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For positive rational integers A\, we study the Hecke L-series attached to elliptic
curves y2 = % — 2433 D* over the quadratic field Q(\/—_B) and obtain various bounds
of p(= 2, 3)-adic valuations of their values at s = 1 according to the cases of D and .
In particular, for the case of even A, we obtain a criterion of reaching the bounds of
3-adic valuations. From this, combining with the work of Coates and Wiles and
Rubin, we obtain some results about the conjecture of Birch and Swinnerton-Dyer of
these curves.

1. Introduction

We consider the p(= 2, 3)-adic valuations of L(1) of the Hecke L-series attached to
elliptic curves

Ep» :y? = 2% — 2'33D*,

where D is a square-free integer in Q(\/—_S) and A € Z is a positive rational integer
not divisible by 6. The 3-power divisibility problems of L(1) have been studied
in [5,6,10] in some cases. In fact, Stephens [10] proved that if D > 2 is a cube-free
rational integer, then 31/2D1/3L(ED2/Q, 1)/£2 is a rational integer, divisible by 3
when 9 | D. And recently (see [5,6]) we proved that if D is a square-free integer
in Q(v/—3) with n distinct prime factors, then L(¢p2,1)/12 is divisible by 37/2~1,
where 1p: is the Hecke character of Q(v/—3) attached to Ep:.

In this paper, for Epx over Q(v/—3), we further study the 3-adic valuation of L(1)
in the case of A = 2,4, and study the 2-adic valuation of L(1) in the case of A = 3.
We obtain lower bounds of these valuations. In particular, for A = 2,4, we obtain a
criterion of reaching the bound of 3-adic valuation. Then, by the results of Coates
and Wiles [2] and Rubin [7], we can deduce some results about the conjecture of
Birch and Swinnerton-Dyer of these curves. For example, if D = 1 (mod6) is a
prime integer of Q(\/—_S)7 and the 3-adic valuation of the difference of its complex
conjugate and 1 is equal to 1, then the Mordell-Weil group and Shafarevich-Tate
group of Epx over Q(v/—3) are finite. In particular, if D is a rational integer, the
first part of the conjecture of Birch and Swinnerton-Dyer for Epx over Q is shown
to be true in some cases (see corollary 2.4 below).
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2. Main results

Throughout this paper, let 7 = %(—1 + v—3) be a primitive cubic root of unity
and Ok = Z[7] the ring of integers of the quadratic field K = Q(v/—3). We study
the elliptic curves

Epx: y2 =23 - 2433D)‘, with D =71 - - -y,

where 7y, are distinct prime elements in Ox (k=1,...,n), A\=1,...,5. Let ¢)p» be
the Hecke character (i.e. Grossencharacter) of K attached to the elliptic curve Epx :
y? = 2% — 233D and L(¢pr, s) the Hecke L-series of ¢ (the complex conjugate
of pr). For the definition of such a Hecke L-series attached to an elliptic curve,
see [9]. Also, we let £2) denote the real period of the Weierstrass 2 function satisfying
the differential equation X' (z)? = 45]2)3 — 1 (as stated in lemma 2.1 below). Then,
from [2,7], it can easily be seen that the values QakL(z/_JkDM k) (k=1,2,...) are all
algebraic numbers. We will discuss the case k = 1.

Let Q, be the completion of Q at p-adic valuation for any rational prime p,
Q and @p be the algebraic closures of Q and Q,, respectively, and let v, be the
normalized p-adic additive valuation of Q, (i.e. v,(p) = 1). Fix an isomorphic
embedding Q — @p. Then v,(«) is defined for any algebraic number « in Q. The
value vp(a) for a € Q depends on the choice of the embedding Q «— @p, but this
does not affect our discussion in this paper. We will discuss two cases: p = 2 and
p=3.

In order to state our main results, we first give a fundamental lemma to express
L(1) by the values of Weierstrass X functions. To see this, let S = {ry,...,m, }. For
any subset T of the set {1,...,n}, define

Dr = H Tk, Dr = Dﬂ
keT T
and put Dy = 1 when T = () (empty set). Let ¥py be the Hecke character of
Q(v/=3) attached to the elliptic curve Ep - y? = 2% — 2433D2, and let LS(@D%, s)
be the Hecke L-series of "L/_JD% (the complex conjugate of T/JD;) with the Euler factors
omitted at all primes in .S. We have the following uniform formulae for special values
Ls("L/—JD%, 1) of the above Hecke L-series at s = 1, which are expressed by the values
of Weierstrass 3 functions.

