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In this study, macro-rough flows over beds with different permeability values are
simulated using the large-eddy simulation, and the results are analysed by applying
the double-averaging (DA) methodology. Spheres of different sizes and arrangements
were used to form the beds, which are deemed to be permeable granular beds.
The influence of bed permeability on the turbulence dynamics and structure is
investigated. It was observed that the scales of the spanwise vortical structures
over more permeable beds are larger than those over less permeable beds. This is
attributed to large-scale spanwise-alternate strips of varying Reynolds shear stress
(RSS), emerging from the surface of macro-rough elements for the permeable beds.
The DA stress balance suggests that the time-averaged spanwise vortical structure
leads to a damping in DA RSS and an unusual peak of the form-induced stress in the
main flow. In the streamwise direction, both large turbulent structures that originate
from the Kelvin–Helmholtz-type instability and small turbulent structures that are
associated with the turbulent transport across the gaps of the roughness elements are
more prevalent over highly permeable beds. Near the bed, the relative magnitude of
turbulent events shows a transition from a ejections-dominating to sweeps-dominating
zone with vertical distance. Further, several hydrodynamic characteristics normalized
by inner scales (kinematic viscosity to shear velocity ratio) show a greater dependency
on permeability Reynolds number than those normalized by sediment size. The study
provides an insight into the mechanism of mass transfer near the fluid–particle
interface, which is vital to benthic and aquatic ecology.

Key words: turbulence simulation, turbulent flows

1. Introduction

Turbulent flow over and within permeable beds is encountered in a wide range
of practical situations, including industrial devices and the environmental field. In
industry, such a kind of flow is expected to influence the efficiency of catalytic
converters and metal foam heat exchangers. In the environmental field, including
gravel-bed streams or marine environments, the dispersion of pollutants and the
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exchange of oxygen and nutrients are related to turbulence over riverbeds or sea
floors.

As it is an important issue to understand the flow physics over and within permeable
beds, several studies have been performed to investigate the influence of permeability
on fluid flows. In laminar flow through an open channel, Beavers & Joseph (1967)
measured the mass flow rates and found that the frictional resistance over a permeable
bed is smaller than that over a smooth (impermeable) bed owing to the effective slip
velocity over the permeable bed. On the other hand, in turbulent flow through an
open channel, the result was contrary to that for laminar flow. Zagni & Smith (1976)
carried out experiments on turbulent flow over permeable channel beds. They found
that the frictional resistance in flow over a permeable bed was greater than that
over an impermeable bed with the identical surface roughness. Similar results were
also obtained by Kong & Schetz (1982) and Zippe & Graf (1983). In addition,
Manes et al. (2009) conducted particle image velocimetry (PIV) experiments over
impermeable and permeable beds made of spheres. They found that effect of the bed
permeability is to increase the friction factor even in the hydraulically rough regime.
Further experimental studies on flow over permeable beds were also reported by Suga
et al. (2010), Manes, Poggi & Ridolfi (2011), Suga, Mori & Kaneda (2011) and Suga
(2016). They observed that as the permeability increases, the near-wall turbulence
structure evolves progressively to a more organized state having an enhancement
of the vertical Reynolds normal stress. The dominance of sweeps near the bed and
instability of the Kelvin–Helmholtz (KH) type were the possible cause of shortening
of the streamwise vortical structures. From these experimental studies, it was revealed
that in a turbulent flow, the friction factor increases as a result of the higher Reynolds
shear stress (RSS). The RSS, in turn, increases owing to the effects of eddies which
originate from the KH-type instability over beds with a high permeability.

However, in laboratory experimental flumes, the velocity measurements were
generally taken on a central vertical plane and the spanwise heterogeneity was ignored
(Nezu & Nakagawa 1993; Kironoto & Graf 1994; Song & Graf 1994; Nikora & Smart
1997; Nikora & Goring 2000; Dey & Raikar 2007; Smart & Habersack 2007; Amir,
Nikora & Stewart 2014; Khosronejad & Sotiropoulos 2014). These studies have
enhanced our understanding of complex turbulence phenomena in the context of the
time-averaging concept. Nevertheless, knowledge on the turbulence characteristics of
hydraulically macro-rough flows over permeable beds is still somewhat subjective
because of the highly three-dimensional and large-scale heterogeneous nature of flows
near macro-rough beds. To supplement the time-averaging concept, area-averaging in
the layer parallel to the mean bed surface is performed for the distribution of the
time-averaging values. Thus, a double-averaging methodology (DAM) was introduced.
The DAM has so far been extensively applied to study the atmospheric boundary
layer (Wilson & Shaw 1977) and gravel-bed streams (Nikora et al. 2001, 2007a,b;
Mignot, Barthelemy & Hurther 2009a; Mignot, Hurther & Barthelemy 2009b; Sarkar
& Dey 2010; Dey & Das 2012; Ferraro et al. 2016; Sarkar, Papanicolaou & Dey
2016; Han, He & Fang 2017).

To study flows over permeable beds, direct numerical simulation (DNS) is
performed by several studies. The simplest method in this regard was to specify
the boundary conditions, as was done by Jimenez et al. (2001) and Hahn, Je &
Choi (2002). They set the vertical velocity component to be zero or proportional
to the local pressure fluctuations. However, this approach was not realistic for
beds with high permeability, where an exchange of momentum across the bed
interface takes place. Breugem, Boersma & Uittenbogaard (2006) applied the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

31
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.314


554 H. Fang, X. Han, G. He and S. Dey

volume-averaged Navier–Stokes (VANS) equations given by Whitaker (1996) with
a Darcy–Forchheimer-type body force to represent the porous medium. They found
that fluid streaks and associated quasi-streamwise vortices are absent near the highly
permeable bed. Significantly enhanced turbulence is dominant with relatively large
vortical structures, which are supposed to originate from an instability of the KH
type. They concluded that this process contributes strongly to the RSS and thus
leads to a strong frictional resistance. However, since they neglected the effects of
dispersion, the turbulence phenomena near and within the permeable bed were not
precisely reproduced. Liu & Prosperetti (2011) studied three-dimensional flow in a
channel bounded by a permeable wall, which was simulated by spheres in a simple
cubic arrangement. They mainly focused on the force and the torque to the sphere
layer, but the details of the hydrodynamic quantities and the effects of permeability
on them were overlooked. Kuwata & Suga (2016) conducted Lattice Boltzmann
DNS simulation for turbulence over interconnected staggered cubic arrays. By proper
orthogonal decomposition, they found that the vortex structure over the permeable
layer becomes shredded and the pitch of the fluid streaks becomes approximately
twice as wide as those over impermeable beds. Instability of the KH type was
detected across the channels. Since enormous computational costs were involved to
resolve the complex permeable structures at high Reynolds numbers for the DNS,
the bulk Reynolds number in their simulation was considered as 3000, which was
too far from the Reynolds number obtained in a natural turbulent flow. Although
the staggered cubic arrays that they adopted fitted well with the grids, the layers of
packed spheres were more likely to simulate a natural sand bed.

To the authors’ best knowledge, the study of numerical simulations on turbulence
structures at the interface of near-bed flow and permeable beds is limited to relatively
low Reynolds numbers. The present study therefore aims to investigate the effects
of bed permeability on the turbulent characteristics of macro-rough flow at a high
Reynolds number. Large-eddy simulation (LES) of flows over three cases with
different permeability values having the identical structure of surface elements was
conducted. It may be noted that the results of the impermeable bed are considered as
the reference. In addition, the DAM is used to analyse heterogeneous macro-rough
flow near macro-rough beds and in the main flow. This study provides new insights
into various aspects of turbulence characteristics.

The rest of the paper is organized as follows: the numerical framework is explained
in § 2. The numerical experiments and bed configurations are described in § 3.
The LES results are presented in § 4. Finally, the summary and conclusions are
given in § 5.

2. Problem formulation
2.1. Numerical framework

In this study, the second version of a code called LESOCC2 (large-eddy simulation on
curvilinear coordinates), which was first developed at the Institute for Hydromechanics,
Karlsruhe Institute of Technology, Germany (Breuer & Rodi 1994; Fröhlich & Rodi
2002), was used for the simulations. The dimensionless LES equations obtained by
filtering of the incompressible Navier–Stokes equations can be written as

∂ui

∂xi
= 0 (2.1)

∂ui

∂t
+

∂

∂xj
(uiuj)=−

∂p
∂xi
+

∂

∂xj

[
υ

(
∂ui

∂xj
+
∂uj

∂xi

)]
−
∂τ SGS

ij

∂xj
, (2.2)
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where ui and uj are the ith and jth components of the resolved instantaneous velocity
vector (i or j = 1, 2, 3), x1, x2 and x3 represent the spatial location vectors in the
x, y and z directions, respectively, p is the resolved dimensionless pressure and υ is
the coefficient of kinematic viscosity of the fluid. The subgrid scale (SGS) stress τ SGS

ij
results from filtering of the nonlinear convective fluxes. This term reflects the influence
of the subgrid scale turbulence structures on the large eddies. The SGS stress τ SGS

ij was
calculated through an eddy viscosity relation as

τ SGS
ij =−υSGS

(
∂ui

∂xj
+
∂uj

∂xi

)
+

1
3
δijτ

SGS
kk , (2.3)

where the SGS viscosity υSGS is computed from the dynamic subgrid scale (SGS)
model proposed by Germano et al. (1991), δij is Kronecker delta.

The governing equations were discretized by the finite-volume method on
non-staggered curvilinear grids. Since the outer contour of the roughness elements
(hemispheres for impermeable bed and spheres for permeable beds) intersected
with the grid lines, the direct forcing immersed boundary method (IBM), originally
developed by Peskin (1972), was incorporated in the LES model. The details of
the discretization and the IBM treatment of LESOCC2 are available in Fang et al.
(2014).

