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Abstract

In this paper an exact rejection algorithm for simulating paths of the coupled Wright–
Fisher diffusion is introduced. The coupled Wright–Fisher diffusion is a family of
multivariate Wright–Fisher diffusions that have drifts depending on each other through
a coupling term and that find applications in the study of networks of interacting genes.
The proposed rejection algorithm uses independent neutral Wright–Fisher diffusions as
candidate proposals, which are only needed at a finite number of points. Once a candi-
date is accepted, the remainder of the path can be recovered by sampling from neutral
multivariate Wright–Fisher bridges, for which an exact sampling strategy is also pro-
vided. Finally, the algorithm’s complexity is derived and its performance demonstrated
in a simulation study.
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1. Introduction

Sampling paths of a diffusion process remains a challenging problem in applied probability.
The major bottleneck is that its finite-dimensional distributions are seldom available in closed
form, and one must often resort to time-discretized numerical approximations. These approxi-
mations, however, induce bias and approximation errors that are difficult to quantify. Moreover,
reducing such errors requires refining the time-discretization grid, which, in turn, increases
computational costs. In this context, exact simulation algorithms, which aim to recover sam-
ples from the true finite-dimensional distributions of a diffusion, have become increasingly
popular.

The standard approach to exact simulation of diffusions is based on the family of exact
rejection algorithms, which rely on an acceptance–rejection scheme that requires samples from
a candidate diffusion only at a finite collection of (random) time points in order to take a
decision. The candidate needs to be such that it can be simulated without approximation, and
it needs to allow for the construction of the acceptance–rejection probability by means of a
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Girsanov transformation of measures; see [34]. Once a candidate is accepted, the algorithm
returns a skeleton of the target path, and the remaining segments can be sampled at any other
time instant by simulating from suitable diffusion bridges and with no further reference to the
unknown target distribution.

In their seminal paper, Beskos and Roberts [5] present an exact rejection algorithm for
simulation of paths of a class of one-dimensional diffusions, which requires imposing some
boundedness assumptions on the drift of the target diffusion and its derivative. Acknowledged
as too restrictive, these assumptions are relaxed to one-sided bounds in a second publication
[3], and a further extension based on a layered Brownian bridge construction provides an exact
simulation method for boundary crossing and hitting times [4]. Other extensions include algo-
rithms that allow for simulation of killed diffusions and have applications to double-barrier
option pricing problems [9], and a localized exact algorithm that relaxes any boundedness
assumptions by considering smaller pieces of the target path and can be used to simulate dif-
fusions with boundaries [10]. Another interesting approach is that presented in [40], where the
authors provide an exact rejection algorithm for jump diffusions.

Downsides of the exact rejection algorithms presented above include that they impose some-
what strong assumptions on the drift and require the use of the Lamperti transformation (see
[37]) to provide unit volatility coefficients, which hinders generalizability to the multivariate
case. To overcome these issues, alternative techniques have been proposed, such as the one
in [6] which introduces an exact algorithm for simulation of multivariate diffusions based on
tolerance-enforced simulation and rough path analysis. This algorithm overcomes the more
restrictive assumptions required in [5] and [3] but has, admittedly, infinite expected running
time.

Another restrictive feature of exact rejection algorithms is that they rely heavily on the
availability of suitable candidates (in all cases mentioned above, Brownian motion or slight
modifications thereof). For diffusions with finite boundaries, for example, Brownian candidates
may either differ too much from the target, thus providing low acceptance probabilities, or be
unsuitable to construct the acceptance–rejection probability itself. Rejection algorithms with
candidates other than Brownian motion include [31], which uses Bessel proposals to simulate
target diffusions with a finite entrance boundary.

In this context, the recent work in [32] extends the class of diffusions for which exact rejec-
tion simulation is possible. The authors propose a simulation technique to recover samples
from neutral Wright–Fisher diffusions that, in turn, are used as candidates in an exact rejection
algorithm for simulating a wider target family of one-dimensional Wright–Fisher diffusions.
Diffusions of this class, as well as their multivariate counterparts, are extensively used in popu-
lation genetics, where proliferation of exact simulation algorithms can foster the use of suitable
inferential techniques such as approximate Bayesian computation; see [46], [2], and [21].

Along these lines, the main contribution of this paper is to present an exact rejection algo-
rithm for coupled Wright–Fisher diffusions, with candidates built from samples of independent
(multivariate) neutral Wright–Fisher diffusions that can be recovered using the techniques
presented in [32]. The coupled Wright–Fisher diffusion [1] is a family of multivariate Wright–
Fisher diffusions that models how different allele types (genetic traits) co-evolve across
different loci (different locations along the genome). It incorporates parent-dependent mutation
at each locus, interlocus selection in the form of pairwise interactions, and free recombination.
The model is based on quasi-linkage equilibrium where the fitness coefficients are inspired by a
Potts model (see [1, 38]) and generalize the classical additive fitness under weak selection (see
e.g. [7, Ch. II]) to the multi-locus case. The assumptions in the coupled Wright–Fisher model
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are suitable, for example, for studying networks of loci in recombining populations of bacteria
(e.g. Streptococcus pneumoniae) that evolve under shared selective pressure when the linkage
disequilibrium is low across the genome; see [14, 43]. In contrast, the model is unsuitable in
populations of bacteria where the amount of homologous recombination is low, which makes
it difficult to separate couplings arising from recombination from those arising from selection
(e.g. Streptococcus pyogenes).

The coupled Wright–Fisher diffusion corresponds to a haploid version of the two-locus
model in the case of weak selection, loose linkage in [17]; see also [20] for a different multi-
locus extension. Diffusion models in the presence of epistasis, i.e., allelic interactions between
loci, have been used in the analysis of sets of human immune system genes in the presence
of balancing selection; see [8]. Conversely, diffusion approximations have been deemed poor
in some scenarios, e.g. for low mutation rates where the stationary density is ill-defined at the
boundary; see [30].

To complete the proposed exact rejection algorithm, a further contribution of this paper
deals with simulation of multivariate Wright–Fisher bridges, for which an exact simulation
technique is provided. These bridges allow sampling further points of the path once a skele-
ton of the coupled Wright–Fisher diffusion has been accepted. Our sampling approach can
therefore be viewed as a generalization of that presented in [32] for the one-dimensional
Wright–Fisher diffusions to the multivariate case.

The rest of the paper is structured as follows. In Section 2 we briefly present the main
properties and structure of the family of coupled Wright–Fisher diffusions, together with a for-
mal overview of exact rejection algorithms. In Section 3 we recall and present some revised
algorithms for exact simulation of one- and multidimensional neutral Wright–Fisher diffu-
sions, i.e., those needed for sampling our candidate processes. This leads us to the proposed
exact rejection algorithm for coupled Wright–Fisher diffusions (Section 4). Section 5 includes
performance results illustrated through several simulation scenarios, and in Section 6 the tech-
nique for simulating exactly from a multivariate Wright–Fisher bridge is provided, which
completes the sampling scheme. Finally, Section 7 contains mathematical proofs.

2. Background

This section provides the necessary insights on the structure and main properties of the
coupled Wright–Fisher family of diffusions and fixes some notation. It also provides a brief
overview of exact rejection algorithms for diffusions, which constitute the basis of our work.

2.1. Coupled Wright–Fisher diffusions

The family of Wright–Fisher models, and more specifically their diffusion approximations,
have been widely used in population genetics; see, for instance, [36] and [24]. In its simplest
form, the Wright–Fisher model describes the evolution of the frequency of two allele types
in a single locus that have the same fitness, and whose configuration at each new generation
of individuals is chosen uniformly and with replacement from that of the current generation
in a haploid population of constant size. Extensions of the model include consideration of
more than two allele types that might be located at different loci, and can incorporate other
evolutionary forces such as mutation, selection, and recombination. A comprehensive overview
of the family of Wright–Fisher models can be found, for example, in [12] or [18].

With the proliferation of genome-wide association studies, questions arise about how
genetic variants associated to numerous diseases co-evolve or interact over time. Moreover, the
increasing availability of allele frequency time series data is fostering the study of evolutionary
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forces such as mutation or selection; see [44], [43], [45], and [39]. Within this framework, the
coupled Wright–Fisher model [1] tracks the evolution of frequencies of allele types located at
different loci, and, as well as locus-wise mutation and selection, describes possible selective
pairwise allele interactions between loci in a haploid population. Its diffusion approximation
can be derived as the weak limit of a sequence of discrete coupled Wright–Fisher models char-
acterized by the assumption that the evolution of the population at one locus is conditionally
independent of the other loci given the state of the previous generation. The coupled Wright–
Fisher diffusion can be expressed as a system of stochastic differential equations of the form

dXt = [α(Xt)+G(Xt)]dt+D
1
2 (Xt)dBt, X0 = x0, t ∈ [0, T], (2.1)

where Xt is a vector of frequencies of allele types, α governs their mutations, and G contains
the single and pairwise selective locus interactions.

