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Suspended particles can significantly alter the fluid properties and, in particular, can
modify the transition from laminar to turbulent flow. We investigate the effect of heavy
particle suspensions on the linear stability of the Kolmogorov flow by means of a
multiple-scale expansion of the Eulerian model originally proposed by Saffman (J. Fluid
Mech., vol. 13, issue 1, 1962, pp. 120–128). We find that, while at small Stokes numbers
particles always destabilize the flow (as already predicted by Saffman in the limit of very
thin particles), at sufficiently large Stokes numbers the effect is non-monotonic in the
particle mass fraction and particles can both stabilize and destabilize the flow. Numerical
analysis is used to validate the analytical predictions. We find that in a region of the
parameter space the multiple-scale expansion overestimates the stability of the flow and
that this is a consequence of the breakdown of the scale separation assumptions.
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1. Introduction

Particles transported in flow are ubiquitous in many natural environments, from
protoplanetary disks (Armitage 2011) to aerosol in the atmosphere (Shaw 2003), from
volcanic eruptions (Bercovici & Michaut 2010) to sediment transport (Burns & Meiburg
2015).

Dispersed particles are not only transported by the flow, but they exert forces on the
fluid that, depending on the mass loading, can modify the flow itself. As discovered
long ago (Sproull 1961), at high Reynolds numbers heavy particles can alter turbulence
by attenuating or enhancing it depending on their size and mass fraction and on the

† Email address for correspondence: asozza.ph@gmail.com

© The Author(s), 2021. Published by Cambridge University Press 931 A26-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

97
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:asozza.ph@gmail.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.971&domain=pdf
https://doi.org/10.1017/jfm.2021.971


A. Sozza, M. Cencini, S. Musacchio and G. Boffetta

scale considered (Balachandar & Eaton 2010; Bec, Laenen & Musacchio 2017; Gualtieri,
Battista & Casciola 2017). In channel flow, they can change the turbulent drag (Ardekani
et al. 2017; Li et al. 2019). At low Reynolds numbers, the presence of particles affects
the stability of laminar flow and the transition to turbulence. Indeed, as first realized by
Saffman (1962), tiny particles, characterized by small Stokes number, typically anticipate
the onset of the instability while coarser ones retard it. This intuition was later confirmed
by other studies in the context of pipe (Michael 1964; Rudyak, Isakov & Bord 1997) and
channel (Klinkenberg, De Lange & Brandt 2011) flows. However, in wall bounded flows
the analysis is complicated by the interaction of particles with the boundaries and by the
fact that the transition is subcritical and thus finite amplitude perturbations are required to
destabilize the flow.

In this work we study the effects of a particle suspension on the stability of a periodic
Kolmogorov flow. This sinusoidal flow was proposed by Kolmogorov as a simple model
to understand the transition to turbulence and, after seven decades of study, it is still a
attracting a broad scientific interest (for a recent review see, e.g. Fylladitakis 2018). From
a theoretical point of view, it has the advantage, with respect to other parallel shear flows,
of being analytically tractable for the study of its linear stability and weakly nonlinear
dynamics (Sivashinsky 1985). In numerical simulations, it is widely used as a prototype
of shear flow with periodic boundary conditions which can be easily implemented in
pseudo-spectral codes. Moreover, the Kolmogorov flow can be considered as a simplified
channel flow without boundaries, since it displays a mean velocity profile which remains
monochromatic even in the turbulent regime (Musacchio & Boffetta 2014). For these
reasons, analytical and numerical studies have extended the Kolmogorov flow to rotating
(Legras, Villone & Frisch 1999), stratified (Balmforth & Young 2002) and viscoelastic
flows (Boffetta, Celani & Mazzino 2005). We recall that, beside the numerical and
analytical studies, the Kolmogorov flow is also realizable in experiments (Suri et al. 2014).
Recently, the Kolmogorov flow has been also used to study numerically the clustering of
inertial particles (De Lillo et al. 2016; Pandey, Perlekar & Mitra 2019) as well as the
effect of a heavy particle suspension on turbulent drag (Sozza et al. 2020). The latter
numerical study was performed by using an Eulerian approach originally developed by
Saffman (1962), valid in the limit of small volume fraction for mono-disperse heavy
particle suspensions.