2.2. Averaging approach
The DAM was used to analyse the flows near macro-rough beds. A local instantaneous
flow variable θ can be decomposed into the time–space averaging as

θ(x, y, z, t)= 〈θ̄〉(z)+ θ̃ (x, y, z)+ θ ′(x, y, z, t), (2.4)

where θ̃ represents the disturbance of the local time-averaged flow parameter θ̄ from
the double-averaged (DA) flow parameter 〈θ̄〉 (that is, θ̃ = θ̄ − 〈θ̄〉), and θ ′ is the
difference of the local instantaneous flow parameter θ from the local time-averaged
flow parameter θ̄ (that is, θ ′ = θ − θ̄ ). The spatial averaging used in this study is the
intrinsic spatial averaging (Nikora et al. 2007a):

〈θ̄〉(z)=
1
Af

∫∫
Af

θ̄ (x, y, z) dS, (2.5)

where Af is the area occupied by the fluid at elevation z within the total area and dS
is an infinitesimal area element. The area Af is typically chosen to be much larger
than roughness or flow geometry scales, but smaller than larger geometric features,
such as channel curvature and widening or narrowing (Coleman et al. 2007). Since the
DAM is applicable for the near-bed flow over and within the flow-roughness-element
interface, it enables us to have an insight into the turbulence characteristics of the
flow sublayers induced by roughness elements and their link with the main flow. As
shown in figure 1, these flow sublayers are the form-induced and interfacial sublayers,
together called the roughness sublayer (Dey & Das 2012). The form-induced sublayer
that occupies the flow zone around the roughness crests is influenced by the individual
roughness elements. On the other hand, the interfacial sublayer occupies the flow zone
below the form-induced sublayer, where skin friction and form drag appear.

The DA momentum conservation equation based on the Navier–Stokes equations
was developed by Nikora et al. (2001, 2007a) using the time–space averaging procedure.
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Flow depth, h

Form-induced
sublayer

Rough and permeable bed

Interfacial
sublayer

Crest level

FIGURE 1. (Colour online) Flow over a rough, permeable bed showing the flow sublayers.

For a uniform, two-dimensional open-channel flow (Giménez-Curto & Corniero 2002;
Manes, Pokrajac & McEwan 2007; Nikora et al. 2007a; Dey & Das 2012), the stress
balance is given by

〈τ̄ 〉 =−ρ〈ũw̃〉︸ ︷︷ ︸
〈τf 〉

−ρ〈u′w′〉︸ ︷︷ ︸
〈τuw〉

+ρυ
d〈ū〉
dz︸ ︷︷ ︸

〈τvis〉

+

∫ h

z
( fv + fp) dz, (2.6)

where 〈τf 〉 is the form-induced shear stress (FISS) or dispersive stress (that is,
−ρ〈ũw̃〉), 〈τuw〉 is the DA Reynolds shear stress (RSS) (that is, −ρ〈u′w′〉), 〈τvis〉 is
the DA viscous shear stress (VSS) (that is, ρυ(d〈ū〉/dz)), h is the flow depth, and
fv and fp are the drag forces induced by viscous and pressure forces, respectively,
below the roughness crest (z< 0). The momentum balance in the main flow produces
〈τ̄ 〉 = 〈τf 〉 + 〈τuw〉 + 〈τvis〉. Importantly, below the crest, the total drag effects are
counted in the total shear stress 〈τ̄ 〉 computation.

3. Numerical experiments and bed configuration

To investigate the influence of permeability on the turbulence characteristics over
a rough bed, three sets of bed configurations were considered, as shown in figure 2,
and the hydraulic parameters are listed in table 1. Case H involved open-channel flow
over closely packed hemispheres forming the bed, which was considered as rough and
impermeable. On the other hand, cases S and L were made of three closely packed
layers of spheres with the same diameters d as the hemispheres of case H, and the
packed spheres were considered as rough and permeable beds. The bed thickness H
was 0.5d for the impermeable bed and 3d for permeable beds. To avoid an influence
of the impermeable wall at z = −H below the porous medium on the free flow, it
was required that H should be much larger than the penetration depth of turbulence
inside the permeable wall. We changed the bottom boundary condition from a solid
boundary to a symmetry boundary for case L2. Results showed that the first and
second statistics were only influenced near the bottom. In addition, case L2 created a
pore space of straight tubes. Similar porous media were adopted in many experiments
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FIGURE 2. (Colour online) Computational geometry of impermeable and permeable beds:
(a) hemisphere packing (case H), representing rough and impermeable beds; (b) small
sphere packing (case S), representing rough and moderately permeable beds; and (c) large
sphere packing (case L), representing rough and highly permeable beds.

(Dybbs & Edwards 1984; Horton & Pokrajac 2009; Manes et al. 2009) and simulations
(Liu & Prosperetti 2011; Chaitanya & Sourabh 2016; Kuwata & Suga 2016). The
cross-section of the pores varied between a d × d square and a diamond-shaped
throat with a minimum pore diameter of 0.41d. The cross-section and the longitudinal
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section of the total simulated bed comprised of 39 pores and 75 pores, respectively,
which can be regarded as a representative porous medium comprising O(10) pores.
The main difference between cases S and L is that, in case S, another kind of smaller
spheres with diameter d′(=0.73d) was introduced into the interspace of spheres, which
led to a greater number of pores and a lower bed permeability than case L. Hence,
cases S and L allowed the surface flow to interact with the interfacial fluid within
the bed. Since the three bed configurations were characterized by identical surface
roughness, the comparison of surface flow velocity statistics allowed the effects of
permeability to be distinguished (Manes et al. 2009).

The scales of flow field for three bed configurations were considered to be the
same. The flow depth h was set as 3.5d, which is defined as the vertical distance
from the crest of the roughness elements to the free surface. The flow depth condition
with respect to the sphere diameter was the same as that of Manes et al. (2009) and
close to that of Dey & Das (2012), who considered the flow depth as 4.2 times
the median diameter of gravels. The computational domain of the main flow region
spanned 6.8h× 3.4h× h (figure 2a). The size was slightly larger than 2πh× πh× h,
as is commonly accepted to include all relevant turbulence structures (Bomminayuni &
Stoesser 2011). Cyclic boundary conditions were used in the streamwise and spanwise
directions. The free surface was set as a frictionless rigid lid and treated as a plane
of symmetry. The hydraulic parameters of the three bed configurations are provided
in table 1.

The permeability Reynolds number (ReK = K0.5u∗/υ, where K is the permeability
of the bed, u∗= (τ/ρ)0.5 is the shear velocity, τ = h dp/dx and dp/dx is the pressure
gradient driving the flow) unifies two classical flow typologies, namely impermeable
boundary-layer flow (ReK�1) and highly permeable canopy flow (ReK�1) (Breugem
et al. 2006; Voermans, Ghisalberti & Ivey 2017). In aquatic systems, ReK typically
lies in the range 0.01–10 (Rosgen 1994; Wilson, Huettel & Klein 2008). As shown in
table 1, the LES was carried out at different bulk Reynolds numbers Reb (= hUb/υ,
where Ub is the bulk velocity). By varying the bulk Reynolds number Reb, one
kind of bed configuration allowed a large simulated range of ReK . The computation
was run for 150 dimensionless time units (h/Ub), which was approximately 22
flow-through times, to obtain a fully developed turbulent flow (one flow-through
time is the length of one flow field divided by the mean velocity Ub; here it was
6.8h/Ub). The calculation was run for another 400 dimensional time units (h/Ub),
i.e. approximately 58 flow-through times, during which the data for the statistics
were sampled. The flow velocity in the vicinity of the inlet from −0.5d to 3.5d
was set as unity for impermeable beds and from −3d to 3.5d for permeable beds.
The velocity profile was developed automatically once the model was run. The code
was parallelized using the message-passing interface and the domain-decomposition
technique. For all cases, the computational area was divided into 72 domains in the
horizontal direction, i.e. 12 domains in the x direction and six domains in the y
direction. Every domain contained 2× 2 spheres in the xy-plane. The uniform spacing
of the grids was ∆x+, ∆y+

= (∆x, ∆y)× u∗/υ. In the vertical (wall-normal) direction,
the grids were refined near the interface between the fluid and the first sphere with
a minimum value, and at the free surface with a maximum value. The per repeating
domain and grid sizes are listed in table 1. In the following parts, we mainly use
case H, case S3 and case L2 to show and discuss the effects of bed permeability on
the first-, second- and third-order flow statistics and flow visualizations, as they are
typical permeable beds with the same Reb = 15 000 and different ReK = 0, 2.7 and
27.4, respectively. Then, all cases over permeable beds are considered to parametrize
some flow quantities with ReK .
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Case dp/d d+ h+ εc Reb ReK Grid size Grid spacing
Nx ×Ny ×Nz ∆z+

H 0.5 281.9 986.8 0 15 000 0 42× 42× 84 1.58–17.44
S1 0.9 246.3 861.9 0.166 4 000 0.7 42× 42× 132 0.85–9.55
S2 0.9 476.4 1667.4 0.166 8 000 1.4 42× 42× 132 1.65–18.47
S3 0.9 929.0 3251.5 0.166 15 000 2.7 42× 42× 132 3.26–36.00
S4 0.9 1455.2 5093.1 0.166 30 000 5.7 54× 54× 166 5.35–54.73
S5 0.9 2444.7 8556.5 0.166 50 000 10.3 54× 54× 166 8.87–89.55
L1 1 514.6 1801.1 0.476 8 000 12.7 42× 42× 132 1.80–19.85
L2 1 1113.8 3898.3 0.476 15 000 27.4 42× 42× 132 3.89–42.96
L3 1 2907.0 10174.6 0.476 50 000 109 54× 54× 166 10.40–96.06

TABLE 1. Hydraulic parameters and computational geometry for simulations.
Note: In the above, d is the diameter of hemispheres for the impermeable bed and large
spheres for permeable beds, dp = 6Vp/Ap (that is, the mean particle diameter in terms of

volume Vp and surface area Ap of the solid obstacles), εc is the porosity, ReK is the
permeability Reynolds number, ReK =K0.5u∗/υ; K = d2

pε
3
c (1− εc)

−2/180, that is, the
permeability of the bed (Breugem et al. 2006), u∗ is the shear velocity and Nx, Ny and

Nz are the grid node numbers of per repeating domain in the x, y and z directions,
respectively. The resolution is per repeating unit.