LEMMA 2.1. Let A\=1,...,5, and let D = 7y - - -m,,, where T, = 1 (mod 6 x 2°WV)
are distinct prime elements of Z[r] (k = 1,...,n). Then, for any factor Dy of D
and the corresponding Hecke character wD% as defined above, we have

D (3x 47OV
Q_O(D—T> Ls(py,1)
6

- () ! L] Z(Lf
2\/§cec Dy ) J4°Nef2y/D) — 1 3\/§cec Dr )

where a(X) = $(1 — (=1)*), (-) is the seatic residue symbol, C is any complete set
of representatives of the relatively prime residue classes of Ox modulo D, 3(z) is

https://doi.org/10.1017/5S0308210500003000 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500003000

p-adic valuation of L(1) 1391

the Weierstrass X-function satisfying X (2)? = 4302)® — 1 with period lattice Lg, =
200K (corresponding to the elliptic curve y?> = x> — 411) and 29 = 3.059908... is
an absolute constant.

2.1. The 3-adic valuation of L(1) of Epx in the even-\ case

Now we come to state our main results. The first one is about the 3-adic valuation
of L(1) of Epx with even A.

Let A=2,4. For D = m - - -m, as above, we define the functions 6,(LA)(D) (where
n = n(D) is the number of distinct prime factors of D in Z[7]) inductively as
follows,

6§)‘)(7r) =7—1 (n=1, D=m), where7 is the complex conjugate of m,

SN(D) =W (my - - om,)
D A
-2 HW”'( 11 (”_ (_T> )) 6 (Dr) (0 >2),
0TS {1,im} 7| Dr Tk /6

where T runs over all non-trivial subsets of {1,...,n} and ¢t = ¢(T) = #T is the
cardinal of T

THEOREM 2.2. For A\ = 24, let D = my - -7, where 7 = 1 (mod6) are dis-

tinct prime elements in Z[t] (k = 1,...,n), and let ¥wpx be the Hecke character
of Q(v/=3) attached to the elliptic curve Epx : y*> = x> — 2433D*. Then, for the

3-adic valuation of the algebraic number L(1px,1)/82y, we have
v3(L(Ppr, 1)/92) = 5n — 1,
and the equality holds if and only if
v (D)) = §(n+1).

REMARK 2.3. The lower bound for the case A = 2 was obtained in [5,6]. However,
the condition for reaching the bound was not determined there. Here, for A = 2 as
well as the new case A = 4, by a new method, we solve this problem when obtaining
the lower bounds (see the proof in the following).

COROLLARY 2.4.
(i) Let A\, D be as in theorem 2.2. If
v3 (67 (D)) = 3(n + 1),

then the Mordell-Weil group E(K) and the Shafarevich-Tate group Sha(F/K)
are finite and there is a u € Ok [2]* such that

_ L(E/K,1)
#(Sha(B/K)) = u- (#E(K))* - ==,

where the elliptic curve E = Epx : 3% = 2% — 2*33D* and 2 € C* generates
the period lattice of a minimal model of E /K.
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(ii) In particular, if D in (i) is a rational integer, and 03(6()‘)(D)) =1(n+1),
then the first part of the conjecture of Birch and Swinnerton-Dyer is true for
the elliptic curve Epx : y?> = 23 — 2*33D> over Q, that is,

rank(Ep» (Q)) = ords=1 (L(Ep»/Q, s)) =0,
where n = n(D) is the number of distinct prime factors of D in Z[7].

Proof of corollary 2.4. (i) If 1)3(6()‘)(D)) = 2(n+1), then, by theorem 2.2, we get
Ug(L( DA 1)/00) 2n—1

In particular, L(¢)pr, 1) # 0, so, by [7, theorem 11.1], we obtain the result.
(ii) If D is a rational integer, then L(¢px,1) = L(¥px,1), which is equal to
ED>\<Q, up to a finite number of non-zero Euler factors at s = 1 (see [2]). So,
ifvg(dy ' (D)) = %(n + 1), then, by theorem 2.2, we get L(Ep»/Q, 1) # 0, and then,
by [2], we obtain the result. a

REMARK 2.5. There is much literature studying the 3-descent on elliptic curves
y? = 23+ A. Unfortunately, at present, we cannot obtain good enough results about
the Selmer group of EFpx via 3-isogeny under the condition of our theorem 2.2. If
this could be well established, then, by theorem 2.2, some further results about the
full conjecture of Birch and Swinnerton-Dyer for Epx may be obtained.

