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For a smooth manifold N denote by E™(N) the set of smooth isotopy classes of
smooth embeddings N — R™. A description of the set E™(SP x S7) was known
only for p =g =0 or for p =0, m # g+ 2 or for 2m > 2(p + q) + max{p, ¢} + 4.
(The description was given in terms of homotopy groups of spheres and of Stiefel
manifolds.) For m > 2p + ¢ + 3 we introduce an abelian group structure on

E™(SP x S7) and describe this group ‘up to an extension problem’. This result has
corollaries which, under stronger dimension restrictions, more explicitly describe
E™(SP x S1). The proof is based on relations between sets E™(N) for different N
and m, in particular, on a recent exact sequence of M. Skopenkov.
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1. Introduction and main results

1.1. Some general motivations

This paper is on the classical Knotting Problem: for an n-manifold N and a
number m, classify isotopy classes of embeddings N — R™. For recent surveys see
[16,27]; whenever possible I refer to these surveys not to original papers.

I consider smooth manifolds, embeddings and isotopies. By a classification I mean
a readily calculable classification.! Main results are stated in § 1.2 independently of
§1.1.

Many interesting examples of embeddings are embeddings SP x S7 — R™, i.e.
knotted tori. See references in [17]. Since the general Knotting Problem is very
hard [16], it is very interesting to solve it for the important particular case of
knotted tori. Classification of knotted tori is a natural next step after the Haefliger
link theory [12] and the classification of embeddings of highly-connected manifolds
[27, §2], [15]. Such a step gives some insight or even precise information concerning
embeddings of arbitrary manifolds [26, 31, 33|, and reveals new interesting relations
to algebraic topology.

LFor a discussion of the adjectives ‘smooth’, ‘readily calculable’, and of embeddings into R™ vs
into S™ see [7, remark 2.20], [16, remarks 1.1 and 1.2].
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The Knotting Problem is more accessible for 2m > 3n + 4, when there are some
classical complete readily calculable classifications of embeddings [27, §2, § 3], [16].
Cf. (S) of §1.3.

The Knotting Problem is much harder for 2m < 3n + 4: if N is a closed manifold
that is not a disjoint union of homology spheres, then until recently no complete
readily calculable isotopy classification was known. This is in spite of the existence
of many interesting approaches including methods of Haefliger—-Wu, Browder—Wall
and Goodwillie-Weiss [27, § 5], [3,9, 36].

Classification results for 2m < 3n + 4 concern links [1,2,12], embeddings of
d-connected n-manifolds for 2m > 3n + 3 —d [23,24], embeddings of 3- and 4-
dimensional manifolds [6-8,28,30], and rational classification of embeddings
SP x §7 — R™ under stronger dimension restriction than m > 2p + ¢ + 3 [4, 5] (see
footnote 2). The methods of those papers essentially use the restrictions present
there.

The new ideas allowing to go beyond the above results follow [32] and unpub-
lished work [25]. One idea is to find relations between different sets of (isotopy
classes of) embeddings, invariants of embeddings and geometric constructions of
embeddings. Group structures on sets of embeddings are constructed.? Then such
relations are formulated in terms of exact sequences. The most non-trivial exact
sequence is relation of knotted tori to links and knotted strips DP x S9 — S™, i.e.
the vo(i¢\')-sequence from the proof of theorem 1.2 in §2.2. This is the main the-
oretical result [32, theorem 1.6] of [32], which non-trivally extends [25, Restriction
lemma 5.2] and [34, lemma 2.15.a] (see footnote 2).

This theoretical result yielded rational classification (corollary 1.4.a [32, corollary
1.7]). Still, it was expected that embeddings S? x S? — R™ are hard to classify for
m = 2p+ q+ 3 > g+ 3. Such a classification is the main result of this paper. The
main idea of this paper is, in some sense, a reduction of classification of knotted tori
to classification of links and knotted strips (rather than a relation as in [32]). This
is obtained by discovering new relations between different sets of embeddings, and,
more importantly, connections between such relations, formulated in terms of dia-
grams involving the exact sequences, see §2.2. These ideas are hopefully interesting
in themselves.

1.2. Statements of main results

For a manifold N let E™(N) be the set of isotopy classes of embeddings N — S™.
Abelian group structures on E™(DP x S9) for m > ¢+ 3 and on E™(SP x S?) for
m = 2p+ q + 3 are defined analogously to the well-known case p = 0. The sum
operation on E™(DP x S?) is ‘connected sum of ¢g-spheres together with normal p-
framings’ or ‘DP-parametric connected sum’. The sum operation on E™(S? x S9)
is ‘SP-parametric connected sum’, cf. [19,26,31], [33, theorem 8]. See accurate
definitions in §2.1; cf. [34, remarks 2.3 and 2.4].