To test for grid convergence for turbulence statistics, we compare the LES of
three configurations with progressively refined grids to assess the effects of grid size,
including a coarse mesh, a medium mesh and a fine mesh for every case. All cases
were carried out with Reb = 15 000. The details of mesh are provided in table 2.
The first and second-order DA statistics are compared in figure 3. The results show
a similar tendency for the three cases. As shown in figure 3(a,c,e), the first-order
statistics are insensitive to the grid resolution in the medium grid and fine grid
simulation, while a slight overestimate in velocity gradient is found near the bed
in the coarse grid simulation. The second-order statistics are also insensitive to grid
size when the grids reach the medium size, as shown in figure 3(b,d, f ). The larger
grid sizes adopted in the coarse grid simulation lead to an overestimate in Reynolds
normal stress through the entire flow depth, especially near the flow surface, as a
maximum grid size is adopted there. Overall, the results confirm that a further refined
mesh resolution would not lead to discrepancies in the first- and second-order flow
statistics when the grid size reaches a medium size.

4. Results and discussion
4.1. The double-averaged velocity

A customary parameterization of the log law is

〈ū〉+ =
1
κ

ln
(

z+ + z+0
k+s

)
, (4.1)

where 〈ū〉+= 〈ū〉/u∗, 〈ū〉 is the DA streamwise velocity, u∗ is the shear velocity, z+=
zu∗/υ, z is the vertical distance from the crest of the roughness elements, z+0 = z0u∗/υ,
z0 is the zero-displacement height, k+s = ksu∗/υ, ks is the equivalent roughness height
and κ is equivalent to the von Kármán constant. To plot the data 〈ū〉+ as a function
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Case Grid Grid size Grid spacing in wall units
Nx ×Ny ×Nz ∆x+ ∆y+ ∆z+

Fine 54× 54× 106 6.52 6.52 1.43–11.95
Case H Medium 42× 42× 84 8.39 8.39 1.58–17.44

Coarse 34× 34× 68 10.36 10.36 2.23–23.90

Fine 54× 54× 166 13.47 13.47 2.61–26.67
Case S3 Medium 42× 42× 132 17.32 17.32 3.26–36.00

Coarse 34× 34× 106 21.39 21.39 4.13–52.78

Fine 54× 54× 166 16.08 16.08 3.11–31.82
Case L2 Medium 42× 42× 132 20.67 20.67 3.89–42.96

Coarse 34× 34× 106 25.53 25.53 4.93–62.98

TABLE 2. Grid parameters of the large-eddy simulation on different grids.
Note: In the above, Nx, Ny and Nz are the grid node number in x, y and z directions,

respectively.

of dimensionless vertical distance z++ z+0 for the three cases, a prior estimation of z+0
is required. Subsequent determination of κ and k+s is also essential to fit the data to
the log law. The determination of the parameters was done independently, as follows:
the data set for 〈ū〉+= 〈ū〉/u∗ corresponding to z++ z+0 was prepared for the analysis.
Assuming a very small trial value of z+0 , the values of κ and z0 were determined from
(4.1) using the regression analysis, and the regression coefficient (RC) was obtained.
Then, z+0 was incrementally increased by a small value, and κ and k+s were determined
in the same way, until RC reached the maximum. The corresponding values of z+0 , κ
and k+s were then determined as z+0 = 120.4, 422.7 and 974.5, κ = 0.41, 0.34 and 0.32,
and k+s = 10.6, 107.8 and 295.2 for cases H, S3 and L2, respectively. Figure 4 shows
the dimensionless DA streamwise velocity 〈ū〉+ as a function of dimensionless vertical
distance z+ + z+0 for cases H, S3 and L2. Three cases are plotted along with the
results of Defina (1996) and Singh et al. (2007) corresponding to k+s values of 3.4 and
9.6. Earlier studies revealed that the downshift of the time-averaged velocity profile
increases with an increase in k+s (= ksu∗/υ). The 〈ū〉+-profiles obtained from the LES
exhibit a similar trend, confirming the legitimacy of the findings. An increasing trend
of z+0 with ReK was also obtained by Suga et al. (2010), which is in conformity with
the results obtained from this study. In addition, an inflection point in the 〈ū〉+-profiles
appears at the crest of the roughness elements for these three cases, resulting from
a strong flow separation from the crest of the hemispherical or spherical topography
(Castro, Cheng & Reynolds 2006; Coceal et al. 2007). Above the crest, it is apparent
that the 〈ū〉+-profiles preserve the log law, and the logarithmic layer is approximately
z+ ∈ [54 : 780] for case H, z+ ∈ [80 : 1400] for case S3 and z+ ∈ [115 : 1950] for case
L2. Nezu (2005) and Suga et al. (2010) observed that κ decreases with an increase in
permeability Reynolds number ReK , which is also found in the simulated results. On
the other hand, below the crest, the 〈ū〉+-profiles follow a polynomial function having
the form 〈ū〉+ = a+ bz+ + cz+2

+ dz+3 in these three cases, where a, b, c and d are
the coefficients. It is in conformity with the results obtained by Sarkar & Dey (2010),
Dey & Das (2012) and Sarkar et al. (2016).
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FIGURE 3. (Colour online) Grid convergence test at Reb= 15 000. (a,c,e) are DA velocity
profiles normalized by u∗ for case H, case S3 and case L2, respectively. (b,d, f ) are DA
streamwise normal stress profiles normalized by u2

∗
for case H, case S3 and case L2,

respectively. The red dashed, black solid and blue dashed-dotted lines represent the fine,
medium and coarse grids, respectively.

4.2. The double-averaged Reynolds normal stresses
Figure 5(a–c) presents the dimensionless DA streamwise, spanwise and vertical
Reynolds normal stresses, (〈u′u′〉, 〈v′v′〉, 〈w′w′〉)× u−2

∗
, as a function of dimensionless

vertical distance z/d for cases H, S3 and L2. An additional simulation with the
same bulk Reynolds number Reb = 15 000 was carried out for the flow over an
impermeable smooth bed, which was characterized by a coarser grid in the horizontal
(∆x+

= ∆y+
≈ 16) than case H but which is finer near the smooth wall with

∆z+
≈ 1. The data for the streamwise and vertical Reynolds normal stresses obtained

experimentally by Manes et al. (2009) are also plotted along with the simulated results.
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FIGURE 4. (Colour online) Vertical profiles of DA streamwise velocity for cases H (red
solid line refers to k+s = 10.6), S3 (green solid line refers to k+s = 107.8) and L2 (blue
solid line refers to k+s = 295.2). Symbol + represents the DNS results with a layer of
spheres reported by Singh, Sandham & Williams (2007) for k+s = 3.4, solid square symbol
represents the experimental data for the flow over a rough bed reported by Defina (1996)
for k+s = 9.6 and dotted lines represent the log-law profile for each case.

The bed was covered with five-layer spheres in a cubic pattern in those experiments,
which is similar to case L2. As shown in figure 5(a,c), the experimental data plots
are in satisfactory agreement with the simulated results of case L2 over the crest.
However, below the crest, the profiles of simulated DA streamwise and vertical
Reynolds normal stress depart from those of Manes et al. (2009), especially for the
simulated vertical Reynolds stress values, which are approximately 1.5 times the
experimental values. The disagreement is attributed to the different DA procedures.
Due to the experimental limitation, the laser light sheet in PIV was placed at two
streamwise-oriented vertical planes: one over the top of the spheres and another over
their valleys. The spatially averaged portions in the spanwise direction only include
these two sections. In this study, we use the total area at an elevation z. If we had
adopted the same DA procedure as that adopted by Manes et al. (2009), we could
have got the solid lines shown in figure 5(a,c), which show a better agreement with
the experimental data. It illustrates that the statistics including two sections (top
and valley) may underestimate the DA Reynolds normal stress, resulting from the
lack of sampling volume in the spanwise direction. In addition, the DA Reynolds
normal stresses diminish rapidly inside the permeable wall, becoming negligible below
z/d=−2. This indicates that the turbulent flow in the open channel is not influenced
by the presence of the solid wall at z/d=−3.

In figure 5(a), the simulated profiles of DA streamwise Reynolds normal stress
for rough beds, i.e. case H, case S3 and case L2, collapse on that for impermeable
smooth beds for z/d > 1.5, substantiating the wall similarity hypothesis (Townsend
1976). In contrast, the profiles of the DA spanwise and vertical normal stresses exhibit
less similarity. Breugem et al. (2006) also observed that the DA streamwise Reynolds
normal stress preserves similarity in the outer region over a permeable bed, while
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FIGURE 5. (Colour online) Simulated results of (a) DA streamwise Reynolds normal
stress, (b) DA spanwise Reynolds normal stress and (c) DA vertical Reynolds normal
stress for case H (red dashed line), case S3 (green dashed-dotted line) and case L2
(blue dotted line). Symbol + represents the experimental data with five layers of spheres
reported by Manes et al. (2009). The thin solid line represents the results of case L2,
which were double-averaged by a procedure similar to that of Manes et al. (2009). The
thick solid line represents the results of the flow over an impermeable smooth bed with
the same bulk Reynolds number Reb = 15 000.

the similarity disappeared in the spanwise and vertical Reynolds normal stresses.
Furthermore, Krogstad & Antonia (1999) measured boundary-layer flows over rough
walls. They reported that the vertical Reynolds normal stress increases significantly
and the streamwise Reynolds normal stress remains unchanged as compared to a
smooth wall. However, Manes et al. (2009) observed that the vertical Reynolds
normal stress shows no obvious difference between permeable and impermeable beds
over the crest. The reason is attributed to the fact that they used one layer of spheres
to represent the impermeable bed and the deep cavities between the spheres to cause
larger fluctuations over the bed than for the hemispheres used in this study.