Let L denote the total number of loci and di ≥ 2 the number of different allele types in
each of them. For n := ∑L

i=1 [di − 1], let us index each element of an n-dimensional vector
x by i ∈ {1, . . . , L}, referring to a specific locus, and j ∈ {1, . . . , di − 1}, referring to an allele
type, so that x= {xi}Li=1 where each xi = {xij}di−1

j=1 . If x ∈Rn refers to the vector of allele type
frequencies Xt, the elements of the drift α(x) ∈Rn take the form

αij(xij)= 1

2

(
θ i

j − |θ |xij), (2.2)

where |θ | =∑di
k=1 θ

i
k and θ i

k > 0 denote the parent-independent mutation rates to allele type
k ∈ {1, . . . , di} at locus i, so that mutations occur at each locus separately. Wright–Fisher dif-
fusions with drift α(x) correspond to the reversible neutral mutations allele model. The coupled
Wright–Fisher model also admits parent-dependent mutations, but we will not consider these
here.

The coupling term G(x) ∈Rn has general form (Svirezhev–Shahshahani gradient)

G(x)=D(x)∇x(V ◦ f )(x),

where the square of the diffusion matrix D(x)= diag(Di(xi))∈Rn×n is an L-block diagonal
matrix with entries

Di
jk =

{
xij(1− xij), j= k,

−xijxik, j �= k,
j, k ∈ {1, . . . , di − 1}, i ∈ {1, . . . , L};

∇x is the gradient operator with respect to each component of x; f transforms x into the aug-
mented (n+ L)-dimensional vector x that reflects the dependency between allele frequencies
at locus i, i.e.,

xik := f ik(x)=
{ xij, j= k ∈ {1, . . . , di − 1},

1−∑di−1
j=1 xij,k= di;

and V(x) ∈R,

V(x)= (x)Ts+ 1

2
(x)THx,

where s ∈Rn+L is the vector of within-locus selection parameters and H ∈R(n+L)×(n+L) is a
symmetric between-loci pairwise interactions matrix. The matrix H is in fact built by L blocks
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of zeros of size di× di in the main diagonal (denoted by 0ii), and off-diagonal blocks of the
form Hil = (Hli)T ∈Rdi×dl , i �= l, i, l ∈ {1, . . . , L},

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

011 H12 . . . . . . . . . . . . H1L

...
. . .

...
...

...
...

...

Hi1 . . . Hi(i−1) 0ii Hi(i+1) . . . HiL

...
. . .

...
...

. . .
...

...

HL1 . . . . . . . . . . . . . . . 0LL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

so that interactions of each locus with itself are not permitted. Note that if one removes the
coupling term G, (2.1) simply becomes the usual multivariate neutral mutations Wright–Fisher
diffusion, where Xt describes the evolution of allele frequencies that evolve at each locus with-
out interacting. The explicit form of V(x) := ∇x(V ◦ f )(x) in terms of s and H is specified in
the following proposition, whose proof can be found in Section 7.

Proposition 2.1. Let V(x) ∈Rn be the n-dimensional vector such that V(x) := ∇x(V ◦ f )(x).
Then ∀i ∈ {1, . . . , L}, j ∈ {1, . . . , di − 1},

Vij(x)=Kij
s +

L∑
l=1
l �=i

(
Kij

l +
dl−1∑
k=1

Kij
lkxlk

)
,

with

Kij
s := sij − sidi, Kij

l := hil
jdl
− hil

didl
, and Kij

lk := hil
jk − hil

jdl
− hil

dik + hil
didl
,

where hil
jk denotes the entry in row j and column k of the block Hil of H.

Following Kimura’s formulation [35], the explicit stationary density of (2.1) can also be
obtained by solving the corresponding Fokker–Planck equation, see [1], whose solution takes
the form

P(x)= 1

Z
π(x)e2(V◦f )(x), (2.3)

where

π(x)=
L∏

i=1

π i(xi)=
L∏

i=1

⎛
⎝(1−

di−1∑
j=1

xij)θ
i
di
−1

di−1∏
j=1

(xij)θ
i
j−1

⎞
⎠

and Z is the normalizing constant

Z =
∫

x∈X
π(x)e2(V◦f )(x)dx.

Here X = {x ∈Rn | xij ≥ 0,
∑di−1

j=1 xij ≤ 1}.
The representation (2.3) resembles the stationary density of the haploid version of the model

studied by Fearnhead (see [20, Theorem 2]), which in the two-locus case agrees with the
coupled Wright–Fisher diffusion.
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2.2. Overview of exact rejection algorithms for simulation of diffusions

This subsection provides an overview of the exact rejection algorithm presented in [5], and
presents the same sampling scheme followed for simulating from the coupled Wright–Fisher
diffusion, as detailed further in Algorithm 4. Let

dXt =μ(Xt)dt+ dBt, X0 = x0, t ∈ [0, T], (2.4)

where μ(·) is such that (2.4) admits a weakly unique solution (Xt)t∈[0,T]. Let Qx0 be the law
of the process (Xt)t∈[0,T], and let Px0 denote the law of a Brownian motion (Bt)t∈[0,T] starting
at B0 = x0. By means of a Girsanov transformation of measures one can write the Radon–
Nikodym derivative of Qx0 with respect to Px0 as

dQx0

dPx0

= exp

{∫ T

0
μ(Bt)dXt − 1

2

∫ T

0
μ2(Bt)dt

}
. (2.5)

Assuming that μ(·) is differentiable everywhere and using Itô’s lemma, (2.5) can be rewrit-
ten as

dQx0

dPx0

= exp
{

Ã(BT)− Ã(x0)
}

exp

{
−1

2

∫ T

0
(μ2(Bt)+μ′(Bt))dt

}
,

where Ã(x) := ∫ x
0 μ(u)du. Imposing the further conditions that Ã(x) be bounded above by a

constant KA, and that (μ2 +μ′)/2 be bounded between constants K− and K+, we find that

dQx0

dPx0

∝ exp
{

Ã(BT )−KA
}

exp

{
−
∫ T

0
(φ̃(Bt)−K−)dt

}
, (2.6)

with Ã(x)≤KA and K− ≤ φ̃(x) := 1

2
[μ2(x)+μ′(x)]≤K+, is a suitable acceptance–rejection

probability.
Note that an exact evaluation of the integral in (2.6) is not possible without any approxi-

mation error, because this would require the storage of infinitely many points of the sample
candidate path B= (Bt)t∈[0,T]. However, the key point of the exact algorithms proposed in [5]
and references therein is that an event occurring with probability (2.6) can be evaluated by
sampling B only at a finite number of time points. This follows because the last term in (2.6)
can be interpreted as the probability of the event ωφ̃ that no points from a homogeneous spatial
Poisson process �= {(tj, ψj):j= 1, . . . , J} with unit intensity on [0, T]× [0,K+ −K−] lie
below the graph of t �→ φ̃(Bt). A formal statement and proof of this observation can be found
in Theorem 1 of [3].

Therefore, the exact sampling procedure (detailed in Algorithm 1) starts by drawing a sam-
ple from � that will determine the (random) time points at which the candidate B will be
drawn, and then provides a skeleton of (Xt)t∈[0,T] at such time points upon acceptance of the
sampled candidate (that is, if all the evaluated φ̃(Bt) lie above the sampled Poisson points).
Note that the last point on the candidate path, BT , serves to evaluate an event that occurs with
probability exp{Ã(BT )−KA} and that is independent of ωφ̃ . In previously presented versions
of the algorithm, BT is considered to follow a specific probability distribution, thus slightly
modifying the candidate to be a certain biased Brownian motion, which is shown to improve
the algorithm’s efficiency. Such an option is not needed for our purposes and is therefore not
fully described here. In brief, this modification permits the boundedness condition on Ã(x) to
be relaxed, but the equivalent function in our proposed exact algorithm is already bounded.
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Algorithm 1 Exact algorithm for simulating skeletons of paths (Xt)t∈[0,T] of a diffusion
process with law Qx0

1 Simulate �, a Poisson process on [0, T]× [0,K+ −K−].
2 Simulate U ∼Uniform(0, 1).
3 Given �= {(tj, ψj):j= 1, . . . , J}, simulate B∼ Px0 at times {t1, . . . , tJ} and at time T.
4 if φ̃(Btj)−K− ≤ψj, ∀j and U ≤ exp{Ã(BT )−KA} then
5 return {(tj, Btj), ∀j} ∪ {(T, BT)}
6 else
7 Go back to Step 1.
8 end if

3. Simulation of the candidate processes

This section is devoted to describing existing simulation strategies for the candidate pro-
cesses in the exact rejection algorithm that will be presented later in Section 4. Suitable candi-
date processes in our setting will be L independent (di − 1)-dimensional neutral Wright–Fisher
diffusions (Xt)t∈[0,T], each one a weakly unique solution of

dXt = α(Xt)dt+D
1
2 dBt, X0 = x0, t ∈ [0, T], (3.1)

with α(Xt) a (di − 1)-dimensional vector with αij(x)= 1
2 (θ i

j − |θ |xij).