PROPOSITION 2.6. If 1, = 1 (mod 18) for all k = 1,...,n, then, for ¥pxr in theo-
rem 2.2, we have

vs(L(thpr,1)/20) = 3(n — 1).

2.2. The 2-adic valuation of L(1) of Eps

Our second main result concerns the 2-adic valuation of the special values at
s = 1 of the Hecke L-series attached to Fp» with A = 3.

THEOREM 2.7. Let D = my - - -7, where 1, = 1 (mod 12) are distinct prime ele-
ments of Z[t] (k = 1,...,n), and let 1ps be the Hecke character of Q(v/—3)
attached to the elliptic curve Eps : y?> = a3 — 2433D3. Then, for the 2-adic valu-
ation of L(¢ps,1)/82, we have

v2(L(¢ps,1)/20) = n
REMARK 2.8.

(i) Our results in theorem 2.7 are consistent with the predictions of the conjecture
of Birch and Swinnerton-Dyer in a certain sense. In fact, by the methods
in [11], it is easy to verify that, under our hypothesis of D, the Tamagawa
factor ¢, = 1,2,4 for any finite place v satisfying v | Ng and v { 6, where
Ng is the conductor of E = Eps in theorem 2.7. Let 2 € C* be an Og-
generator of the period lattice of a minimal model of E. Consider the case
L(E/K,1) # 0. (The case L(E/K,1) = 0 does not need to be considered since
va(L(E/K,1)) = 00.) Then the conjecture of Birch and Swinnerton-Dyer [1,8]
predicts that L(E/K,1)/§2§2 has the factor

H ¢, = 2™ for certain exponent ms.
v|N(E) and vt6
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Furthermore, when the number n(D) of distinct prime factors of D becomes
greater, N (E) would have more prime factors v, so ma would become greater.
This is consistent with our results of theorem 2.7, since we have (see, for
example, [9])

L(E/Kvl):L(wa 1)L(1/_}:1)a WhereT/J:T/JD3-

(ii) For the families of elliptic curves Epx in lemma 2.1 with A = 1,5, it can
also be easily verified by the same methods in [11] that the Tamagawa factor
¢y = 1 for any finite place v | Ng and v { 6, where Ng is the conductor of
E = Epx. This means that the product of the Tamagawa factors

M -«

v|N(E) and vt6

does not increase. So we do not consider the problem of p(= 2, 3)-adic valua-
tion for these cases.

(iii) For the elliptic curves £ = Epx in lemma 2.1 with A = 2,4, which were
studied in [5,6] and theorem 2.2, it can be easily shown that the product of
the Tamagawa factors

H ¢, = 3™ for certain exponent ms.
v|N(E) and vt6

Furthermore, m3 varies depending on the number of distinct prime factors
of D. This was exactly the problem of 3-adic valuation that we studied in [5,6]
and theorem 2.2 in this paper for these cases.

3. Proofs of the main results

Proof of lemma 2.1. The case of A\ = 2 has been proved in [5,6], and the case of
A = 4 can be similarly proved. Now we give a sketch of the proof for the odd-A
cases. So we let A = 1,3,5. By the method in [11], it can be verified that the
conductor of ¢pa is (vV/=3Dr) or (3Dr) (as integral ideals of Og). Then, by the
results (especially proposition 5.5) in [3], as done in [5,6], we can get

3D P ( 12c+D)Q
Q_ LS ”L/JDA ]. %El( 3D OOK )

* and

where C is as in lemma 2.1, a complete set of representatives of (O /(D))
Ef(z,L) is the Eisenstein E*-function (see [12]).