In the present work we consider the laminar stationary solution of the Saffman
model forced by a Kolmogorov flow. We show that it is possible to study the stability
problem perturbatively, by exploiting a multiple-scale expansion (Bensoussan, Lions &
Papanicolaou 2011). The analytical result, which extends the Newtonian one (Sivashinsky
& Yakhot 1985), predicts a rich phenomenology with both enhanced and reduced stability
as a function of the control parameters, namely the particle Stokes number and mass
fraction. In particular, we confirm the known phenomenology that tiny (coarse) particles
tend to destabilize (stabilize) the flow with respect to the Newtonian case. Moreover, we
show that for coarse enough particles the effect is non-monotonic in the mass fraction: at
small mass fractions the flow is stabilized while it is destabilized at large enough mass
fractions. A similar phenomenology was observed for neutrally buoyant particles in pipe
flows (Matas, Morris & Guazzelli 2003; Agrawal, Choueiri & Hof 2019). We compare the
analytically predicted critical Reynolds number with the results of an extended numerical
investigation and we explain the observed discrepancies for some values of the parameters
with the breakdown of the scale separation assumption.

The remainder of this paper is organized as follows. In § 2 we introduce the Saffman
model. In § 3 we perform the linearization around the Kolmogorov base flow. Section 4 is
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devoted to the multiple-scale approach for the linear stability problem. In § 5 we discuss
the dependence of the critical Reynolds number on the control parameters and compare the
analytical predictions with the numerical results. Finally, § 6 is devoted to the conclusions.

2. Saffman model for a dusty Kolmogorov flow

We consider an Eulerian model for a dilute suspension of heavy particles with
two-way coupling introduced by Saffman (1962) long ago. The model considers a dilute
mono-disperse suspension of small, heavy, spherical particles with density ρp and radius a
transported by a Newtonian fluid with density ρf and viscosity μ. Particle size is assumed
to be much smaller than any scale in the flow such that the particle Reynolds number is
negligible. The particle volume fraction φv = Npvp/V , defined in terms of the volume of
each particle vp = 4πa3/3 and the number of particles Np contained in the total volume
V , is assumed to be negligible while the mass fraction φ = φvρp/ρf can be of order one
since it is assumed ρp � ρf (as in a dilute suspensions of water droplets in air).

Within the model, the fluid density field remains constant because of the assumption of
vanishing φv and it is transported by the incompressible velocity field of the fluid phase
u(x, t). The solid phase is described by a number density field θ(x, t) = n(x, t)/(Np/V),
where n(x, t) is the local number of particles per unit volume. The normalization gives
〈θ〉 = 1, where the brackets 〈[·]〉 denote the average over the volume V . The number
density field θ is transported by a compressible particle velocity field v(x, t).

For small volume fractions (φv < 10−3) the dynamics of the particle-laden flow
can be described by a two-way coupling, which takes into account the interactions
between individual particles and the surrounding flow, but neglects the interactions
between particles (collisions and friction) and the particle–fluid–particle interactions (fluid
streamlines compressed between particles) (Elghobashi 1994). In the two-way coupling
regime, the exchange of momentum between the two phases can no longer be neglected
(Balachandar & Eaton 2010). For small heavy particles, such an exchange is mainly
mediated by the viscous drag force which is proportional to the difference between particle
and fluid velocities.

The accurate modelling of the coupling between the particles and the flow is a
challenging task. In Lagrangian–Eulerian approaches based on the point-particle method,
it requires taking into account the local perturbation to the fluid due to the presence of
the particle (Horwitz & Mani 2016). The Eulerian model proposed by Saffman is based
on a simplified assumption, namely that the coupling is obtained by imposing the local
conservation of the total momentum of the fluid and particle phases. This leads to the
following equations (Saffman 1962):

∂tu + u · ∇u = −∇p + ν∇2u + f + φ

τ
θ(v − u), (2.1)

∂tv + v · ∇v = −1
τ
(v − u), (2.2)

∂tθ + ∇ · (vθ) = 0, (2.3)

where τ = (2/9)a2ρp/(ρf ν) is the relaxation time of the particles, ν = μ/ρf is the
kinematic viscosity, p is the pressure and f is an external forcing.