3.1. Transition density function expansions

Exact simulation of each neutral Wright–Fisher diffusion is possible by exploiting an avail-
able eigenfunction expansion of its transition density function that allows a probabilistic
representation; see, for example, [29].

For a fixed locus i ∈ {1, . . . , L}, let x= (x1, . . . , xd−1) be a vector of initial frequencies
and θ + l a d-dimensional vector with entries θj + lj, j ∈ {1, . . . , d}. Then the probabilistic
representation of the transition density function of (Xt)t∈[0,T] in (3.1) is given by

g(x, y;t)=
∞∑

m=0

qθm(t)
∑

l|l|=m

Mm,x(l)Dθ+l(y), (3.2)

where the qθm(t) are transition functions of a pure death process Aθ∞(t) with an entrance bound-
ary at∞, Mm,x(·) is the probability mass function (PMF) of a multinomial random variable,
and Dθ+l(·) is the probability density function of a Dirichlet random variable; that is,

Mm,x(l)= m!∏d
j=1 lj!

⎛
⎝1−

d−1∑
j=1

xj

⎞
⎠

ld d−1∏
j=1

x
lj
j

and

Dθ+l(y)= 	(|θ + l|)∏d
j=1 	(θj + lj)

⎛
⎝1−

d−1∑
j=1

yj

⎞
⎠
θd+ld−1

d−1∏
j=1

y
θj+lj−1
j ,

with ld =m−∑d−1
j=1 lj. A more detailed description of the process Aθ∞(t) and an exact sampling

technique are provided later on.
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Algorithm 2 Exact simulation of samples from g(x, · ;t), transition density of the (d− 1)-
dimensional neutral Wright–Fisher diffusion with recursive mutation

1 Simulate M ∼ Aθ∞(t).
2 Given Aθ∞(t)=m, simulate L∼Multinomial(m, x).
3 Given L= (l1, . . . , ld−1), simulate Y ∼Dirichlet(θ + l).
4 return Y = (y1, . . . , yd−1).

In the case of one-dimensional (d= 2) Wright–Fisher diffusions, the multivariate compo-
nents of the mixture in (3.2) reduce to their one-dimensional counterparts, i.e., a binomial and
a beta random variable, respectively [29].

A sampling strategy for g(x, ·;t) is summarized in Algorithm 2; see [28] or [32] for an
analogous version in the one-dimensional case (the latter also includes a modification for the
infinite-dimensional case, that is, for Fleming–Viot diffusions). Once expressed in probabilis-
tic terms and given the simplicity of Algorithm 2, recovering samples from g(x, ·;t) seems
straightforward. However, sampling exactly from qθm(t) poses some difficulty because it is only
known in infinite series form. Previous approaches for simulating from approximated versions
of qθm(t) can be found in [28], [25], [26], and [33]. In the next section, we review the exact
simulation procedure presented in [32], which is the one used here.

3.2. Exact simulation of the ancestral process Aθ∞
We describe here the sampling procedure for recovering exact samples of qθm(t), the transi-

tion functions of the aforementioned death process Aθ∞. In more detail, let {Aθn(t): t≥ 0} be a
pure death process on N such that Aθn(0)= n almost surely and with its only possible transition
m→m− 1 occurring at rate m(m+ |θ | − 1)/2 for each m= 1, . . . , n; that is, it represents the
number of non-mutant lineages that coalesce backwards in time in the coalescent process with
mutation. Then, let qθm(t)= limn→∞ P(Aθn(t)=m).

For a more thorough interpretation of the transition density g(x, ·, t) and its one-dimensional
counterpart, it is worth noting that the expansion in (3.2) is derived via a duality principle for
Markov processes [16], that is, from the moment dual process of the Wright–Fisher diffusion,
which is also a pure death process representing lineages backwards in time; see for example
[15] or [29] for a complete derivation and details. The corresponding dual (coalescent) process
for coupled Wright–Fisher diffusions is derived in [19].

An expression for qθm(t) starting from the entrance boundary at infinity is as follows (see
[24]):

qθm(t)=
∞∑

i=0

(− 1)ib(t,θ)
m+i(m), (3.3)

where

b(t,θ)
m+i(m)= (|θ | + 2(m+ i)− 1)

m!i!
	(|θ | + 2m+ i− 1)

	(|θ | +m)
e(m+i)(m+i+|θ |−1)t/2. (3.4)

As shown in [32], samples from qθm(t) can be recovered exactly by means of a variant of the
alternating series method, described in [13, Chapter 4]. In brief, the alternating series method
would require the sequence of coefficients b(t,θ)

m+i(m) to be decreasing in i for each m, a condition

https://doi.org/10.1017/apr.2021.9 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.9


Simulation of multivariate WF diffusions 931

that is not always met here. Nonetheless, one can exploit the fact that there exists a finite C(t,θ)
m

such that for all m and i≥C(t,θ)
m the sequence of coefficients b(t,θ)

m+i(m) decreases monotonically
as i tends to∞. More explicitly, there exists

C(t,θ)
m = inf

{
i≥ 0: (b(t,θ)

m+i+1(m)/b(t,θ)
m+i(m))< 1

}
<∞. (3.5)

Then, once C(t,θ)
m is available, the remaining of the sequence of coefficients is ensured to

be decreasing and the alternating series method can be applied. The following proposition
summarizes the main properties of the bound C(t,θ)

m .

Proposition 3.1. ([32, Proposition 1]) Let b(t,θ)
m+i(m) be the coefficients defined in (3.4) and let

C(t,θ)
m be as in (3.5). Then

(i) C(t,θ)
m <∞ for all m;

(ii) b(t,θ)
m+i(m) ↓ 0 as i→∞ for all i≥C(t,θ)

m ;

(iii) C(t,θ)
m = 0 for all m>D(t,θ)

ε , where

D(t,θ)
ε = inf

{
u≥

(
1

t
− |θ | + 1

2

)
∨ 0: (|θ | + 2u− 1)eu(u+|θ |−1)t/2< 1− ε

}
, (3.6)

for ε ∈ [0, 1).

Part (iii) of Proposition 3.1 will be of interest later in proposing the exact sampling algorithm
for (d− 1)-dimensional Wright–Fisher bridges (Section 6), where an explicit bound on m is
needed.

Following Proposition 3.1, one can then recover exact samples from qθm(t) because the terms

b(t,θ)
m+i(m) become monotonically smaller with increasing i, and for each m there exists km, an

element of k̃ ∈RM+1 (i.e., k̃= {km}Mm=0), such that

S−
k̃

(M) :=
M∑

m=0

2km+1∑
i=0

(− 1)ib(t,θ)
m+i(m)≤

M∑
m=0

qθm(t)≤
M∑

m=0

2km∑
i=0

(− 1)ib(t,θ)
m+i(m)= :S+

k̃
(M).

Because

lim sup
k̃→(∞,...,∞)

S−
k̃

(M)= P(Aθ∞(t)≤M) and lim inf
k̃→(∞,...,∞)

S+
k̃

(M)= P(Aθ∞(t)≤M),

and because both S−
k̃

(M) and S+
k̃

(M) can be computed from finitely many terms, given

U ∼Uniform(0, 1) we can find k̃0 ∈RM+1 with elements k0
m such that

k0
m = inf

{
km ∈N: S−

k̃
(M)>U or S+

k̃
(M)<U

}
for each m ∈ {0, . . . ,M}.