Since A is odd by assumption, 7, = 1 (mod12) for all k¥ = 1,...,n. Hence
D=m- 7w, =1 (modl2), Dy =1 (mod12) and 12¢+ D =1 (mod 12) for all
celC. Slnce (¢, D) =1, we have (12¢ + D, Dr) = 1. Thus, by the definition [9] of
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¥py and the law of sextic reciprocity [4], we get
Dy Y
wD%(12C+ D)= (m)ﬁ -(12¢ + D)

A
12c+ D
(—C+ > (12 + D)
Dr ),

12¢\'
(—> -(12¢+ D) forall c €C.
D Jg

Since Ej(wz,wL) = w'Ej(2, L), we have

D [ 12\ 1 c 4e0
(5r), ot Z(D—J (45 50 2005).

Then, by the results and a similar calculation in [5,6], we can obtain

%(%):ALS(W D 2\/'2(DT> 2(40901/17 17 3\/_Z(DT>

This proves lemma 2.1. O

3.1. Proofs of theorem 2.2 and proposition 2.6
LEMMA 3.1. Let A, D be as in theorem 2.2. Then we have

v3(6V(D)) = E(n+1).

Proof. If n = 1, then, by definition, 6§)‘)(7r1) =7, — 1. Since 71 = 1 (mod6), we
also have 71 =1 (mod6), so

w3 (8N (m1)) = wa(m — 1) = 1= 3(1 + 1).

Assume that the conclusion is true for 1,2,...,n — 1 and consider the case n,
D = my - - -m,. For every non-trivial subset T of {1,...,n}, since

A
D .
(—T> =1, ror7? forany m | Dr,

Tk

we have

Hence
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Therefore, by definition and properties of valuation, we get 03(6()‘)(D)) >

This proves lemma 3.1.

1395

in+1).
O

Proof of theorem 2.2. For A = 2,4 and each subset T of {1,...,n}, multiply the
two sides of the corresponding formula of lemma 2.1 by 2"~*7) (where t(T) = #T

is the cardinal of T'). Adding them up, we obtain

B D 3 6—X\ B
Z2n t(T)?O (D—T> LS(wD}: 1)
T 6

A A

1 Z Z c 1 1 Z Z c
_ 2n7t(T) (_) 4 2n7t(T) (_)
23 Dr Jg Xcf2/D) =1 33 % <\ Dr Js

s fz 2 th(DT)

where

A
S \/_ Z Z(CQO/D) -1 22" s (DT>

It could be easily verified that

ZQ” t(T)Z( > on-— t<®>z( >—2”-#C.

ceC ceC

Thus N
D 3\ - 2m
§j2”f<T>—(—> L x,1) = S5(D) + —= - #C.
— QO -DT A S(wDT ) )\( ) 3\/5 #

Now we prove
v3(Sx(D)) > 3n — 1.

In fact, since (¢/m)g =1, 7 or 72, and v3(1 — 7) = 1, we have

c A
v3(2—|— (—) > 2%
Tk 6

(we always write v3(0) = +00). Thus

(S () ([ (£])) - Eolo+ (£

k=1

that is,

A
v (ZT: on—t(T) (DLT>6> > %n for all c € C.

(3.3)

Now for the Weierstrass J-function Xz, Lg,) in lemma 2.1. By [10, p.128, lemmas 1

and 2], it could be easily verified that

2
UB(E(CTO,L_QO) — 1> :% for all c € C.
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Therefore, by properties of valuation, we obtain

0> (122 o ) (S ()

15
Z35n =3
1.
> 35n 1.

This proves (3.2).
Also, for C in (3.1) above, by assumption, we have #C = [[;_, (mx7T; — 1), and
then

2" 2" =
v3g| —=-#C | =v3| —= | + va(mpie — ) >2n—2>3In-1, n>1.
3(3\/5 #> 3(3\/§> ;3(“ ) 2702

It is obvious that LS(@D%, 1) = L(¢Ypr,1) when T = {1,...,n}. And when T =0

we have

Ls($py,1) = Ls(Pn,1) = L(¥n, 1) [ | (1 - i)
From [10], we know that
L(1,1) = Ly, 1) = Li(1) = §V3,
where 1)1 is the Hecke character of Q(\/—_S) attached to the elliptic curve E; : % =
2% — 2433, Thus
n-pnfi(-2)
Now we come to prove the following assertion, which is the core of our proof.

