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Abstract

Probabilistic and stochastic algorithms have been used to solve many hard optimization problems since they can
provide solutions to problems where often standard algorithms have failed. These algorithms basically search through
a space of potential solutions using randomness as a major factor to make decisions. In this research, the knapsack
problem~optimization problem! is solved using a genetic algorithm approach. Subsequently, comparisons are made
with a greedy method and a heuristic algorithm. The knapsack problem is recognized to be NP-hard. Genetic algo-
rithms are among search procedures based on natural selection and natural genetics. They randomly create an initial
population of individuals. Then, they use genetic operators to yield new offspring. In this research, a genetic algorithm
is used to solve the 001 knapsack problem. Special consideration is given to the penalty function where constant and
self-adaptive penalty functions are adopted.
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1. INTRODUCTION

The integer-knapsack problem seek find a way to fill a knap-
sack of some given capacity with some elements of a given
set of available items of various types in the most profitable
way. The input to the problem consists of:

C, the total weight capacity of the knapsack,

a positive integerN, the number of items types,

a vectorQ, whereQ@i # the available number of items of
type i ,

a vectorW, whereW@i # the weight of each item of typei ,
satisfying 0, W@i # # C,

a vectorP, whereP@i # the profit gained by storing an
item of typei in the knapsack,

all input values are nonnegative integers.

The problem is to fill the knapsack with elements whose
total weight does not exceedC, such that the total profit of
the knapsack is maximal. The output is vectorF, where
F @i # contains the number of items of typei that are put into
the knapsack.

The integer-knapsack problem is a special case of the
knapsack problem~KP!, where discrete items are replaced
by materials. The difference is that instead of working with
integer numbers, real numbers are used to represent any
quantity of materiali which does not exceed the available
space in the knapsack.

The 001 knapsack problem is to find a way to fill a knap-
sack of a capacity C with a certain number of elements,
each having a weight and a profit, in the most profitable
way. Thus, the 001 KP is the task for a given set of weights
W@i # , profitsP@i # , and capacityC, to find a binary vector
x 5 ~x@1# , . . . ,x@n# !, such that

Maximizek~x! 5 (
i51

n

x@i # 3 P@i # ~1!

subject to(
i51

i5n

x@i # 3 W@i # # C. ~2!
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KP is NP-hard~Garey & Johnson, 1979!. The problem has
been intensively studied in the last 20 years both because of
its theoretical interest and its wide practical applicability in
operations research, computer science, engineering and man-
agement science. Because of the increasing number of the
potential applications, numerous algorithms have been de-
veloped to solve the KP especially for large problem sizes.
Several faster algorithms have been produced which pro-
vide good solution and approximate solutions. For exam-
ple, Sahni~1975! introduced approximation algorithms to
the 001 KP. Ibarra and Chul~1975! developed a fully poly-
nomial approximation scheme for the KP. Martello and Toth
~1988! designed a quite effective algorithm for large-size
problems, which is based on the use of a greedy algorithm
for solving large KP. Horowitz et al.~1994! also presented
a very simple algorithm solving the KP using a greedy
method. This paper addresses solving 001 KP using a ge-
netic algorithm guided by a self-adaptive penalty function.

2. GENETIC ALGORITHMS

The concept of a genetic algorithm~GA!, introduced by
John Holland~1973!, is a probabilistic heuristic search pro-
cedure that mimics the adaptation that nature uses to find
an optimal state. A GA uses past and current information to
direct the search with expected improved performance and
achieve reliable results. It can be viewed as a general pur-
pose optimization method and it has been successfully ap-
plied to a large variety of search, optimization, and machine
learning tasks. The genetic algorithm approach has been
found quite effective in obtaining the solution of a large
variety of complex optimization problems, such as multi-
dimensional knapsack~Chu & Beasley, 1998!, subset-sum
~Spillman, 1995!, bin packing~Falkenauer, 1996; Hussain
& Sastry, 1997! and timetabling~Kragelund, 1997!. In ob-
taining the solution, the GA adopts a strategy of search
based on an intelligent randomization process, and uses a
fitness function as criterion.

A genetic algorithm, as is shown in Figure 1, starts with
a population of randomly generated individuals. After eval-
uating all the population, individuals are selected for the
application of a crossover operator. Given two parents~se-
lected parents!, a crossover operator generates an off-
spring. Another genetic operator called mutate introduces
some random information to the offspring. The newly cre-
ated offspring replace some or all of the current popula-
tion, depending on the selection scheme, constructing the
new population.

