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Electrical modeling of packaged GaN HEMT
dedicated to internal power matching
in S-band
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The electrical modeling of power packages is a major issue for designers of high-efficiency hybrid power amplifiers. This paper
reports the synthesis and the modeling of a packaged Gallium nitride (GaN) High electron mobility transistor (HEMT) associ-
ating a nonlinear model of the GaN HEMT die with an equivalent circuit model of the package. The extraction procedure is
based on multi-bias S-parameter measurements of both packaged and unpackaged (on-wafer) configurations. Two different
designs of 20 W packaged GaN HEMTs illustrate the modeling approach that is validated by time-domain load-pull measure-
ments in S-band. The advantage of the electrical modeling dedicated to packaged GaN HEMTs is to enable a die-package
co-design for power matching. Internal matching elements such as Metal oxide semiconductor (MOS) capacitors,
Monolithic microwave integrated circuits (MMICs), and bond wires can be separately modeled to ensure an efficient optim-
ization of the package for high power Radio frequency (RF) applications.
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I . I N T R O D U C T I O N

Packaging has a critical impact on high-efficiency high-power
RF transistors as it greatly determines and limits the funda-
mental and harmonic loads of the internal transistor die.
Therefore, scalability and reliability of the package modeling
are essential issues that must be addressed during the design
cycle of packaged GaN HEMTs.

Different modeling techniques of RF packages have already
been published. Full-wave electromagnetic (EM) simulations
are often used [1, 2], but they are very time consuming and
not easily scalable. Other approaches consist of extracting an
equivalent circuit model of the package from EM simulations
[3] or S-parameter measurements of coplanar standards
placed inside the package [4]. More recently, in the case of an
RF package integrating a silicon LDMOS power transistor
and its matching MOS capacitors, Aaen et al. [5, 6] proposed
a modeling technique based on a combination of EM simu-
lations with equivalent circuit extractions for the segmentation
of the complex packaging environment into its constituent
components. A complete insight into the topics of nonlinear
transistor modeling, parameter extraction techniques, and
package effects can be found in [7, 8]. In this paper, we

propose a modeling method of packaged GaN HEMTs in
S-band associating a nonlinear model of the GaN HEMT die
with a lumped-element circuit model of the package. Despite
the simplifying assumptions of lumped-element models com-
pared with all possible EM interactions at high frequencies,
the modeling time can be dramatically reduced thereby allow-
ing the designers to optimize the package configuration since
each of its physical constituents is linked to a lumped-element
circuit. Our aim is to enable a rapid Computer aided design
(CAD) synthesis of the optimum package for internally
matched GaN HEMTs in S-band that can be compatible with
the required nonlinear simulations to optimize power and
efficiency performances.

Section II describes the modeling method and illustrates its
scalability through the modeling of two different package con-
figurations for the same 20 W GaN HEMT in S-band. Although
both package models of Section II are validated by using con-
ventional S-parameter measurements, Section III illustrates
the most important validation step for power applications in
the case of the second package configuration by using both
frequency- and time-domain power measurements.

I I . E X T R A C T I O N M E T H O D O L O G Y
O F T H E P A C K A G E M O D E L

A) On-wafer pulsed measurements of the
GaN HEMT die
The modeling process starts with on-wafer pulsed-IV and
pulsed-RF measurements of the GaN HEMT die which are
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performed at different bias points (Fig. 1) to extract the non-
linear model of the transistor [9]. Such a nonlinear model is
crucial for the validation step under large-signal operating
conditions that will be presented in the last section. In
addition, a linear model (LM) of the transistor chip is
extracted at each bias point to be used during the modeling/
synthesis procedures of its dedicated package. During this
classical procedure for extracting the linear HEMT model,
the cut-off bias is one of the multi-bias conditions, which is
used at low frequencies for assessing the values of intrinsic
capacitances Cgs, Cds, and Cgd of the transistor die. It
should be noted that the proposed modeling method
assumes that the designer can measure both the transistor
die and the packaged transistor, which is not always the case.