ASSERTION 3.2. Let

6—A
W) = (5) o 1)+ (1 3@V 5 D)
6

Then
v3(ZMV(D)) > dn — 1.

In fact, if n = 1, then D = m1. So, by (3.1),

2 Q ( > )\I‘(wﬂ'] ) ) 2 Q ( D > )\‘[‘7 (1/}1)6’ :')
0 1 6 0 6

Hence
o (3N 2m 1
?o(ﬂ_l L(tpy, 1) = S3(m1) + $(2V3)(mm — 1) — o8 1\/590(1—7?1)
:S)\(Wl)+%(2\/§)(’fr1’fr1—’fr1)
= S5(m) + 22V3)(m — 1) (7 — 1) + 2(2V3)sM (1),
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6—X\
20 >_g—(§) Ly, 1)+ (-1 - 321V3)6 (my)
—ﬂ(ifAL bors 1) — 2(2V3)8)
-2 (2) HOan -3 )

From (3.2), v3(S3(m1)) > 3 — 1, and obviously
vs(3V3)(m - (- 1)) > -S+1+1=3>1 -1
Therefore, ’()3(21()\)(7'(1)) >1-1
Assume that our assertion is true for 1,...,n—1 and consider the case n (n > 2),

D =7 - - -m,. For any non-trivial subset T of {1,...,n}, put t = ¢(T) = #T. Then
0 <t < n and, by the inductive assumption, we have

6—X\
00 = ZZ (2] 1y 0+ 1) 4@VE) 5 (D)

29 \ Dr Jg
and
v3(EM(Dr)) > Lt 1.
Therefore,
Dr( 3 Y Y Lo 1i9t/3) . g™
— |7 L®py,1)=2""(Dr)—(-1)"5(2"V3)- 6" (Dr),
29 \ Dr Jg
and then
D/ 3 ¢ B
n—t(T) [ _2_
2 QO (DT >6 LS(wD%: 1)
D[ 3\ Dr\' 1
zgnt(T)_(_> L 1) - (1_ (_T> _>
QO -DT s (wD%: ) H Tk s Tk
7Tk|DT
—on—t(T) [ ZL [ 2 . . _(ZT
2 (QO (DT>6 L(wD%’ 1)> H (Wk (Wk >6>
7wk | DT
A A Dy \'
:2n7t(T) . (E,g )(DT)_ (_1)15.%(215 3).5§ )(DT))' H (Wk _ (W_> >
7| Dr k76
DV
=2 sV n) ] (”k - (_T> )
. Tk /g
k| DT
) Dr ¢
— (-1t 3@2"V3)s, (Dr) H (M— (W—k> >
6
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Since, from (3.1),

D 6—\ B n
D onth — (—> Ls(¥py,1) = S5(D) + 22"V3) - [[ (meme — 1),
T 0 \Dr ! k=1
we have

D 3 6—M\ B
?0(5> L(tpx,1)

6

D 6-A D 6=r
_Z2n t(T)Q (D_T> Ls(tpy,1) — 2"~ “@)Q (D_@> Ls(¥py, 1)

D/ 3\
- 2”“”—(—) L 1
QO -DT A S(wD%: )

OATS{1,...,n}
= S5(D) + +(2"V3 ﬁwkwk—1—2"-£-l\/§no-ﬁ(1—i>
9 P QO 9 P Tk
D A
© oy (mspon. T (s (2))
R Tk /g
@#T;{L...,n} 7w, | DT
A Dr\'
-0 3@ VE a0 T (m- (2))
FkaT k 6
= S(D) + £(2"V3 Hwkwk—l——2"\/_) [ -1)
k=1 k=1
D A
Sy (o T (e (22)))
. Tk /g
0£TS{1,...,n} 7| DT
A D\
+ (-1t 1@"V3) - oM (D) - ] (m— (T) ))
0#TG{1,...,n} k| DT k76
D
—sevd Y e (I (- (22)) oo,
0#TG{1,...,n} 7| D7 k /6

where

1= S5(D) +2@V3) - [[(meme — 1) — $(27V3 H (e — 1)
k=1 k=1

L5 s 1 (2)

(075T§{17~~;n} WkaT 6
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Note that (—1)% = (=1)"t! . (=1)"*+1~% 5o

L (%>HL<1/7DA, 1)

2 \D ),
-3 4+ 2n\/_ n+1
n+l—t ‘DT * )
> (-1 AT (me— (= -6, (Dr)
. Tk Jg
0ATSA{1,...,n} k| DT

_ El ( n+1 271\/_ 6()\)
=5 — (-1 )n-% 2”\/' - 5( ).

