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Flexural-gravity wave characteristics are analysed, in the presence of a compressive
force and a two-layer fluid, under the assumption of linearized water wave theory and
small amplitude structural response. The occurrence of blocking for flexural-gravity
waves is demonstrated in both the surface and internal modes. Within the threshold
of the blocking and the buckling limit, the dispersion relation possesses four positive
roots (for fixed wavenumber). It is shown that, under certain conditions, the phase
and group velocities coalesce. Moreover, a wavenumber range for certain critical
values of compression and depth is provided within which the internal wave energy
moves faster than that of the surface wave. It is also demonstrated that, for shallow
water, the wave frequencies in the surface and internal modes will never coalesce.
It is established that the phase speed in the surface and internal modes attains a
minimum and maximum, respectively, when the interface is located approximately
in the middle of the water depth. An analogue of the dead water phenomenon, the
occurrence of a high amplitude internal wave with a low amplitude at the surface,
is established, irrespective of water depth, when the densities of the two fluids are
close to each other. When the interface becomes close to the seabed, the dead water
effect ceases to exist. The theory developed in the frequency domain is extended to
the time domain and examples of negative energy waves and blocking are presented.
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1. Introduction
The floating elastic plate is one of the key canonical problems in hydroelasticity. It

can serve as both an illustrative example and as a practical model for the frozen ocean
or for VLFS (very large floating structures) (Squire 2007, 2011). The interaction of
waves with an ice sheet or VLFS generates flexural-gravity waves which are coupled
to the floating elastic structure and the underlying fluid. The study of wave–ice
interaction using the floating elastic plate model begins with Kheysin (Kheysin
1963, 1964; Kheisin 1969; Kheysin 1973). Most of the studies in hydroelasticity
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are concerned with scattering (Squire 2007, 2011; Sahoo 2012) but the propagation
of plane waves in a uniform ice cover can be highly sophisticated when moving
loads or compressive effects are considered. Flexural-gravity wave patterns on an
ice plate due to a moving load were given in Davys, Hosking & Sneyd (1985). In
a follow-up paper, Schulkes, Hosking & Sneyd (1987) considered three additional
modelling features: compressive stress, current and water stratification. The impact of
the compressive stress was to reduce the phase speed corresponding to the critical
load and to alter the group speed (Schulkes et al. 1987, figure 2), a phenomenon
which can be more important in thinner ice or under high compressive stress (Squire
et al. 2012, § 7.2.5). The flexural-gravity wave pattern was shown to be re-oriented
relative to the direction of the moving load by a current. A remarkable validation
of the floating elastic plate model for waves due to moving loads on the ice was
given in Squire et al. (1988). Under certain circumstances, the dispersion relation
corresponding to plane progressive flexural-gravity waves possesses more than one
root, and this results in wave blocking, a phenomenon in which the group velocity
becomes null and wave energy ceases to propagate. While this phenomenon was first
found in Schulkes et al. (1987), it was studied in detail in Das, Sahoo & Meylan
(2018), who provided an analytic expression for the compressive force that results in
wave blocking and connected wave blocking in the presence of a current to analogue
gravity. We note here that perfect wave blocking is not possible if we include effects
due to the slight compressibility of water or the elasticity of the ocean bottom (Eyov
et al. 2013; Abdolali et al. 2018).

In the context of free surface gravity waves, blocking occurs due to the interaction
of waves with an opposing current. This effect is often observed near the entrance
of tidal inlets. The impact of the opposing current reduces the wavelength of the
incoming waves, resulting in an increase in wave height. Hence, prior to blocking,
the wave environment can become very rough and result in navigational hazards (see
Chawla & Kirby 2002). Further, in the case of short-crested waves, the opposing
current can even reflect the incoming waves (Trulsen & Mei 1993). Smith (1975)
demonstrated that away from the blocking region, the wave field consists of an
incident wave and a much shorter reflected wave. Peregrine (1976), using linear
water wave theory, first established a mathematical method for describing wave
blocking in the presence of an opposing current. Various experiments were conducted
to validate the theory of wave blocking (Ris & Holthuijsen 1996; Chawla & Kirby
1998, 2002). The effect of surface tension in wave blocking was first predicted by
Phillips (1981) and later analytically established by Shyu & Phillips (1990) in the
case of one-dimensional waves. Subsequently, Shyu & Tung (1999) incorporated wave
obliqueness and investigated the blocking effect in the presence of a unidirectional
steady irrotational current. Trulsen & Mei (1993) used boundary layer theory to prove
that in the presence of surface tension, often short reflected waves are re-reflected
from a second blocking point downstream of the primary gravity wave blocking point.
Nardin, Rousseaux & Coullet (2009), using dynamical systems theory, studied the
hydrodynamic phenomenon of wave blocking by a counter-current and established
a direct analogy with rainbow and black hole dynamics. Maissa, Rousseaux &
Stepanyants (2013) presented a brief review of wave–current interaction and discussed
different scenarios of wave blocking which include the effects of Froude number,
water depth, surface tension, vorticity and the effects of weak nonlinearity. Recently
Das et al. (2018) studied flexural-gravity waves in a homogeneous fluid having a plate
covered surface with compression and a current. They showed that wave blocking
occurred under the influence of compressive force and an opposing current, and drew
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Flexural-gravity wave dynamics in two-layer fluid 123

an analogy between the dynamics of wave propagation for such a problem and the
propagation of light waves near black holes (such a connection is known as analogue
gravity). However, wave blocking in a stratified fluid does not appear to have been
considered previously outside the work of Schulkes et al. (1987).

