ−2 � c2(λ(α, β , 0))� 2|α| +MβM + 4N2γ−1 + 4N2γ−2.

We obtain similar bounds for SN,1 as we did in (27) and (28), and we recover the same limit
using the same arguments. We can also use the same routine as we did for the torus, to prove the
convergence of SN,2, SN,3 and SN,4 to 0 as the remainders of convergent series.
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