In the limit of very tiny particles, i.e. small τ , the Saffman model reduces to the
Navier–Stokes equation for an incompressible flow with an increased density, and thus
a smaller viscosity (Saffman 1962). Indeed, when τ → 0 from (2.2) one has v = u.
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For small τ one can expand v = u + τ ṽ + O(τ 2) and (2.2) gives, at leading order,
ṽ = −(∂tu + u · ∇u) + O(τ ). Substituting now v = u − τ(∂tu + u · ∇u) in (2.3) one
obtains that the particle density field remains constant at leading order. Finally, using
θ = 1 + O(τ ) and (v − u)/τ = −(∂tu + u · ∇u) + O(τ ) in (2.1) gives

∂tu + u · ∇u = −∇p + ν

1 + φ
∇2u + f

1 + φ
, (2.4)

i.e. the Navier–Stokes equation for an incompressible velocity field with forcing and
viscosity rescaled by the factor (1 + φ).

Remarkably, we show that the same result is also recovered in the limit of large φ.
Indeed, from (2.1) one can write

u = v + τ

φ

1
θ

(
−∂tu + u · ∇u − ∇p + ν∇2u + f

)
, (2.5)

showing that the difference between u and v is of order 1/φ � 1. Substituting v =
u + O(1/φ) in (2.3) implies θ = 1 + O(1/φ) which, together with (2.5) in (2.2), yields
(2.4) multiplied by (1 + φ), i.e. again a Navier–Stokes equation with rescaled forcing and
viscosity. We remark that the limit of large φ is physically questionable since it could
violate the assumption of negligible volume fraction. Nonetheless, it is mathematically
well defined and we will use it the following to discuss our results.

We consider the case of a monochromatic periodic forcing f = F cos(Ky)x̂ which
produces the Kolmogorov laminar fixed point u(x) = v(x) = U( y) ≡ U cos(Ky) with
U = F/(νK2) and θ(x) = 1. We remark that, in general, the Kolmogorov flow is a
stationary solution also for θ(x) = g( y) with g an arbitrary function. Nonetheless, the
solution with uniform density θ is physically the more relevant as it survives in the
presence of an arbitrarily small diffusivity.

The non-dimensional parameters of the model are the Reynolds number Re = U/(νK),
defined in terms of the amplitude of the laminar flow U and on the only characteristic
length of the flow K−1, the Stokes number St = τνK2, defined as the ratio between the
particle relaxation time τ and the viscous time τν = 1/(νK2) and the mass fraction φ. In
the following, we will study the linear stability of the laminar fixed point as a function of
Re, St and φ.

We conclude this section with a comment about the limitations of the Saffman model.
Beside the assumption of small volume fraction, in the case of turbulent flows at high
Reynolds numbers the validity of the model (2.1)–(2.3) is in general limited to small
Stokes numbers St < 1. This is due to the phenomenon of caustics (Wilkinson & Mehlig
2005) which would imply a multi-valued particle velocity field breaking the validity of the
continuum description. Nonetheless, for the specific case of the linear stability of a laminar
parallel flow considered here, in the laminar fixed point the particle velocity field is equal
to the fluid velocity field, and therefore the model is well defined for arbitrary value of St.

3. Linear stability analysis

We study the linear stability of an infinitesimal perturbation of the basic Kolmogorov
flow. To this aim we expand (2.1)–(2.3) around the laminar fixed point u(x, t) = U( y) +
u′(x, t), v(x, t) = U( y) + v′(x, t), θ(x, t) = 1 + θ ′(x, t), and obtain the linearized
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equations for the perturbations

∂tu′ + U · ∇u′ + u′ · ∇U = −∇p′ + ν∇2u′ + φ

τ
(v′ − u′), (3.1)

∂tv
′ + U · ∇v′ + v′ · ∇U = −1

τ
(v′ − u′), (3.2)

∂tθ
′ + U · ∇θ ′ + ∇ · v′ = 0. (3.3)

We observe that, at this order, the density field becomes a passive scalar since it does not
enter (3.1)–(3.2). Therefore, the evolution of θ ′ can be neglected.

A remarkable simplification of the linear stability analysis can be achieved by invoking
the Squire theorem for parallel flows (Squire 1933), which states that it suffices to
consider two-dimensional perturbations, since three-dimensional perturbations are more
stable. From the original formulation, the theorem has been extended to various systems,
including magnetohydrodynamic equations (Hughes & Tobias 2001), stratified flows
(Balmforth & Young 2002) and viscoelastic flows (Bistagnino et al. 2007). In Appendix A,
we report the derivation of the Squire theorem for the dusty fluid model (3.1)–(3.2).