Therefore,

6—A\
=00 = (5) B )+ 1 HVE - SO(D) = 3,

From (3.2), we know that v3(S3(D)) > $n — 1. Also, we have
UB(%(2H\/_ Hﬁkﬁk_1> %+n>%n—1 for n > 2,
k=1
03(%(271\/_ Hﬁk_1>/—g+n>%n—1 for n > 2
k=1

and

7rk|ﬁT
A

D

= om+ 3 o((m- (22)))
T

7rk|DT
—14+1i(n—1t)
—%n—l

Therefore, by properties of valuation, we get
v3(ZV(D)) = vs3(Z)) > dn—1 (n>2).

This completes the proof of our assertion by induction.
Now, by the above assertion,

6—A
2(2) 1o = 200) - (1) 4@ VE) -5 (D)
6

and

v3(ZMV(D)) > dn — 1.
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From lemma 3.1, we know that 1)3(6( )(D)) >1(n+1), and so

vs((—=1)" - 4(2"V3) - sV(D) > 2+ d(n+ 1) =dn—1.
Therefore, by the properties of valuation, we get
_ D /3
v3(L(¥pxr,1)/82) = v3 (Q_o (5>6 L(¥pa, 1)) >4n -1,

and the equality holds if and only if
vs((=1)" - §(2"V3) -6V (D)) = 4n — 1,
which is equivalent to
v (D)) = L(n +1).
This completes the proof of theorem 2.2. O
Proof of proposition 2.6. Since 7 = 1 (mod 18), we have 77, = 1 (mod 18), and
then vs(mp — 1) = 2, so

n

v3(#C) = v3(#(0k /(D))") = UB(H(WM_TI@ - 1)> = vs(meFe — 1) > 2n.
k=1

k=1

Obviously, we also have 7, = 1 (mod6), and thus D = 71 - - -7, completely satisfies
the condition of D in theorem 2.2. Therefore, from the proof of theorem 2.2, we
also have (see (3.1) above)

6—X\ n
Z2ntm£(i> Ls(@ps,1) = S3(D) + ——= - #C
) 2%\ D1 ), ES 3v3

and

S*(D) _ 1 Z 1 Z2n t(T)( >)\
A 23 = Mcf2o/D) — 1 Dr

where T runs over all the subset of {1,...,n}.
Now we prove that
v3(S5(D)) = $(n —1). (3.5)

Since mx =1 (mod 18) (k=1,...,n), we have
2
N(Dr)=N(D)=1 (modl8), (L> — 7 (N(Pr)=1)/3 _ .
Dt Jg

We also have

=[[(N(xr) —1)=0 (mod18),
k=1

so we may choose the set C properly such that +c, +7¢, £7%¢ € C (when ¢ € C). That
is, when ¢ € C, all its associated elements are in C. Let V = {c € C : ¢ =1 (mod 3)}.

Then
C= U uv.
pefE 1,£7,+£72}
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Obviously,
2 2
) - (=
(DT >6 (DT >6’
—cf? cf?
E(TO:L.(Qo) :E(TO:L.(Zo):
Z(TZ: L-Qo) = TZ(Z: L-Qo):
Z(T2Z, LQD) = T2Z(Z, LQD).
Thus

ey L 1 weery (€Y
Sx(D) = \/gcezéz(cQO/DJno) -1 ;2 (DT>6
1 1 n—t(T) [ 7€ !
+ ﬁcze‘:/ Mrefo/D,Lg,) —1 ;2 (DT>6
1 1 nur) (T3¢ ’
* \/gz 202/ D, L) — 1 ;2 (DT>6
A
_ L n—t(T) <
22 {Z M) (DT>6}
(€ !
_ - n—t(T) [ _=_
SOOI ()

- () ) (%) ) (%) )

TE(CT?ZO> —1= (HCQO/T? -7 _ %((2(%20) - 1) +(1 —72)>,
)1 man (3

where

Since

D
by (3.4) in the proof of theorem 2.2, we obtain

)
L)) o)) o)) -5
(@) = o (5(S22) ~1) =34 =1

Hence, by (3.3) in the proof of theorem 2.2 and the properties of valuation, we get

A

1 c
S3(D)) > % —_ i Qnt(T)(_>>>l_1 1,1 1
v3(S3(D)) 2+03(7(C)>+£%1‘5103(ET D1 ), 2 —14+3n=3(n—1).