Around the crest, the peaks in the DA streamwise Reynolds stress are lower for
the case with higher bed permeability, whereas the peaks are higher for the case
with higher bed permeability in the spanwise and vertical Reynolds stresses, which
is attributed to the weakening effects of wall-blocking in permeable beds.

Below the crest (within the interfacial layer), the streamwise and spanwise
Reynolds normal stresses show much smaller differences among the cases than
the vertical Reynolds normal stress, which exhibits fluctuations near z/d≈−0.34 for
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FIGURE 6. (Colour online) Contours of vertical Reynolds normal stresses and the time-
averaged velocity vectors on the xz-plane at y/d= 6.5 through the centres of hemispheres
for (a) case H and large spheres for (b) case S3 and (c) case L2. The dotted line in case
S3 shows the periphery of small spheres (d′ = 0.73d).

permeable beds. Interestingly, in case L2, the peaks of the vertical Reynolds normal
stresses at z/d≈−0.34 (within the interfacial layer) and z/d≈ 0.47 (above the crest)
are comparable, illustrating a more pronounced weakening effect of the wall-blocking
within the interfacial layer. This weakening effect can be clearly found in figure 6,
where the contours of the vertical Reynolds normal stress are shown on the xz-plane
at y/d= 6.5 through the centres of the hemispheres for case H and the large spheres
for cases S3 and L2. Above the crests of the spheres, the vertical Reynolds normal
stress vanishes rapidly for the three cases, while within the valley formed by the
spheres, the fluctuations exhibit different trends. From the time-averaged velocity
vectors shown in the insets to figure 6, it is apparent that the vortices shed from
the crests of the upstream sphere due to flow separation and then the fluid infiltrate
through the interstices of the spheres forming the valleys. As a result of increasing
the bed permeability from case S3 to case L2, the shedding gets deeper and causes
a more intense vertical Reynolds normal stress. On the other hand, as a result of
wall-blocking effects in case H, the vortex shedding is prevented from infiltrating
into the bed formed by the hemispheres, leading to a more obvious recirculatory flow
within the valley, which decreases the vertical Reynolds normal stress.

The locations which were selected in the line- and point-averaging procedures are
shown in figure 7. It is noticeable that the section in xz-plane adopted in figure 6
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x

FIGURE 7. (Colour online) Top view of a repeating domain to illustrate the different
averaging locations. The red solid line lies over the valley and the blue dashed line lies
over the top. The red diamond symbols indicate the valley points and the blue circles the
top points.

corresponds to the line over the crest in figure 7. The difference in vertical Reynolds
normal stresses between the flow zones near the crests and within the valleys is further
exhibited in figure 8. It demonstrates the time- and line-averaged vertical profiles for
the wall-normal Reynolds stress in the streamwise direction for each crest and valley
side. In addition, the point-averaged vertical profiles are also shown in figure 9.

Above the bed, figure 8(a) shows that the line-averaged Reynolds stress 〈w′w′〉l/u2
∗

for the top side reaches a higher peak than those for the valley side, which is caused
by a strong shear layer shedding from the crest. Below the bed, 〈w′w′〉l/u2

∗
over the

top side decreases more rapidly to zero than that over the valley side, due to the
limited space between spheres. However, for permeable beds (i.e. case S3 and case
L2) shown in figure 8(b,c), the peaks of 〈w′w′〉l/u2

∗
over the valley side are higher

than those over the top side. The reason is attributed to the fact that as beds become
more permeable, the momentum transfer across the bed increases. The wall-blocking
effects over the valley side are apparently less than those over the top side. It causes a
slightly higher peak of 〈w′w′〉l/u2

∗
for the valley side above the bed. Vertical Reynolds

normal stresses for the valley side are also compared among three cases. As shown
in figure 8(d), above the crest (z/d > 0), the vertical Reynolds normal stresses are
higher for the case with higher bed permeability. Below the crest, there exists another
peak for permeable beds, especially for case L2. Similar tendencies are also observed
in the point-averaged results, as shown in figure 9. Further, the valley points are
close to spheres below the crest, while the valley line includes some points located
in the diamond-shaped pore space (from the top view, as shown in figure 7), so the
increase in the peak value is lower in the valley line-averaged results than the valley
point-averaged results, and the corresponding elevations z/d are −0.5 and −0.2,
respectively.

4.3. The form-induced normal stresses
Figure 10(a–c) depicts the dimensionless streamwise, spanwise and vertical form-
induced normal stresses, (〈ũũ〉, 〈ṽṽ〉, 〈w̃w̃〉) × u−2

∗
, as a function of dimensionless

vertical distance z/d for cases H, S3 and L2. Having compared the results in
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FIGURE 8. (Colour online) Time- and line-averaged vertical profiles of vertical Reynolds
normal stresses for (a) case H, (b) case S3 and (c) case L2. For (a,b,c), the red solid
line corresponds to the valley and the blue dashed line to the top. For (d), the red dashed
line refers to case H, the green dashed-dotted line to case S3 and the blue dotted line to
case L2.

figures 5 and 10, it is evident that the vertical and spanwise form-induced normal
stresses are smaller than the corresponding components of the Reynolds normal
stresses. This is consistent with previous experimental studies of a rough wall
and canopy (Nikora et al. 2001; Mignot et al. 2009a)). On the other hand, the
streamwise form-induced normal stress is comparable to the streamwise Reynolds
normal stress, which is characterized by the relatively low submergence (Pokrajac
et al. 2007). Within the interfacial layer near z/d = −0.4, the form-induced normal
stresses become maximum, exhibiting peaks in their profiles for the three cases. In the
〈ũũ〉-profiles, the peak value of case H (with impermeable bed) is larger than other
two cases (with permeable beds), while the peak values in 〈ṽṽ〉- and 〈w̃w̃〉-profiles
increase with permeability. It can be argued from figure 6 that vortex shedding and
recirculation within the valley formed by the spheres cause the spatial fluctuations of
velocity for the three cases, leading to peaks near z/d =−0.4. Moreover, the effects
of the wall-blocking result in a more stable recirculation in the streamwise direction,
causing a relative high magnitude of streamwise form-induced normal stress in case
H. However, the vertical and spanwise form-induced normal stresses are enhanced
with an increase in permeability. The reason is attributed to the more intense spatial
fluctuations of time-averaged flow in those two directions below the crest. In case H
(with impermeable bed), the form-induced normal stresses are greater in the near-bed
flow zone, where the time-averaged flow is directly influenced by the roughness
elements, and they become negligible in the main flow. In contrast, in cases S3 and
L2 (with permeable beds), the form-induced normal stresses remain finite even in
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FIGURE 9. (Colour online) Time and point-averaged vertical profiles of vertical Reynolds
normal stresses for (a) case H, (b) case S3 and (c) case L2. For (a,b,c), the red solid line
corresponds to the valley and the blue dashed line to the top. For (d), the red dashed line
refers to case H, the green dashed-dotted line to case S3 and the blue dotted line to case
L2.

the main flow. This is triggered by secondary currents, which are discussed in the
following section.

4.4. Stress balance and turbulence structure
Figure 11(a,b) shows the vertical profiles of the DA Reynolds shear stress 〈τ̄uw〉

(= −ρ〈u′w′〉) and stress balance for the three cases. All the stresses are made
dimensionless by U2

b , as the profiles of different cases can be separated and shown
more clearly. Above the crest (z> 0), the total shear stress 〈τ̄ 〉 in (2.6) is balanced by
the mean pressure gradient. It has a linear profile for 〈τ̄ 〉(z> 0)/(ρu2

