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For a smooth manifold N denote by Em(N) the set of smooth isotopy classes of
smooth embeddings N → Rm. A description of the set Em(Sp × Sq) was known
only for p = q = 0 or for p = 0, m �= q + 2 or for 2m � 2(p + q) + max{p, q} + 4.
(The description was given in terms of homotopy groups of spheres and of Stiefel
manifolds.) For m � 2p + q + 3 we introduce an abelian group structure on
Em(Sp × Sq) and describe this group ‘up to an extension problem’. This result has
corollaries which, under stronger dimension restrictions, more explicitly describe
Em(Sp × Sq). The proof is based on relations between sets Em(N) for different N
and m, in particular, on a recent exact sequence of M. Skopenkov.
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1. Introduction and main results

1.1. Some general motivations

This paper is on the classical Knotting Problem: for an n-manifold N and a
number m, classify isotopy classes of embeddings N → Rm. For recent surveys see
[16,27]; whenever possible I refer to these surveys not to original papers.

I consider smooth manifolds, embeddings and isotopies. By a classification I mean
a readily calculable classification.1 Main results are stated in § 1.2 independently of
§ 1.1.

Many interesting examples of embeddings are embeddings Sp × Sq → Rm, i.e.
knotted tori. See references in [17]. Since the general Knotting Problem is very
hard [16], it is very interesting to solve it for the important particular case of
knotted tori. Classification of knotted tori is a natural next step after the Haefliger
link theory [12] and the classification of embeddings of highly-connected manifolds
[27, § 2], [15]. Such a step gives some insight or even precise information concerning
embeddings of arbitrary manifolds [26,31,33], and reveals new interesting relations
to algebraic topology.

1For a discussion of the adjectives ‘smooth’, ‘readily calculable’, and of embeddings into Rm vs
into Sm see [7, remark 2.20], [16, remarks 1.1 and 1.2].
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550 A. Skopenkov

The Knotting Problem is more accessible for 2m � 3n + 4, when there are some
classical complete readily calculable classifications of embeddings [27, § 2, § 3], [16].
Cf. (S) of § 1.3.

The Knotting Problem is much harder for 2m < 3n + 4: if N is a closed manifold
that is not a disjoint union of homology spheres, then until recently no complete
readily calculable isotopy classification was known. This is in spite of the existence
of many interesting approaches including methods of Haefliger–Wu, Browder–Wall
and Goodwillie–Weiss [27, § 5], [3,9,36].

Classification results for 2m < 3n + 4 concern links [1,2,12], embeddings of
d-connected n-manifolds for 2m � 3n + 3 − d [23,24], embeddings of 3- and 4-
dimensional manifolds [6–8,28,30], and rational classification of embeddings
Sp × Sq → Rm under stronger dimension restriction than m � 2p + q + 3 [4,5] (see
footnote 2). The methods of those papers essentially use the restrictions present
there.

The new ideas allowing to go beyond the above results follow [32] and unpub-
lished work [25]. One idea is to find relations between different sets of (isotopy
classes of) embeddings, invariants of embeddings and geometric constructions of
embeddings. Group structures on sets of embeddings are constructed.2 Then such
relations are formulated in terms of exact sequences. The most non-trivial exact
sequence is relation of knotted tori to links and knotted strips Dp × Sq → Sm, i.e.
the νσ(iζλ′)-sequence from the proof of theorem 1.2 in § 2.2. This is the main the-
oretical result [32, theorem 1.6] of [32], which non-trivally extends [25, Restriction
lemma 5.2] and [34, lemma 2.15.a] (see footnote 2).

This theoretical result yielded rational classification (corollary 1.4.a [32, corollary
1.7]). Still, it was expected that embeddings Sp × Sq → Rm are hard to classify for
m � 2p + q + 3 > q + 3. Such a classification is the main result of this paper. The
main idea of this paper is, in some sense, a reduction of classification of knotted tori
to classification of links and knotted strips (rather than a relation as in [32]). This
is obtained by discovering new relations between different sets of embeddings, and,
more importantly, connections between such relations, formulated in terms of dia-
grams involving the exact sequences, see § 2.2. These ideas are hopefully interesting
in themselves.

1.2. Statements of main results

For a manifold N let Em(N) be the set of isotopy classes of embeddings N → Sm.
Abelian group structures on Em(Dp × Sq) for m � q + 3 and on Em(Sp × Sq) for
m � 2p + q + 3 are defined analogously to the well-known case p = 0. The sum
operation on Em(Dp × Sq) is ‘connected sum of q-spheres together with normal p-
framings’ or ‘Dp-parametric connected sum’. The sum operation on Em(Sp × Sq)
is ‘Sp-parametric connected sum’, cf. [19,26,31], [33, theorem 8]. See accurate
definitions in § 2.1; cf. [34, remarks 2.3 and 2.4].

Our main results describe the group Em(Sp × Sq) up to an extension problem.

2 Group structures are constructed in [25] and, with more details, here and in [34, § 3.2]. This
is already used in [4,5,32].
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Definitions of [·], the ‘embedded connected sum’ or ‘local knotting’ action

# : Em(N) × Em(Sn) → Em(N),

and of Em
# (N). By [·] we denote the isotopy class of an embedding or the homotopy

class of a map.
Assume that m � n + 2 and N is a closed connected oriented n-manifold.

Represent elements of Em(N) and of Em(Sn) by embeddings f : N → Sm and
g : Sn → Sm whose images are contained in disjoint balls. Join the images of f, g
by an arc whose interior misses the images. Let [f ]#[g] be the isotopy class of
the embedded connected sum of f and g along this arc, cf. [11, theorem 1.7], [12,
theorem 2.4], [1, § 1].

For N = Sq � Sn this construction is made for an arc joining f(Sn) to g(Sn).
For m � n + 2 the operation # is well-defined.3 Clearly, # is an action.
Let Em

# (N) be the quotient set of Em(N) by this action and q# : Em(N) →
Em

# (N) the quotient map. A group structure on Em
# (Sp × Sq) is well-defined

by q#f + q#f ′ := q#(f + f ′), f, f ′ ∈ Em(Sp × Sq), because (f#g) + f ′ = f +
(f ′#g) = (f + f ′)#g by definition of ‘+’ in § 2.1.