Our main results describe the group E™(S? x S?) up to an extension problem.

2 Group structures are constructed in [25] and, with more details, here and in [34, §3.2]. This
is already used in [4, 5, 32].
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Definitions of [-], the ‘embedded connected sum’ or ‘local knotting’ action
41 E™(N) x E™(S™) — E™(N),

and of EY (N). By [] we denote the isotopy class of an embedding or the homotopy
class of a map.

Assume that m >n+2 and N is a closed connected oriented n-manifold.
Represent elements of E™(N) and of E™(S™) by embeddings f: N — S™ and
g:S™ — S™ whose images are contained in disjoint balls. Join the images of f,g
by an arc whose interior misses the images. Let [f]#]g] be the isotopy class of
the embedded connected sum of f and g along this arc, cf. [11, theorem 1.7], [12,
theorem 2.4], [1, §1].

For N = S711.8™ this construction is made for an arc joining f(S™) to g(S™).

For m > n + 2 the operation # is well-defined.? Clearly, # is an action.

Let EJ}(N) be the quotient set of E™(N) by this action and gz : E™(N) —
EJ(N) the quotient map. A group structure on EJ'(SP x S?) is well-defined
by quf+auef =qu(f+f), f,f € E™(SP x S%), because (f#g)+[f =[f+
(f'#9) = (f + f)#g by definition of ‘4’ in §2.1.

The following result reduces description of E™(SP x S?) to description of
E™(SP+4) and of E(SP x S9), cf. [22], [6, end of §1].

LEmMMA 1.1 (Smoothing; proved in §2.4). For m >2p+q+3 we have
E™(SP x §9) = E(SP x S7) @ E™(SPTI) .

The isomorphism of lemma 1.1 is g @ @, where 7 is ‘surgery of SP x %’ defined

in §2.4. It has the property (qu ®7)(f#g) = qu(f)® (a(f) +g) for each f €
E™(SP x S9), g € E™(SPT9).
Denote by V;; the Stiefel manifold of ¢-frames in R®. Identify V, ; with Rt
Known results easily imply (see corollary 1.5.a) that

ER(SP x 87) =2 71y(Vin—gpt1) for 2m = 2p + 3q + 4.

Our main result generalizes this for m > 2p + ¢ + 3.
For m > n + 3 denote by

e A=\ E™(89U8") — 7my(S™7" 1) the linking coefficient that is the
homotopy class of the first component in the complement to the second
component, see accurate definition in [18], [27, § 3].

o EfF(STUS™) C E™(SYUS™) the subset formed by the isotopy classes of
embeddings whose restriction to each component is unknotted.

o K :=ker A\ £} (ST S"); see geometric description in [29, §3, Definition
—m
of DM, .

3This is proved analogously to the case X = Dg_ of the Standardization lemma 2.1.b below,
because the construction of # has an analogue for isotopy, cf. [34, §3.2].
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THEOREM 1.2 (proved in §2.2). Form > 2p + q + 3 the group E™(DPT! x S%) has
a subgroup X = X" such that E;Z(Sp x S) has a subgroup isomorphic to X ®
K" ., whose quotient is isomorphic to E™(DPT! x S1)/X.

Moreover, there are maps forming the following commutative diagram, in which

the horizontal sequence is exact:
X S Em(DPH! x §9)

05— X & K}, ——= EP(S? x §9) —— E™(DP*! x §9)/X —0

P4 hdoy

The subgroup X", is finite unless ¢ = 4k — 1 and m = 6k + p for some k > p/2+1,
and Xﬁﬁ:{l is the sum of Z and a finite group for such k.

The subgroup X" is the kernel of the restriction map to E™(DP x 89). The
maps o4, @ and ¥ are defined in § 2.2, r is the restriction map to E™(S? x S?), and

gx is the quotient map. For relation between my(Vi—gp+1) and E™(DPT! x S9)
see theorem 1.7.

CONJECTURE 1.3. Form >2p+q+3

E™(SP x 89 = E™(DP*' x ST & K.,

@ E™(SP+9).

This is equivalent to EJ}(SP x S9) = E™(DPt! x S9) @ K", , by the Smoothing
lemma 1.1. For more discussion see [34, remark 1.9].