Density stratifications in fluids frequently occur in nature in both the ocean or other
bodies of water and the atmosphere. The primary reasons for such stratification is
an abrupt change in temperature or salinity with depth for water or due to a sudden
change in temperature or humidity with altitude for the atmosphere. It is standard to
approximate the fluid as a two-layer system with the upper layer resting over a lower
layer of higher density. This approximation is especially valid in the ocean where
there often exists a thin pycnocline where a drastic change in density occurs, and the
water is well mixed above and below it. For a two-layer fluid with a free surface
and an interface, there exist both surface and internal modes, by which we mean
modes which are predominantly at the surface or predominantly at the interface. This
was initially explained by Stokes (1847). A generalization of the standard two-layer
problem is to consider a two-layer fluid medium in the presence of a floating elastic
plate/floating ice sheet, first considered by Schulkes et al. (1987). Bhattacharjee
& Sahoo (2008) studied wave–structure interaction problems in a two-layer fluid
with an elastic plate covered free surface as a scattering problem. They analysed the
characteristics of the associated eigenfunctions, which are important for understanding
wave–structure interactions (Sahoo 2012). One of the curiosities in two-layer fluids
is the dead water phenomenon responsible for abnormal wave resistance experienced
by ships. This phenomenon is well known to sailors. In fact, this type of still water
situation where it is difficult to row a boat was mentioned in the Latin literature
by Tacitus who experienced such situations in Scotland and Germany (see Mercier,
Vasseur & Dauxois 2011). However, the first well-documented report on the dead
water phenomenon was provided by the Norwegian Arctic explorer Fridtjof Nansen
(see Nansen 1897), who encountered the phenomenon while sailing in his ship Fram
near Nordenskiöld island in 1893. A proper scientific explanation of such abnormal
behaviour was not provided until Ekman (1904), motivated by the report of Nansen,
investigated the phenomenon in detail with the help of experiments. It was confirmed
through his experiments that the huge resistance experienced by the slowly moving
ship is mainly because of the generation of internal waves and that the maximum
drag resistance occurred when ship speed matches that of the internal waves. The
subsequent theoretical development of the theory for this phenomenon is mainly
restricted to the linear case. Miloh, Tulin & Zilman (1993) developed a linear theory
for the dead water phenomenon in a two-layer fluid of finite depth. Recently, a
nonlinear theory has been developed by Grue, Bourgault & Galbraith (2016).

Motivated by the results of Davys et al. (1985), Schulkes et al. (1987) and Das
et al. (2018), we study here the dynamics of the blocking of flexural-gravity waves
in a two-layer fluid having a plate covered surface in the presence of a compressive
force, under the assumption of linear water wave theory and small amplitude structural
response. Our objective is to analyse the dispersion relation and to obtain the analytic
condition for blocking in both wave modes. Furthermore, we demonstrate the existence
of multiple roots of the dispersion relation for incoming waves of fixed frequency, and
the coalescence of the phase and group velocities of the surface and internal modes
for certain parameter values. We establish the flexural-gravity analogue of dead water
and consider the time-domain evolution of wave packets. The outline of this paper
is as follows. In § 2 we give a mathematical formulation of the problem, and in § 3
we derive the dispersion equation under the assumption of plane waves. In § 4 we
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124 S. Das, T. Sahoo and M. H. Meylan

consider some special cases, namely an infinite lower layer with a finite or shallow
upper layer and the case when both layers are shallow or deep. In § 5 we consider
the flexural-gravity analogue of dead water. In § 6 we address the applicability of the
theory presented in the manuscript. In § 7 we present some time-domain simulations
and we end with brief conclusions in § 8.

2. Mathematical formulation
In the present study, we consider the small amplitude response of a floating thin

elastic plate, the standard model for sea ice and very large floating structures. The
thin elastic plate is assumed to be of infinite extent and floating on the mean free
surface of the water of finite constant depth. The problem is two-dimensional with
the x-axis horizontal and the z-axis vertically downward (figure 1). The fluid domain
consists of two different immiscible fluids of density ρ1 and ρ2 such that ρ2 >ρ1 and
we define s= ρ1/ρ2. Our interest here is to understand in detail the properties of the
flexural-gravity waves which can propagate in such a system. The upper fluid occupies
the region −∞< x<∞, 06 z6 h and the lower fluid occupies the region −∞< x<
∞, h6 z6H. The fluids are assumed to be inviscid, incompressible and the motions
of both fluids are irrotational, which ensures the existence of the velocity potentials
Φj(x, z, t) for j= 1, 2 that satisfy the two-dimensional Laplace equation given by

∇
2Φj = 0, j= 1, 2, (2.1)

in the upper and lower layer fluid respectively. The linearized kinematic boundary
condition on the plate covered surface is given by

∂η1

∂t
=
∂Φ1

∂z
on z= 0, (2.2)

where η1(x, t) is the deflection of the floating elastic plate. In the presence of in-axis
compressive forces N acting along the x-axis of the homogeneous floating elastic plate,
the linearized plate covered dynamic boundary condition on the mean free surface is
given by (Kheisin 1962, 1969; Bukatov 1980; Magrab & Leissa 1980; Kerr 1983)(

EI
∂4

∂x4
+N

∂2

∂x2
+ ρpd

∂2

∂t2
+ ρ1g

)
η1 = ρ1

∂Φ1

∂t
on z= 0, (2.3)

where E= d3/(12(1− ν2)) is Young’s modulus, ν is Poisson’s ratio, d is the thickness
of the floating plate and ρp is the plate density. The linearized dynamic and kinematic
boundary conditions at the mean interface are

ρ2

{
gη2 −

∂Φ2

∂t

}
− ρ1

{
gη2 −

∂Φ1

∂t

}
= 0 on z= h, (2.4)

and
∂η2

∂t
=
∂Φj

∂z
on z= h for j= 1, 2, (2.5)

where η2(x, y, t) is the interface elevation. Finally, at the rigid bottom the boundary
condition is given by

∂Φ2

∂z
= 0 on z=H. (2.6)
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x

zDirection of propagating wave

Floating elastic plate

Rigid impermeable bottom

FIGURE 1. Schematic diagram of the physical problem.