Now, if k̃0 is such that S−
k̃0 (M)>U, standard inverse sampling provides

inf

{
M ∈N:

M∑
m=0

qθm(t)≥ S−
k̃0 (M)>U

}
, (3.7)
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Algorithm 3 Exact simulation of samples from qθm(t), transition functions of the ancestral
process Aθ∞

1 Set M← q̂mod, k̃← (0, . . . , 0), j← 1
2 Simulate U ∼Uniform(0, 1)
3 repeat
4 for all m ∈ {0, . . . ,M} do
5 Set km←�C(t,θ)

m /2�
6 end for
7 while S−

k̃
(M)<U< S+

k̃
(M) do

8 Set k̃← k̃+ (1, . . . , 1)
9 end while
10 if S−

k̃
(M)>U, check if inf M satisfied then

11 return M
12 else if S+

k̃
(M)<U then

13 Set M← q̂mod + (− 1)j� j
2�

14 if j odd then
15 k̃← (k0, . . . , kM)
16 else if j even then
17 k̃← (k̃, 0, . . . , 0)
18 end if
19 end if
20 Set j← j+ 1
21 until false

with M exactly distributed following qθm(t). The sampling strategy will consist in exploring the
summands in S−

k̃
(M) and S+

k̃
(M) through their respective indexes m and km, until, for a given

realization of U, the condition (3.7) is satisfied.
A complete simulation procedure is presented in Algorithm 3, where several improvements

mentioned in [32] have been incorporated. Most notably, the variable M is initialized at the
nearest integer around the mean of a certain distribution (not necessarily at 0) that serves as
an estimate of the mode q̂mod of qθm(t), a modification that decreases computation times sub-
stantially. Such initialization originates from an asymptotic approximation of the transition
functions qθm(t), see [25], which states that as t→ 0, Aθ∞(t) converges to a normal distribution,
that is,

Aθ∞(t)−μ(t,θ)

σ (t,θ)
D−→N (0, 1) as t→ 0, (3.8)

where μ(t,θ) = 2η/t and

(σ (t,θ))2 =
⎧⎨
⎩

2η
tβ2 (η+ β)2

(
1+ η

η+β − 2η
)
, β �= 0,

2
3t , β = 0,

with η= β/eβ − 1 for β �= 0 or η= 1 otherwise, β = 1
2 (|θ | − 1)t, and where

D−→ denotes
convergence in distribution; see [32, Theorem 1].
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Note that this initialization is possible because the exploration of the summands in S−
k̃

(M)

and S+
k̃

(M) does not need to occur in any specific order. It is also worth mentioning that, when

M is initialized at 0, the vector k̃ is updated increasingly, i.e. a new element of the vector is
added at every new iteration where M is increased by one unit. In Algorithm 3, however, M is
updated telescopically; that is, at each new iteration j, M moves farther from q̂mod by one unit
alternatingly above or below. This in turn entails updating the corresponding M + 1 elements
of k̃ accordingly; i.e., the number of elements might either increase or decrease at each
iteration. In addition, because M is updated telescopically, when an M such that S−

k̃
(M)>U is

found, one needs to ensure whether this is the infimum M for which this condition is satisfied.
For precise results on the complexity of Algorithm 3 and simulation performance we refer the
reader to [32].

At this stage, Algorithm 3 can be used in Step 1 of Algorithm 2, and an exact sampling
procedure for (d− 1)-dimensional neutral Wright–Fisher diffusions is completed.

4. Exact rejection algorithm for simulating coupled Wright–Fisher diffusions

Let Xt be the n-dimensional vector of allele frequencies satisfying (2.1). Following the
same scheme as Algorithm 1 in Section 2, Algorithm 4 simulates exact skeletons of paths of
coupled Wright–Fisher diffusions with L loci and di allele types each, i ∈ {1, . . . , L}. Candidate
processes in this case are L independent (di − 1)-dimensional neutral Wright–Fisher diffusions,
each one a weakly unique solution of (3.1) and sampled exactly following Algorithm 2.

The exact rejection algorithm proposed in this paper relies on the existence and characteri-
zation of the following acceptance–rejection probability, which is detailed in Theorem 4.1 and
whose proof is deferred to Section 7.

Theorem 4.1. Let CWFα,G,x0 be the law of X, solution of (2.1), and let WFLα,x0 be the joint
law of L independent (di − 1)-dimensional neutral Wright–Fisher diffusions weakly unique
solutions of (3.1), i ∈ {1, . . . , L}. Then the Radon–Nikodym derivative of CWFα,G,x0 with
respect to WFLα,x0 is of the form

dCWFα,G,x0

dWFLα,x0

= exp {A(X0, XT )} exp

{
−
∫ T

0
φ(Xt)dt

}
,

and there exist constants A−, A+,C−, and C+ such that A(X0, XT ) is bounded on [0, 1]n×
[0, 1]n by A− ≤ A(X0, XT )≤ A+ and φ(Xt) is bounded on [0, 1]n by C− ≤ φ(Xt)≤C+, with

A(X0, XT ) :=
∫ T

0
V(Xt) · dXt =

L∑
i=1

di−1∑
j=1

(
Kij

s

(
Xij

T − Xij
0

)
+

L∑
l=1

Kij
l

(
Xij

T − Xij
0

)

+
L∑

l=i+1

dl−1∑
k=1

Kij
lk

(
Xij

TXlk
T − Xij

0 Xlk
0

))

and

φ(Xt) := 1

2

[
(V(Xt))TD(Xt)V(Xt)+ 2(V(Xt))Tα(Xt)

]
.

Using Algorithm 2 in Step 3 (or the corresponding modification for one-dimensional dif-
fusions, if di = 2 for some i), Algorithm 4 returns an exactly simulated skeleton of (Xt)t∈[0,T]
solution of (2.1).
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Algorithm 4 Exact rejection algorithm for simulating skeletons of the paths (Xt)t∈[0,T] of a
diffusion process with law CWFα,G,x0

1 Simulate �, a Poisson process on [0, T]× [0,C+ −C−].
2 Simulate U ∼Uniform(0, 1).
3 Given �= {(tj, ψj):j= 1, . . . , J}, simulate X ∼WFLα,x0 at times {t1, . . . , tJ, T}.
4 if φ(Xtj)−C− ≤ψj, ∀j and U ≤ exp{A(X0, XT )− A+} then
5 return {(tj, Xtj), ∀j} ∪ {(T, XT)}
6 else
7 Go back to Step 1.
8 end if

The algorithm’s computational complexity can also be established; this is made precise in
Proposition 4.1, whose proof can be found in Section 7.

Proposition 4.1. Let L be the number of loci; let M(t) denote the total number of coefficients
that must be computed in the implementation of Algorithm 3, where t ∈ (0, T) is the time
distance between two sampled skeleton points; and let N(T) denote the number of Poisson
points required until the first skeleton in Algorithm 4 is accepted. Then E[LM(t)]<∞ and
E[N(T)]<∞, and more specifically, there exists κ > 0 such that

E[LM(t)]= o(t−(1+κ)) as t→ 0, and

E[N(T)]≤ T(C+ −C−)eT(C+−C−)+A+−A− .

In summary, the complexity of Algorithm 4 increases either as t→ 0, when the average number
of coefficients to be computed in Algorithm 3 increases as 1/t, or with increasing T, when the
average number of Poisson points needed until acceptance increases exponentially.

The latter is easily solvable, simply by considering shorter intervals [tk−1, tk] such that

K⋃
k=1

[tk−1, tk]= [0, T], with t0 = 0, tK = T, and tk−1 < tk, ∀k ∈ {1, . . . ,K},

and then concatenating the accepted skeletons in each of them. To solve the problem when t→
0, we follow the recommendation in [32], and whenever t< 0.05, resort to the approximation
in (3.8).

While asymptotically the algorithm’s growth rate does not depend on the number of loci, it
is worth mentioning that with increasing L the acceptance probability decreases, as there are
a larger number of skeletons that need to be accepted simultaneously, which naturally affects
the algorithm’s feasibility. This will be clearer in the next section, where simulation results
for examples with L= 2 and L= 4 are provided. As expected, the acceptance probability also
decreases whenever the target diffusion differs more from the neutral Wright–Fisher candidate.
This is exemplified in the next section, where results are shown for two coupled Wright–Fisher
models with the same number of loci and mutation parameters, but different selective pairwise
interactions.
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TABLE 1. Table for 10,000 sampled paths satisfying (5.1) with h= 0.1 and θ1
1 = θ1

2 = θ2
1 = θ2

2 = 0.01.

h= 0.1

T (x11
0 , x21

0 ) Att. Poisson points Coeffs Approx. Acc. prob. Time (s)

0.1 (0.5, 0.5) 1.07 0.001 300.68 0.001 0.93 0.146
0.1 (0.02, 0.8) 1.11 0.001 311.04 0.001 0.90 0.149
1.0 (0.5, 0.5) 1.08 0.004 7.79 0.001 0.92 0.001
1.0 (0.02, 0.8) 1.08 0.004 7.78 0.001 0.92 0.001
5.0 (0.5, 0.5) 1.09 0.029 3.78 0.002 0.92 0.001
5.0 (0.02, 0.8) 1.12 0.031 4.23 0.004 0.89 0.001

5. Numerical experiments

In the following, several implementations of Algorithm 4 are shown along with their simu-
lation results. The examples below represent plausible network structures present in biological
applications, and whose interaction parameters are of interest. Examples of these include
frequency-dependent selection in population dynamics with applications to vaccine interven-
tions [11], genome-wide discovery of interdependent loci affecting antibiotic resistance [42],
co-evolution of interacting human gamete-recognition genes [41], and analysis of sequence
data [23].

Consider the case of two loci with two allele types each, i.e., L= 2 and d1 = d2 = 2. A
particular example with mutation, one-type allele interaction between loci, and no within-locus
selection reduces (2.1) to⎧⎪⎨

⎪⎩
dX11

t = α11(X11
t )dt+ X11

t (1− X11
t )hX21

t dt+
√

X11
t (1− X11

t )dB1
t ,

dX21
t = α21(X21

t )dt+ X21
t (1− X21

t )hX11
t dt+

√
X21

t (1− X21
t )dB2

t ,

(5.1)

where the αi1(·) are as in (2.2), B= (B1
t , B2

t ) is a vector of independent Brownian motions,

H12 =H21 =
(

h 0
0 0

)
, and H is 0 elsewhere.