This proves (3.5).

Thus
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Also by the above discussion, we have

1)3(32\/n§ -#C> =—24+u#C)22n—2>1(n—-1) (n>1).

So, by properties of valuation, we obtain

(Z gn— t(T)é’ (D_T>6ALS(1/7D%,1)> >1n-1). (3.6)

T

By definition, we know that Ls(”L/JDA 1) = L(¢pr,1) when T = {1,...,n}. When
T = ), by our assumption, we have that

(2” t(0) é)o (D—Q))GALs(l/_JDg, 1)> =v3(Ls(¥1,1)/92)

S ()

k=1
>1-2+2n
:2n—%
>3(n-1) (n=1). (3.7)

Now we use an induction method on n to prove that
v3(L(dpr,1)/62) > 3(n —1).
Ifn=1,D=m and S = {m}, then
Ua(LS(T/_JDga 1)/20) = vs(Ls(¥1,1)/2) > (1 —1) = 0.
Also, by (3.6), for n = 1, we have

(2—(i>6AL bpr,1 ﬂ(3>6AL b 1>>l 1-1)=0
QO DQ) s S(wDé‘a )+ QO ™ s (1/}71'{" ) = 2( )_ .

Therefore, by the properties of valuation, we obtain

(0 020 = (2 (2] T rg ) 20=30 -1,

6

Assume that our conclusion is true for 1,2,...,n — 1, and consider the case n,
D=m - m,and S = {my,...,m,}. For any non-trivial subset T of {1,...,n}, put
t =t(T) = #7T. Then 1 <t < n. So, by our induction assumption, we have

D/ 3\
2”t<T>—(—> L 1 >
va( 2\ D7 ) s(¥py.1)

= v3(L(py, 1)/2) + D ”3(1_ (&fi)

7rk|ﬁT
(HT) = 1) + 5(n — t(T))
(n—1). (3.8)

2

wl»—t =

https://doi.org/10.1017/5S0308210500003000 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500003000

p-adic valuation of L(1) 1403
Therefore, by (3.6)«3.8) and the properties of valuation, we obtain that

v3(L(dpr,1)/$2)

D /3
=3 (271”?0 (5>6 Ls(¥p», 1)>

6—\
= (E 2" “T)D(—> Ls(¢¥pa,1)
p= 20 \Dr T
D/ 3\
E QO DT A S(wD%: )

0ATS{1,...,n}
D/ 3\
- 2"“@)—(—) L 1 >
QO D@ A S(wDé‘: )

>1(n—1).

This proves our conclusion by induction, and completes the proof of proposition 2.6.
O

3.2. Proof of theorem 2.7

Proof of theorem 2.7. For A = 3, sum the identity of lemma 2.1 over the 2™ subsets
T of {1,...,n} to obtain

D (12} -
ZT: oA (D_T> Ls(¥psz,1)

QIZZ(DT> 2(40901/17 -1 3IZZ(DT>

T ceC T ceC

It can easily be verified that

L2 (5)-Sl(5) -+

T ceC ceC
Hence
D [ 12 1
— L a1 Six(D) + —= - #C, 3.9
;QO(DT) s(py1) = S5(D) + = # (39)
where

2\/- Z 2(4090/17 1 Z(DLTE

Since (¢/m)s = £1, we have vy(1 + (¢/m)3) = 1 (we always write v2(0) = +00).

(S ]) ol () - Sl ()

k=1 k=1
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that is,

3
Vg (Z (DLT> > >n forallceC. (3.10)
T 6

We also have

#C = #(0k /(D H (mrmr — 1).

Since mx =1 (mod 12) for all k =1,...,n, we get vo(m T, — 1) = 2. Thus

02(3#—f§> = vy (#C) = ZUQ (mee — 1) = 2n (3.11)

For the Weierstrass X function X(z) in (3.9), by lemmas 1 and 2 in [10, p. 128], it
can be easily verified that

vy (2(4%(20) - 1> =0 forallceC. (3.12)

(See the calculation of the 3-adic valuation of (X{cf2y/D)—1) in [5] and [6, lemma 4].)