The following result reduces description of Em(Sp × Sq) to description of
Em(Sp+q) and of Em

# (Sp × Sq), cf. [22], [6, end of § 1].

Lemma 1.1 (Smoothing; proved in § 2.4). For m � 2p + q + 3 we have
Em(Sp × Sq) ∼= Em

# (Sp × Sq) ⊕ Em(Sp+q) .

The isomorphism of lemma 1.1 is q# ⊕ σ, where σ is ‘surgery of Sp × ∗’ defined
in § 2.4. It has the property (q# ⊕ σ)(f#g) = q#(f) ⊕ (σ(f) + g) for each f ∈
Em(Sp × Sq), g ∈ Em(Sp+q).

Denote by Vs,t the Stiefel manifold of t-frames in Rs. Identify Vs,1 with Ss−1.
Known results easily imply (see corollary 1.5.a) that

Em
# (Sp × Sq) ∼= πq(Vm−q,p+1) for 2m � 2p + 3q + 4.

Our main result generalizes this for m � 2p + q + 3.
For m � n + 3 denote by

• λ = λm
q,n : Em(Sq � Sn) → πq(Sm−n−1) the linking coefficient that is the

homotopy class of the first component in the complement to the second
component, see accurate definition in [18], [27, § 3].

• Em
U (Sq � Sn) ⊂ Em(Sq � Sn) the subset formed by the isotopy classes of

embeddings whose restriction to each component is unknotted.

• Km
q,n := ker λ ∩ Em

U (Sq � Sn); see geometric description in [29, § 3, Definition

of D̂M
m

p,q].

3This is proved analogously to the case X = D0
+ of the Standardization lemma 2.1.b below,

because the construction of # has an analogue for isotopy, cf. [34, § 3.2].
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Theorem 1.2 (proved in § 2.2). For m � 2p + q + 3 the group Em(Dp+1 × Sq) has
a subgroup X = Xm

p,q such that Em
# (Sp × Sq) has a subgroup isomorphic to X ⊕

Km
q,p+q whose quotient is isomorphic to Em(Dp+1 × Sq)/X.
Moreover, there are maps forming the following commutative diagram, in which

the horizontal sequence is exact:

The subgroup Xm
p,q is finite unless q = 4k − 1 and m = 6k + p for some k � p/2 + 1,

and X6k+p
p,4k−1 is the sum of Z and a finite group for such k.

The subgroup Xm
p,q is the kernel of the restriction map to Em(Dp × Sq). The

maps σ#, μ and ν are defined in § 2.2, r is the restriction map to Em(Sp × Sq), and
qX is the quotient map. For relation between πq(Vm−q,p+1) and Em(Dp+1 × Sq)
see theorem 1.7.

Conjecture 1.3. For m � 2p + q + 3

Em(Sp × Sq) ∼= Em(Dp+1 × Sq) ⊕ Km
q,p+q ⊕ Em(Sp+q).

This is equivalent to Em
# (Sp × Sq) ∼= Em(Dp+1 × Sq) ⊕ Km

q,p+q by the Smoothing
lemma 1.1. For more discussion see [34, remark 1.9].

Known cases of theorem 1.2, the Smoothing lemma 1.1 (and of conjecture 1.3)
are listed in [34, remark 1.8.a]. In particular, these are new results only for

1 � p < q and 2m � 3q + 2p + 3.

Analogous remark holds for the following corollaries of theorem 1.2 which, under
stronger dimension restrictions, describe Em(Sp × Sq) more explicitly.

Denote by TG the torsion subgroup of an abelian group G.

Corollary 1.4. Assume that m � 2p + q + 3.

(a) [32, corollary 1.7]

Em(Sp × Sq) ⊗ Q ∼= [πq(Vm−q,p+1) ⊕ Em(Sq) ⊕ Km
q,p+q ⊕ Em(Sp+q)] ⊗ Q.

(b)

|Em(Sp × Sq)| = |Em(Dp+1 × Sq)| · |Km
q,p+q| · |Em(Sp+q)|

(more precisely, whenever one part is finite, the other is finite and they are
equal).

(c)

|TEm(Sp × Sq)| = |TEm(Dp+1 × Sq)| · |TKm
q,p+q| · |TEm(Sp+q)|,

unless m = 6k + p and q = 4k − 1 for some k.
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(d) For the diagram of theorem 1.2 any Zs-direct summand of Km
q,p+q is mapped

under σ# to a Zs-direct summand in Em
# (Sp × Sq).

(e) For the diagram of theorem 1.2 any Zs-direct summand of Em(Dp+1 × Sq)/X
is the image of Zs-direct summands Δ ⊂ Em(Dp+1 × Sq) and Σ ⊂ Em

#

(Sp × Sq) such that rΔ = Σ.

Parts (a,b,c) are simplified versions of conjecture 1.3. Part (a) follows by theorem
1.2 and the isomorphism (DF) of § 1.3. Parts (b) and (e) follow by theorem 1.2 in a
standard way. Part (c) follows from parts (d,e) and theorem 1.2. Part (d) is proved
in § 1.3.

Definition of Z(s) and the maps prk,

τ = τm
p,q : πq(Vm−q,p+1) → Em(Dp+1 × Sq).

Denote by Z(s) the group Z for s even and Z2 for s odd.
Denote by prk the projection of a Cartesian product onto the k-th factor.
Represent an element of πq(Vm−q,p+1) by a smooth map x : Sq → Vm−q,p+1. By

the exponential law this map can be considered as a map x : Rp+1 × Sq → Rm−q.
The latter map can be normalized to give a map x̂ : Dp+1 × Sq → Dm−q. Let τ [x]

be the isotopy class of the composition Dp+1 × Sq x̂×pr2→ Dm−q × Sq i→ Sm, where
i is the standard embedding (see accurate definition in § 2.1) [17], [27, § 6]. Clearly,
τ is well-defined and is a homomorphism.