∗
)= 1− z/h (Dey

& Das 2012; Yuan & Piomelli 2014). As shown in figure 11(a), only for case H
(with an impermeable bed) does the DA Reynolds shear stress follow the linear profile
away from the roughness elements, while for cases S3 and L2, the shear stresses are
damped near z/d = 0.5 and 1, respectively. Figure 11(b) shows that below the crest,
since the time-averaged flow in the vicinity of the spheres is spatially heterogeneous,
the form-induced shear stresses grow sharply with a decrease in z/d, attaining peaks
at z/d=−0.2, −0.4 and −0.4 for cases H, S3 and L2, respectively, and then decrease
with a further decrease in z/d. The trends of the form-induced shear stresses below
the crest are consistent with the results obtained from the previous experimental
and numerical studies on macro-rough walls (Mignot et al. 2009a; Yuan & Piomelli
2014). However, above the crest, only case H (with impermeable bed) follows the
conventional trend that −〈ũw̃〉 decreases rapidly with an increase in elevation and is
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FIGURE 10. (Colour online) Simulated results of (a) streamwise form-induced normal
stress, (b) spanwise form-induced normal stress and (c) vertical form-induced normal stress
for case H (red dashed line), case S3 (green dashed-dotted line) and case L2 (blue dotted
line).
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FIGURE 11. (Colour online) (a) DA Reynolds shear stress and (b) stress balance. Total
shear stress for case H (red dashed line), case S3 (green dashed-dotted line) and case L2
(blue dotted line); form-induced shear stress for case H (red solid line), case S3 (green
solid line) and case L2 (blue solid line). The viscous stresses for three cases are shown
in black to distinguish them from the form-induced shear stresses.
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negligible in the main flow. The form-induced shear stresses in cases S3 and L2 (with
permeable beds) have their peaks near z/d= 0.5 and 1, respectively, and compensate
for the damping of −〈u′w′〉, leading to linear profiles of the total shear stresses from
zero at the free surface to a maximum near the crest (figure 11b). The form-induced
shear stresses above the crest for permeable beds are induced by the time-averaged
structure of secondary currents. Coleman et al. (2007) measured the velocity in planes
parallel to the centreline over 2D transverse ribs and highlighted the role of secondary
currents on momentum transfer. For the momentum balance along the streamwise line,
they added the participating secondary current terms (namely, the integral from z to
free surface h of [ρ〈v̄〉∂〈ū〉/∂y + ρ〈w̄〉∂〈ū〉/∂z + ρ∂〈u′w′〉/∂y + ρ∂〈ũw̃〉/∂y]) to (2.6).
In this study, the roughness geometry and the flow geometry are periodic due to the
sphere arrangement and the boundary conditions are cyclic in the streamwise and
spanwise directions. To capture the large scale as well as the detailed flow structures,
we adopted spatial averaging in a thin plane parallel to the mean bed, which included
all points at an elevation, and so produced 〈v̄〉 = 〈w̄〉 = 0 and ∂(·)/∂y = 0. Then,
the secondary current terms vanish and the effects of the secondary current are
represented by the form-induced Reynolds shear stress 〈τf 〉 = −ρ〈ũw̃〉. The contours
of the time-averaged streamwise velocity ū/Ub and the streamlines of the secondary
currents (v̄, w̄) on the yz-plane at x/d= 12.5 through the centres of the hemispheres
for case H and the large spheres for cases S3 and L2 are shown in figure 12(a–c).
It is observed that for case H (with an impermeable bed), the spanwise distribution
of ū is nearly flat above the crest and there are small spanwise vortical flows at
the junctions of the surface hemispheres. With an increase in permeability (cases S3
and L2), the spanwise fluctuations of ū become more obvious and the size of the
near-bed cells of the secondary currents increases to approximately 0.5d–3d.

To investigate the spanwise turbulence structure in detail, the autocorrelation
functions of streamwise and vertical velocity fluctuations, ρu′u′ and ρw′w′ , are calculated
at elevations of z/d= 0, 0.5, 1 and 1.5 respectively. They are expressed as

ρu′u′(1y)=

∫ 12d

0
u′(y)u′(y−1y) dy∫ 12d

0
u′2(y) dy

, ρw′w′(1y)=

∫ 12d

0
w′(y)w′(y−1y) dy∫ 12d

0
w′2(y) dy

, (4.2a,b)

where 1y is the spanwise spacing. Figure 13(a–c) presents the autocorrelation
functions of the streamwise velocity fluctuations ρu′u′(1y/d) for cases H, S3 and L2,
respectively. The direction of arrows indicates increasing elevation (i.e. z/d= 0, 0.5, 1
and 1.5). In essence, the increase in the spanwise spacing of the streamwise velocity
fluctuations is characterized by relatively large secondary vortical structures, as was
observed by Breugem et al. (2006) from the DNS study. Therefore, for each case,
the increasing spanwise spacing with rising elevation illustrates that larger turbulent
structures exist in the main flow compared with the near-bed flow zone. In case H,
the autocorrelation ρu′u′ exhibits a local minimum spanwise spacing of 1y/d ≈ 0.5
at z/d = 0. This local minimum value is associated with the average spanwise
distance between low-speed and neighbouring high-speed fluid streaks (Breugem
et al. 2006). The oscillations in ρu′u′-profiles indicate a periodic fluid streak in the
spanwise direction. With an increase in permeability, the local minimum spanwise
spacing at z/d = 0 increases from 1y/d ≈ 0.5 (case H, with an impermeable bed)
to 1y/d ≈ 3 (case L2, with a highly permeable bed), being consistent with the
size of the time-averaged secondary vortices in figure 12. Figure 13(d–f ) shows the
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FIGURE 12. (Colour online) Contours of time-averaged streamwise velocity ū/Ub and
streamlines of the secondary currents (v̄, w̄) on the yz-plane at x/d = 12.5 through the
centres of hemispheres for (a) case H and large spheres for (b) case S3 and (c) case L2.
The dotted line in case S3 shows the periphery of small spheres (d′ = 0.73d).

autocorrelation functions of the vertical velocity fluctuations ρw′w′(1y/d) for cases H,
S3 and L2, respectively. An increasing trend of spanwise spacing with an increase
in bed permeability is also observed. Interestingly, with an increase in permeability,
the autocorrelation function ρw′w′ is less dependent on elevation, indicating that the
vertical classification of vortex scale decreases.

Figure 14(a–c) shows the near-bed (at z/d = 0.01) contours of the dimensionless
vorticity ω+z (= ωzυ/U2

b , where ωz = ∂v′/∂x − ∂u′/∂y) on the xy-plane for three
cases. The elongated streaky structures, which result from the high- and low-speed
fluid streaks and quasi-streamwise vortices, become shredded over the rough and
impermeable wall. The longitudinal streamwise vortices become more twisted in case
S3. On the other hand, in case L2, the streaky structures are not distinct, and some
large-scale intermittent patches, which are considered to be caused by the KH type
of instability, are apparent. In addition, strong vertical velocities are prevalent near
the permeable bed surface because of the weakening effects of the wall-blocking.
The vertical velocities also prevent the development of elongated streaky structures.
To quantitatively analyse the statistics of the streamwise scaling, the pre-multiplied
spectra at z/d = 0.01 are shown in figure 15. Spectra were computed as follows:
first, the instantaneous spectra E(k) were calculated for each instantaneous profile of
velocity fluctuations using a fast Fourier transform technique. Second, all the spectra
were averaged at each wavenumber kx in order to decrease the confidence interval
pertaining to each spectral estimate. It can be noticed that the spectra are presented
in terms of the outer (h) scales. Figure 15(a) corresponds to the streamwise velocity.
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FIGURE 13. (Colour online) The autocorrelation functions of the streamwise velocity
fluctuations ρu′u′(1y/d) for (a) case H, (b) case S3 and (c) case L2, and the
autocorrelation functions of the vertical velocity fluctuations ρw′w′(1y/d) for (d) case H,
(e) case S3 and ( f ) case L2. The group of curves in a case corresponds to different
vertical elevations, increasing in the direction of the arrows as z/d = 0 (red line), 0.5
(green line), 1 (blue line) and 1.5 (orange line).

It shows that the spectra for case H in the range 5< kxh< 16 are much higher than
those for permeable beds. This means that coherent structures with lengths lying within
0.4–1.3h are more prevalent over the impermeable bed. For the wall-normal velocity
in figure 15(b), the spectra are higher over permeable beds for kxh> 50, corresponding
to the enhanced wall-normal velocity fluctuations in the small-scale region (< 0.1h).
Figure 15 also shows that for large-scale structures lying within kxh< 4, the relative
magnitudes are inverted as compared to the range 5< kxh< 16. This is attributed to
large-scale coherent structures on the valley side of the permeable beds. We use the
isocontours of streamwise autocorrelations to explain this phenomenon.

The autocorrelation of the streamwise velocity is usually used to quantify the
length of streaky structures (Kim, Moin & Moser 1987; Calmet & Magnaudet 1997;
Breugem et al. 2006). For case H, the isocontours of the streamwise autocorrelation
of the streamwise velocity and pressure are shown in figures 16 and 17, respectively.
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FIGURE 14. (Colour online) Contours of dimensionless vorticity ω+z on the xy-plane at
z/d= 0.01 for (a) case H, (b) case S3 and (c) case L2.

100 102101 100 102101

0.5

0

1.0

1.5

2.0

0.1

0.2

0.3

0

(a) (b)

FIGURE 15. (Colour online) Pre-multiplied spectra calculated at z/d = 0.01: (a)
streamwise velocity and (b) wall-normal velocity in case H (red dashed line), case S3
(green dashed-dotted line) and case L2 (blue dotted line).

It may be noted that this is a one-dimensional correlation, but plotted across the
channel. As the bed is characterized by large roughness elements, which are regularly
arranged, the spanwise heterogeneity was taken into account. Two typical streamwise
planes are adopted, which correspond to the top and the valley. Within the top
plane, figure 16(a) shows that the correlation distance is approximately 0.4h close to
z/h= 0, which corresponds to a correlation distance of approximately 400 wall units.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

31
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.314


Influence of permeable beds on hydraulically macro-rough flow 573

–0.2 –0.2

–0.2

–0.2

–0.2

–0.20.4

0.4
0.8

0.8

0.2

0.2

0.2

0.6

0.6

0

0

0

0

–0.4 –0.4

–0.4

10 2 10 2

0.5

0

–0.5

1.0

0.5

0

–0.5

1.0(a) (b)0 –0.4

FIGURE 16. Isocontours of the autocorrelation of the streamwise velocity as a function of
the streamwise spacing 1x/h, shown across the channel for case H. The solid and dashed
lines correspond to positive and negative values, respectively. (a) A plane across the top
of roughness (i.e. y/d= 6.5). (b) A plane across the valley of roughness (i.e. y/d= 6).
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FIGURE 17. Isocontours of the autocorrelation of the pressure as a function of the
streamwise spacing 1x/h, shown across the channel for case H. The solid and dashed
lines correspond to positive and negative values, respectively. (a) A plane across the top
of roughness (i.e. y/d= 6.5). (b) A plane across the valley of roughness (i.e. y/d= 6).

The distance is approximately 0.7h (i.e. approximately 690 wall units) for the valley
side. This behaviour is associated with the presence of streaks. Since the flow through
the valley side is not directly blocked by any roughness, the longer distance is found
within the valley plane. It is observed that the correlation distance is much shorter
over a rough wall than that over a smooth wall, which is typically a length of the
order of 1000 wall units (Breugem et al. 2006). This means that the wall roughness
makes the size of the coherent structures shorter. Furthermore, the correlation distances
of pressure on both sides are much shorter than those of the streamwise velocity, as
shown in figure 17.