By assumption, we may choose C in such a way that —c € C when ¢ € C.
Since 3z2) is even and (—c/Dr)§ = (¢/D7)2, by (3.10), (3.12) and the properties
of valuation, we know that the first term in the right-hand side of (3.9) has 2-adic
valuation greater than or equal to n, That is,

v2(83(D)) > n. (3.13)

Together with (3.11), we obtain

vg(Z 50 ( = ) Ls(dps. 1)) (3.14)

It is obvious that Ls("L/—JD%, 1) = L(¢ps,1) when T = {1,...,n}. When T = 0, we

have
n

Ls(pg. 1) = Ls(1,1) = L1, 1) H(1 - i).

iy
k=1 k

From [10], we know that

L(¢1,1) = L(¢1,1) = L1(1) = $V342,

where 1, is the Hecke character of Q(v/—3) attached to the elliptic curve E; : y? =
2% — 2433, Thus

Ls(¥py, 1) = Ls(v1,1) = §V342 H (1 - _>

Tk

So we get

va(Ls(vpz, 1)/920) = va(5 V3) + sz g — 1)

>2n  (since m =1 (mod 12)). (3.15)
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Now we use induction on n to prove our assertion vy (L (Yp3,1)/2) =n. Ifn =1,
then D =71, § = {m} and Ls(¢pg, 1) = (V3/9)2(1 — 1/m). By (3.15), we have

v2 (Q_o (D—Q))BLS(T/JDga 1)> = v2(Ls(¥pz,1)/20) > 2

6

Also, by (3.14), for the case n = 1, we have

12 12V
02(90 (D@> Ls(¢pg,1) + 91) (—>6Ls(1/}n%a 1)> > 1

Therefore, by the properties of valuation,
_ 12
V2 (L(Yr3,1)/620) = v2 Ls(thr3,1)
QO A

(2 () s

+ 90(12>6L5(w’“ 1)~ QO(;f)ﬁLs(st )

Now assume our assertion is true for 1,2,...,n — 1 and consider D = 7y - - -7p,.
For any subset T of {1,...,n}, set t = ¢(T') = #T. Then, by definition,

D 12 D 19 3 ~ DT 3 )
() xtion0 = 5 (), oo T (1 (25) )

7| Dr

> 1.

Since (Dp/m)3 = +1 (for all m, | D7), we have

Dr Y 1 -
1—(—T>—:7”“ Eoopef1,-1).
Tk

Tk Tk

Note that 7, = 1 (mod 12). Therefore, vy (7 — 1) = 1. Thus, when T is non-trivial
(i.e. 1 <t < n), by our inductive assumption,

v (920 (;ff) L(bps. 1))
B o) o1 (212

7w, | DT
_ D 1
=v2(L(¥ps,1)/2) + Z v2 (1 - (mj) 7T_k>
ﬂkaT
>t+ #{mp ™ | Dr}
=t+(n—1t)
=n.
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Furthermore, when T' = (), by (3.15), we get

D (12 _
(75 (5 ) EstOog. 1) = walListing. 1/20) > 20> .
20 \ Dy ’
Therefore, by the properties of valuation, we obtain

va(L(ps, 1)/ 1)

)

S Bl 2

This proves our conclusion by induction, and completes the proof of theorem 2.7.

O

REMARK 3.3. If the inequalities (3.5) and (3.13) can be improved more explicitly
such that they become as strict as (3.2), then similar criteria for reaching the bounds
of valuations in proposition 2.6 and theorem 2.7, like the ones in theorem 2.2, can
also be obtained.

REMARK 3.4. For any positive rational integer A\, by a simple change of variables,
the elliptic curve Epx : y? = 2% — 2433D? is always Q(v/—3)-isomorphic to

Epro 1 y? =2 —2433DN | with Ay =0,1,...,5.
In particular, when \g = 0,
Epro = By 1 y? = 2% — 2433,

which is the trivial case. Therefore, the study of the p(= 2, 3)-adic valuation of L(1)
of Epx is reduced to the five essential cases A = 1,...,5 that we consider in this
paper.
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