3. Plane wave characteristics
In this section, the characteristics of the plane progressive wave solution are

investigated by analysing the dispersion relation associated with the problem by
assuming plane wave solutions of the form

η1 =Re{a1ei(kx−ωt)
}, (3.1)

and η2 =Re{a2ei(kx−ωt)
}, (3.2)

where k is the wavenumber, ω is the angular frequency, a1 and a2 are the amplitudes
of the plate deflection and interface elevation, respectively. Thus, the velocity
potentials Φ1 and Φ2 satisfying (2.1) along with the boundary conditions (2.2)
and (2.6) are of the forms (Schulkes et al. 1987)

Φ1 = (A cosh kz− iωa1k−1 sinh kz)ei(kx−ωt), (3.3)
Φ2 = B cosh k(H − z)ei(kx−ωt), (3.4)

where A and B are unknown constants to be determined. Using the boundary
conditions (2.4) and (2.5) in (3.3) and (3.4), the constants A, B and a2 are obtained
in terms of a1 by solving the matrix equations cosh kh −cosh k(H − h) −(1− s)g/iω

sinh kh sinh k(H − h) 0
0 −sinh k(H − h) iω/k

A
B
a2

=
(iωsa1/k) sinh kh
(iωa1/k) cosh kh

0

 . (3.5)

The solution of the above matrix system yields

Φ1 =−
iω
k
(µ cosh kz+ sinh kz)η1, (3.6)

with

µ=−
s+ coth kh{coth k(H − h)− (1− s)gk/ω2

}

s coth kh+ coth k(H − h)− (1− s)gk/ω2
(3.7)

and r=
a2

a1
=

s
sinh kh{s coth kh+ coth k(H − h)− (1− s)gk/ω2}

. (3.8)
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Under the assumption that the plate thickness is very small compared to the
wavelength, i.e. assuming the elastic restoring force to be much stronger than the
inertial force, we neglect the term ρpdω2/ρ1 � 1 following Schulkes et al. (1987).
This assumption simplifies our equations and is physically sensible because the term
needs to be small if the elastic plate floats and is thin. Thus, using (2.3) and (3.6),
the dispersion relation for the flexural-gravity wave motion in two-layer fluid of finite
depth is obtained as

A1ω
4
− B1ω

2
+C1 = 0, (3.9)

where
A1 = s+ coth kh coth k(H − h),

B1 = gk[(1− s) coth kh+ A2{s coth kh+ coth k(H − h)}],
C1 = A2(1− s)g2k2,

A2 =Dk4
−Qk2

+ 1,

 (3.10)

with D=EI/(ρ1g) and Q=N/(ρ1g). Note that in Schulkes et al. (1987) compression
was not included in their two-layer fluid model. As we shall see shortly, this
compression has a number of significant effects.

The dispersion relation (3.9) is a quadratic equation in ω2 whose solution yields
the wave frequencies in the surface and internal modes and are denoted as ω+ and
ω− respectively. It is to be noted that ω+ corresponds to the mode with the faster
phase velocity, compared to ω− which is slower. Generally, the quicker mode has an
amplitude ratio, r, less than one, which corresponds to a mode with greater amplitude
at the surface. The slower mode corresponds to an amplitude ratio which is smaller
than the negative one which corresponds to a mode with a higher amplitude at the
interface. While this is generally true, there can be a situation where the internal mode
(mode with amplitude ratio less than minus one) is faster than the surface mode in the
case of the deep water approximation under the condition Q= 2

√
2Ds/(1+ s) near the

secondary blocking point (see the portion αα′ in figure 9a). However, this situation
will not arise with a finite upper layer and the shallow water approximation. These
observations will be discussed in more detail in the subsequent sections. Thus,

ω2
±
=

B1 ±
√

B2
1 − 4A1C1

2A1
, (3.11)

which yields

c±g =
ω2
±

dB1

dk
−ω4

±

dA1

dk
−

dC1

dk
2ω±(2A1ω2

±
− B1)

, (3.12)

where subscripts ± correspond to waves in surface and internal modes respectively.
Moreover, following the procedure as in Schulkes et al. (1987), it can be easily
derived that the mean potential energy and mean kinetic energy associated with
flexural-gravity wave motion in the presence of a uniform compressive force are
equal to each other and the total energy E, which is a sum of the mean potential
and kinetic energy, given by

E=
ρ1

2
(Dk4
−Qk2

+ g)a2
1 +

ρ2

2
(1− s)a2

2. (3.13)

We include this energy here for completeness.
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Primary blocking points

Secondary blocking points

Point corresponds to negative kinetic energy

0 0.2 0.4 0.6 0.8 1.0

kh

0.1

0.2

0.3

0.4

0.5

FIGURE 2. (Colour online) Dispersion graphs for both waves at the surface and at
the interface for an infinite lower layer for different values of the density ratio s with
Q/
√

D = 1.95 and h = 10. Wave blocking, characterized by the occurrences of maxima
and minima, is observed in both the modes. Solid black squares correspond to primary
blocking, whereas solid black circles correspond to secondary blocking. When the density
ratio s increases, i.e. the difference of the densities is small, the slope of the dispersion
curve for the surface wave (the movement of the point P along the dispersion curves for
different values of density and for fixed incoming wave frequency ωp) in between the two
blocking points increases, whereas a reverse pattern is observed for waves in the internal
mode. This results in a higher rate of negative kinetic energy propagation for the surface
waves.

4. Dynamics of waves: special cases

We consider here a number of special cases in which we can make simplifying
assumptions.

4.1. Infinite depth lower layer
We consider the case when the upper layer depth is comparable to the wavelength
(kh = O(1)), but the lower layer water depth is large (k(H − h)� 1). Under these
conditions, the dispersion relation (3.11) is modified to

ω2
+
=
(Dk4
−Qk2)(s coth kh+ 1)+ 1+ coth kh

coth kh+ s
gk, (4.1)

ω2
−
=

(1− s)A2gk
(1+ s coth kh)A2 + (1− s) coth kh

. (4.2)

The rate at which wave energy propagates is proportional to the group velocity
(dω±/dk) of the wave train. Hence, wave energy propagation stops when (dω±/dk)=0
and this phenomenon is referred to as blocking.