Known cases of theorem 1.2, the Smoothing lemma 1.1 (and of conjecture 1.3)
are listed in [34, remark 1.8.a]. In particular, these are new results only for

1<p<q and 2m <3¢+ 2p—+3.

Analogous remark holds for the following corollaries of theorem 1.2 which, under
stronger dimension restrictions, describe E™(SP x S7) more explicitly.
Denote by T'G the torsion subgroup of an abelian group G.

COROLLARY 1.4. Assume that m > 2p+ q + 3.
(a) [82, corollary 1.7]
E™ (87 x 87) © Q & [1y(Vin—g ps1) ® E™(S7) & K",

q,p+q

E™(S7)] @ Q.
(b)
[E™(SP x §9)| = [E™(DPH x S| - Ky | - [E™(SP7)]

(more precisely, whenever one part is finite, the other is finite and they are
equal).

()

ITE™(SP x §89)| = |[TE™(DP*' x S9)| - |TK]", .,

|- |TE™(SP+)],
unless m = 6k +p and ¢ = 4k — 1 for some k.
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(d) For the diagram of theorem 1.2 any Z*-direct summand of K", ., is mapped
under oy to a Z°-direct summand in EJ (SP x S7).

(e) For the diagram of theorem 1.2 any Z°-direct summand of E™(DP*! x S9)/X
is the image of Z°-direct summands A C E™(DPT x S9) and ¥ C EY
(SP x S?) such that rA = X.

Parts (a,b,c) are simplified versions of conjecture 1.3. Part (a) follows by theorem
1.2 and the isomorphism (DF) of §1.3. Parts (b) and (e) follow by theorem 1.2 in a
standard way. Part (c) follows from parts (d,e) and theorem 1.2. Part (d) is proved
in §1.3.

Definition of Z and the maps pry,

T="70  Tg(Vin—gp+1) — E™(DPt! x §9).

Denote by Z,) the group Z for s even and Z; for s odd.
Denote by pr;, the projection of a Cartesian product onto the k-th factor.
Represent an element of m4(Vi—q pt+1) by a smooth map = : S7 — V,,,_, ,41. By
the exponential law this map can be considered as a map z : RPT! x §7 — R™79,
The latter map can be normalized to give a map 7 : DP*! x §9 — D™~4, Let 7[x]

be the isotopy class of the composition DPt! x §9 P D™= x §9 1 §m  where
i is the standard embedding (see accurate definition in §2.1) [17], [27, §6]. Clearly,

7 is well-defined and is a homomorphism.
In this paper the sign o of the composition is often omitted.

COROLLARY 1.5. Assume that m > 2p + q + 3.

(a) If2m = 2p + 3q + 4, then gur7 : 74(Vin—g,p+1) — EL(SP x S7) is an isomor-
phism.

(b) If 2m > p+3q +4, then E(SP x S) and mq(Vi—qp+1) have isomorphic
subgroups with isomorphic quotients.

(b)) If 1 < p < k, then Eg&k—p(S’p x SH=P=1)y = 7. ¢ Gy, ,, for a certain group Gy,
such that Gy, and mag—p—1(Vagt1,p+1) have isomorphic subgroups with
isomorphic quotients.

(c) If 2m >3q+4, then EJ(SP xS?) has a subgroup isomorphic to
Tpt2g+2—m (Var4m—qg—1,0m), whose quotient and mq(Vi—qptr1) have isomor-
phic subgroups with isomorphic quotients.

(d) If 2m=3q+3, then EJ(SPxS?) has a subgroup isomorphic to
Tpt2g+2—m (Va+m—qg—1,m), whose quotient has a subgroup isomorphic to
Z(m—q—1y, whose quotient and 74(Vin—q,p11) have isomorphic subgroups with
isomorphic quotients.

Corollaries 1.5 are proved at the end of §1.3, cf. [34, §2.4].

The smallest m for which there are p,g such that 1 <p<q and 2p+qg+3<
m < (3¢ +2p+3)/2 are m = 10,11,12. Then p =1 and ¢ = m — 5. Hence by the
Smoothing lemma 1.1, theorem 1.2, corollaries 1.5.b,b’,c,d and [11, 21]
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o |[EY(S! x 8%)| = |[EQ(S" x §°)| = 4. Cf. [32, example 1.4].

e EJ(S'x S =Zy®Z and E'(S'xS%) =Z;®Z® E"(ST), of which
E1(S7) is rank one infinite.

o EZ(S' x ST) =72 ® G, where |G| is a divisor of 8, and E'?(S! x 57) =~ 77 &
G @ E'(S?®), of which E'?(S®) is finite.
1.3. Calculations and proofs of corollaries
The group m,(Vy, ) is calculated for many cases, see e.g. [21], [2, lemma 1.12].
(V) 7 (Vipn) =0 for r > m —n.
(V) Tmen(Vinn) = Zm—py for n. > 1.