In this case, A(X0, XT ) := h(X11
T X21

T − X11
0 X21

0 ) and

φ(Xt)=1

2

(
h2
[
(X21

t )2X11
t (1− X11

t )+ (X11
t )2X21

t (1− X21
t )
]

+ 2h
[
X21

t α
11(X11

t )+ X11
t α

21(X21
t )
])
,

and the bound constants were set to A+ = h(1− x11
0 x21

0 ), C− =− h
2 (|θ1| + |θ2|), and C+ =

h
2

( h
2 + θ1

1 + θ2
1

)
, where |θ i| = θ i

1 + θ i
2.

The results of several simulation scenarios for sampled skeletons of the diffusion solution
of (5.1) are shown in Table 1 and Table 2, which report the total length T of the considered
interval [0,T], the initialization of the path (x11

0 , x21
0 ), the average number of attempts (drawn

skeletons) until acceptance, the average number of Poisson points needed until acceptance,
the average number of coefficients computed in Algorithm 3, the acceptance probability, the
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TABLE 2. Table for 10,000 sampled paths satisfying (5.1) with h= 1 and θ1
1 = θ1

2 = θ2
1 = θ2

2 = 0.01.

h= 1

T (x11
0 , x21

0 ) Att. Poisson points Coeffs Approx. Acc. prob. Time (s)

0.1 (0.5, 0.5) 2.11 0.059 610.96 0.005 0.47 0.318
0.1 (0.02, 0.8) 2.69 0.076 778.90 0.005 0.37 0.393
1.0 (0.5, 0.5) 2.23 0.615 90.19 0.005 0.45 0.058
1.0 (0.02, 0.8) 2.77 0.774 111.10 0.001 0.36 0.063

FIGURE 1. Stationary distribution (left) and histogram of 10,000 samples (right) from (X11
t , X21

t )
satisfying (5.1) at T = 5 with (x11

0 , x21
0 )= (0.5, 0.5), h= 0.1, and θ i

j = 0.01.

number of approximations needed due to small ts in between drawn points of the skeleton, and
the average time in seconds per accepted path.

As shown in Table 1 and Table 2, the average number of coefficients needed is larger for
shorter intervals, where the sampled Poisson points are more likely to be close to each other
(t→ 0), than for longer intervals, as expected from the results presented in Proposition 4.1.
Also, the acceptance probabilities when h= 1 drop to around half compared with the sim-
ulations when h= 0.1. This is also expected, as the model with larger pairwise interaction
parameter differs more from the candidate paths, so acceptance of the candidate becomes
harder. This is also reflected in the average number of attempts, needed Poisson points, and
coefficients, which increase consistently in the case h= 1. Running time also increases with
increasing T. In the case h= 1 and T = 5 the total running times became prohibitive.

In order to establish the correctness of Algorithm 4 and with the aim of providing a
qualitative comparison, sampled paths of the solution of (5.1) at large T are compared with
the corresponding stationary density, and this is done for different mutation parameters (see
Figure 1 and Figure 2) with satisfactory results. Note that the stationary density for (5.1) can
be explicitly computed, and its normalizing constant reads as follows, see [1]:

Z = 	(θ2
1 )	(θ2

2 )

	(θ2
1 + θ2

2 )

∞∑
n=0

(θ2
1 )(n)(2h)n

|θ2|(n)n!
	(θ1

2 )

	(|θ1| + n)
	(θ1

1 + n),

where a(n) = a(a+ 1) . . . (a+ n− 1). For the qualitative comparisons in Figure 1 and Figure 2,
the infinite sum is truncated at a sufficiently high n so that the remainder is negligible. For the
parameters in Table 1 and 2 the truncation level is set to n= 70.
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0

0.5

1
0

0.5
1

0 5

x2

x1 x1x2

0
0

0.5
0.5

1 1

FIGURE 2. Stationary distribution (left) and histogram of 10,000 samples (right) from (X11
t , X21

t )
satisfying (5.1) at T = 5 with (x11

0 , x21
0 )= (0.5, 0.5), h= 0.1, and θ1

j = 1.2, θ2
j = 0.8.

Consider now the case of four loci with two allele types each, i.e., L= 4 and di = 2 for
i ∈ {1, 2, 3, 4}. A particular example with mutation, one-type allele interactions between loci,
and no within-locus selection reduces (2.1) to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX11
t = α11(X11

t )dt+ X11
t (1− X11

t )(h1X21
t + h2X31

t h3X41
t )dt+

+
√

X11
t (1− X11

t )dB1
t ,

dX21
t = α21(X21

t )dt+ X21
t (1− X21

t )h1X11
t dt+

√
X21

t (1− X21
t )dB2

t ,

dX31
t = α31(X31

t )dt+ X31
t (1− X31

t )h2X11
t dt+

√
X31

t (1− X31
t )dB3

t ,

dX41
t = α41(X41

t )dt+ X41
t (1− X41

t )h3X11
t dt+

√
X41

t (1− X41
t )dB4

t ,

(5.2)

where the αi1(·) are as in (2.2), B= (B1
t , B2

t , B3
t , B4

t ) is a vector of independent Brownian
motions,

H12 =H21 =
(

h1 0

0 0

)
, H13 =H31 =

(
h2 0

0 0

)
, and H14 =H41 =

(
h3 0

0 0

)
,

and H is 0 elsewhere. In this case,

A(X0, XT )= h1(X11
T X21

T − X11
0 X21

0 ]+ h2[X11
T X31

T − X11
0 X31

0 ]+ h3[X11
T X41

T − X11
0 X41

0 )

and

φ(Xt)=1

2
([(h1)2X21

t (1− X21
t )+ (h2)2X31

t (1− X31
t )+ (h3)2X41

t (1− X41
t )](X11

t )2

+ (h1X21
t + h2X31

t + h3X41
t )2X11

t (1− X11
t )+ 2[(h1X21

t + h2X31
t + h3X41

t )α11(X11
t )

+ (h1α
21(X21

t )+ h2α
31(X31

t )+ h3α
41(X41

t ))X11
t ]),
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TABLE 3. Table for 10,000 sampled paths with h1 = 0.1, h2 = 0.15, h3 = 0.2, and θ i
j = 0.2.

h1 = 0.1, h2 = 0.15, h3 = 0.2

T xi1
0 Att. Poisson points Coeffs Approx. Acc. prob. Time (s)

0.1 0.5 1.45 0.054 412.65 0.001 0.69 0.402
1.0 0.5 2.08 0.811 112.60 0.005 0.48 0.129
5.0 0.5 9.96 19.648 881.37 0.004 0.10 1.007

and the bound constants were set to

A+ = h1(1− x11
0 x21

0 )+ h2(1− x11
0 x31

0 )+ h3(1− x11
0 x41

0 ),

C− =−1

2
(|θ1|(h1 + h2 + h3)+ |θ2|h1 + |θ3|h2 + |θ4|h3), and

C+ = 1

2

(
θ1

1 (h1+ h2 + h3)+ (h1 + h2 + h3)2 + (h1)2 + (h2)2 + (h3)2

4
+ h1θ

1
2 + h2θ

1
3 + h3θ

1
4

)
.

Similarly to the previous example with L= 2 and interaction parameter h= 1, the model
in (5.2) differs more from the candidate process than, say, a model with only one pairwise
interaction parameter (that is, a model with, for example, h2 = h3 = 0). This is clearly reflected
in the low average acceptance probabilities, or, equivalently, in the average number of attempts
or simulated Poisson points needed until acceptance; see Table 3. Moreover, simulating from
the model in (5.2) implicitly requires the simultaneous acceptance of four candidate paths,
which makes acceptance more difficult. Nonetheless, it is still feasible to use Algorithm 4
in these scenarios, as other approximate simulation strategies would be affected by similar
problems.

6. Simulation of multidimensional neutral Wright–Fisher bridges

To complete our simulation scheme, this section presents an exact simulation technique for
sampling from neutral (d− 1)-dimensional Wright–Fisher bridges. As mentioned before, once
Algorithm 4 recovers a skeleton of the desired coupled Wright–Fisher diffusion, the remainder
of the path can be filled by sampling from the corresponding neutral Wright–Fisher bridges,
with no further reference to the target distribution needed; see, for example, [3].

Consider a (d− 1)-dimensional Wright–Fisher bridge, between x at time 0 and z at time t.
Its transition density is given by

gz,t(x, y;s)= g(x, y;s)g(y, z;t− s)

g(x, z;t)
, 0< s< t, (6.1)

where g(·, ·; · ) is as in (3.2), see [22]: The precise eigenfunction expansion for gz,t(x, ·;s) is
provided in the following proposition, whose proof can be found in Section 7.