Like Breugem et al. (2006), we use the isocontours of the autocorrelations of
streamwise velocity and pressure to investigate the turbulence structures, as shown
in figures 18 and 19, respectively. Two typical streamwise planes were adopted to
explain the relatively large values of spectra lying in the small- and large-wavenumber
regions in figure 15. Figure 18(a) corresponds to the top side. It is evident that close
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FIGURE 18. Isocontours of the autocorrelation of the streamwise velocity as a function of
the streamwise spacing 1x/h, shown across the channel for case L2. The solid and dashed
lines correspond to positive and negative values, respectively. (a) A plane across the top
of roughness (i.e. y/d= 6.5). (b) A plane across the valley of roughness (i.e. y/d= 6).

to the permeable wall, the correlation distance on the top side of case L2 is much
smaller than that on the valley side (i.e. 2h), as shown in figure 18(b), as well as that
on the top side over the impermeable bed (i.e. 0.4h), as shown in figure 16(a). The
correlation distance close to the wall on the top side is obviously associated with the
regularly arranged roughness. It can thus be inferred that turbulent transport across
the permeable bed between the roughness increases as compared to the impermeable
bed, and the development of elongated structures is prevented. These kinds of small
turbulent structures are related to the range with high wavenumbers in the spectra.
As for the valley side shown in figure 18(b), turbulent structures as large as 2h
are found close to z/h = 0, which are associated with the peak of the streamwise
pre-multiplied spectra Euukx around kxh= 3. Since all the data in the plane z/d= 0.01,
i.e. all valley sides, top sides and the positions between them, were used to calculate
the pre-multiplied spectra, the spectra for a permeable bed are higher in the region of
low and high wavenumbers than those for an impermeable bed. In addition, inside the
wall, cell-like patterns are observed on the valley side. This feature is also reflected
from the streamwise autocorrelation of the pressure in figure 19(b). It corresponds to
the presence of the streamwise reciprocal pressure perturbation induced by the KH
instability (Kuwata & Suga 2016). It can be observed from the streamwise spectrum
of the streamwise velocity that the lengths of the KH structures are approximately
2h in the streamwise direction. Besides, inside the bed on the top side, as shown
in figure 18(a), large-scale structures are found at the same locations on the valley
side, but their sizes are limited by the spheres. Additionally, on the valley side, the
correlation distance of pressure for case L2 shows a significant increase close to
z/h= 0 as compared to case H.

The contours of the dimensionless vorticity ω+x (= ωxυ/U2
b , where ωx = ∂w′/∂y −

∂v′/∂z) on the yz-plane at x/d = 12.5 through the centres of the hemispheres for
case H and the large spheres for cases S3 and L2 are presented in figure 20(a–c).
As the permeability increases, the absolute value of vorticity and the spanwise scale
of the turbulence structures in the main flow increases, indicating a larger scale of
secondary currents. For permeable beds, significant vorticity is also evident within the
bed, illustrating that the turbulence structures can also infiltrate the interface of the
spherical particles forming the bed.
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FIGURE 19. Isocontours of the autocorrelation of the pressure as a function of the
streamwise spacing 1x/h, shown across the channel for case L2. The solid and dashed
lines correspond to positive and negative values, respectively. (a) A plane across the top
of roughness (i.e. y/d= 6.5). (b) A plane across the valley of roughness (i.e. y/d= 6).

To verify the extent of fluid infiltration and the streamwise flow structures, the
contours of dimensionless instantaneous streamwise velocity u/Ub on the xz-plane
at y/d = 6 through the valleys formed by the hemispheres for case H and the
large spheres for cases S3 and L2 are presented in figure 21(a–c). Figure 21(a)
illustrates that for case H (with an impermeable bed), an inrush of high-speed fluid
streaks within the interface of the hemispheres exists near x/d = 5 and an outrush
of low-speed fluid streaks also appears near x/d = 9, but the extent of infiltration
is limited. On the other hand, figure 21(b,c) demonstrates that for cases S3 and
L2 (with permeable beds), the flow infiltrates more deeply into the bed, and the
extents of infiltration are approximately d and 1.5d for cases S3 and L2, respectively.
Also, the presence of periodic waves in the streamwise direction indicates that large
turbulence structures are getting through the crest level. To quantitatively estimate
the flow penetration depth (Brinkman layer thickness) δu, the profiles of DA velocity
〈ū〉 below the crest were analysed. As shown in figure 22, the DA velocity fluctuates
from z/d ≈ −1 to z/d ≈ −2.6 for case S3 and from z/d ≈ −0.8 to z/d ≈ −2.6 for
case L2. All velocity values in those zones are averaged to up (up = 0.19u∗ for case
S3 and up= 0.34u∗ for case L2) with a standard deviation σ (σ = 0.04u∗ for case S3
and σ = 0.06u∗ for case L2). The flow penetration depth δu is taken as the vertical
distance between the crest (z/d = 0) and the point at which the difference between
the local DA velocity 〈ū〉 and up decays to 1 % of the DA velocity at the crest (uc),
i.e. 〈ū〉z=−δu = 0.01(uc − up)+ up. Then, the flow penetration depths δu are calculated
as −1.09d for case S3 and −1.3d for case L2.

The DA Reynolds shear stresses are used to quantify the penetration depth δrss,
which is defined as −〈u′w′〉z=−δrss = 0.01(−〈u′w′〉)max, where (−〈u′w′〉)max is the
maximum DA Reynolds shear stress around the crest. Then, the penetration depths
of turbulent shear stress δrss are calculated as −1.06d for case S3 and −1.52d for
case L2, as shown in figure 23.

Figure 24(a–c) presents the contours of dimensionless instantaneous streamwise
velocity u/Ub and dimensionless Reynolds shear stress u′w′/u2

∗
on a yz-plane at

x/d= 12 for cases H, S3 and L2. Vanderwel & Ganapathisubramani (2015) illustrated
that the streamwise continuity of the surface topology was an important factor in the
locations of low- and high-momentum pathways. The gap between two neighbouring
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FIGURE 20. (Colour online) Contours of dimensionless vorticity ω+x on the yz-plane at
x/d = 12.5 through the centres of hemispheres for (a) case H and large spheres for (b)
case S3 and (c) case L2. The dotted line in case S3 shows the periphery of small spheres
(d′ = 0.73d).
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FIGURE 21. (Colour online) Contours of dimensionless instantaneous streamwise velocity
u/Ub on the xz-plane at y/d= 6 through the valleys formed by hemispheres for (a) case
H and large spheres for (b) case S3 and (c) case L2. The dotted line shows the periphery
of hemispheres or large spheres.

hemispheres or spheres in the streamwise direction was considered to be d for the
three cases. It was less than the length of the separation zone behind a barrier
which is known to be approximately 2–2.5d. So, the closely packed hemispheres or
spheres acted like a continuous strip and exhibit a low momentum pathway, which
is comparable to previous experiments focusing on the flow over elevated roughness
strips. Anderson et al. (2015) conducted experiments in a wind tunnel and showed
that the spanwise-vertical anisotropy of the Reynolds shear stress contributed to the
production of time-averaged streamwise vorticity. In case H (with an impermeable
bed), the low-velocity zones, which correspond to low-momentum pathways, are
in the vicinity of the crests of the hemispheres, whereas in general, the flow
between the hemispheres forms relatively high-momentum pathways. In the inset
of figure 24(a), it is apparent that the Reynolds shear stress is enhanced over the
crests of the hemispheres (low-momentum pathways) and is weakened within the
valleys (high-momentum pathways). With the limited width of the spanwise-alternate
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FIGURE 22. (Colour online) DA streamwise velocity below the crest for case S3 (green
dashed-dotted line) and case L2 (blue dotted line). δu is the flow penetration depth
(Brinkman layer thickness), up is the vertically averaged velocity below the Brinkman
layer, uc is the DA velocity at the crest. Values of δu, up and uc are only shown for
case S3.
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FIGURE 23. (Colour online) DA Reynolds shear stress normalized by the maximum shear
stress around the crest for case S3 (green dashed-dotted line) and case L2 (blue dotted
line). δrss is the shear stress penetration depth for case S3.

strips of shear stress, time-averaged secondary currents can only develop near the
crest, as shown in figure 12(a). As discussed before, with an increase in permeability,
the vertical velocities within the valley formed by the spheres become stronger.
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FIGURE 24. (Colour online) Contours of dimensionless instantaneous streamwise velocity
u/Ub and dimensionless Reynolds shear stress u′w′/u2

∗
on a yz-plane at x/d= 12 through

the valleys formed by hemispheres for (a) case H and large spheres for (b) case S3 and
(c) case L2. The dotted line shows the periphery of hemispheres or large spheres. The
enlarged views of the flow zones near the crest are shown in insets.

This leads to a high shear stress zone as well as a low-momentum pathway within
the valley, which connects the adjacent high shear stress zones over the crests of the
spheres, as shown in figure 24(b,c). Therefore, as the permeability is higher, a wider
extended (connected) high spanwise-alternate shear stress strip is obtained for case
S3 and case L2. The extended high shear stress strips act as wider spanwise-alternate
roughness strips, causing large time-averaged secondary currents in figure 12(b,c).