The dispersion graph is plotted in figure 2 for four different values of density ratio
s with Q/

√
D = 1.95 and h = 10 being kept fixed. The choice of Q/

√
D is made

to give a high value that is below the critical value of Q/
√

D = 2, which is the
buckling limit (Schulkes et al. 1987; Åkesson 2007; Chryssanthopoulos 2009). The
condition for blocking ensures that the points of blocking are the points of maxima
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and minima, and are readily observed in the figure. The black squares correspond to
primary blocking where incident waves are blocked, whereas the secondary blocking
points are marked with black circles at which the negative energy waves are blocked.
Furthermore, wave blocking is observed in internal mode too, and the occurrences of
primary and secondary blocking are illustrated respectively with squares and circles. It
is interesting that with an increase of s, i.e. when the layer densities are close to each
other, for the surface mode the negative energy propagation rate increases. This can
be interpreted from the increasing slope of the curves at the point P as it moves along
the dispersion curves (the locus of P is shown by pink squares) with an increase in s.
However, a reverse pattern is observed from the dispersion curve corresponding to the
internal modes. This observation provides the possibility for the transfer of negative
kinetic energy from the internal mode to the surface mode as the density difference
decreases, i.e. as s increases.

For the waves in the surface mode, the condition for wave blocking yields the
following expression for the compressive force:

Q=
{5pr− kh(1− s2)(1− coth2 kh)}Dk4

+ qr− kh(1− s)(1− coth2 kh)
k2{3pr− kh(1− s2)(1− coth2 kh)}

, (4.3)

where p= s coth kh+ 1, q= 1+ coth kh and r= s+ coth kh.
Substituting the above expression into (4.1), the following relation between the

blocking frequency and the wavenumber is obtained:

ωb
+
=

√
2pq− kh(1− s)(1− coth2 kh)− 2p2Dk4

3pr− kh(1− s2)(1− coth2 kh)
gk. (4.4)

It is to be noted that (4.4) provides two different solutions for the wavenumber k,
one for the primary and the other for the secondary blocking, for a fixed value of ωb

+
.

Consequently, the corresponding compressive force can readily be obtained from (4.3).
The blocking period Tb is given by Tb = 2π/ωb

+
.

The dependency between the compressive force and Tb is shown in figure 3
for three different values of density ratio s. The solid lines are for the primary
blocking points at which the incident waves are blocked, whereas the dot-dashed
lines correspond to secondary blocking points at which the waves with negative
kinetic energy are blocked. Any point on the graphs demonstrates a specific value
of compressive force which is required to block a wave of the corresponding time
period. Now, the points where both the blocking points merge is known as the point
of inflexion, and we denote this point (Q∗, T∗b ). Consequently, it follows that any
wave which has a period less than T∗b cannot be blocked by any compressive force.
It is interesting to observe that the incident wave period at which the wave blocking
initiates is almost invariant with respect to the density ratio. For s= 0.9, the minimum
compressive force required to block any flexural-gravity wave is denoted Q∗1. Similar
values of compressive forces for s = 0.95, 0.98 are respectively denoted by Q∗2 and
Q∗3. Higher compressive force is required to block flexural-gravity waves when the
density ratio reduces.

For the waves in the internal mode, the condition for wave blocking provides the
following relation between the wave frequency and the wavenumber:

ω−b =

√
−B̂+

√
B̂2 − 4ÂĈ

2Â
, (4.5)
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1.4

1.6

1.8

2.0

3010 20 40 50

FIGURE 3. (Colour online) Dependency between the compressive force and the time
period of blocked surface waves for different values of the density ratio. Solid lines
correspond to primary blocking (related to the incident wave) and dot-dashed lines are
for the secondary blocking (related to waves with negative kinetic energy). Points of
inflexion where wave blocking initiates are represented by the points (Q∗1, T∗b,1), (Q

∗

2, T∗b,2)
and (Q∗3, T∗b,3) for s= 0.9, 0.95 and 0.98, respectively. The points on the curves represent
the compressive force required to block a wave of specific time period. However, waves
having a time period less than T∗b are never blocked by the action of a compressive
force. Also, depending upon the density ratio, a minimum compressive force is required
to achieve wave blocking, e.g. Q∗3 for s= 0.9. However, the time period of the incident
waves remain almost the same.

where

Â= 2(Dk4
− 1)(1+ s coth kh)2 − (1− s){τ + (1+ 2s coth kh) coth kh},

B̂= gk(1− s){(1− s)(τ + 2 coth kh)− 4(Dk4
− 1)(1+ s coth kh)},

Ĉ= 2g2k2(1− s)2(Dk4
− 1),

τ = coth kh− kh(1− coth2 kh),


(4.6)

and the corresponding compressive force is calculated from the following relation:

(Dk4
−Qk2

+ 1)2 +
(1− s)τ
(1+ sτ)

(Dk4
−Qk2

+ 1)+ 2
(1− s)
(1+ sτ)

(Dk4
− 1) coth kh= 0. (4.7)

The dependency between the time period and the compressive force is illustrated
in figure 4. The pattern of the graphs is very similar to those obtained in figure 3.
However, it is to be noted that when the layer densities are very close to each other,
wave blocking occurs in the presence of a relatively higher compressive force for
waves having higher time period. The same can easily be observed for the graph
corresponding to s = 0.98 in which Q∗3, the minimum compressive force required to
block the waves, is quite high compared to Q∗1 (for s = 0.9) and Q∗2 (for s = 0.95).
Similarly, the corresponding time period T∗b,3 of the blocked waves for s = 0.98 is
higher than that for s= 0.9 (T∗b,1) and 0.95 (T∗b,2).
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FIGURE 4. (Colour online) The internal wave time period and the compressive force for
different values of the density ratio for an infinite lower layer. The pattern is similar to
figure 3. A higher density ratio requires a higher compressive force to initiate blocking
for waves with a higher time period. The compressive force Q∗3 corresponding to a point
of inflexion for waves in a stratified fluid having density ratio s = 0.98 is higher than
Q∗2 (for s= 0.95) and Q∗1 (for s= 0.9). The corresponding time period T∗b,3 is also higher
than T∗b,2 and T∗b,1. Interestingly, for a fixed value of s, the curves intersect before the
point of inflexion, and this suggests that at the same value of compressive force, waves
with the same frequency go through both primary and secondary blocking but at different
wavenumbers.