In the following we will therefore consider the two-dimensional version of the
linearized equation. It is convenient to rewrite the fluid velocity fluctuation in terms of
a streamfunction u′ = (∂yΨ, −∂xΨ ) and the compressible particle velocity in terms of a
particle streamfunction Ψp and potential Φp as v′ = (∂yΨp + ∂xΦp, −∂xΨp + ∂yΦp). In
terms of these fields the linear equations (3.1)–(3.2) read

∂t∇2Ψ + U cos(Ky)(K2 + ∇2)∂xΨ − ν∇4Ψ + φ

τ
∇2(Ψ − Ψp) = 0, (3.4)

∂t∇2Ψp+U cos(Ky)
[
(K2+∇2)∂xΨp − K2∂yΦp

]
−Uk sin(Ky)∇2Φp + ∇2(Ψp − Ψ )

τ
= 0,

(3.5)

∂t∇2Φp + U cos(Ky)∂x∇2Φp − 2UK sin(Ky)
(
∂x∂yΦp − ∂2

x Ψp

)
+ 1

τ
∇2Φp = 0. (3.6)

For a Newtonian fluid (φ = 0), the laminar solution is known to be linearly stable
to perturbations at wavenumbers larger than K, and to become unstable to large-scale
transverse perturbations (i.e. in the direction x transverse to the direction of modulation
z) above the critical value Rec = √

2 (Meshalkin & Sinai 1961; Sivashinsky & Yakhot
1985). As discussed in § 2, in the limit of small inertia (τ � 1) or large mass fraction
(φ � 1) the Saffman model recovers the Navier–Stokes equation with a rescaled viscosity
ν/(1 + φ). Therefore, in these limits we expect the critical Reynolds number to become
Rec = √

2/(1 + φ), i.e. the presence of tiny particles, or a large mass fraction of particles,
makes the flow more unstable.

4. Multiple-scale analysis

The general dependence of the critical Reynolds number on the parameters τ and φ

can be obtained by a standard multiple-scale analysis (Bensoussan et al. 2011) of the
linearized equations (3.4)–(3.6). The main idea of the multiple-scale method is to search
for a perturbation which varies on spatial scales much larger than those of the base flow.
For this purpose, beside the small-scale variables x, y and t, the multiple-scale method
introduces the large-scale spatial variables X = εx, Y = εy and a corresponding slow time
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T = ε2t, where the small parameter ε is the ratio between the characteristic scales of the
basic flow and the perturbation. The relative powers of ε in the space and time variables
reflect the diffusive dynamics expected at large scales. The two sets of variables are then
assumed to be independent, so that by averaging over the small scales it is possible to
obtain an effective diffusion-like equation for the large scales, which defines an eddy
viscosity. A change of sign of the eddy viscosity corresponds to a change of the stability
of the perturbation. In particular, the system becomes unstable when the eddy viscosity
becomes negative (Sivashinsky & Yakhot 1985; Dubrulle & Frisch 1991).

The choice of the multiple-scale method to study the stability of the dusty Kolmogorov
flow is motivated by the fact that, in the Newtonian case (at φ = 0), the most unstable
perturbation is indeed at large scale, and the multiple-scale prediction for the critical
Reynolds number is correct. For simplicity of the calculation, and in analogy with the
Newtonian case, we also assume that the most unstable perturbation is transverse, i.e.
depends on the large-scale variable X only and not on Y . The validity of these assumptions
for the dusty gas at φ > 0 will be checked by extensive numerical simulations of the
linear systems in § 5. In particular, we anticipate that, while the transverse nature of the
most unstable perturbation was always confirmed, in a certain parameter region the scale
separation appears to be violated, when this happens the multiple-scale approach does not
provide the correct prediction.

Before proceeding, it is convenient to rewrite (3.4) in terms of a co-streamfunction
defined as χ = Ψ + φΨp. Such a choice allows us to remove the apparent singularity of
the Stokes drag in the limit τ → 0 in (3.4). Indeed, by combining (3.4) and (3.5) we obtain

∂t∇2χ + U cos(Ky)(K2 + ∇2)∂xχ − φUK
(

K cos(Ky)∂yΦp + sin(Ky)∇2Φp

)
−ν∇4(χ − φΨp) = 0, (4.1)

which removes the explicit dependence of (3.4) on τ . The linear systems for the
perturbative analysis is hence formed by the set of equations (4.1), (3.5) and (3.6).