In this paper the sign ◦ of the composition is often omitted.

Corollary 1.5. Assume that m � 2p + q + 3.

(a) If 2m � 2p + 3q + 4, then q#rτ : πq(Vm−q,p+1) → Em
# (Sp × Sq) is an isomor-

phism.

(b) If 2m � p + 3q + 4, then Em
# (Sp × Sq) and πq(Vm−q,p+1) have isomorphic

subgroups with isomorphic quotients.

(b’) If 1 � p < k, then E6k−p
# (Sp × S4k−p−1) ∼= Z ⊕ Gk,p for a certain group Gk,p

such that Gk,p and π4k−p−1(V2k+1,p+1) have isomorphic subgroups with
isomorphic quotients.

(c) If 2m � 3q + 4, then Em
# (Sp × Sq) has a subgroup isomorphic to

πp+2q+2−m(VM+m−q−1,M ), whose quotient and πq(Vm−q,p+1) have isomor-
phic subgroups with isomorphic quotients.

(d) If 2m = 3q + 3, then Em
# (Sp × Sq) has a subgroup isomorphic to

πp+2q+2−m(VM+m−q−1,M ), whose quotient has a subgroup isomorphic to
Z(m−q−1), whose quotient and πq(Vm−q,p+1) have isomorphic subgroups with
isomorphic quotients.

Corollaries 1.5 are proved at the end of § 1.3, cf. [34, § 2.4].
The smallest m for which there are p, q such that 1 � p < q and 2p + q + 3 �

m � (3q + 2p + 3)/2 are m = 10, 11, 12. Then p = 1 and q = m − 5. Hence by the
Smoothing lemma 1.1, theorem 1.2, corollaries 1.5.b,b’,c,d and [11,21]
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• |E10(S1 × S5)| = |E10
# (S1 × S5)| = 4. Cf. [32, example 1.4].

• E11
# (S1 × S6) ∼= Z2 ⊕ Z and E11(S1 × S6) ∼= Z2 ⊕ Z ⊕ E11(S7), of which

E11(S7) is rank one infinite.

• E12
# (S1 × S7) ∼= Z2 ⊕ G, where |G| is a divisor of 8, and E12(S1 × S7) ∼= Z2 ⊕

G ⊕ E12(S8), of which E12(S8) is finite.

1.3. Calculations and proofs of corollaries

The group πr(Vm,n) is calculated for many cases, see e.g. [21], [2, lemma 1.12].

(V) πr(Vm,n) = 0 for r > m − n.

(V’) πm−n(Vm,n) ∼= Z(m−n) for n > 1.

(VF) πr(Vm,n) is finite if and only if either r = m − n is even, or r = m − 1 is odd,
or 4|r + 1 �= m and r

2 + 1 < m < n + r
2 + 1.

The group Em(Sn) is calculated for some cases when m � n + 3 [11,20]. In
particular,

(S) Em(Sn) = 0 for 2m � 3n + 4.

(S’) Em(Sn) ∼= Z(m−n−1) for 2m = 3n + 3.

(SF) Em(Sn) is finite if and only if n ≡ 3 mod 4 and 2m < 3n + 4 [11,
corollary 6.7].

Theorem 1.6. For m − 3 � q, n we have Em
U (Sq � Sn) ∼= πq(Sm−n−1) ⊕ Kq,n.

[12, theorem 2.4 and the text before corollary 10.3]

The group Km
q,p+q (or, equivalently, Em

U (Sq � Sp+q)) is calculated in terms of
homotopy groups of spheres and Whitehead products [12,29], [2, theorem 1.9]. In
particular,

(L) Km
q,p+q = 0 for 2m � 3q + p + 4;

(L’) Km
q,p+q

∼= πp+2q+2−m(VM+m−q−1,M ) for m � (2p + 4q)/3 + 2 and M large.

This holds by the Haefliger theorems [27, theorems 3.1 and 3.6]. Also (L) follows
by (L’). The isomorphism of (L’) from the left to the right is defined in [11].

The group Em(Dp+1 × Sq) can be calculated using theorem 1.7 below. For exam-
ple, by theorem 1.7, (S), (S’) and since for 2m � 3q + 2 the normal bundle of any
embedding Sq → Rm is trivial [14], we have the following.

(D) τ : πq(Vm−q,p+1) → Em(Dp+1 × Sq) is an isomorphism for 2m � 3q + 4.

(D’) Em(Dp+1 × Sq) has a subgroup Z(m−q−1) whose quotient is πq(Vm−q,p+1) for
2m = 3q + 3.

(DF) Em(Dp+1 × Sq) ⊗ Q ∼= [πq(Vm−q,p+1) ⊕ Em(Sq)] ⊗ Q [2, lemma 2.15].
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A p-framing in a vector bundle is a system of p ordered orthogonal normal unit
vector fields on the zero section of the bundle.

Theorem 1.7. For m � q + 3 the following sequence is exact:

. . . → Em+1(Sq+1)
ξ→ πq(Vm−q,p+1)

τ→ Em(Dp+1 × Sq)
ρ→ Em(Sq) → . . .

Here ρ is the restriction map and ξ[f ] is the obstruction to the existence of a normal
(p + 1)-framing of an embedding f : Sq+1 → Sm+1, see accurate definition in [34,
after theorem 1.7]. [2, theorem 2.14], [32, theorem 2.5], cf. [11, corollary 5.9]

Proof of corollary 1.4.d. If m = 6k + p and q = 4k − 1 for some k, then by (L)
Km

q,p+q = 0, hence the corollary is trivial. So assume that there are no k such that
m = 6k + p and q = 4k − 1.

Then by theorem 1.2 X is finite.
Denote by E and E# the quotients of Em(Dp+1 × Sq) and of Em

# (Sp × Sq) by
the maximal summands Δ,Σ of corollary 1.4.e. Then E/X is well-defined and is
finite. Hence E is finite.

By theorem 1.2 we have the following commutative diagram, in which the
horizontal sequence is exact:

X
⊂

�� E
qX

����
��

��
��

�

q#r

��
0 ��

�������������
X ⊕ Km

q,p+q
ϕ

�� E#
ν

�� E/X �� 0

.