Proposition 6.1. Let gz,t(x, ·;s) be as in (6.1), the transition density function of a
(d− 1)-dimensional Wright–Fisher bridge. Then its eigenfunction expansion reads

gz,t(x, y;s)=
∞∑

m=0

∞∑
n=0

∑
l|l|=m

∑
r|r|=n

p(x,z,s,t,θ)
m,n,l,r Dθ+l+r(y),
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Algorithm 5 Exact simulation of samples from gz,t(x, ·;s), transition density of the
(d− 1)-dimensional neutral Wright–Fisher bridge

1 Simulate (M,N, L, R)∼ {p(x,z,s,t,θ)
m,n,l,r :(m, n, l, r) ∈N×N×Nd ×Nd}.

2 Given (M,N, L, R)= (m, n, l, r), simulate Y ∼Dirichlet(θ + l+ r).
3 return Y = (y1, . . . , yd−1).

with

p(x,z,s,t,θ)
m,n,l,r =

qθm(s)qθn(t− s)

g(x, z;t)
Mm,x(l)Dθ+r(z)DMθ+l;n(r),

where DMθ+l;n(·) denotes the PMF of a Dirichlet–multinomial random variable, with

DMθ+l;n(r)= n!	(|θ + l|)
	(|θ + l+ r|)

d∏
j=1

	(θj + lj + rj)

lj!	(θj + lj)
.

Following the result in Proposition 6.1, a sampling scheme for gz,t(x, y;s) is provided in
Algorithm 5.

Similarly to Step 1 in Algorithm 2, sampling exactly from the discrete random variable
with PMF p(x,z,s,t,θ)

m,n,l,r is not straightforward. However, given the results obtained so far, it only
remains to find how to evaluate g(x, z;t) without approximation error, and the sampling strategy
will be complete. As pointed out in [32] for the one-dimensional case, note that the problem of
evaluating g(x, z;t) at x and z is different from that of sampling from it.

By (3.2) and (3.3), one obtains

g(x, z;t)=
∞∑

m=0

∞∑
i=0

(− 1)ic(x,z,t,θ)
m+i,m (m)=

∞∑
m=0

∞∑
i=0

(− 1)ib(t,θ)
m+i(m)E[Dθ+Lm(z)], (6.2)

where Lm ∼Multinomial(m, x).
As in Section 3, the aim is to find monotonically converging bounds on p(x,z,s,t,θ)

m,n,l,r so that the
alternating series method can be applied.

Let

d2m =
m∑

i=0

c(x,z,t,θ)
m+i,m−i(m), d2m+1 =

m∑
i=0

c(x,z,t,θ)
m+1+i,m−i(m),

for m= 0, 1, . . . , which, rearranging the terms in (6.2), gives the alternating series

g(x, z;t)=
∞∑

m=0

(d2m− d2m+1)= d0 − d1 + d2 − . . . . (6.3)

Indeed, it can be proved that the terms (di)i≥0 are monotonically decreasing from a certain
threshold that is characterized in the following results, which is a condition required to apply
the alternating series method.

First, note that the strategy presented in [32] for the one-dimensional case applies here
almost without change, with the exception of the terms involving E[Dθ+Lm (z)] which by an
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analogous (generalized) argument can be shown to decrease in m, as shown in the following
lemma, proved in Section 7.

Lemma 6.1. Let Lm ∼Multinomial(m, x). Then for all m ∈N,

E[Dθ+Lm+1 (z)]≤ K̃(θ,x,z)E[Dθ+Lm(z)],

where

K̃(θ,x,z) =
⎛
⎝ |θ |
θd

⎛
⎝1−

d−1∑
j=1

zj

⎞
⎠∨ 2(1+ |θ |)

1−∑d−1
j=1 zj

⎞
⎠
⎛
⎝1−

d−1∑
j=1

xj

⎞
⎠

+
d−1∑
j=1

( |θ |
θj

zj ∨ 2(1+ |θ |)
zj

)
xj. (6.4)

Now, similarly to (3.5), the following bound is defined:

E(t,θ) = inf
{

m≥ 0: 2j≥C(t,θ)
m−j for all j= 0, . . . ,m

}
. (6.5)

This is used in Proposition 6.2 below, which fully characterizes the bound on m. The proof is
again deferred to Section 7.

Proposition 6.2. Let the sequence (di)i≥0 be as defined in (6.3), and consider the bounds E(t,θ),
D(t,θ)
ε , and K̃(θ,x,z) as in (6.5), (3.6), and (6.4) respectively. Then, for ε ∈ (0, 1),

d2m+2 < d2m+1< d2m

for all m≥ E(t,θ) ∨D(t,θ)
ε ∨ 2K̃(θ,x,z)/ε.

Once the bound in Proposition 6.2 is established, exact simulation of (d− 1)-dimensional
Wright–Fisher bridges (d> 2) is possible by setting

F̃(s,t,θ)
m,n,l,r := C(s,θ)

m ∨ C(t−s,θ)
n ∨ E(t,θ) ∨D(t,θ)

ε ∨ 2K̃(θ,x,z)/ε,

which for 2u≥ F̃(s,t,θ)
m,n,l,r provides the monotonically converging bounds

em,n,l,r(2u+ 1)< em,n,l,r(2u+ 3)< p(x,z,s,t,θ)
m,n,l,r < em,n,l,r(2u+ 2)< em,n,l,r(2u),

where

em,n,l,r(u)=
∑u

i=0 (− 1)ib(s,θ)
m+i (m)

∑u
i=0 (− 1)ib(t−s,θ)

n+i∑u+1
i=0 (− 1)idi

Mm,x(l)Dθ+r(z)DMθ+l;n(r);

see [32, Proposition 4].
To recover exact samples from p(x,z,s,t,θ)

m,n,l,r , consider the pairing bijective function �:N→
N×N×Nd ×Nd such that �(j)= (m, n, l, r). Now, for each j there exists vj, an element of
ṽ ∈RJ+1 (i.e., ṽ= {vj}Jj=0), such that

R−ṽ (J) :=
J∑

j=0

e�(j)(2vj + 1)≤
J∑

j=0

p(x,z,s,t,θ)
�(j) ≤

J∑
j=0

e�(j)(2vj) := R+ṽ (J),
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Algorithm 6 Exact simulation of samples from the discrete random variable with PMF
{p(x,z,s,t,θ)

m,n,l,r :(m, n, l, r) ∈N×N×Nd ×Nd}
1 Set j← 0, v0← 0, ṽ← (v0)
2 Simulate U ∼Uniform(0, 1)
3 repeat
4 Set vj←�F̃(s,t,θ)

�(j) /2�
5 while R−ṽ (j)<U < R+ṽ (j) do
6 Set ṽ← ṽ+ (1, . . . , 1)
7 end while
8 if R−ṽ (j)>U then
9 return�(j)
10 else if R+ṽ (j)<U then
11 Set ṽ← (v0, . . . , vj, 0)
12 Set j← j+ 1
13 end if
14 until false

providing a setting analogous to the one presented in Section 3. The proposed exact sam-
pling scheme can be found in [32, Algorithm 5], which we reproduce here as Algorithm 6 for
completeness.

Other approaches to exact simulation of one-dimensional Wright–Fisher bridges include
that recently proposed in [27], which restricts to the case where either θ1 or θ2 is 0, and one or
both of x and z are 0, which is not applicable here.

7. Proofs

Proof of Proposition 2.1. Let V:Rn→Rn be such that V := ∇x(V ◦ f )(x), where we recall
that

f ik(x)= xik =
{ xij, j, k= {1, . . . , di − 1},

1−∑di−1
j=1 xij,k= di.

Then for all i ∈ {1, . . . , L}, j ∈ {1, . . . , di − 1}, we have

Vij(x)= ∂(V ◦ f )(x)

∂xij
= ∂

∂xij V(x)− ∂

∂xidi
V(x)

= sij +
L∑

l=1

dl∑
k=1

hil
jkxlk − sidi −

L∑
l=1

dl∑
k=1

hil
dikxlk,

= sij − sidi +
L∑

l=1

(
hil

jdl
− hil

didl
+

dl−1∑
k=1

(
hil

jk − hil
jdl
− hil

dik + hil
didl

)
xlk
)

=Kij
s +

L∑
l=1

(
Kij

l +
dl−1∑
k=1

Kij
lkxlk

)
=Kij

s +
L∑

l=1
l �=i

(
Kij

l +
dl−1∑
k=1

Kij
lkxlk

)
,

where the last equality holds because whenever i= l, all entries of the blocks Hii are 0. �
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Proof of Theorem 4.1. By definition of A(·), φ(·), and Xt,

exp {A(X0, XT )} exp

{
−
∫ T

0
φ(Xt)dt

}
=

= exp

{∫ T

0
V(Xt) · dXt −

∫ T

0

1

2

[
(V(Xt))TD(Xt)V(Xt)+ 2(V(Xt))Tα(Xt)

]
dt

}

= exp

{∫ T

0
D

1
2 (Xt)V(Xt) · dBt −

∫ T

0

1

2

[
(V(Xt))TD(Xt)V(Xt)

]
dt

}
. (7.1)

Because V(·) and D(·) are continuous on [0, 1]n, there exist constants C− and C+ such that

C− ≤ 1

2
V(Xt)TD(Xt)V(Xt)≤C+, almost surely.

Consequently, ∫ T

0

1

2
(V(Xt))

TD(Xt)V(Xt)dt<∞, almost surely,

so Novikov’s condition is fulfilled and (7.1) can be identified as a Girsanov transformation
[34] with Girsanov kernel (V(Xt))TD

1
2 (Xt).