Following the multiple-scale method, we assume a perturbative expansion of the fields

χ(X, y, T) = χ0(X, y, T) + εχ1(X, y, T) + ε2χ2(X, y, T),

Ψp(X, y, T) = Ψp,0(X, y, T) + εΨp,1(X, y, T) + ε2Ψp,2(X, y, T),

Φp(X, y, T) = Φp,0(X, y, T) + εΦp,1(X, y, T) + ε2Φp,2(X, y, T).

⎫⎪⎪⎬
⎪⎪⎭ (4.2)

The derivative operators are transformed as ∂x → ε∂X , ∂t → ε2∂T . Notice that the base
flow does not depend on x and t and therefore the same holds for the perturbation. By
inserting the expansions (4.2) and the fast/slow variable decomposition into (4.1), (3.5) and
(3.6) we obtain, at order ε0, that the zero-order fields do not depend on the fast variable, i.e.
χ0(X, y, T) = a0(X, T), Ψp,0(X, y, T) = b0(X, T) and Φp,0(X, y, T) = c0(X, T). At the
order ε2, the absence of secular terms requires c0 = 0.

The solvability condition is obtained by integrating (3.5)–(4.1) over one period of the
fast variable y. The first non-trivial condition is obtained at order ε3 and gives a relation
among the large-scale fields

a0(X, T) = (1 + φ)b0(X, T). (4.3)

At order ε4, we finally get the diffusion equation for the slow field a0

2
Re

(1 + φ)∂T∂2
Xa0(X, T) + νRe

(
1 − 2

Re2 + 2φ + φ2 − φSt
)

∂4
Xa0(X, T) = 0, (4.4)
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which defines the eddy viscosity

νe = ν
Re2

2(1 + φ)

(
2

Re2 − (1 + φ)2 + φSt
)

. (4.5)

The critical Reynolds number is finally obtained by the condition νe = 0 at which the eddy
viscosity becomes negative, indicating that the basic flow is linearly unstable (Sivashinsky
& Yakhot 1985; Dubrulle & Frisch 1991)

Rec =
√

2
(1 + φ)2 − φSt

. (4.6)

For φ = 0 the critical Reynolds number predicted by (4.6) recovers correctly the
Newtonian value Rec = √

2. Interestingly, the same value is recovered also on the neutral
curve St = 2 + φ. For St → 0 we obtain the Saffman limit Rc = √

2/(1 + φ). For St < 2,
(4.6) predicts a monotonic decrease of Rec as a function of φ (Rec(φ) ≤ Rec(0)), indicating
that tiny particles always destabilize the flow. On the contrary, for St > 2, the critical
Re depends on φ in a non-monotonic way: for φ < φmax = (St − 2)/2, Rec increases
monotonically above the Newtonian value

√
2, it reaches a maximum at φmax after

which it monotonically decreases and for φ > St − 2 it goes below
√

2. Therefore,
increasing the mass fraction particles first stabilize the flow up to a maximum then the
stabilizing effect decreases and, finally, for large enough mass fraction particles make
the flow more unstable than the in the Newtonian case. We remark that, according to (4.6),
the dusty Kolmogorov flow should always be stable (i.e. Rec → ∞) for St ≥ (1 + φ)2/φ
≥ 4. We will see that this is actually an overestimation of the stability due to the fact that
the main assumption of the multiple-scale analysis (instability to large-scale perturbations)
does not hold in a certain region of the parameter space (φ, St).

5. Numerical analysis

To check the validity of the analytical result (4.6) obtained with the multiple-scale analysis,
we performed an extensive numerical study of the linearized equations in two dimensions
(3.4)–(3.6) by means of a pseudo-spectral method in a square domain of size L = 2π with
periodic boundary conditions. For each set of values of the parameters φ and St in the
range 0 ≤ φ ≤ 6 and 0 ≤ St ≤ 6 we have studied the stability of the system on varying the
Re number. The latter has been varied by changing the amplitude of the forcing F while
keeping fixed the viscosity ν = 10−3 and the scale of the base flow 1/K. Simulations were
done at two different resolutions, with 1282 and 2562 grid points and forcing wavenumber
K = 32 and K = 64, respectively, to check finite size effects. A random initial perturbation
has been imposed on each Fourier mode (kx, ky) in the range 0 ≤ |k| ≤ K. The stability
of each mode and its growth rate is determined by the temporal evolution of its amplitude
after a short transient. The critical Reynolds number was determined by means of the
bisection method based on the total kinetic energy of the fluid.