Here we denote by q#r, qX , ϕ, ν the maps corresponding to q#r, qX , μ ⊕ σ#, ν.
Since E is finite, we have q#rE ⊂ TE#, so ν|TE# is surjective.
Denote by F the maximal free direct summand of Km

q,p+q. The corollary follows
because in the next paragraph we prove that if x ∈ F and ϕx �= 0 is divisible by an
integer n, then x is divisible by n in F .

Take y ∈ E# such that ϕx = ny �= 0. Since ν|TE# is surjective, there is z ∈ TE#

such that νz = νy. By exactness y − z = ϕt for some t ∈ X ⊕ Km
q,p+q. Then t = tF +

tT for some tF ∈ F and a finite order element tT . Hence y − ϕtF = z + ϕtT ∈ TE#.
So TE# � n(y − ϕtF ) = ϕ(x − ntF ). Therefore n1ϕ(x − ntF ) = 0 for some integer
n1 > 0. Since ϕ is injective and x, tF ∈ F , we have x = ntF . �

Proof of corollaries 1.5.b,c,d. These corollaries follow from theorem 1.2 and (D,L),
(D,L’), (D’,L’), respectively. Here (L’) is applicable because max{2p + q +
3, (3q + 3)/2} � (2p + 4q)/3 + 2 (indeed, the opposite inequalities imply 4p + 3 <
q < 4p + 3). �

Proof of corollary 1.5.b’. Denote m = 6k − p and q = 4k − p − 1. Since p < k, we
have m � 2p + q + 3 and m � (2p + 4q)/3 + 2. Hence by (L’) Km

q,p+q
∼= Z is free.

Since 2m = p + 3q + 3 � 3q + 4, by (D) Em(Dp+1 × Sq) ∼= πq(Vm−q,p+1). So the
corollary follows from corollary 1.4.d. �
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Deduction of corollary 1.5.a from known results. Consider the following diagram

πq(Vm−q,p+1)
τ �� Em(Dp+1 × Sq)

r �� Em(Sp × Sq)
q#

��

α̂

��
Em

# (Sp × Sq)

Here α̂ is a map such that α̂rτ = id and α̂(f#g) = α̂(f) for each f ∈ Em(Sp × Sq)
and g ∈ Em(Sp+q); such a map exists by [24, Torus lemma 6.1] (α̂ := ρ−1σ−1 pr1 γα
in the notation of that lemma). Hence rτ is injective and q#rτ is injective.

Take any f ∈ Em(Sp × Sq). Let f ′ := rτα̂(f). Then α̂(f ′) = α̂(f). Then by [24,
corollary 1.6.i] and since the smoothing obstruction assuming values in Em(Sp+q)
is changed by [g] ∈ Em(Sp+q) if f is changed to f#g, we obtain q#f = q#f ′ =
q#rτα̂(f). Since q# is surjective, we see that q#rτ is surjective. �

2. Proofs

2.1. Standardization and group structure

Definition of the inclusion Rq ⊂ Rm and of Rm
± ,Dm

± , 0k, 1k, l, T p,q, T p,q
± . For each

q � m identify the space Rq with the subspace of Rm given by the equations xq+1 =
xq+2 = · · · = xm = 0 [11] (note that the notation in [12,32] is slightly different).
Analogously identify Dq, Sq with the subspaces of Dm, Sm.

Define Rm
+ , Rm

− ⊂ Rm and Dm
+ ,Dm

− ⊂ Sm by equations x1 � 0 and x1 � 0, respec-
tively. Then Sm = Dm

+ ∪ Dm
− . Note that 0 × Sm−1 = ∂Dm

+ = ∂Dm
− = Dm

+ ∩ Dm
− �=

Sm−1. Denote by 0k the vector of k zero coordinates,

1k := (1, 0k) ∈ Sk, l := m − p − q − 1, T p,q := Sp × Sq and

T p,q
± := Dp

± × Sq.

Assume that m > p + q. Informally, the standard embedding is the smoothing of
the composition

Dp+1 × Dq+1 ∼= Dq+1 × Dp+1 ∼= Dq+1 × 0l × 1
2
Dp+1 ⊂→

Dq+1 × Dl × Dp+1 ∼= Dm+1.

Formally, define the standard embedding

i = i m,p,q : Dp+1 × Dq+1 → Dm+1 by i(x, y) := (y
√

2 − |x|2, 0l, x)/
√

2.

See [34, footnote 9]. Note that i(Dp+1 × Sq) ⊂ Sm, i(Dp+1 × Dq
±) ⊂ Dm

± and im,p,q

is the restriction of im+1,p+1,q but not of im+1,p,q+1. Denote by the same notation
‘i’ restrictions of i (it would be clear from the context, to which sets).

Take a subset X ⊂ Sp. A map f : X × Sq → Sm is called standardized if

f(X × Int Dq
+) ⊂ Int Dm

+ and f |X×Dq
−

= i m,p,q.

Cf. [26, remark after definition of the standard embedding in § 2].
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A homotopy F : X × Sq × I → Sm × I is called standardized if

F (X × Int Dq
+ × I) ⊂ Int Dm

+ × I and F |X×Dq
−×I = i× id I.

Lemma 2.1 (Standardization lemma; proved in § 2.3). Let X denote either Dp
+ or

Sp. For X = Sp assume that m � 2p + q + 3.

(a) Each embedding X × Sq → Sm is isotopic to a standardized embedding.

(b) If standardized embeddings X × Sq → Sm are isotopic, then there is a
standardized isotopy between them.

Definition of the reflections R,Rj . Let R : Rm → Rm be the reflection of
Rm with respect to the hyperplane given by equations x1 = x2 = 0, i.e.,
R(x1, x2, x3, . . . , xm) := (−x1,−x2, x3, . . . , xm). Let Rj be the reflection of Rm

with respect to the hyperplane xj = 0, i.e., Rj(x1, x2, . . . , xj−1, xj , xj+1, . . . , xm) :=
(x1, x2, . . . , xj−1,−xj , xj+1, . . . , xm).