B) S-parameter measurements of the
packaged device
S-parameter measurements of packaged devices require the
design of specific test fixtures. Consequently, a dedicated
50 V test fixture was designed to measure the packaged GaN
HEMT (Fig. 2(a)). A 1.6-mm-thick duroı̈d substrate with a
low dielectric constant (1r ¼ 2.2) was selected so as to minimize
the width discontinuity between 50 V lines (4.8 mm wide) and
the package leads (5.5 mm wide). Afterwards, multi-bias
S-parameter measurements were performed on the packaged
transistor mounted in the test fixture, using the same bias
points as those previously used for the nonlinear modeling of
the transistor die. In order to remove the effects of the test
fixture for determining the de-embedded measurements of
the packaged device [10], a Thru-Reflect-Line (TRL) calibration
kit (Fig. 2(b)) was designed and optimized on duroı̈d substrate
for applications up to 7 GHz.

C) Architecture of the lumped-element
package model
In S-band, the primary elements of metal-ceramic packages
influencing the power performances of the GaN HEMT die

are the package capacitances, the self and mutual inductances
of bond wires, the coupling between input and output ports
of the package, and the internal matching circuits. As pointed
out in the introduction, the requirement of carrying out time-
domain simulations for optimizing high-efficiency perform-
ances of packaged power transistors led us to adopt a
lumped-element modeling approach. The passive components
and interconnects of the package are modeled by equivalent
electrical models, which are connected to the LM of the internal
GaN HEMT die. Fig. 3 shows an example of equivalent circuit
model for an initial package configuration integrating the gate,
drain, and source bond wires of the device. In this package
example (Fig. 3), the gate bond wire, the two parallel drain
bond wires, and the four source bond wires are modeled by
the equivalent inductances Lg1, Ld1, and Ls, respectively. The
mutual inductances M1 and M2 are used to model the coupling
between gate and drain wires, and the coupling between both
drain wires, respectively. The four source bond wires are far
away so as to be only modeled by their equivalent inductance Ls.

The metal-ceramic input/output pads located on both sides
of the package are modeled by a shunt–series–series C1–R1–L1

circuit as shown in Fig. 3. The input/output capacitance C1 is
determined by the substrate thickness H and the surface area
of the metal-ceramic pad. The resistance R1 corresponds to the
metallic losses of the leads while the inductance L1 represents
parasitic effects between the package leads and the 50 V lines
of the test fixture. The capacitance C2 represents the forward-
coupling effect of the metal-ceramic package.

In S-band, the most critical elements are the package
capacitance C1 and the bond wires (Lg1, Ld1), while the
other elements only have an impact on harmonic frequencies.

D) Extraction of the lumped-element
package model
Before optimizing the values of each lumped element that
make up the package model in order to achieve the best fit
between measured and simulated multi-bias S-parameters,
we need to define initial values for the lumped elements.

Fig. 1. On-wafer measurements and LM of the GaN die.

Fig. 2. (a) 50 V test fixture; (b) TRL calibration kit.
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Assessing the values of the self and mutual inductances of
bond wires is the most difficult step of the model initialization.
However, specific calculation methods have already been pub-
lished to estimate the equivalent self and mutual inductances
of bond wires given their size and the distances between them.
In the following equations [11] of self and mutual inductances,
l and r are the length and radius of the bond wire in mm, and d
is the distance between wires in mm.

L nH( ) = 0.0002 × l × ln
2 × l

r

( )
− 0.75

[ ]
(1)
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× ln
l
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In order to take into account the wire shape and its height
from the ground plane, the initial values of self and mutual
inductances are adjusted using the Philips model [12] avail-
able in Agilent’s Advanced Design System.

The value of C1, which represents the package capacitance,
is calculated using the following equation:

C1 = 1
Zc

× lc
c/

����
1eff

√ (3)

where c is the speed of light, 1eff is the effective dielectric con-
stant of the alumina substrate, while lc and Zc are the length
and characteristic impedance of the metal-ceramic pad,
respectively.