4.2. Shallow upper layer and infinite lower layer depth
We assume here a shallow upper layer depth, i.e. |k|h� 1 and an infinite lower layer
depth, i.e. k(H − h)� 1. Under these assumptions, equation (3.11) is modified to

ω2
+
=
(Dk4
−Qk2)(s+ kh)+ 1+ kh

1+ skh
gk, (4.8)

ω2
−
=

(1− s)A2gk2h
(kh+ s)A2 + (1− s)

. (4.9)

The compressive force for which wave blocking occurs is obtained as

Q=
{5p′r′ − kh(1− s2)(k2h2

− 1)}Dk4
+ q′r′ − kh(1− s)(k2h2

− 1)
k2{3p′r′ − kh(1− s2)(k2h2 − 1)}

, (4.10)

where p′ = s+ kh, q′ = 1+ kh and r= 1+ skh.
Substituting the above expression into (4.8) and (4.9) respectively, the following

relations between the blocking frequency and the wavenumber are obtained:

ωb
+
=

√
2p′q′ − kh(1− s)(k2h2 − 1)− 2p′2Dk4

3p′r′ − kh(1− s2)(k2h2 − 1)
gk, (4.11)

ω−b = kh

√
−B̄+

√
B̄2 − 4ĀC̄

2Ā
, (4.12)
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where

Ā= 2(Dk4
− 1)(kh+ s)2 − (1− s){3kh− k3h3

+ 2s}, (4.13)

B̄=
g(1− s)

h
{(1− s)(4− k2h2)− 4(Dk4

− 1)(s+ kh)}, (4.14)

Ĉ=
2g2

h2
(1− s)2(Dk4

− 1). (4.15)

4.3. Shallow water approximation
We now assume that both of the layers are shallow, i.e. for |k|h� 1 and |k|(H− h)� 1,
so that (3.9) yields

ω2
±
= {β ±

√
β2 − 4δ}/2, (4.16)

where

β = gk2
[(1− s+ A2s)(H − h)+ A2h], and δ= (1− s)h(H − h)A2g2k4. (4.17a,b)

Equation (4.16) reveals that the angular frequencies in the surface and the internal
modes will coalesce only if β2

− 4δ = 0, which yields

A2 =

(
h

2hp
− 1
)[(

2h
hp
− 1
)
± 2

√
h
hp

(
h
hp
− 1
)]

, (4.18)

with hp= sH+ (1− s)h. Under the condition 0< s< 1, the quantity h/hp becomes less
than 1 and consequently A2 becomes a complex number. This implies that the wave
frequencies of the surface and the internal modes in the two-layer fluid will never
coalesce under the shallow water approximation. For the existence of a real A2, the
interface has to coincide with the bottom bed, i.e. hp= h. Under such a circumstance,
the physical problem will be converted to that of flexural-gravity wave motion in a
homogeneous fluid.

Figure 5 shows that, under the shallow water approximation, for a suitable choice of
compressive force and density ratio, blocking occurs for flexural-gravity waves in the
surface and the internal modes. Thus, the dispersion relations in both the surface and
the internal modes can have at most three positive and three negative roots. Further,
wave blocking in the internal mode is more prominent when the difference in densities
between the two layers is large. From (4.16), group velocities, c+g and c−g of the
surface and the internal modes respectively, are obtained as

c±g = gk
ω2
±
(H − hp + hpA3)− h(H − hp)gk2A4

ω±(2ω2
±
− β)

, (4.19)

with
A3 = 3Dk4

− 2Qk2
+ 1, (4.20)

and
A4 = 4Dk4

− 3Qk2
+ 2. (4.21)

Figure 6(a) reveals that, when the interface position is close to the impermeable
bottom, wave blocking does not take place in the internal mode, which is due to the
negligible effect of the compressive force on the waves in the internal mode. However,
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FIGURE 5. (Colour online) (a) Wave frequencies of the surface and the internal modes
with h=5 m and Q=1.95

√
D for various values of the density ratio. Here, both the upper

and lower layers are shallow. (b,c) The corresponding group velocities of the surface and
the internal modes, respectively. Occurrences of wave blocking (zero group velocity) and
propagation of waves with negative energy (negative group velocity) in both the modes
are illustrated.
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FIGURE 6. (Colour online) Wave frequencies of the surface and the internal modes in
shallow water with s= 0.8 for various values of h/H and Q. Wave blocking is observed
from the local optima (maximum for primary blocking and minimum for secondary
blocking) of the graphs. Waves with negative energy (negative slope of the graph)
propagate in between. (a) For various values of h/H with Q = 1.95

√
D and H = 10 m.

(b) For various values of Q with h= 5 m and H = 10 m.
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FIGURE 7. (Colour online) Dependency between the blocking frequency and the
wavenumber with Q = 1.8

√
D. For small density difference (s = 0.9, 0.95), the graphs

are discontinuous due to the non-existence of blocking frequency in a certain range of
wavenumbers. However, the blocking frequency, having a high value, emerges when the
density difference increases (s= 0.8, 0.85).

the pattern of ω+ and ω− in figure 6(a) reveals that, when the interface is close to
the free surface, the absolute value of the group velocity of the surface mode will
decrease, while the reverse trend is observed for waves in the internal mode between
the two blocking points. On the other hand, figure 6(b) reveals that when the interface
location is fixed at h/H = 0.5, blocking of the surface and the internal modes is
predominant when the compressive force lies in the range Qcg < Q < Qc with Qcg
and Qc defined in the same manner as in the case of deep water.

Further, the condition for wave blocking in the internal mode can be obtained from
(4.19) by putting c−g = 0. This yields the following relation between the blocking
frequency ωB and blocked wavenumber kb:

ω2
B = gk2

b
h(H − hp)A4

H − hp + hpA3
. (4.22)

The above dependency between the blocking frequency and the wavenumber is
illustrated in figure 7 with Q= 1.8

√
D. It can be observed that when the density ratio

is high, i.e. densities are close to each other, there exists a range of wavenumbers
for which no blocking frequency exists. This means no matter what the given input
frequency is, the waves with a wavenumber in that range cannot be blocked for the
critical values of the compressive force and density ratio. A mathematical explanation
of this non-occurrence of a blocking frequency for certain blocked wavenumbers
is because (4.22) and (4.1) or (4.2) do not intersect in such circumstances. This
result can be obtained from the discontinuity in the graph (for example, the graphs
corresponding to s= 0.9, 0.95). As the density ratio decreases, high-frequency waves
in the aforementioned wavenumber range can be blocked.