3. A GENETIC ALGORITHM FOR THE 0/1
KNAPSACK PROBLEM

When constructing a genetic algorithm for a specific prob-
lem, there are five components which need to be defined.
The first is the genotype, which represents the individual
representation scheme. The second is the evaluation func-

tion that plays the role of the environment, rating individ-
uals based on their “fitness” value. The third is the breeding
~mating! process. The fourth is the mutation process. The
fifth is the assignment of values to various control param-
eters used by the GA. The last three components could also
be considered as the internal workings of a GA.

Fig. 1. Flowchart of genetic programming.
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3.1. Genotype

The natural representation of the 001 knapsack problem
would be the binary representation, in which every bit rep-
resents the existence or not of a certain element of the KP.
Thus, each element identification is given by the bit index.
Hence a typical population of two individuals for a four-
element KP would be:

1001 put elements 1 and 4 in the knapsack,

0110 put elements 2 and 3 in the knapsack.

3.2. Evaluation function

A feasible vector solutionx needs to satisfy constraint~2!,
otherwise it is infeasible. Hence, a penalty is applied to all
infeasible solutions in order to decrease their correspond-
ing “fitness.” Therefore, two types of evaluation functions
used in this research are based on static~constant! and self-
adaptive penalty functions. The standard evaluation func-
tion for each individual is given by the following expression:

Evaluation~x! 5 (
i51

i5n

~x@i # 3 P@i # ! 2 Pen~x! ~3!

Maximum Profit Possible5 Max k 5 (
i51

i5n

P@i # . ~4!

A vector solutionx is optimal whenEvaluation~x! 5 Max k.
With a simple change of variable, a better evaluation

function is designed for a better performance monitoring.

New-Evaluation~x! 5 12 ~~Max k 2 Evaluation~x!!0Max k!.

~5!

Here, a solutionx is optimal whenNew-Evaluation~x! 5
1.0, and the worst solution is whenNew-Evaluation~x! 5
0.0, wherex represents the binary vector~individual! of KP
elements;

where

W@i # 5 random @0. .1#; W@i # represents the weight of
elementi ;

P@i # 5 W@i # 1 0.5; P@i # represents the profit of ele-
ment i ~profits and weights are correlated!;

Capacity5 0.53S(
i51

i5n

W@i #D; capacity of the knapsack.~6!

Constant Penalty Function:

$

Pen5 0; Temp5S(
i51

i5n

~x@i # 3 W@i # !D2 Capacity

If ~Temp$ 0! Then Pen5 SQRT~Temp! ~7!

Return Pen

%

Self-adaptive Penalty Function:

$

Pen5 0; Temp5S(
i51

i5n

~x@i # 3 W@i # !D
Weight-Factor 5 Temp0Capacity ~8!

Loop-Iteration 5 ~Integer!~Ceiling~a 3 Weight-Factor1 b!!

~9!

00 a andb are to be determined

Temp5 Temp2 Capacity

If ~Temp$ 0! Then

pen5 SQRT~Temp!

For ~i51; i # Loop-Iteration; i11!

Pen5 SQRT~Pen!

Return Pen

%

What makes a vector solutionx infeasible is that the
total weight of the individualx has exceeded the knapsack
capacity. Since the capacity is considered to be half the
total possible knapsack weight, it means that(i51

i5n~x@i # 3
W@i # ! 5 r * Capacity, where 1, r # 2.

When r 5 2, this indicates that the total weight of the
solution vectorx is twice the capacity of the knapsack. Here
a maximum penalty is applied at the individualx, which is
translated by setting a minimum value toLoop-Iteration.

Whenr 511 e, wheree ,, 1, this indicates that the total
weight of vectorx is slightly larger than the knapsack ca-
pacity. Here a minimum penalty is applied at the individual
x, which makesLoop-Iterationto be assigned a maximum
value. Assumee 5 0.01~1% of the total knapsack capacity!.
The linear function betweenLoop-Iterationandr is deter-
mined as follows:

Loop-Iteration ~ r! 5 a * r 1 b. ~10!

The assignments of the parameters~Loop-Iteration, a, and
b! are explained in the next section.

3.2.1. Setting values for Loop-Iteration, a andb

For large knapsack size, say 20,000 elements,W@i # 5
1.0 andx@i # 5 1.0 for all elementsi . This represents the
worst case scenario. Knapsack capacity@Eq. ~6!# becomes
0.53 20,0005 10,000.