4.5. Quadrant analysis of velocity fluctuations
The quadrant analysis of Lu & Willmarth (1973) was employed to identify the
presence of coherent structures located at different elevations and to quantify their
contributions to the Reynolds shear stress. To perform the quadrant analysis, the
velocity fluctuations, u′ and w′, are plotted and divided into four quadrants based
on the signs of their instantaneous values. Figure 25(a–l) shows the contours of the
turbulent probability density function (PDF) of dimensionless velocity fluctuations,
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u′/u∗ and w′/u∗, at different elevations z/d located on the line of intersection of
two vertical planes x/d = 12 and y/d = 6. We choose the location of the points in
such a way so that the line of intersection is not blocked by the hemispheres or
spheres. In the quadrant analysis, the first quadrant Q1 corresponds to u′, w′ > 0,
called the outward intersection events; the second quadrant Q2 to u′ < 0, w′ > 0,
called the ejection events; the third quadrant Q3 to u′, w′ < 0, called the inward
intersection events; and the fourth quadrant Q4 to u′ > 0, w′ < 0, called the sweep
events. Therefore, the ejection events Q2 transport a low-momentum fluid upwards
away from the bed, while the sweeping events Q4 transport a high-momentum fluid
downwards towards the bed. The ejection–sweep phenomenon results in intermittent
flushing of dead flow that accumulates within the roughness elements (Grass, Stuart
& Mansour-Tehrani 1991). Figure 25(a,d) shows that the vertical fluctuations w′
are relatively small below the crest in case H, and the fluid motion is mainly due
to streamwise velocity fluctuations u′. As the bed becomes more permeable (from
cases 1 to 3), the vertical velocity fluctuations w′ increase below the crest, which is
apparent from figure 25(a–e). This is consistent with figure 6, where the recirculation
zone between the hemispheres shows a weak vertical fluid intrusion into the bed,
while the fluid intrusion is obviously enhanced over the permeable beds. As the
intensity of vertical fluctuations w′ influences the vertical momentum transport, we
can infer that within the valley, the Reynolds shear stress increases with an increase
in bed permeability, corresponding to the change of momentum pathways, as shown
in figure 24. Moreover, the relatively small vertical fluctuations w′ result in a weak
ejection–sweep phenomenon below the bed. It represents the lack of intermittent
flushing and causes a dead-flow zone between the hemispheres in case H. At the
crest bed level, the slopes of the PDF in case S3 and case L2 are larger than that
in case H, as shown in figure 25(g–i), illustrating larger vertical fluctuations w′ over
permeable beds. With an increase in elevation, statistically significant variations are
noticeable between ejection and sweep events for permeable beds. The ejection and
sweep events in deep locations are small and almost equal, as shown in figure 25(b,c),
indicating an isotropic zone within the interfacial layer. Slightly below the crest, the
ejection events are dominant, as shown in figure 25(e, f ), transporting low-momentum
fluid away from the bed. As the elevation becomes higher, the sweep events seem to
be enhanced in figure 25(h,i). Suga et al. (2010, 2011) and Suga (2016) also revealed
that the contribution from sweep events near porous media becomes more dominant,
while that from ejection events tends to lose its strength. Further away from bed, the
ejection and sweep events are almost identical again, as shown in figure 25(k,l).

4.6. Turbulent kinetic energy budget
The expression for the TKE budget was derived by Raupach, Antonio & Rajagopalan
(1991) for flow over canopies and Mignot et al. (2009b) for flow over macro-
roughness (gravel bed). The DA TKE budget for flow over a gravel bed is given
by

−〈u′iw′〉
∂〈ūi〉

∂z︸ ︷︷ ︸
P

− 〈u′iu′j〉
〈
∂ ũi

∂xj

〉
︸ ︷︷ ︸

Pm

−

〈
u′iu
′

j ·
∂ ũi

∂xj

〉
︸ ︷︷ ︸

Pw

= 〈ε〉
TKE

dissipation

+
∂〈k′w′〉
∂z︸ ︷︷ ︸
Fk

+
∂〈k̃w̃〉
∂z︸ ︷︷ ︸
Fw

+
1
ρ

∂〈p′w′〉
∂z︸ ︷︷ ︸

Pd

− υ
∂2
〈k〉
∂z2︸ ︷︷ ︸
vd

, (4.3)
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FIGURE 25. Quadrant analysis of probability density functions (PDFs) of dimensionless
velocity fluctuations, u′/u∗ and w′/u∗, at different elevations z/d located on the line of
intersection of two vertical planes x/d = 12 and y/d = 6. (a–c) z/d =−0.4, (d–f ) z/d =
−0.2, (g–i) z/d = 0 and ( j–l) z/d = 0.5. (a,d,g,j) are case H, (b,e,h,k) are case S3 and
(c, f,i,l) are case L2.

where P is the TKE production rate resulting from the DA velocity against the DA
shear, Pm and Pw are the TKE production rates due to velocity fluctuations against
the DA shear stress and FISS, respectively, ε is the TKE dissipation rate, Fk and
Fw are the TKE diffusion and form-induced diffusion rates, respectively, k′ = u′iu

′

i/2,
k = k′, and Pd and vd are the pressure energy diffusion and the viscous dissipation
rates, respectively. The viscous dissipation rate can be discarded due to its minimal
contribution to the TKE budget as compared to other terms over the entire flow
depth. Mignot et al. (2009b) found that Pm and Pw were lower than 5 % of the
TKE production rate P, while Raupach et al. (1991) found that Pw was significant
below the crest. Lopez & Garcia (1999) obtained the numerical results from a k–ε
model and found that Pw could be twice as large as P within the roughness layer.
In this study, altogether 18 TKE production rate terms Pm and Pw (nine for each
bed-type-induced terms Pm and Pw) were calculated. We found that the sum of them
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was higher than 10 % of P and they could not be neglected. Moreover, the terms
〈u′u′〉〈∂ ũ/∂x〉 and 〈u′w′〉〈∂ ũ/∂z〉 account for more than 85 % of the total Pm for three
cases, while there is no significant dominance for Pw values.

According to the Kolmogorov similarity hypothesis (Kolmogorov 1941), the
turbulence statistics in a small-scale universal equilibrium range can be uniquely
determined by the kinematic viscosity of the fluid and turbulent dissipation rate as

〈ε〉 = 2υ〈sijsij〉 (4.4)

sij =
1
2

(
∂u′i
∂xj
+
∂u′j
∂xi

)
. (4.5)

Using the three-dimensional velocity fluctuations, the TKE dissipation rate in LES
can be calculated more accurately than the experimental data sampling at a point, as
done by Mignot et al. (2009a).

In dimensionless form, the terms of the TKE budget are expressed as TP, ED, TD,
PD = (P+ Pm + Pw, ε, Fk+Fw, Pd)× (h/u2

∗
). The DA pressure energy diffusion rate is

calculated as 〈PD〉 = 〈TP〉 − 〈ED〉 − 〈TD〉. A comprehensive picture of the variations
of the terms of the DA TKE budget in the vicinity of the crest for the three cases is
shown in figure 26(a–c). In the three cases, the 〈TP〉 reaches a maximum value slightly
below the crest, z/d =−0.1, which is in conformity with Mignot et al. (2009a) and
Lopez & Garcia (1999). Below this level, 〈TP〉 decreases towards a value close to zero
for z/d=−0.5, as shown in figure 26(a), and for z/d=−1, as shown in figure 26(b,c).
Considering the turbulent diffusion terms, the 〈TD〉-profiles possess two peaks for the
three cases. By examining the Fk- and Fw-values, it is observed that the upper peak is
mostly attributed to the turbulent diffusion rate Fk and the other is to the form-induced
diffusion rate Fw. Furthermore, Fk accounts for more than 80 % of the upper peak for
three cases. With an increase in permeability, the contributions from Fk are 8 %, 39 %
and 50 % of the lower peak of 〈TD〉, indicating that the turbulence can reach deeper
within the bed.

There are three typical layers defined by the terms of the TKE budget: namely,
the equilibrium layer, the form-induced sublayer and the interfacial sublayer. In the
equilibrium layer, the TKE production rate nearly balances the turbulent dissipation
rate and the diffusion rate is generally found to be negligible (Mignot et al. 2009a).
The layer of high TKE production rates, exceeding the dissipation rates significantly,
is called the form-induced sublayer, since the macro-roughness creates a strong,
detached mixing-type flow over the crest. The TKE diffusion rates are positive in
the form-induced sublayer, transporting TKE upwards and downwards. Towards the
bed, in the lower part of the roughness sublayer, called the interfacial sublayer, the
flow is characterized by a balance between a low dissipation rate and a low TKE
production rate. In figure 26(d), the TKE diffusion rates are compared among the
cases, as they can be used to determine the thickness of the form-induced sublayer.
The form-induced sublayer is very thin, with an extent from −0.20d to 0.04d for
case H. For case S3 (with a permeable bed), this layer becomes thicker and the
layer extends from −0.36d to 0.25d. For case L2 (with a permeable bed, having a
permeability greater than that for case S3), the extent of the form-induced sublayer
extends from −0.36d to 0.82d, indicating a significant influence of permeability on
the flow near the bed. Within the interfacial sublayer, the pressure diffusion rate
〈PD〉 compensates for the turbulent diffusion rate, which is consistent with previous
experimental results (Mignot et al. 2009a).
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FIGURE 26. (Colour online) The DA TKE budget for (a) case H, (b) case S3 and (c)
case L2. 〈TP〉 (red dashed-dotted line), 〈ED〉 (green dashed line), 〈TD〉 (blue dotted line)
and 〈PD〉 (orange solid line). (d) 〈TD〉 for case H (red line), case S3 (green line) and case
L2 (blue line).

4.7. Flow quantities around the crest
As the flow around the crest plays an important role in the transport process and the
flow within the bed is difficult to measure experimentally, we choose several typical
flow quantities – namely, the flow penetration depth (Brinkman layer thickness), the
shear stress penetration depth and the form-induced sublayer thickness – to show their
relationships with ReK . The inner scales (υ/u∗) and mean diameter of sediments (dp)
are used to normalize these flow quantities. All simulated results over permeable beds
(case S1–S5 and case L1–L3) are presented here.