In figure 1(a) we plot the critical Reynolds number as a function of the Stokes number
for different mass fraction values φ. At small St, Rec is smaller than that of the single-phase
fluid (Rec = √

2 for φ = 0) and the numerical results are in agreement with the theoretical
prediction (4.6). In particular, in the limit St � 1, the critical Reynolds number recovers
the Saffman limit Rec = √

2/(1 + φ) (not shown). The critical Reynolds number increases
monotonically with St at fixed φ, eventually becoming larger than

√
2, meaning that large

931 A26-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

97
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.971


A. Sozza, M. Cencini, S. Musacchio and G. Boffetta

0

0.5

1.0

1.5

2.0

2.5

3.0

0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6

Rec

St

φ
1.0
2.0
3.0
4.0
5.0

1 2 3 4 5 6

φ

St
1.0
2.0
3.0
4.0
5.0

(a) (b)

Figure 1. Critical Reynolds number (a) as a function of the Stokes number St for different values of φ and (b)
as a function of the mass fraction φ for different values of St. The values of the parameters φ and St are reported
in the legend. Solid curves denote the multiscale prediction (4.6); symbols the numerical results; dashed lines
display the Newtonian value

√
2; dash-dotted line in panel (b) shows the Saffman limit

√
2/(1 + φ).

particle inertia has a stabilizing effect on the flow. At a qualitative level, the physical
mechanisms of the stabilizing/destabilizing effect of the particles have been already
discussed by Saffman (1962). Particles with small St follow the flow almost like tracers,
so that their effect is simply to increase the density of the suspension. Therefore, the
dusty gas behaves as a Newtonian flow with a reduced kinematic viscosity (see (2.4))
which makes the flow more unstable. Conversely, particles with large inertia do not
follow the perturbation of the flow, but they ‘carry on with the velocity of the base flow’
(Saffman 1962). The disturbance has therefore to flow around the particles, dissipating
its energy because of the viscous drag. Our numerical results show that the stabilizing
effect at large St is weaker than the prediction (4.6). In particular, the multiple-scale
method predicts unconditioned stability (i.e. Rec = ∞) for St ≥ (1 + φ)2/φ, while in the
numerical simulations Rec remains finite.

The behaviour of Rec as a function of the mass fraction φ for fixed values of St, shown
in figure 1(b), gives further insights into the stability of the system. In agreement with
(4.6), we find that Rec is monotonically decreasing for St ≤ 2 (i.e. tiny particles always
destabilize the flow). Conversely, at St > 2 the particles at low concentration stabilize the
flow while at sufficiently large concentrations φ ≥ St − 2 they have a destabilizing effect.
It is interesting to note that a similar non-monotonic behaviour as a function of the mass
loading has been observed also for the skin-friction coefficient in Lagrangian–Eulerian
simulations of inertial particles in a vertical channel flow (Capecelatro, Desjardins & Fox
2018). The physical mechanism of the destabilizing effect at large φ is similar to that of the
case of small St. The strong drag exerted by the large mass fraction forces the fluid to follow
closely the particle velocity (see (2.5)). As a consequence, the dusty gas behaves almost
as a single-phase fluid with a larger density and therefore a smaller kinematic viscosity,
which reduces its stability. From figure 1(b) it is evident that the agreement between the
multiple-scale result and numerical simulations is very good for any φ up to St = 3. For
St ≥ 4, the multiple-scale result (4.6) overestimates the Rec for an intermediate interval
of values of φ around φmax = (St − 2)/2. Nonetheless, also in these cases (St = 4 and
St = 5) the multiple-scale prediction works well for small and large values of φ.