Lemma 2.2 (Group Structure lemma). Let X denote either Dp
+ or Sp. For

X = Dp
+ assume that m � q + 3, for X = Sp assume that m � 2p + q + 3. Then

a commutative group structure on Em(X × Sq) is well-defined by the following
construction.

Let 0 := [i]. Let −[f ] := [f ], where f(x, y) := R2f(x,R2y). For standardized
embeddings f, g : X × Sq → Sm let [f ] + [g] be the isotopy class of the embedding
sfg defined by

sfg(x, y) :=

{
f(x, y) y ∈ Dq

+

R(g(x,Ry)) y ∈ Dq
−

.

The two formulas agree on X × (Dq
+ ∩ Dq

−) because i(x, y) = R i(x,Ry).

The proof modulo lemma 2.1 is given in [25, § 3] and, with more details, in [34,
§ 3.2].

Define the ‘embedded connected sum’ or ‘local knotting’ map

i# : Em(Sp+q) → Em(T p,q) by i#(g) := 0#g = [i]#g.

Identify 1 × Sq and −1 × Sq with the first and the second component of Sq � Sq,
respectively. Clearly, for m � 2p + q + 3 the map i# is a homomorphism.

2.2. Proof of theorem 1.2 using lemmas 2.1, 2.2

Before reading this subsection a reader might want to grasp the idea by reading
the proof of a simpler result in [34, § 2.4] (although the proof here is formally
independent of [34, § 2.4]).

Lemma 2.3. For m � p + q + 3 the following is exact sequence of groups:

· · · → Em+1(T p,q+1
+ ) λ′

→ πq(Sl)
μ′
→ Em(T p+1,q

+ ) ν′
→ Em(T p,q

+ ) → . . .

Here ν′ is the restriction-induced map; λ′[f ] is the obstruction to the existence
of a vector field on f(1p × Sq+1) normal to f(T p,q+1

+ ) (see accurate definition in
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[34, after lemma 2.6]), and μ′ is the composition of τ and the map μ′′ : πq(Sl) =
πq(Vl+1,1) → πq(Vm−q,p+1) induced by ‘adding p vectors’ inclusion.

Proof. Consider the following diagram.

Here

• the μ′′ν′′λ′′ sequence is the exact sequence of the ‘forgetting the last vector’
bundle Sl → Vm−q,p+1 → Vm−q,p;

• the exact τρξ- and τρξ-sequences are defined in theorem 1.7.

Let us prove the commutativity.
Let us prove that ξρ = μ′′λ′ for the left upper square. By the Standardization

lemma 2.1.a each element of Em+1(T p,q+1
+ ) is representable by a standard-

ized embedding f : Dp
+ × Sq+1 → Sm+1. Since f |Dp

+×Dq+1
−

= i, there is a normal

(m − q)-framing of f(Dq+1
− ) extending f |Dp

+×Dq+1
−

and a normal (p + 1)-framing

of f(Dq+1
+ ) extending f |Dp

+×Dq+1
+

. Then ξ[f |0p×Sq ] = μ′′λ′[f ] by definitions of λ′

and ξ.
Relation λ′′ = τλ′ follows by definitions of λ′ (§ 2.2) and of λ′′ (recalled in [34,

§ 3.4]). The commutativity of other squares and triangles is obvious.
Clearly, λ′ν′ = 0. So the exactness of the λ′μ′ν′ sequence follows by the Snake

lemma, cf. [11, proof of (6.5)]. �

Definition of the Zeeman homomorphism

ζ = ζm,n,q : πq(Sm−n−1) → Em
U (Sq � Sn) for q � n,

cf. [32, Definition of Ze in p.9]. Denote by im,q : Sq → Sm the standard embedding.
For a map x : Sq → Sm−n−1 representing an element of πq(Sm−n−1) let

ζx : Sq → Sm be the composition Sq x×in,q→ Sm−n−1 × Sn i→ Sm,

where i := i m,m−n−1,n.
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We have ζx(Sq) ∩ im,n(Sn) ⊂ i(Sm−n−1 × Sn) ∩ i(0m−n × Sn) = ∅. Let ζ[x] :=
[ζx � im,n].

Clearly, ζ is well-defined, is a homomorphism, and λζ = id πq(Sm−n−1).
Note that ζm,q,q = rτm

0,q = rμ′.
Definition of the homomorphism

σ = σm,p,q : Em
0 (Sq � Sp+q) → Em(T p,q) for m � p + q + 3 and q > 0,

cf. [32, § 3, Definition of σ∗]. Denote by Em
0 (Sq � Sn) ⊂ Em(Sq � Sn) the subset

formed by the isotopy classes of embeddings whose restriction to the first component
is unknotted. Represent an element of Em

0 (Sq � Sp+q) by an embedding

f : Sq � Sp+q → Sm such that f |Sq = i |0p+1×Sq

and f(Sp+q) ∩ i(Dp+1 × Sq) = ∅.

Join f(Sp+q) to i(−1p × Sq) by an arc whose interior misses f(Sp+q) ∪ i(Dp+1 ×
Sq). Let σ[f ] be the isotopy class of the embedded connected sum of i |Sp×Sq and
f |Sp+q along the arc. (The images of these embeddings are not necessarily con-
tained in disjoint balls.) For p = 0 the orientation on i(−1p × Sq) is ‘parallel’ to the
orientation on i(1p × Sq).

The map σ is well-defined for m � p + q + 3 and is a homomorphism for m �
2p + q + 3 [32, lemmas 3.1–3.3]. For p = 0 an interpretation of σ and some results
on σ are presented in [34, § 2.3]. We have σ(f) + i#g = σ(f#g) [32, remark after
lemma 3.3]

Proof of theorem 1.2. Clearly, the first sentence follows from the ‘moreover’ part.
So let us prove the ‘moreover’ part. Consider the following diagram.