On the other hand, (4.19) shows that the phase velocities of the surface and the
internal modes attain optimum values, and are denoted as h±c ,

h±c =
[

H −
c2
±
(1− 1/A2)

g

]/
2, (4.23)
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FIGURE 8. (Colour online) Phase velocities of the surface and the internal modes with
Q=1.95

√
D and H=10 m are depicted. (a) Minimum in the phase velocity in the surface

mode occurs at h/H ≈ 1/2. (b) Similarly, a maximum in phase velocity in the internal
mode is obtained at h/H ≈ 1/2.

where dc±/dh= 0. Further, equation (4.16) yields

d2c±
dh2

∣∣∣∣
h=hc

=∓
d2δ

dh2
=±2(1− s)A2, with A2 > 0. (4.24)

Thus, equation (4.24) ensures that

d2c±/dh2 ≷ 0 at h= h±c , (4.25)

which demonstrates that the phase velocity attains a minimum in the surface mode and
a maximum in the internal mode at h= h±c . Moreover, figure 8 reveals that the optima
in phase velocities are attained at h±c ≈H/2 under the shallow water approximation. In
particular, in the case of free surface gravity waves in a two-layer fluid, i.e. for D= 0,
Q= 0, the phase velocity attains a minimum in the surface mode and a maximum in
the internal mode for h±c =H/2. A similar observation was made for the phase velocity
in the internal mode by Mondal & Sahoo (2012) but without any explanation.

4.4. Deep water approximation
Under the assumption of the deep water approximation, assuming |k|h�1 and |k|(H−
h)� 1, (3.9) yields

ω2
+
= (Dk4

−Qk2
+ 1)g|k|, ω2

−
=
(1− s)g|k|

1+ s
. (4.26a,b)

Under this limit, the upper and lower waves become uncoupled and the amplitude
ratio r tends to either zero or infinity. The results here are interesting because
qualitatively they will apply for large finite depths. Figure 9(a) reveals that in the
case of deep water, the wave frequency of the surface mode attains a maximum as
well as a minimum for certain positive wavenumbers where dω/dk vanishes, which
ensures the existence of a wave frequency where no energy will propagate, and this
phenomenon is known as blocking. The negative energy wave that propagates in
between primary and secondary blocking is often regarded as the blue-shifted wave,
as defined by Nardin et al. (2009). This wave is not a reflected wave since it has a
positive wavenumber.
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Equation (4.26) demonstrates that in the case of deep water, the characteristics of
flexural-gravity waves in the surface mode are similar to those of a homogeneous fluid,
as discussed in Das et al. (2018), whilst the waves in the internal mode depend on the
density ratio, the same as the internal waves associated with free surface gravity waves
in deep water. Thus, the dispersion relation has a maximum of three positive roots
in the surface mode and one positive root in the internal mode. Within the range of
the trapped energy zone, where waves with negative energy propagate, the dispersion
relation in the surface mode has three positive roots of which two coalesce at the
point of blocking, whereas all the three roots coalesce at the point of inflexion.

Apart from the distinct frequencies in the surface and the internal modes,
equation (4.26) reveals that the angular frequencies in surface and internal modes
coalesce when

Dk4
−Qk2

+ 2s/(1+ s)= 0, (4.27)

which yields that the wavenumber in surface mode coincides with that of the internal
mode at four distinct points (two positive and two negative wavenumbers) in the case
of the deep water approximation under the condition

2

√
2Ds
1+ s

<Q< 2
√

D. (4.28)

The reason for the upper bound on Q is as follows. The plate can sustain an amount
Q < 2

√
D of compressive force under the deep water approximation. The following

physical interpretation also justifies this upper bound on Q. In this situation, ω− = 0
and ω+ touches the wavenumber axis with a sharp corner, and this results in a
discontinuous group velocity, i.e. plate buckling. Figure 9(a) demonstrates that the
curves for ω+ and ω− intersect at two distinct points for each value of the density
ratio s, where the compressive force satisfies the aforementioned condition. Note
that the value of Q in figure 9(a) depends on s. The pairs of distinct cut points
(α, α′), (β, β ′), (γ , γ ′) and (δ, δ′) correspond to the density ratios s = 0.8, 0.85, 0.9
and 0.95, respectively. However, these two distinct points coalesce at the point

kc =

[
2s

D(1+ s)

]1/4

for Qc = 2

√
2Ds
1+ s

, (4.29)

as in figure 9(b), which implies that ω− is tangent to ω+ at kc. The values of τi (i=
1, 2, 3, 4) are such points for the density ratios s= 0.8, 0.85, 0.9 and 0.95, respectively.
Further, ω− vanishes (coincides with k-axis) and ω+ becomes zero at kc= τ5 (tangent
to the ω− curve) when s= 1 and the corresponding Qc becomes the buckling limit of
flexural-gravity wave motion in single-layer fluid, as discussed in Das et al. (2018).

On the other hand, in the absence of a compressive force, (4.27) reveals that the
angular frequency of the surface mode will never coincide with that of the internal
mode. Moreover, figure 9(c) reveals that a non-zero minimum in phase velocity is
attained at k = kc for Q = Qc and 0 < s < 1, and phase velocity c+ = c− = c attains
zero minimum at k= kc for Q=Qc and s= 1. Figure 9(d) demonstrates that the group
velocity becomes negative within the range Qcg < Q < Qc for which blocking will
occur, as discussed in Das et al. (2018), with Qcg being the threshold of blocking.