Let Q be the probability measure with

dQ

dWFLα,x0

= exp {A(X0, XT)} exp

{
−
∫ T

0
φ(Xt)dt

}
.

It follows that the law of X underQ coincides with CWFα,G,x0 . Indeed, by Girsanov’s theorem,

B̃t = Bt −
∫ t

0
D

1
2 (Xs)V(Xs)ds

is a Q-Brownian motion and

dXt = [α(Xt)+D(Xt)V(Xt)]dt+D
1
2 (Xt)dB̃t = [α(Xt)+G(Xt)]dt+D

1
2 (Xt)dB̃t.

Now, by Proposition 2.1, and for Ks,Kl,Klk ∈Rn,

∫ T

0
V(Xt) · dXt =

∫ T

0

(
Ks +

L∑
l=1

(
Kl +

dl−1∑
k=1

KlkXlk
t

))
· dXt

=
∫ T

0
Ks · dXt +

∫ T

0

L∑
l=1

Kl · dXt +
∫ T

0

L∑
l=1

dl−1∑
k=1

KlkXlk
t · dXt

=
L∑

i=1

di−1∑
j=1

( ∫ T

0
Kij

s dXij
t +

∫ T

0

L∑
l=1

Kij
l dXij

t +
∫ T

0

L∑
l=i+1

dl−1∑
k=1

Kij
lk d
(

Xlk
t Xij

t

))
,

where the rightmost term comes from pairing terms of the form

Kij
lkXlk

t dXij
t +Klk

ij Xij
t dXlk

t =Kij
lkd
(

Xlk
t Xij

t

)
,
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and recalling that Kij
lk =Klk

ij , and i �= l prevents squared terms. Hence,

∫ T

0
V(Xt) · dXt =

L∑
i=1

di−1∑
j=1

(
Kij

s

(
Xij

T − Xij
0

)
+

L∑
l=1

Kij
l

(
Xij

T − Xij
0

)

+
L∑

l=i+1

dl−1∑
k=1

Kij
lk

(
Xlk

T Xij
T − Xlk

0 Xij
0

))
.

The fact that

A(X0, XT ) :=
L∑

i=1

di−1∑
j=1

(
Kij

s

(
Xij

T − Xij
0

)
+

L∑
l=1

Kij
l

(
Xij

T − Xij
0

)
+

L∑
l=i+1

dl−1∑
k=1

Kij
lk

(
Xij

TXlk
T − Xij

0 Xlk
0

))

is bounded follows immediately, concluding the proof. �

Proof of Proposition 4.1. Let M(t) be the total number of coefficients that must be computed
in Algorithm 3, with t ∈ (0, T) the time distance between two sampled skeleton points. By [32,
Proposition 5(iv)], there exists a κ > 0 such that E[M(t)]= o(t−(1+κ)) as t→ 0, and further
random coefficients needed in Algorithm 2 do not add to the algorithms’ complexity. Similarly,
although our rejection scheme uses Algorithm 3 L times,

E[LM(t)]= LE[M(t)]= o(t−(1+κ)),

so the algorithm’s complexity is proportional to L, but its growth rate as t→ 0 remains the
same as with L= 1.

Now let ε := dCWFα,G,x0/dWFLα,x0 be the acceptance–rejection probability in
Algorithm 4. Because A− ≤ A(XT )≤ A+ and C− ≤ φ(Xt)≤C+,

ε ∝ exp
{
A(XT)− A+

}
exp

{
−
∫ T

0
(φ(Xt)−C−)dt

}
≥ exp{−T(C+ −C−)+ A− − A+}.

Let D refer to the number of Poisson points needed to decide upon acceptance or rejection of
a proposed path. Then, following [3, Proposition 3],

E[N(T)]=E[D]/ε = T(C+ −C−)/ε ≤ T(C+ −C−)eT(C+−C−)+A+−A−,

where the first equality follows from considering the expectation of the sum of all drawn
Poisson points

∑I
i=1 Di over I iterations of the algorithm until the first path is accepted. First

conditioning on I and applying the law of iterated expectations, and then applying the law of
total expectation, concludes the proof. �
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Proof of Proposition 6.1. Let gz,t(x, y;s) be the transition density function of a (d− 1)-
dimensional Wright–Fisher bridge, between x at time 0 and z at time t. By (6.1) and (3.2),

gz,t(x, y;s)=g(x, y;s)g(y, z;t− s)

g(x, z;t)

= 1

g(x, z;t)

∞∑
m=0

qθm(s)
∑

l|l|=m

Mm,x(l)Dθ+l(y)
∞∑

n=0

qθn(t− s)
∑

r|r|=n

Mn,y(r)Dθ+r(z)

=
∞∑

m=0

∞∑
n=0

∑
l|l|=m

∑
r|r|=n

qθm(s)qθn(t− s)

g(x, z;t)
Mm,x(l)Dθ+r(z)Mn,y(r)Dθ+l(y).

By definition,

Mn,y(r)Dθ+l(y)= n!∏d
j=1 lj!

(1−
d−1∑
j=1

yj)ld
d−1∏
j=1

y
rj
j

× 	(|θ + l|)∏d
j=1 	(θj + lj)

(1−
d−1∑
j=1

yj)θd+ld−1
d−1∏
j=1

y
θj+lj−1
j .

Multiplying and dividing by
	(|θ + l+ r|)∏d

j=1 	(θj + lj + rj)
and rearranging shows that

n!	(|θ + l|)
	(|θ + l+ r|)

d∏
j=1

	(θj + lj + rj)

	(θj + lj)rj!
	(|θ + l+ r|)∏d

j=1 	(θj + lj + rj)
(1−

d−1∑
j=1

yj)
θd+ld+rd−1

×
d−1∏
j=1

y
θj+lj+rj−1
j =DMθ+l;n(r)Dθ+l+r(y).

Now, identifying the coefficients of p(x,z,s,t,θ)
m,n,l,r , the proof is complete. �

Proof of Lemma 6.1. For the sake of simplicity, we will first consider the case d= 3 and
then show that by analogous arguments the results can be extended to the general (d− 1)-
dimensional case. First, note that the indexes of the sum on the right-hand side of

E[Dθ+Lm (z)]=
∑

l|l|=m

P(Lm = l)Dθ+l(z)

can be seen as being placed on the (d− 1)-face of the d-simplex Sd = {l ∈Rd | lj ≥
0,
∑d

j=1 lj =m}. For example, if d= 3, we only need to consider indexes l1 and l2 (see
Figure 3). Thus,

E[Dθ+Lm (z)]=
m∑

l1=0

m−l1∑
l2=0

P(Lm = l)Dθ+l(z). (7.2)
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FIGURE 3. Graphical representation of the two-dimensional case (d= 3). Each point in the figure repre-
sents an element of the sum in (7.2). For every and up to each m, all points depicted in the plane l1 − l2
(left) correspond to points depicted in the mth (l1 − l2 − l3)-face (right), which in turn represent each and
every one of the summands in (7.2).

Let us define the quantities

Qm := P(Lm = l)Dθ+l(z), Q(j)
m+1 := P(Lm+1 = l̃)D

θ+l̃(z),

where l̃ ∈Rd is equal to l except in its jth component, for which l̃j = lj + 1. As a special case,
when j= d, one can write l̃d =m−∑d−1

j=1 lj + 1.
Then, for l1 ≤ �mz1�, l2 ≤ �mz2�,

Q(d)
m+1 =

m+ 1

m+ 1− l1 − l2

|θ | +m

θ3 +m− l1 − l2
(1− x1 − x2)(1− z1 − z2)Qm (7.3)

≤ m+ 1

1+m(1− z1 − z2)

|θ | +m

θ3 +m(1− z1 − z2)
(1− x1 − x2)(1− z1 − z2)Qm

≤
( |θ |
θ3
∨ m2 +m(1+ |θ |)+ |θ |

m2(1− z1 − z2)2

)
(1− x1 − x2)(1− z1 − z2)Qm

≤
( |θ |
θ3

(1− z1 − z2)∨ 2(1+ |θ |)
1− z1 − z2

)
(1− x1 − x2)Qm.