The values of Zc and 1eff are calculated from the dielectric
constant 1r of the substrate and the aspect ratio (width/height)
of the metal-ceramic pad using the equations reported in [13].
In the case of our package (Fig. 3), the characteristics of the

metal-ceramic pads are (lc ¼ 1.5 mm, 1r ¼ 9.9, W/H ¼ 12.5)
giving the following initial values (Zc ¼ 8 V, 1eff ¼ 8.7, C1 ¼

2 pF). Furthermore, given the cavity dimensions, EM simu-
lations of the empty package were performed for determining
the coupling capacitance C2 between package ports, and
checking that the internal cavity is free of any resonance in
the frequency range of interest.

Then, using the set of bias-dependent LMs of the GaN
HEMT die which were previously extracted from on-wafer
measurements, the initial model of the packaged device at a
given bias point is constructed by connecting the LM of the
GaN HEMT die at this particular bias point to the lumped
elements of the package model (Fig. 3). Therefore, we obtain
a set of bias-dependent models of the packaged device
which share the same values of passive-lumped elements for
the package model which must be bias-independent. It can
be noted that the cut-off bias, which is one of the multi-bias
conditions of the measurement process, allows to assess the
capacitance values of the package at low frequencies given
that the intrinsic capacitances of the transistor die are
already determined within the model of the transistor die.

Finally, by implementing all these bias-dependent models
of the packaged GaN HEMT in the same simulation template,
their identical lumped elements related to the package model
are optimized to best fit the set of multi-bias S-parameter
measurements performed on the packaged device (Fig. 4).
Starting from the initial values of passive lumped elements
for the package model, their optimized values are forced to
remain within a limited range of variation so as to ensure
that their final values remain closely linked to the nature
and dimensions of the package constituents.

Such a constraint is very important as the physical con-
stituents of the package (bond wires, metal-ceramic pads,
etc.) have to be closely linked to their equivalent lumped
elements in order to allow an efficient die-package co-design
for power matching. Fig. 4 illustrates the extraction method
of the package model in the case of the first package
configuration.

I I I . P A C K A G E M O D E L I N G R E S U L T S
A N D M E A S U R E M E N T S

This modeling method was applied to a 20 W AlGaN/GaN
HEMT die with 2.4 mm gate width from the GH50_10 GaN
process available at UMS. A metal-ceramic power package
suitable for use in S-band was selected with dimensions of
5.84 × 6.6 mm2 so as to allow the integration of internal
matching circuits.

Two different package configurations were realized in
order to optimize power performances and highlight the scal-
ability of this modeling method. Both package configurations
are represented in Fig. 5.

In both cases, the input and output metal-ceramic pads
were made of a metallic plate of Alloy-42 (6.3 mm wide,
1.5 mm long) on a 0.5-mm-thick alumina substrate. The
surface area of the metal plate and the substrate thickness
determine the value of the capacitance C1. It should be
noted that the output capacitance C1 is of prime importance
for the harmonic matching of the power GaN HEMT [14]
because it allows the second-harmonic loads seen by the
internal die to be confined to high-efficiency regions whatever
the impedances presented outside the package. Therefore, in

Fig. 3. Example of architecture of the lumped-element package model.
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the case of this GaN HEMT die, the required value of C1 (�2
pF) was synthesized by realizing the suitable width (W ¼
6.3 mm) of the output metal-ceramic pad (lc ¼ 1.5 mm,
H ¼ 0.5 mm).

In the case of the first package configuration (Fig. 5(a)),
a single 1.8 mm long bond wire Lg1 connects the input

metal-ceramic pad to the gate pad, a pair of 1.3 mm long
bond wires Ld1 connects the drain pad to the output metal-
ceramic pad, and four 0.6 mm long bond wires Ls connect
the source pads to the flange. All connections use 38 mm
diameter gold wires. Fig. 5(a) shows the equivalent circuit
schematic of the first package configuration wherein the red
box denotes the bias-dependent model of the GaN HEMT die.