In figure 10, the group velocity attains a zero minimum at the point P for Q =
1.5713

√
2Ds/(1+ s) which is the critical compressive force Qcg for s= 0.9. Moreover,

A and B are the two blocking points which occur for Q= 2
√

2Ds/(1+ s) with s= 0.9.
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FIGURE 9. (Colour online) (a) Multiple coalescence of frequencies in the surface and the
internal modes occurs for Q = (1.6

√
2s/(1+ s) + 0.2)

√
D which satisfies relation (4.28),

for various values of the density ratio. The regions (α, α′), (β, β ′), (γ , γ ′) and (δ, δ′)
correspond to the regions where the internal mode travels faster than the surface mode.
(b) Single coalescence of frequencies occurs for Q=Qc where the frequency graphs are
tangent to each other. For s = 1, the internal mode vanishes and the corresponding Qc
becomes the buckling limit in the case of a homogeneous fluid. (c) Phase velocity of
the surface mode never vanishes for Q=Qc in a two-layer fluid (s= 1 corresponds to a
homogeneous fluid). (d) Occurrences of negative group velocity suggest wave blocking in
the surface mode.
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FIGURE 10. (Colour online) The group velocity in the surface mode for ω+ = ω− with
s = 0.9. The group velocity vanishes at the blocking points A and P for Q = Qc, and
merges at the point of inflexion B (with an decrease in Q) to provide a zero minimum
in the group velocity.
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FIGURE 11. (Colour online) The group velocity in the surface and the internal mode
attains a zero minimum (R′′) and vanishes, respectively, for Q = Q1 and s = 1. This
provides the critical compressive force for a point of inflexion in a homogeneous fluid.
However, in a two-layer fluid (s 6= 1), multiple coalescence occurs for Q= 0.85Q1 (points
R and S) and the internal wave energy propagates faster between these two corresponding
wavenumbers than the surface waves. With a further decrease in compressive force, a
single coalescence occurs for Q= 0.6685Q1.

Further, equations (4.26) reveal that the group velocities of the surface and the internal
modes coincide for

5Dk4
− 3Qk2

+

[
1−

(1− s)c+
(1+ s)c−

]
= 0, (4.30)

which means that cg+ and cg− coalesce for two positive and two negative wavenumbers.
If the phase velocities are also the same, i.e. c+ = c−, a critical compressive force
Q1 =

√
40Ds/(1+ s)/3 is obtained. Here, for simplicity, only positive wavenumbers

are considered for the study and they are located at R and S, as shown in figure 11.
It is notable that, within the corresponding wavenumbers of these two points, the
internal wave energy propagates faster than that of surface waves. Further, the curves
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for cg+ and cg− are tangent to each other, located at R′ in figure 11 for

k=
[{

1−
(1− s)c+
(1+ s)c−

}/
5D
]1/4

, which gives Q=
1
3

√
20D

{
1−

(1− s)c+
(1+ s)c−

}
.

(4.31)
Under such circumstances the pair of positive/negative roots coalesce, but blocking
will not occur as the group velocity cannot be zero. This can be verified by computing
c+g from (4.26). However, both cg+ = cg− and c+ = c− are possible only for s = 1,
and in such a situation the two-layer fluid reduces to a homogeneous fluid with
kcg = (1/(5D))1/4 which is the point of inflexion located at R′′ in figure 11, and the
corresponding compressive force is given by Qcg=

√
20D/3 as discussed in Das et al.

(2018).
As a special case, the capillary–gravity wave motion in a two-layer fluid is studied

by assuming D= 0 and Q=−M/(ρ1g) and the corresponding ω+ and ω− are given
by

ω2
+
= (1+Mk2)gk and ω2

−
=
(1− s)gk

1+ s
, (4.32a,b)

with M being the surface tension of the upper layer fluid. Equation (4.32) reveals
that the phase and group velocities of the surface and the internal modes will
never become zero for real values of wavenumber k. Thus, blocking will not occur
for capillary–gravity waves, and distinct wavenumbers of the surface and the internal
modes will exist. Moreover, the wave frequency in the surface mode will not coalesce
with that of the internal mode for capillary–gravity waves. Note that Maissa et al.
(2013) observed the occurrence of wave blocking in capillary–gravity waves only in
the presence of an opposing current.

5. Flexural-gravity analogue of dead water
When the densities of the two fluids are close to each other, i.e. ρ1 → ρ2, the

amplitude ratio in (3.8) reveals that

lim
s→1

r−→∞. for ω=ω−, (5.1)

which demonstrates that the amplitude of the internal wave increases significantly as
the densities of the two fluids become very close to each other. The following fixed
values are considered in this section for computational purposes, unless otherwise
mentioned: Q= 1.95

√
D, s= 0.95 and h/H = 0.5. Figure 12 illustrates this situation.

As s→ 1, the amplitude ratio is very high for ω=ω−. This phenomenon is analogous
to the dead water effect of surface gravity waves in a stratified fluid where the internal
wave amplitude becomes very large. Further, equation (3.13) depicts that when the
densities of both of the layers are very close to each other, the energy concentration
at the interface will be extremely high compared to that on the plate surface.

6. Applicability of the theory
The role and importance of the compressive force for wave propagation in an ice

pack was recognized by Mollo-Christensen (1983). Subsequently, inspired by the
reports that the R/V Polarstern had encountered surface waves of large amplitude
hundreds of kilometres inside the ice pack in Weddell sea, Liu & Mollo-Christensen
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FIGURE 12. (Colour online) Dead water analogue is observed for three different values
of the dimensionless wavenumber kH when s→ 1. The amplitude ratio is very high for
ω=ω− as the densities of the two layers are very close to each other.

(1988) performed a buckling analysis of a floating ice sheet in the presence of
compressive force. A recent study of Collins, Rogers & Lund (2017) revealed that,
during strong on-ice storms, the ice edge becomes compact enough to provide a
very high compressive force. Ice cover with ocean stratification can be observed
in Antarctica (Sigman, Jaccard & Haug 2004). Another major area of application
of floating elastic plate theory is to VLFS (very large floating structures), which are
large thin structures designed to utilize ocean space for various purposes, such as a
floating airport. Squire (2007) provided a detailed review of the synergies between
VLFS and a floating ice sheet. Especially in tropical regions where salinity and
temperature difference stratify the water (Yuan, Li & Cheng 2007), this theory would
be applicable to mathematically model VLFS. Although these structures are usually
placed on calm water, during extreme storm events wind forcing can generate very
high compressive forces on the structure.

7. Time-dependent motion
We can simulate the motion of the two-layer fluid in the time domain. We consider

the case where the lower layer is infinite, so (4.1) gives the two solutions of the
dispersion equation and (4.2), and we assume that the depth of the upper layer is
h = 10 m. We chose EI = 5 × 108 N m−2, ρ1 = 1000 kg m−3, g = 9.81 m s−2 and
s = 0.9. We consider here only waves with positive phase velocity. The waves with
negative phase velocity could be simulated by simply running time backwards.