In order to understand why the multiple-scale analysis fails in predicting the correct Rec
at large St, we computed numerically the growth rate σ as a function of the wavenumber
kx of the perturbation (i.e. the dispersion relation) for different values of the parameters φ

and St. In figure 2(a) we show the dispersion relation computed at the critical point Re =
Rec for St = 4 and three values of the mass fraction. For small and large mass fractions
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Figure 2. Panel (a) shows the non-dimensional growth rate σ/(νK2) as a function of the x-wavenumber kx at
the onset of the instability Re = Rec for St = 4 and different values of the mass fraction φ as labelled. Panel
(b) shows the first unstable mode kc normalized by K as a function of φ for different values of St as labelled.

(φ = 0.1 and φ = 5) we observe that the growth rate σ is a monotonically decreasing
function of kx and the unstable mode is the smallest available wavenumber kc = kmin ≡
2π/L. In these cases, the hypothesis of large scale separation is justified and indeed the
predictions of the multiple-scale analysis are in agreement with the numerical results.
Conversely, for φ = 1 the curve σ(kx) is non-monotonic and the unstable mode appears to
be at kc � 0.3K, therefore the instability is no more triggered by large-scale perturbations
and multiple-scale analysis fails to predict the instability. Similar behaviours have been
observed also for St = 5 and St = 6 (not shown). To systematically investigate the region
of parameters for which the multiple-scale analysis is not expected to work we numerically
studied the dependence of the unstable (transverse) mode kc on φ and St at Re = Rec,
shown in figure 2(b). For St ≥ 4 and intermediate values of φ we found kc � 0.3K, while
for St ≤ 3 (not shown) we always found kc = kmin in agreement with the multiple-scale
assumption. By comparing figures 2(b) and 1(b) we clearly observe the correspondence
between the theoretical–numerical agreement in figure 1(b) and the fact that kc � K.

6. Conclusions

We have investigated the linear stability of a dilute suspension of heavy particles in the
Kolmogorov flow within the Eulerian model proposed by Saffman (1962). In the absence
of particles, it is well known that the value of the critical Reynolds number Rec = √

2
for the stability of the laminar base flow can be obtained by means of a multiple-scale
analysis. Here, we have adopted the same approach to extend the study of the linear
stability to the full parameter space of the Saffman model given by the Reynolds number
Re, the mass fraction φ and the Stokes number St. The multiple-scale prediction for the
onset of the instability, Rec =

√
2/((1 + φ)2 − φSt), as a function of St and φ has been

compared with the results of numerical simulations of the linearized system. Figure 3
summarizes the main results. Particles with small inertia (St < φ + 2, blue region) reduce
the stability of the base laminar flow. Conversely, the presence of particles with large
inertia (St > φ + 2, red region) retards the onset of the instability. The prediction of the
neutral curve St = φ + 2 in which the effect of the particles on the linear stability vanishes
is confirmed by numerics. In general, we have found that the multiple-scale analysis
correctly predicts the values of Rec in a large part of the parameter space. It correctly
recovers the limit of a Newtonian flow with rescaled viscosity ν/(1 + φ) both for St � 1
and φ � 1. Nonetheless, for large St it overestimates Rec in an intermediate range of φ.
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Figure 3. Critical Reynolds number as a function of φ and St. Red (blue) colour scale denotes regions more
stable (unstable) than the Newtonian flow in which Rec >

√
2 (Rec <

√
2). Solid black line is the neutral curve

St = φ + 2 at which Rec = √
2. Dashed line represents the border of the region of unconditioned stability

predicted by the multiple-scale analysis St > (1 + φ)2/φ.

In particular, the region of unconditioned stability St > (1 + φ)2/φ is not observed in
the numerics. By investigating numerically the dispersion relation at the critical Reynolds
number, we have found that the failure of the multiple-scale prediction is due to the lack
of scale separation between the most unstable mode and the wavenumber of the base flow,
thus invalidating the assumptions of the perturbative approach in that parameter region.
A natural extension of the present work would be to investigate the weakly nonlinear
dynamics of the Kolmogorov–Saffman system and the structure of the secondary flow
above Rec (Sivashinsky 1985).

We conclude with two comments concerning the choice of the Kolmogorov base flow
and the Saffman model. The first is related to the preferential concentration of inertial
particles, which, in principle, can be observed also in laminar flow. For a parallel flow
(such as Kolmogorov one), the fixed point solution of the model has a uniform particle
density field and the infinitesimal perturbation of the density is passively transported in
the linearized dynamics. Therefore, preferential concentration does not influence the linear
stability of the Saffman model. To investigate such effects requires the choice of a different
base flow.