Once a set of lumped-element values has been determined
for the first package using the modeling method presented in
the previous section, it becomes easier to design an internally
matched packaged GaN HEMT by optimizing the package con-
stituents (i.e. its lumped elements) to get the desired power
characteristics in time and frequency domains. Hence, starting
from the first package, an internally matched package was syn-
thesized and fabricated to achieve improved power perform-
ances of the GaN HEMT die in S-band.

The second package structure and its equivalent circuit are
shown in Fig. 5(b). The cavity dimensions, the GaN HEMT
die, and the source bond wires are unchanged, while the
second package integrates internal pre-matching circuits with
optimized lengths of the gate and drain bond wires. The input
pre-matching circuit consists of a shunt MOS capacitor (C3 ¼

8.2 pF), which is connected to both the gate and the input
pad by using optimized wire lengths of 0.7 mm and 1.2 mm
for the inductances Lg2 and Lg3, respectively. The output pre-
matching circuit integrates the required low-pass filter
(Ld2-C1) for harmonic matching [14], wherein the optimum
inductance Ld2 is realized by a 2.2 mm long bond wire
between the drain pad and the output metal-ceramic pad. The
three bond wires Lg2, Lg3, and Ld2 have a 17 mm diameter.

A) Small-signal validation of packaged
GaN HEMTs
This section shows the comparison of measured and simu-
lated S-parameters for both package configurations. Tables
1–3 list the values of equivalent circuit elements.

Figs 6 and 7 compare S-parameter measurements with
electrical model simulations for the first and second package
configurations, respectively.

Fig. 4. Extraction procedure of package model (e.g. first package configuration).

Fig. 5. (a) First and (b) second packages of the GaN HEMT and their
lumped-element equivalent circuits.
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In both figures, measurements and simulations are illus-
trated at the optimum bias point (Vds0 ¼ 50 V, Ids0 ¼

40 mA) for maximum power added efficiency (PAE). In
both cases, the equivalent circuit model achieved good agree-
ment with measurements up to 7 GHz. In the case of high-
efficiency power operation, it should be noted that the
package model must remain valid up to the highest second
harmonic frequency since the second harmonic load impe-
dances have a great impact on power-added-efficiency.

The nonlinear model of the 2.4 mm GaN HEMT die has
been extracted using on-wafer pulsed-IV and pulsed-RF

measurements [9]. Finally, the nonlinear model of the pack-
aged device associates the nonlinear model of the GaN
HEMT die with the passive lumped elements of the second
package configuration.

In order to check the reliability of this package model
under large-signal operation for pulsed radar applications,
pulsed load-pull measurements have been performed on the
packaged GaN HEMT at the fundamental frequency of
3.2 GHz. The RF input power was pulsed using a 10 ms
pulse width at a 10% duty cycle. Bias voltages were continuous
with a gate bias voltage slightly above pinch-off and a drain
bias voltage set to 50 V for maximizing PAE performances.

Figs 8 and 9 compare the power measurement results at
3.2 GHz with the nonlinear simulations of the packaged
GaN HEMT under the same operating conditions. It should
be noted that the choice of a lumped-element package
model is of prime importance to enable such nonlinear simu-
lations under pulsed conditions.

At 29 dBm input power, Fig. 8 shows a comparison
between measured and simulated load-pull contours of con-
stant PAE and constant output power in the ranges 50–70%
and 40.5–42.5 dBm, respectively. A good agreement is
achieved between simulations and measurements. These
results are of prime importance for power amplifier design
because they allow the designers to select the optimum load
impedance providing the best trade-off between output
power and PAE.

At 3.2 GHz, Fig. 9 shows the comparison between
measured and simulated output power, PAE and gain versus
input power when the packaged GaN HEMT is terminated

Table 1. Lumped elements of metal-ceramic pads and source bond wires.