We can write the displacement at the surface as the following Fourier integral:

η1(x, t) = Re
{∫

∞

0
f̂+(k) exp(i(kx−ω+(k)t)) dk

}
+Re

{∫
∞

0
f̂−(k) exp(i(kx−ω−(k)t)) dk

}
. (7.1)

We think of ω± as a function of k given by (4.1) and (4.2). We define the ratio of
the lower to upper layer displacement r±(k), given by (3.8), as

r±(k)=
s

sinh kh{s coth kh+ coth k(H − h)− (1− s)gk/(ω±(k))2}
. (7.2)
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FIGURE 13. (Colour online) The Fourier transform f̂ (k) as given in (7.6) (a,b) and ω+ and
ω1 (c,d and e, f ), versus kh. (a,c,e) Q=

√
D where there is neither blocking nor negative

energy waves; (b,d, f ) Q= 1.95
√

D where there is blocking and negative energy waves.

The equation for the lower layer displacement is given by

η2(x, t) = Re
{∫

∞

0
r+(k)f̂+(k) exp(i(kx−ω+(k)t)) dk

}
+Re

{∫
∞

0
r−(k)f̂−(k) exp(i(kx−ω−(k)t)) dk

}
. (7.3)

The reason for writing it this way is that we obtain a very simple expression for the
displacement at t=0 which we consider to be the equation which defines the functions
f±. The displacement of the upper layer at t= 0 is given by

η1(x, 0)=Re
{∫

∞

0
f̂+(k) exp(ikx)dk

}
+Re

{∫
∞

0
f̂−(k) exp(ikx)dk

}
. (7.4)

The displacement of the lower layer at t= 0 is given by

η2(x, 0)=Re
{∫

∞

0
r+(k)f̂+(k) exp(ikx)dk

}
+Re

{∫
∞

0
r−(k)f̂−(k) exp(ikx)dk

}
. (7.5)

Since there are two wave packets we can impose a further condition, e.g. that the
surface or interface displacement is zero at t = 0. For the calculations, we consider
the condition that the surface displacement is zero at t= 0, so that f̂− =−f̂+.

We consider Gaussian wave packets which we write in the transform space as

f̂+(k)= 2A
√

πb exp(−b(k− ka)
2), (7.6)

where ka = 5 × 10−2 is the centre frequency, A = 0.1 is amplitude and b = 4 × 103

is the spreading function. We consider two values for Q, Q=
√

D and Q= 1.95
√

D.
Figure 13 shows why we have chosen these two values for Q, with (a,c,e) showing
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FIGURE 14. (Colour online) Time-domain simulation of waves for the case of f̂+(k) given
by (7.6) for the times shown. The top blue curve is the wave at the surface and the lower
red curve is the wave at the interface. In this case Q=

√
D. These figures are taken from

Movie 1.

the case for Q=
√

D, plotting f̂+(k) and ω+ and ω−. Both ω+ and ω− are monotonic
functions of kh. We will obtain a dispersive wave packet which propagates to the right.
For the case when Q= 1.95

√
D shown in (b,d, f ) we have two points of blocking and

negative energy waves for both ω+ and ω−. We can also see that the frequencies for
which f̂+(k) is non-negligible but small lie largely between the two blocking points for
ω+. This means that the surface waves excited will largely be negative energy waves,
i.e. waves with positive phase velocity and negative group velocity. For ω− the range
of f̂+(k) extends above and below the blocking points. This means that the internal
wave excited will consist of both positive and negative energy waves.

Figures 14 and 15 show the time-domain simulations for the cases of figures 13(a,c,e)
and 13(b,d, f ) respectively. These figures are taken from Movie 1 and Movie 2 res-
pectively, available at https://doi.org/10.1017/jfm.2018.617; the supplementary material
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FIGURE 15. (Colour online) As in figure 14 except that Q= 1.95
√

D and the figures
come from Movie 2.

also contains a file to generate these time-domain simulations. We show the wave at
the surface in blue and the wave at the interface in red. Note that the amplitude should
be considered exaggerated as we are considering only the linear case. For the case in
figure 14 the wave packet progresses to the right. The solution consists of surface and
internal waves which exactly cancel at t = 0 at the surface. The group speed of the
surface wave is higher than that of the internal wave. Also, note that the amplitude
of the internal wave at the interface must necessarily be large so that it can cancel
the wave at the surface. Figure 15 is the equivalent plot except Q= 1.95

√
D. In this

case, the behaviour is much more complicated and interesting. We see strong negative
energy waves which propagate to the left, even though they have positive phase speed
and the wave crests move to the right. The effect of blocking is clear, and a significant
part of the wave packet remains localized. We can also see that the surface wave is
dominated by negative energy waves as expected, while the internal wave has both
positive and negative energy waves.
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8. Conclusion
In the present study, the dynamics of blocking, associated with flexural-gravity wave

motion in a two-layer fluid having an ice/plate covered surface and an interface in
the presence of a compressive force, is investigated. Within the trapped energy zone,
wave blocking occurs in both the surface and internal modes, and the corresponding
dispersion relations have three positive roots, two of which coalesce at the point of
blocking, whereas all three roots coalesce at the point of inflexion, which is contrary
to the earlier assumption of two distinct positive roots. Moreover, the conditions for
coalescence of the frequency in the surface and the internal modes are obtained under
the deep water approximation. Furthermore, the conditions on the frequency and the
group velocity for coalescence are obtained, and the existence of higher phase velocity
and rate of energy propagation in the internal mode is shown under certain conditions.
Under the shallow water approximation, when the interface is located approximately
in the middle of the water depth, the phase speed in the surface and the internal
modes attain minima and maxima respectively. The analysis of the amplitude ratio of
waves in the interface to that of the surface modes reveals the dead water analogue
in flexural-gravity waves in a two-layer fluid when the density ratio approaches unity.
The present study will supplement the understanding of the stability/failure mechanism
of very large floating structures and the process of ice breaking in a stratified marine
environment.
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