Figure 27 shows the DA velocity and shear stress profiles for eight cases around
the crest. Ghisalberti & Nepf (2002) pointed out that in a turbulent flow over a
fairly dense canopy, the inflection of the mean velocity profile was susceptible to
the KH instabilities. From figure 27(a), it is apparent that the mean velocity profiles
exhibit such an inflection below the crest within permeable beds. According to
Rayleigh’s criterion (Drazin & Reid 1981), it is an essential condition for an inviscid
instability. In addition, the mean velocity profiles exhibit a decreasing trend at the
crest and an increasing trend within the bed with an increase in ReK . Using the same
method as shown in figures 22 and 23, the flow penetration depths δu and the shear
stress penetration depths δrss for eight permeable cases are calculated and shown in
figure 28, which are normalized by υ/u∗ and dp. The thickness of flow penetration
depth (Brinkman layer thickness) can be traditionally described as dependent on the
bed permeability (Boudreau 2001; Goyeau et al. 2003). However, Goharzadeh, Khalili
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FIGURE 27. (Colour online) (a) The DA velocity profiles and (b) DA Reynolds shear
stress profiles for eight cases of permeable beds (S1–S5, from black to grey, respectively,
and L1–L3, from wine to pink, respectively; lines become lighter with an increase in ReK).

& Jørgensen (2005) concluded that the Brinkman layer thickness is of the same order
of magnitude as the sediment diameter. In this study, we find a similar conclusion
as that of Goharzadeh et al. (2005). Figure 28(a) demonstrates that the values of the
Brinkman layer thickness lie between 0.8dp and 1.3dp for ReK O(1–10). Moreover,
as ReK increases beyond unity, the flow penetration depth normalized by the mean
particle diameter becomes deeper. In contrast, for highly permeable beds, the flow
penetration depth appears to stay around 1.3dp with ReK . This kind of feature may be
caused by the methodology used to estimate the critical point 〈ū〉z=−δu and it can be
explained by the magnitude of up in bed. For a bed with low bed permeability, up is
quite low as a result of the low bed permeability and flow energy (u∗). The change
of u∗ mainly affects uc and leads to a decreasing trend of uc and an increasing trend
of up with an increase in u∗ (uc and up are both normalized by u∗). As the change
of uc is more obvious than up for a bed with low permeability and u∗ (which jointly
lead to low ReK), according to 〈ū〉z=−δu = 0.01(uc − up)+ up, the increase in u∗ over
a bed with low permeability leads to a limited increase or slight decrease of the
critical velocity 〈ū〉z=−δu , which results in deeper flow penetration. For a bed with
higher ReK , up increases more significantly than that over a bed with low ReK . The
combined effects of an increase in up and a decrease in uc cause an obvious increase
in 〈ū〉z=−δu , which pushes the critical point closer to the crest. So the flow penetration
depth shows a minor difference for high ReK . For the shear stress penetration depth
δrss, it increases to 1.2dp over a permeable bed with small dp, i.e. case S1–S5, which
is comparable to the Brinkman layer thickness δu. On the other hand, for a permeable
bed with large dp, i.e. L1–L3, the shear stress penetration depth reaches 1.6dp, which
is caused by the larger pore space between the sphere layers around z/d = −1 in
cases L1–L3. When the inner scale is adopted in figure 28(b), it shows that except
separation behaviour between the cases of different bed configurations, both the flow
penetration depth and shear stress penetration depth increase with ReK . For ReK < 20,
the two kinds of penetration depths are similar, while for ReK > 20, the shear stress
penetration depth becomes larger than flow penetration depth, with a maximum
ratio of 1.4 times at ReK = 109. As discussed before, u∗ has some effect on the
determination of the critical velocity 〈ū〉z=−δu ; so we infer that when the penetration
depth is normalized by the inner scale, the flow energy (i.e. u∗) is considered, which
leads to a dependence of δ+ on ReK .
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FIGURE 28. (Colour online) The ReK dependence of flow penetration depth δu (red
dot), shear penetration depth δrss (blue triangle) and displacement height z0 (black cross)
normalized by (a) dp and (b) υ/u∗. δ represents the penetration depth, i.e. δu and δrss.
δ+ = δu∗/υ and z+0 = z0u∗/υ.

Based on the drag force acting within the porous medium (Jackson 1981), Clifton
et al. (2008) argued that the displacement height is a length scale related to the shear
penetration depth. We compare the normalized displacement height z0/dp with the
penetration depth δ/dp in figure 28(a), and z+0 with δ+ in figure 28(b). It shows that
the trend of z0/dp with ReK is not consistent with that of δ/dp with ReK . However,
when the inner scale was adopted, their trends become more similar. In addition, the
ratio of displacement height to penetration depth is approximately 0.46–0.75, which
approximates to the theoretical value of 0.5.

Based on the criterion that the thickness of the form-induced sublayer δf can
be determined from the elevation at which the TKE diffusion rate 〈TD〉 attains a
small finite value (〈TD〉 > 0), δf is calculated for all permeable beds. As shown in
figure 29(a), δf normalized by the mean diameter increases around ReK = 1 and tends
to become constant at 1.2 when ReK is O(10). In figure 29(b), the relationship between
δ+f (which is normalized by υ/u∗) and ReK shows similar trends to the penetration
depth. In addition, the ratio of the displacement height to the form-induced layer
thickness is approximately 0.66–1.28.

5. Conclusions
To investigate the effects of permeability on hydraulically macro-rough flow, LES

was carried out for open-channel flow over three kinds of macro-rough beds. They
were closely packed hemispheres, three closely packed layers of spheres with small
spheres inset within the interspace of the spheres, and the similar three layers
of spheres without any small spheres. In order to distinguish the effects of the
permeability of macro-rough beds, the values of the surface roughness of the three
cases were set identical. A combination of canonical flow typologies is represented in
terms of permeability Reynolds number, ReK , which ranges from an impermeable bed
(ReK = 0) to a highly permeable bed (ReK = 109). A DA technique was applied to
study the spatial disturbance of time-averaged flow and the turbulence characteristics.

For the simulated results, the log law was fitted to the DA velocity over the
crest level of bed roughness. The values of the von Kármán constant, the equivalent
roughness height and the zero-displacement height were obtained from the fitted log
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FIGURE 29. (Colour online) The ReK dependence of the form-induced sublayer thickness
δf (red dot) and displacement height z0 (black cross) normalized by (a) dp and (b) υ/u∗.
δ+f = δf u∗/υ and z+0 = z0u∗/υ.

law for the different cases. For the impermeable bed, their values agree well with their
traditional values for fully rough flow, whereas with an increase in bed permeability,
smaller values of the von Kármán constant, larger values of the equivalent roughness
height and the zero-displacement height are obtained, as compared to their traditional
values for fully rough flow.

It is revealed that the structure and dynamics of turbulence are significantly
influenced by the bed permeability. The vortex shedding becomes deeper within the
permeable bed, causing more intense vertical velocity fluctuations as well as bursting
events within the bed. As a result of the effects of wall-blocking, fluid infiltration is
prevented within the impermeable bed, leading to a strong recirculation zone within
the valley formed by the hemispheres. This dead-flow zone is due to a lack of the
intermittent flushing causing low Reynolds normal stresses. However, the streamwise
form-induced normal stress increases in this zone, because the recirculation is more
stable with time and has a strong influence on the heterogeneity of the streamwise
time-averaged flow. The contribution from the form-induced turbulent diffusion rate
also increases within the bed. In the streamwise direction, coherent structures which
are 0.4–1.3h long are more prevalent over an impermeable bed, while structures which
are larger than 1.3h or smaller than 0.4h are more predominant over a permeable bed.
With the discussion on isocontours of the autocorrelations of streamwise velocity and
pressure, it can be inferred that on the top side, the shortening of turbulent structures
close to a permeable bed is associated with the weakening effects of wall-blocking
and turbulent transport across the bed interface. Also, on the valley side, large-scale
structures as long as 2h can develop close to the bed due to the KH-type instability
and the absence of sphere blocking.

The effects of the spanwise time-averaged secondary currents on the DA momentum
flux balance and the mechanism of turbulent secondary currents are also investigated
in this study. For the permeable bed, the spanwise secondary currents transport high
momentum to the inner flow region and bring low momentum to the outer flow
region. It causes the profiles of the DA Reynolds shear stress to detach the gravity
line at certain elevation away from the bed, where the heterogeneity of time-averaged
flow in the spanwise direction causes the DA form-induced shear stresses attain
their peaks. This is an interesting feature in that the DA form-induced shear stress
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is not negligible away in the main flow region and the secondary currents are
the main reason. The vertical Reynolds normal stress near a more permeable bed
is dominated by relatively large vortical structures, which are responsible for the
exchange of momentum between the top layer of the bed and the main flow. The
exchange of momentum induces a strong increase in the Reynolds shear stress within
the valley formed by the roughness elements, connecting the adjacent peaks of the
Reynolds shear stress near the crests of roughness elements. The spanwise scale of
the combined high Reynolds shear stress zone increases with increasing permeability
and acts as a wider roughness strip, resulting in the formation of larger turbulent
secondary currents in the main flow.

The ReK dependence of several flow quantities around the crest is analysed. The
Brinkman layer thickness is of the same order of magnitude as the mean particle
diameter. Comparing with the normalization by mean diameter, the flow and shear
stress penetration into the bed normalized by the inner scale (υ/u∗) suggest a better
correlation with ReK , which is attributed to the inclusion of the flow energy. The
form-induced sublayer thickness normalized by mean diameter increases with ReK ∼

O(1). However, it becomes nearly constant and independent of ReK as it approaches
ReK ∼ O(10). When it is normalized by υ/u∗, the trend becomes similar to that of
the penetration depth. The displacement height is quantitatively compared with the
penetration depth and form-induced thickness. The ratio of displacement height to
penetration depth is approximately 0.46–0.75, and the ratio of displacement height to
form-induced layer thickness is approximately 0.66–1.28.
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