Here the λ′μ′ν′-sequence is defined in lemma 2.3, maps ζ and σ are defined above,

• i is the inclusion,

• ν is the restriction-induced map,

• σ# := q#σ,

• the map ν is well-defined by νq#(f) := ν(f),
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• j#g := j#g, where the ‘standard embedding’ j : Sq � Sp+q → Sm is any
embedding whose components are contained in disjoint balls and are isotopic
to the inclusions.

The commutativity of the triangles is clear, except for i# = σj#, which follows by
σ[j] = [i].

The map μ of theorem 1.2 is well-defined by μ(μ′x) := σ#ζx. Let X := ker ν′ =
im μ′.

Recall the Serre theorem: the group πq(Sl) is finite unless q = 4k − 1 and l = 2k
for some k, and π4k−1(S2k) is the sum of Z and a finite group. This and (VF) of
§ 1.3 imply the assertion on the finiteness of X = im(τμ′′). Then using the exact
sequence of the ‘forgetting the last vector’ bundle Sl → Vm−q,p+1 → Vm−q,p we
obtain the assertion on X6k+p

p,4k−1.
It suffices to prove that the horizontal sequence of theorem 1.2 is exact.
The exactness of the νσ(iζλ′)-sequence is [32, theorem 1.6].
The map i ⊕ j# is an isomorphism [12, theorem 2.4]. Hence by the Smoothing

lemma 1.1 and i# = σj#, the first two third-line groups both have Em(Sp+q)-
summands mapped one to the other under σ. Taking quotients by these summands
one obtains the exactness of the second line.

Since λζ = id, we have that ζ is injective and Em
U (Sq � Sp+q) = im ζ ⊕ Km

q,p+q

(the mutually inverse isomorphisms are given by x �→ (ζλx, x − ζλx) and (y, z) �→
y + z).

Since the right ζ is injective, we have im ν′ = ker λ′ = ker ζλ′ = im ν.
The restriction σ#|Km

q,p+q
is injective because

ker σ# ∩ Km
q,p+q = im(ζλ′) ∩ Km

q,p+q ⊂ im ζ ∩ Km
q,p+q = 0.

If μμ′x = σ#ζx = 0, then x ∈ im λ′ = ker μ′, so μ′x = 0. Hence μ is injective.
Also

ker ν = im σ# = σ# im ζ ⊕ σ#Km
q,p+q = im μ ⊕ σ#Km

q,p+q.

Thus the horizontal sequence of theorem 1.2 is exact. �

2.3. Proof of the Standardization lemma 2.1

Proof of (a) for X = Dp
+. Take an embedding g : T p,q

+ → Sm. Since every two
embeddings of a disk into Sm are isotopic, we can make an isotopy of Sm and
assume that g = i on Dp

+ × Dq
−.

The ball Dm
− is contained in a tubular neighbourhood of i(Dp

+ × Dq
−) in Sm

relative to i(Dp
+ × ∂Dq

−). The image g(Dp
+ × Int Dq

+) is disjoint from some tighter
such tubular neighbourhood. Hence by the Uniqueness of Tubular Neighbourhood
Theorem we can make an isotopy of Sm and assume that g(Dp

+ × Int Dq
+) ∩ Dm

− =
∅. Then g is standardized. �

Proof of (b) for X = Dp
+. Take an isotopy g between standardized embeddings

T p,q
+ → Sm. By the 1-parametric version of ‘every two embeddings of a disk into

Sm are isotopic’ we can make a self-isotopy of id Sm, i.e. a level-preserving autod-
iffeomorphism of Sm × I identical on Sm × {0, 1}, and assume that g = i× id I on
Dp

+ × Dq
− × I.
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Figure 1. To the proof of the Standardization lemma 2.1.a for X = Sp.

The ball Dm
− × I is contained in a tubular neighbourhood V of i(Dp

+ × Dq
−) × I

in Sm × I relative to i(Dp
+ × ∂Dq

−) × I. We may assume that V ∩ Sm × k is ‘almost
Dm

− ’ for each k = 0, 1.
The image g(Dp

+ × Int Dq
+ × I) is disjoint from some tighter such tubular neigh-

bourhood, whose intersection with Sm × k is V ∩ Sm × k for each k = 0, 1. Hence
by the Uniqueness of Tubular Neighbourhood theorem we can make an isotopy of
Sm × I relative to Sm × {0, 1} and assume that g(Dp

+ × Int Dq
+ × I) ∩ Dm

− × I = ∅.
Then g is standardized. �

Extend i to
√

2Dp+1 × Dq+1 by the same formula as in the definition of i. For
γ �

√
2 denote Δγ := i(γDp+1 × {−1q}) ⊂ Int Dm

− .

Proof of (a) for X = Sp. See figure 1. Take an embedding g : T p,q → Sm. Since
m > 2p + q, every two embeddings Sp × Dq → Sm are isotopic (this is a trivial case
of theorem 1.7). So we can make an isotopy and assume that g = i on Sp × Dq

−.
Since m > 2p + q + 1, by general position we may assume that im g ∩ Δ1 = ∂Δ1.

Then there is γ slightly greater than 1 such that im g ∩ Δγ = ∂Δ1. Take the ‘stan-
dard’ q-framing on Δγ tangent to i(γDp+1 × Sq) whose restriction to ∂Δ1 is the
‘standard’ normal q-framing of ∂Δ1 in im g. Then the ‘standard’ (m − p − q − 1)-
framing normal to i(γDp+1 × Sq) is an (m − p − q − 1)-framing on ∂Δ1 normal to
im g. Using these framings we construct

• an orientation-preserving embedding H : Dm
− → Dm

− onto a tight neighbour-
hood of Δ1 in Dm

− , and

• an isotopy ht of idT p,q shrinking Sp × Dq
− to a tight neighbourhood of Sp ×

{−1q} in Sp × Dq
− such that

H(Δ√
2) = Δγ , H i(Sp × Dq

−) = H(Dm
− ) ∩ im g

and H i = i h1 on Sp × Dq
−.