Here, in the second inequality, note that the function

g(m) := m2 +m(1+ |θ |)+ |θ |
m2(1− z1 − z2)2

is decreasing in m, and thus for m≥ 1, it attains its maximum value at g(1). Then, if

f (m) := m+ 1

1+m(1− z1 − z2)

|θ | +m

θ3 +m(1− z1 − z2)
,

one obtains f (m)≤ f (0)∨ g(m)≤ f (0)∨ g(1) yielding the desired result.
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Similarly, for l1 ≤ �mz1�, �mz2� ≤ l2,

Q(2)
m+1 =

m+ 1

l2 + 1

|θ | +m

θ2 + l2
x2z2Qm ≤ m+ 1

mz2 + 1

|θ | +m

θ2 +mz2
x2z2Qm

≤
(
|θ |
θ2
∨ m2 +m(1+ |θ |)+ |θ |

m2z2
2

)
x2z2Qm ≤

( |θ |
θ2

z2 ∨ 2(1+ |θ |)
z2

)
x2Qm, (7.4)

and for �mz1� ≤ l1 and all l2,

Q(1)
m+1 =

m+ 1

l1 + 1

|θ | +m

θ1 + l1
x1z1Qm ≤ m+ 1

mz1 + 1

|θ | +m

θ1 +mz1
x1z1Qm

≤
(
|θ |
θ1
∨ m2 +m(1+ |θ |)+ |θ |

m2z2
1

)
x1z1Qm ≤

( |θ |
θ1

z1 ∨ 2(1+ |θ |)
z1

)
x1Qm. (7.5)

Combining the inequalities in (7.3), (7.4), and (7.5),

E[Dθ+Lm+1 (z)]=
�mz1�∑
l1=0

�mz2�∑
l2=0

Q(d)
m+1 +

�mz1�∑
l1=0

m+1−l1∑
l2=�mz2�+1

Q(2)
m+1 +

m+1∑
l1=�mz1�+1

m+1−l1∑
l2=0

Q(1)
m+1

≤
( |θ |
θ3

(1− z1 − z2)∨ 2(1+ |θ |)
1− z1 − z2

)
(1− x1 − x2)

�mz1�∑
l1=0

�mz2�∑
l2=0

Qm

+
( |θ |
θ2

z2 ∨ 2(1+ |θ |)
z2

)
x2

�mz1�∑
l1=0

m−l1∑
l2=�mz2�

Qm

+
( |θ |
θ1

z1 ∨ 2(1+ |θ |)
z1

)
x1

m∑
l1=�mz1�

m−l1∑
l2=0

Qm

≤
[( |θ |

θ3
(1− z1 − z2)∨ 2(1+ |θ |)

1− z1 − z2

)
(1− x1 − x2)

+
2∑

j=1

( |θ |
θj

zj ∨ 2(1+ |θ |)
zj

)
xj

⎤
⎦E[Dθ+Lm(z)],

where, in the first inequality, terms starting at lj = �mzj� + 1 are compared one-to-one to terms
starting at lj = �mzj�, and the last inequality holds after taking common factors and noting that
the terms for lj = �mzj� are bounded by both( |θ |

θ3
(1− z1 − z2)∨ 2(1+ |θ |)

1− z1 − z2

)
(1− x1 − x2)

and
2∑

j=1

( |θ |
θj

zj ∨ 2(1+ |θ |)
zj

)
xj.
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The proof for the general (d− 1)-dimensional case follows analogously. Consider

E[Dθ+Lm(z)]=
m∑

l1=0

m−l1∑
l2=0

. . .

m−|l|d−2∑
ld−1=0

P(Lm = l)Dθ+l(z),

where |l|d−2 =∑d−2
j=1 lj.

Following the strategy used above, the sums can be partitioned into terms such that either

(a) lj ≤ �mzj� for all j;

(b) �mzj� ≤ lj for all j �= 1, and li ≤ �mzi� for all i �= j; or

(c) �mz1� ≤ l1, and li is free for all i �= 1.

Note that this partition covers all (non-exclusive) combinations and includes all the elements of
the sum. Now, comparing E[Dθ+Lm+1 (z)] with E[Dθ+Lm (z)], the bounding constants for each
case are as follows:

(a) ⎛
⎝ |θ |
θd

⎛
⎝1−

d−1∑
j=1

zj

⎞
⎠∨ 2(1+ |θ |)

1−∑d−1
j=1 zj

⎞
⎠
⎛
⎝1−

d−1∑
j=1

xj

⎞
⎠ ,

(b) ( |θ |
θj

zj ∨ 2(1+ |θ |)
zj

)
xj,

(c) ( |θ |
θ1

z1 ∨ 2(1+ |θ |)
z1

)
x1.

This yields
E[Dθ+Lm+1 (z)]≤ K̃(θ,x,z)E[Dθ+Lm(z)],

with

K̃(θ,x,z) =
⎛
⎝ |θ |
θd

⎛
⎝1−

d−1∑
j=1

zj

⎞
⎠∨ 2(1+ |θ |)

1−∑d−1
j=1 zj

⎞
⎠
⎛
⎝1−

d−1∑
j=1

xj

⎞
⎠

+
d−1∑
j=1

( |θ |
θj

zj ∨ 2(1+ |θ |)
zj

)
xj. �

Proof of Proposition 6.2. The proof follows from that of [32, Proposition 3], which is
reproduced here for completeness.

The inequality d2m+1 < d2m follows because if m≥ E(t,θ) then 2j≥C(t,θ)
m−j for all j=

0, . . . ,m, which, by Proposition 3.1, implies

b(t,θ)
m+j+1(m− j)< b(t,θ)

m+j(m− j)).

Multiplying by E[Dθ+Lm−j(z)] and then summing over j= 0, . . . ,m gives

d2m+1=
m∑

j=0

c(x,z,t,θ)
m+j+1,m−j<

m∑
j=0

c(x,z,t,θ)
m+j,m−j= d2m. (7.6)
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Proving d2m+2 < d2m+1 requires some extra steps. First, note that

d2m+2 = d2(m+1)=
m+1∑
r=0

c(x,z,t,θ)
m+1+r,m+1−r =

m∑
j=−1

c(x,z,t,θ)
m+2+j,m−j,

where j= r− 1. Noting now that 2j+ 1> 2j≥C(t,θ)
m−j for all j= 0, . . . ,m, which implies

b(t,θ)
m+j+2(m− j)< b(t,θ)

m+j+1(m− j),

and using the same argument as in (7.6) yields

m∑
j=1

c(x,z,t,θ)
m+j+2,m−j<

m∑
j=1

c(x,z,t,θ)
m+j+1,m−j,

where the sum is taken only over j= 1, . . . ,m so that the remaining terms in d2m+2 and d2m+1
can be compared. Indeed, it only remains to prove that

c(x,z,t,θ)
m+1,m+1 + c(x,z,t,θ)

m+2,m < c(x,z,t,θ)
m+1,m .

Note now that

c(x,z,t,θ)
k+1,m

c(x,z,t,θ)
k,m

= b(t,θ)
k+1 (m)

b(t,θ)
k (m)

= hm(k)e(2k+|θ |)t/2 ≤ (|θ | + 2k+ 1)e(2k+|θ |)t/2, (7.7)

where

hm(k) := |θ | +m+ k− 1

k−m+ 1

|θ | + 2k+ 1

|θ | + 2k− 1
,

the second equality follows from (3.4), and the last inequality holds because hm(k)< hk(k)=
|θ | + 2k+ 1; see the proof of [32, Proposition 1].

Because by hypothesis m≥D(t,θ)
ε , recalling the definition of D(t,θ)

ε in (3.6) and choosing
k=m+ 1 in (7.7) yields

cm+2,m < (|θ | + 2k+ 1)e(2k+|θ |)t/2c(x,z,t,θ)
m+1,m < (1− ε)c(x,z,t,θ)

m+1,m .

Finally,

c(x,z,t,θ)
m+1,m+1

c(x,z,t,θ)
m+1,m

= b(t,θ)
m+1(m+ 1)

b(t,θ)
m+1(m)

E[Dθ+Lm+1 (z)]

E[Dθ+Lm (z)]
= |θ | + 2m

(m+ 1)(|θ | +m)

E[Dθ+Lm+1 (z)]

E[Dθ+Lm (z)]

= 1

(m+ 1)

(
1+ m

|θ | +m

)
E[Dθ+Lm+1 (z)]

E[Dθ+Lm (z)]
<

2

(m+ 1)

E[Dθ+Lm+1 (z)]

E[Dθ+Lm (z)]
< ε,

where the last inequality follows because m+ 1>m≥ 2K̃(θ,x,z)/ε and using Lemma 6.1,
yielding

c(x,z,t,θ)
m+1,m+1+ cm+2,m < εc(x,z,t,θ)

m+1,m + (1− ε)c(x,z,t,θ)
m+1,m = c(x,z,t,θ)

m+1,m ,

which concludes the proof. �
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