Weight-Factor @Eq. ~8!# 5 S20,000

10,000D5 2.0

Pen@Eq. ~7!# 5 SQRT~20,000.02 10,000.0! 5 100.0.
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Here maximum penalty is applied to the individual. There-
fore, makeLoop-Iterationminimum, that is, 1. Hence,Pen5
SQRT~100.0! 5 10.0~returned penalty!.

The scenario for a minimum penalty happens when the
total weight of the individualx is slightly larger than the
knapsack capacity~say, by 1%!, which makesr 5 1.01.
Here a minimum penalty is returned by the self-adaptive
penalty function as follows:

Weight-Factor 5 1.01

Pen5 SQRT~10,100.02 10,000.0!

5 SQRT~100.0! 5 10.0.

Performing SQRT four times will returnPen5 1.1547~re-
turned penalty!.

Thus, for a large knapsack of 20,000 elements, the adap-
tive penalty function used in this research computes the
minimum and the maximum penalties as approximately 1
and 10, respectively. Putting those values into Eq.~10!, the
following equations are obtained:

r~1.01! 5 4 ~11!

r~2! 5 1. ~12!

After solving the system of equations~10!, ~11!, and~12!, it
yieldsa 5 23.03 andb 5 7.06.

Table 1 lists some values forWeight-Factortogether with
the correspondingLoop-Iterationwhich is used in the ex-
ecutions of the GA.

3.3. Internal workings of the GA

3.3.1. Selection

The selection scheme is responsible for selecting two
parents~individuals!. Goldberg~1989! reported various se-
lections types, such as stochastic remainder, elitism, crowd-
ing factor model, tournament, and roulette wheel. The one
used in this research paper is elitism. Elitism is a mecha-
nism which is employed in a GA that ensures that the most
highly fit individuals of the population are passed on to the
next generation without being altered by genetic operators.

3.3.2. Crossover

The power of GAs arises from crossover. Crossover causes
a structured, yet randomized exchange of genetic material

between solutions, with the possibility that the “fittest” so-
lutions generate “better” ones. A crossover operator should
preserve as much as possible from the parents while creat-
ing an offspring. Crossover happens only with some prob-
ability Pc. The crossover operator used here is the simple
one-point crossover.

The way the one-point crossover works as follows: an
integerPosis selected uniformly at random within the range
@1, Individual-Length21# , then two new offspring are cre-
ated by swapping all bits between positionsPos1 1 and
andIndividual-Length. For example, using the character “6”
to note random positionPos, consider the selected individ-
uals~parents! Ind1 andInd2 from the KP initial population:

Ind1 5 110006011

~Pos5 5!

Ind2 5 010106010

The resulting crossover yields two new individuals~off-
spring! Ind1

* andInd2
*:

Ind1
* 5 11000010

Ind2
* 5 01010011

3.3.2. Mutation

Since the crossover operator preserves information al-
ready existing in the parents, but if is the only genetic op-
erator used in the GA, it will restrain the diversity of the
population. Mutation involves the modification of each bit
of an individual with some probabilityPm. Although the
mutation operator has the effect of destroying the structure
of a potential solution, chances are it will yield a better
solution. Mutation in GAs restores lost or unexplored ge-
netic material into the population to prevent the premature
convergence of the GA. It has also been stated in Hussain
and Sastry~1997! that mutation acts like a local improve-
ment operator.

Uniform mutation is used in this research which simply
works here as follows:

Let Ind1 5 11000011 be the individual to be mutated at
position 3.

The new individual after mutation isInd1
* 5 11100011.

Crossover operators such as multipoint, order-based,
position-based, and mutation operators such as nonuni-
form, scramble sublist, smooth, and many more are listed
in Michalewicz ~1996!.

3.4. Control parameters

For all the experimental analyses and discussions, the prob-
ability of crossoverPc 5 0.8, the probability of mutation
Pm 5 0.01, and maximum number of generations is vari-

Table 1. Loop-Iteration versus Weight-Factor

Weight-Factor

1.0001 1.001 1.01 1.10 1.4 1.7 1.9

Loop-Iteration 5 5 4 4 3 2 2
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able, depending on the size of the KP, whereas the popula-
tion size is 30.

4. EXPERIMENTS AND RESULTS

The results were averaged in all of the conducted experi-
ments. SGA represents the GA with static~constant! pen-
alty function, and AGA represents the GA with self-adaptive
penalty function. Once the SGA and AGA start executing,
the parameters are kept identical for the entire experiment.