Embedding H is isotopic to id Dm
− by [13, theorem 3.2]. This isotopy extends

to an isotopy Ht of idSm by the Isotopy Extension theorem [13, theorem
1.3]. Then H−1

t ght is an isotopy of g. Let us prove that embedding H−1
1 gh1 is

standardized.

We have H−1
1 gh1 = H−1

1 i h1 = i on Sp × Dq
−. Also if H−1

1 gh1(Sp × IntDq
+) �⊂

Int Dm
+ , then there is x ∈ Sp × IntDq

+ such that gh1(x) ∈ H(Dm
− ). Then gh1(x) =

H i(y) = i h1(y) = gh1(y) for some y ∈ Sp × Dq
−. This contradicts to the fact that

gh1 is an embedding. �
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An embedding F : N × I → Sm × I is a concordance if N × k = F−1(Sm × k) for
each k = 0, 1. Embeddings are called concordant if there is a concordance between
them.

Proof of (b) for X = Sp. Take an isotopy g between standardized embeddings. The
restriction g|Sp×Dq

−
is an isotopy between standard embeddings. So this restriction

gives an embedding g′ : Sp × Dq
− × S1 → Sm × S1 homotopic to i |Sp×0 × id S1.

Since m + 1 > 2(p + 1), by general position g′|Sp×0×S1 is isotopic to i |Sp×0 × id S1.
Since m > 2p + q + 1, the Stiefel manifold Vm−p,q is (p + 1)-connected. Hence every
two maps S1 × Sp → Vm−p,q are homotopic. Therefore g′ is isotopic to i× id S1. So
we can make a self-isotopy of id Sm, i.e. a level-preserving autodiffeomorphism of
Sm × I identical on Sm × {0, 1}, and assume that g = i× id I on Sp × Dq

− × I.
Since m > 2p + q + 2, by general position we may assume that im g ∩ Δ1 × I =

∂Δ1 × I. Then there is a disk Δ ⊂ Dm
− × I such that

IntΔ ⊃ Δ1 × (0, 1), Δ ∩ Dm
− × {0, 1} = Δ√

2 × {0, 1}
and im g ∩ Δ = ∂Δ1 × I.

Take the ‘standard’ q-framing on Δ tangent to i(
√

2Dp+1 × Sq) × I whose restric-
tion to ∂Δ1 × I is the ‘standard’ normal q-framing of ∂Δ1 × I in im g. Then the
‘standard’ (m − p − q − 1)-framing on ∂Δ1 × I normal to i(

√
2Dp+1 × Sq) × I is

an (m − p − q − 1)-framing on ∂Δ1 × I normal to im g. Using these framings we
construct

• an orientation-preserving embedding H : Dm
− × I → Dm

− × I onto a neighbour-
hood of Δ1 × I in Dm

− × I, and

• an isotopy ht of idT p,q × I shrinking Sp × Dq
− × I to a neighbourhood of Sp ×

{−1q} × I in Sp × Dq
− × I such that

H(Δ√
2 × I) = Δ, H(i(Sp × Dq

−) × I) = H(Dm
− × I) ∩ im g

and H ◦ (i× id I) = (i× id I) ◦ h1 on Sp × Dq
− × I.

Analogously to the proof of (a) embedding H is isotopic to id(Dm
− × I), such

an isotopy extends to an isotopy Ht of id(Sm × I), and H−1
t ght is an isotopy

from g to a standardized isotopy H−1
1 gh1. �

2.4. Proof of the Smoothing lemma 1.1

Lemma 2.4 (proved below). For m � 2p + q + 3 there is a homomorphism

σ : Em(T p,q) → Em(Sp+q) such that σ ◦ i# = id Em(Sp+q).

The Smoothing lemma 1.1 follows because lemma 2.4 and q# ◦ i# = 0 imply that
q# ⊕ σ is an isomorphism. Lemma 2.4 is known [5, proposition 5.6] except for the
non-trivial assertion that σ is a homomorphism.

Proof of lemma 2.4. Definition of σ and proof that σ ◦ i# = id Em(Sp+q). The map
σ is ‘embedded surgery of Sp × 1q’, cf. equivalent definition below. We give an
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Figure 2. To the proof that σ is a homomorphism. This picture illustrates the proof by the
case p = 0, q = 1 and m = 3 (these values are not within the dimension range m � 2p +

q + 3). The part above plane ABCD stands for D̂m
+ . The part below plane A′B′C′D′

stands for D̂m− . The part between the planes stands for Sm−1 × D1. The upper curved lines

stand for f+(Sp × Sq−1) = u(Sp × Sq−1). The bottom curved lines stand for f−(Sp ×
Sq−1) = u(Sp × Sq−1). The union of segments A′A, B′B, C′C and D′D stands for u(Sp ×
Sq−1 × D1). The union of segments A′A and B′B stands for i(S

p × 1q−1) × D1. The

quadrilateral A′ABB′ stands for the ‘surgery disk’ i(D
p+1 × Dq−1

+ ) × D1. The union of
the upper curved lines and the segment AB stands for the (p + q)-disk Δ+. Analogously
for Δ−. The union of Δ+, Δ− and the segments C′C and D′D stands for the (p + q)-
sphere that is the image of a representative of σ[u]. The union of Δ+ and CD stands
for Σ+. Analogously for Σ−. The quadrilateral C′CDD′ stands for the tube i(D

p+1 ×
Dq−1

− ) × D1.

alternative detailed construction following [5, proposition 5.6]. Take f ∈ Em(T p,q).
By the Standardization lemma 2.1.a there is a standardized representative f ′ :
T p,q → Sm of f . Identify

Sp+q and Sp × Dq
+

⋃
Sp×∂Dq

+

Dp+1 × ∂Dq
+

by a diffeomorphism. Define an embedding

i′ : Dp+1 × ∂Dq
+ → Dm

− by i′(x, (0, y)) := (−
√

1 − |x|2, y, 0l, x)/
√

2.