The second concerns the relevance of our results to real-world systems. Modelling
the coupling between the particles and the fluid in particle-laden flows is a challenging
task which requires a compromise between accuracy and simplicity. The simplicity of
the Saffman model combined with that of the Kolmogorov flow allowed us to obtain an
analytic prediction for the critical Reynolds number. Our results could, in principle, differ
quantitatively from those of more refined models (e.g. Lagrangian models with accurate
implementation of the two-way coupling). Nonetheless, our work offers a qualitative
benchmark for future experimental studies and numerical simulations based on Lagrangian
approaches which allow us to include additional effects, such as finite particle size
or particle–particle interactions, which are not captured by the Saffman model. The
comparison between our results and those obtained by means of more accurate models
could improve our understanding concerning the impact of such complex processes on the
stability of laminar flows.
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Appendix A. Squire’s theorem for the Saffman model

We consider a generic parallel basic flow U = (U(z), 0, 0) in a three-dimensional
domain. The linearized Saffman model around the basic flow (3.1)–(3.2) written in
non-dimensional form is

∂tu + (U · ∇)u + (u · ∇)U = −∇p + 1
Re

∇u + φ

ReSt
(v − u) , (A1)

∂tv + (U · ∇)v + (v · ∇)U = − 1
ReSt

(v − u) , (A2)

where Re = U/(νK) and St = τνK2 and 1/K is the characteristic scale of U(z). We
now perform a Fourier transform in the directions x, y and t and write {u, v, p} =
{û(z), v̂(z), p̂(z)} exp(ikh · xh − iωt), where xh = (x, y)T and kh = (kx, ky)

T, with T
denoting the transpose. Introducing the notation Uh = (U(z), 0)T, ûh = (ûx, ûy)

T, and
v̂h = (v̂x, v̂y)

T, the linearized equations in normal modes take the form

(−iω + ikh · Uh)ûh + ûz
dUh

dz
= −ikhp̂ + 1

Re

(
d2

z2 − k2
h

)
ûh + φ

ReSt

(
v̂h − ûh

)
, (A3)

(−iω + ikh · Uh)ûz = −dp̂
dz

+ 1
Re

(
d2

dz2 − k2
h

)
ûz + φ

ReSt

(
v̂z − ûz

)
, (A4)

(−iω + ikh · Uh)v̂h + v̂z
dUh

dz
= − 1

ReSt

(
v̂h − ûh

)
, (A5)

(−iω + ikh · Uh)v̂z = − 1
ReSt

(
v̂z − ûz

)
. (A6)

The linearized dynamics described by the (A3)–(A6) is independent for each mode kh.
Therefore, for each mode kh it is possible to perform a rotation of the Fourier amplitudes
of the velocity fields ûh and v̂h in the direction of the wave vector kh by means of the
following transformation:

k̄x = |kh|, ω̄ = k̄x

kx
ω, Re = kx

k̄x
Re ≤ Re,

ūx = kh · ûh

|kh| , ūz = ûz, p̄ = k̄x

kx
p̂, v̄x = kh · v̂h

|kh| , v̄z = v̂z,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A7)
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From (A3)–(A6) one obtains the equations for the new variables

[−iω̄ + ik̄xU
]

ūx + ūz
dU
dz

= −ik̄xp̄ + 1

Re

(
d2

dz2 − k̄2
x

)
ūx + φ

ReSt
(v̄x − ūx) , (A8)

[−iω̄ + ik̄xU
]

ūz = −dp̄
dz

+ 1

Re

(
d2

dz2 − k̄2
x

)
ūz + φ

ReSt
(v̄z − ūz) , (A9)

[−iω̄ + ik̄xU
]
v̄x + v̄z

dU
dz

= − 1

ReSt
(v̄x − ūx) , (A10)

[−iω̄ + ik̄xU
]
v̄z = − 1

ReSt
(v̄z − ūz) . (A11)

The new system of (A8)–(A10) is formally identical to the original one (A3)–(A6) in
which one imposes a purely two-dimensional perturbation with ûy = v̂y = 0 and ky = 0.
Therefore, three-dimensional perturbations, which are unstable at a given Re, correspond
to a two-dimensional disturbance at smaller Reynolds number Re (and at the same φ and
St) with larger growth rate (Im(ω̄) ≥ Im(ω) > 0).
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