The GA approach is compared with greedy method~GM!
and heuristic algorithm~HA!. GM makes locally optimal
choices at each step in the hope that these choices will
produce a globally optimal solution. The following vari-
ables are used in both the GM and the HA:

p@1. .n# andw@1. .n# contain the profits and weights re-
spectively of then objects, ordered such that~ p@i #0
w@i # ! $ ~ p@i 1 1#0w@i 1 1# !.

Pmax represents the profit of the solution andcap is the
knapsack size.

The general guidelines of the GM for the knapsack problem
is as follows:

Algorithm GreedyKnapsack

00 sol@1. .n# is the solution vector.

00For example at the end of GM, assumesol5 @10010010# .

00This solution indicates that only elements 1, 4, and 7 are
included in the solution for a

00maximum profit equal toPmax with respect to the knap-
sack capacity.

$

For ~i 5 1; i # n; i11! sol@i # 5 0;

00 Initialize the solution vector

temp5 cap; Pmax5 0;

For ~i 5 1; i # n; i11!

$

If ~w@i # . temp! break

00 Check if the weight exceeded the KP capacity

sol@i # 5 1; temp5 temp2 w@i #;

Pmax5 Pmax 1 p@i #;

%

%

Horowitz et al.~1994! proposed the heuristic algorithm for
the knapsack problem called the epsilon approximation.

Algorithm EpsilonApprox~ p, w, cap, n, k!

00 k is a nonnegative integer that defines the order of the
algorithm

00 In the following experiments,k 5 2.

$

Pmax 5 0;

for all combinationsI of size# k andweight# capdo

00 All (i50
k Ci

n different subsetsI consisting of at mostk
of then elements are generated.

00 If the currently generated subsetI is such that
(i[I w@i # . cap, it is considered as infeasible.

00Otherwise, the space remaining in the knapsack~cap2

(i[I w@i # ! is filled using the function Lbound.

$

PI 5

Pmax5 max~Pmax, PI 1 Lbound~I, p, w, m, n!;

%

Return Pmax;

%00 End of EpsilonApprox

The Function Lbound is given as follows:

Function Lbound~I, P, W, Cap, N!

$

Sum5 0; Temp5 Cap2 (
i[I

w@i #;

for i 5 1 to N do

if ~i Ó I ! and~W@i # # Temp! then

$

Sum5 Sum1 P@i # Temp5 Temp2 W@i #;

%

returnSum;

%

4.1. Analysis of the first experiment

Figure 2 shows that the HA outperforms the GM at every
attempt, and sometimes got better results than the SGA
~100 G, i.e., after 100 generations!. Meanwhile, it is notice-
able that after 100 generations, SGA and AGA were ex-
changing the leading role. But after 1000 generations, it is
always AGA that obtains the best results.
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Fig. 2. 100-element 001 KP.

Fig. 3. 500-element 001 KP.
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4.2. Analysis of the second experiment

When the KP size was changed to 500 elements, the HA got
better results than the GM but less than the genetic ap-
proach. Here as it is depicted in Figure 3, AGA performed
much better than the SGA after 500 generations as well as
after 5000 generations.

4.3. Analysis of the third experiment

During the last experiment, the KP size was changed to
1000 elements~Fig. 4!. The AGA produced the best perfor-
mance after the two snapshots~i.e., 1000 and 20,000 gen-
erations!. This increase in the number of generations is
twofold. First, the size of the KP is set to 1000 and second,
a convergence to a close to 100% performance~perfect
match! was targeted.

Those experiments were conducted various numbers of
times, with the same parameter settings, and the AGA per-
formance was exactly unchanged, that is, solutions with
evaluation function reaching 0.995. At this point, the solu-
tion to the KP yielded so far is quite sufficient. After inves-
tigating further, and replacing the constant penalty function
by the self-adaptive penalty function, an improved solution
was observed. Note that in this research, no hill-climbing

~local search! technique was added to the AGA in order to
improve its performance.

5. CONCLUSIONS

This work applied a genetic algorithm to optimize to the
001 knapsack problem. The first GA used a constant pen-
alty function, and the second used an adaptive penalty func-
tion. As has been observed during the experiments conducted
in this paper, the AGA was able to generate the best results,
for different KP sizes, when compared with SGA, GM, and
HA.

Self-adaptation~or adaptation of parameters! is one of
the most promising areas of genetic algorithms; it tunes the
program during its execution while solving the problem.
Furthermore, the concept of adapting control parameters
during the program run fits also in the arena of artificial life
and evolutionary computation. When this concept is used in
solving combinatorial optimization problems, it yields bet-
ter performance.
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