C1 (pF) R1 (V) L1 (nH) C2 (pF) Ls (nH)

2.0 0.2 0.1 0.001 0.09

Table 2. Lumped elements of the first package.

Ld1 (nH) M2 (nH) Lg1 (nH) M1 (nH)

0.9 0.35 1.2 0.02

Table 3. Lumped elements of the second package.

Ld2 (nH) Lg2 (nH) M3 (nH) C3 (pF) Lg3 (nH)

1.5 0.5 0.025 8.3 0.9

Fig. 6. Measured and simulated S-parameters of the packaged GaN HEMT (first package configuration) at (Vds0 ¼ 50 V, Ids0 ¼ 40 mA) from 1 to 7 GHz.
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by its optimum load impedance (ZLOpt–PAE) for maximum
PAE. The packaged GaN HEMT exhibited 70% PAE associ-
ated with 42.5 dBm output power and 13.5 dB gain at
29 dBm input power.

At the same time and under the same conditions, the
output time-domain waveforms of the packaged GaN
HEMT have been measured at 3.2 GHz with Agilent’s
PNA-X network analyzer. Using the lumped-element equival-
ent circuit of the package, the measurements at package plane

were shifted to drain plane. Fig. 10 shows quite good agree-
ment between measured and simulated time-domain wave-
forms of the drain voltage and current.

Indeed, when compared with frequency measurements,
these time-domain waveforms are more visual to assess the
operating mode of the internal GaN HEMT die, when
placed inside the package. They also allow the designer
to assess the voltage/current swings within the limits of
the safe operating area. Such an insight into the intrinsic

Fig. 7. Measured and simulated S-parameters of the packaged GaN HEMT (second package configuration) at (Vds0 ¼ 50 V, Ids0 ¼ 40 mA) from 1 to 7 GHz.

Fig. 8. Measured and simulated load-pull contours of constant PAE and constant output power in the complex plane of the load reflection coefficient
(Gamma_Load) at 3.2 GHz and 29 dBm input power.
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large-signal behavior of the packaged GaN HEMT die is made
possible through the use of a lumped equivalent circuit model
of the package.

I V . C O N C L U S I O N

This study highlights the advantages of a lumped-element
package model for designing high-efficiency hybrid power
amplifiers in S-band. At first, the nonlinear model of the tran-
sistor die is extracted from on-wafer pulsed-IV and pulsed-RF
measurements. Then, the passive components and intercon-
nects that make up the package are modeled by equivalent
lumped elements so that the final model of the packaged tran-
sistor associates the nonlinear model of the transistor die with
the passive lumped-element model of the package. Finally,
given the nonlinear model of the transistor die, the
lumped-element package model is extracted from multi-bias

S-parameter measurements of the packaged transistor.
Starting from initial values of passive lumped elements for
the package model, their optimized values are forced to
remain within a limited range of variation so as to ensure
that their final values remain closely linked to the nature
and dimensions of the package constituents. Therefore, the
package model presents scaling properties and allows
designers to synthesize the internal components and intercon-
nects of the package that will meet the impedance matching
requirements of the transistor for power operation.

The modeling methodology is illustrated through two
package examples of a 20 W GaN HEMT in S-band. Linear
and nonlinear simulations of the packaged GaN HEMT
model show a good agreement with measurements of
S-parameters, load-pull contours and time-domain waveforms.
This large-signal validation is critical for the efficient design of
hybrid power amplifiers since the package has a considerable
impact on the internal device capabilities. It should be noted

Fig. 9. Comparison between measured and simulated output power, PAE, gain and optimum loads when the packaged GaN HEMT is loaded on its optimum load
impedance (ZLOpt2PAE) for maximum PAE at 3.2 GHz.

Fig. 10. Comparison of measured and simulated time-domain waveforms at the drain plane of the GaN die at 3.2 GHz and 29 dBm input power.
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that the package modeling method with passive lumped
elements is well suited in S-band, whereas EM modeling
becomes more and more essential with increasing frequency.
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