Then i′ is an extension of the restriction Sp × ∂Dq
+ → ∂Dm

+ of im,p,q. Infinite deriva-
tive for |x| = 1 means that i′ meets the boundary regularly. Hence i′ and f ′|Sp×Dq

+

form together a (C1-smooth) embedding g : Sp+q → Sm. Let σ(f) := [g].
The map σ is well-defined for m � 2p + q + 3 by the Standardization lemma 2.1.b

because the above construction of σ has an analogue for isotopy, cf. [34, beginning
of § 3.2].

Clearly, σ ◦ i#(g) = σ(0#g) = σ(0) + g = 0 + g = g. �

Proof of lemma 2.4. Beginning of the proof that σ is a homomorphism. See figure 2.
For each n identify

Sn and D̂n
+

⋃
∂̂Dn

+=Sn−1×1

Sn−1 × D1
⋃

Sn−1×{−1}=∂̂Dn
−

D̂n−,

where Â is a copy of A.
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Then Sn−1 = Sn−1 × 0 ⊂ Sn. Let i = im−1,p,q−1. Under the identifications ∂̂Dn± =
Sn−1 × {±1}, n ∈ {m, q}, the embedding im,p,q goes to i |Sp×Sq−1 . Hence analo-
gously to (or by) the Standardization lemma 2.1.a each element in Em(T p,q) has a
representative f such that

• f(Sp × D̂q
+) ⊂ D̂m

+ ;

• f = im,p,q on Sp × D̂q
− (the image of this embedding lies in D̂m− );

• f = i |Sp×Sq−1 × id D1 on Sp × Sq−1 × D1 (the image of this embedding lies in
Sm−1 × D1).

Take embeddings f± : T p,q → Sm satisfying the above properties. Then
[f+] + [f−] has a representative u : T p,q → Sm such that

• u = f+ on Sp × D̂q
+;

• u = (id Sp × R) ◦ f− ◦ (id Sp × R) on Sp × D̂q
−;

• u = i |Sp×Sq−1 × id D1 on Sp × Sq−1 × D1.

For completion of the proof that σ is a homomorphism we need an equivalent
definition of σ.

First we assume that p = 0, i.e. define the embedded connected sum of embed-
dings f−1, f1 : Sq → Sm whose images are disjoint. Take an embedding l : D1 ×
Dq

− → Sm such that

l = fk on k × Dq
− and l(D1 × Dq

−) ∩ fk(Sq) = l(k × Dq
−) for k = ±1.

Define h : Sq → Sm by

h(x) :=

⎧⎪⎨⎪⎩
f0(x) x ∈ D̂q

+

l(x) x ∈ D1 × ∂Dq
+

f1(x) x ∈ D̂q
−

.

Then a representative of [f0] + [f1] is obtained from h by smoothing of the ‘dihedral
corner’ along h(S0 × ∂Dq

+). This smoothing is local replacement of embedded (I ×
0 ∪ 0 × I) × Dq−1 by embedded C × Dq−1, where C ⊂ I2 is a smooth curve joining
(0, 1) to (1, 0) and such that C ∪ [1, 2] × 0 ∪ 0 × [1, 2] is smooth. This smoothing is
‘canonical’, i.e. does not depend on the choice of C. Cf. [10, Proof of 3.3] and, for
non-embedded version, [35].

Let us generalize this definition to arbitrary p. Given embedding f : T p,q → Sm,
take an embedding l : Dp+1 × Dq

− → Sm such that

l = f on Sp × Dq
− and l(Dp+1 × Dq

−) ∩ f(T p,q) = l(Sp × Dq
−).

Define h : Sp+q → Sm by

h(x) :=

{
f(x) x ∈ Sp × Dq

+

l(x) x ∈ Dp+1 × ∂Dq
+

.

https://doi.org/10.1017/prm.2018.141 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.141


Classification of knotted tori 565

Then a representative of σ(f) is obtained from h by ‘canonical’ smoothing of the
‘dihedral corner’ along h(Sp × ∂Dq

+) analogous to the above case p = 0.
This definition is equivalent to that from the beginning of proof of lemma 2.4

because there are a closed ε-neighbourhood U of the image of l (for some small
ε > 0) and a self-diffeomorphism G : Sm → Sm such that G(Dm

− , i(T p,q
− ), i′(Dp+1 ×

∂Dq
+)) = (U,U ∩ f(T p,q), U ∩ h(Sp+q)).

The result of the above surgery does not depend on the choices involved because
σ(f) is well-defined.

Completion of the proof that σ is a homomorphism.4 Recall that a representative
of σ[u] is obtained from u by ‘embedded surgery of i(Sp × 1q−1) × 0’. Recall that
the isotopy class of an embedding g : Sp+q → Sm is defined by the image of g and
an orientation on the image.

Denote

Δ± := u(Sp × Dq
±) ∪ i(Dp+1 × Dq−1

+ ) × {±1}
∼= Sp × Dq ∪ Dp+1 × Dq−1

+
∼=
PL

Dp+q.

Then the oriented image of the representative of σ[u] is obtained by ‘canonical’
smoothing of corners from

(u(T p,q) − i(Sp × Dq−1
+ ) × D1) ∪ (i× id D1)

(
Dp+1 × ∂(Dq−1

+ × D1)
)

=

= Δ− ∪ i ∂(Dp+1 × Dq−1
− ) × D1 ∪ Δ+

∼=
PL

Dp+q × 0 ∪ Sp+q−1 × I ∪ Dp+q × 1 ∼=
PL

Sp+q.

This oriented (p + q)-sphere is a connected sum of oriented (p + q)-spheres

Σ± := Δ± ∪ i(Dp+1 × Dq−1
− ) × {±1} ∼=

PL
0 × Dp+q ∪ Dp+q

+
∼=
PL

Sp+q

along the tube i(Dp+1 × Dq−1
− ) × D1. The image of a representative of σ[f±] is

obtained from Σ± by ‘canonical’ smoothing of the ‘dihedral corner’. The cor-
ners of the tube i(Dp+1 × Dq−1

− ) × D1 can be ‘canonically’ smoothed to obtain
an embedding Dp+q × D1 → Sm. Thus σ[u] = σ[f+] + σ[f−]. �
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