(VF) m,.(Viy ) is finite if and only if either 7 = m — n is even, or r = m — 1 is odd,
ordlr+1#mand §+1<m<n+5+1

The group E™(S™) is calculated for some cases when m >n+3 [11,20]. In
particular,

(S) E™(S™) =0 for 2m > 3n + 4.
(S°) E™(S") = Zim—n—1) for 2m = 3n + 3.

(SF) E™(S™) is finite if and only if n=3 mod4 and 2m <3n+4 [11,
corollary 6.7].

THEOREM 1.6. For m —3 > q,n we have EF(STUS™) 2 m,(S™ " 1) & K .
[12, theorem 2.4 and the text before corollary 10.3]

The group K., (or, equivalently, Ep(S9U SP+4)) is calculated in terms of
homotopy groups of spheres and Whitehead products [12,29], [2, theorem 1.9]. In

particular,
(L) K%y =0for 2m > 3q+p+4;
(L) Kpiq = mpr2g+2-m(Varsm—q—1,0m) for m > (2p +4q) /3 + 2 and M large.

This holds by the Haefliger theorems [27, theorems 3.1 and 3.6]. Also (L) follows
by (L’). The isomorphism of (L) from the left to the right is defined in [11].

The group E™(DPT! x 89) can be calculated using theorem 1.7 below. For exam-
ple, by theorem 1.7, (S), (S’) and since for 2m > 3¢ + 2 the normal bundle of any
embedding S? — R™ is trivial [14], we have the following.

(D) 7: 7g(Vin—gps1) — E™(DPT! x S%) is an isomorphism for 2m > 3¢ + 4.

(D’) E™(DP*! x S9) has a subgroup Z,,—4—1) whose quotient is 74 (Vi —q,p+1) for
2m = 3q + 3.

(DF) E™(DP*! x §9) @ Q 2 [1q(Vin—gpt+1) © E™(S?)] ® Q [2, lemma 2.15].
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A p-framing in a vector bundle is a system of p ordered orthogonal normal unit
vector fields on the zero section of the bundle.

THEOREM 1.7. For m > q + 3 the following sequence is exract:
o EMTH(STY) (Vi gpa) > E™(DPHL x S7) B EM(S9) -

Here p is the restriction map and £[f] is the obstruction to the existence of a normal
(p + 1)-framing of an embedding f : S1t1 — S™H+1 see accurate definition in [34,
after theorem 1.7]. [2, theorem 2.14], [32, theorem 2.5], cf. [11, corollary 5.9]

Proof of corollary 1.4.d. If m =6k +p and ¢ =4k — 1 for some k, then by (L)
K.+, = 0, hence the corollary is trivial. So assume that there are no k such that
m = 6k +p and g = 4k — 1.

Then by theorem 1.2 X is finite.

Denote by E and Ey the quotients of E™(DPT! x §9) and of EJH(SP x S7) by
the maximal summands A, ¥ of corollary 1.4.e. Then E/X is well-defined and is
finite. Hence E is finite.

By theorem 1.2 we have the following commutative diagram, in which the
horizontal sequence is exact:

C
X E
|
qur
0~ XOK., Ey E/X 0
® v

Here we denote by qx7,¢x, ¢,V the maps corresponding to qur, gx, [t © 0%, V.

Since F is finite, we have qurE C TEy, so U|rg, is surjective.

Denote by F' the maximal free direct summand of K", . The corollary follows
because in the next paragraph we prove that if x € ' and px # 0 is divisible by an
integer n, then z is divisible by n in F'.

Take y € Ey such that gz = ny # 0. Since 7|7 g, is surjective, there is z € TE
such that 7z = vy. By exactness y — z = ot forsomet € X & K, .. Thent =tp +
tr for some tp € F and a finite order element t7. Hence y — ptp = 2 + ¢ty € TE4.
So TEy4 > n(y — ptr) = ¢(x — ntp). Therefore nip(x — ntp) = 0 for some integer

ny > 0. Since ¢ is injective and z,tp € F', we have x = ntp. O

Proof of corollaries 1.5.b,c,d. These corollaries follow from theorem 1.2 and (D,L),
(D,L), (D,L), respectively. Here (L’) is applicable because max{2p+ ¢+
3,(3¢+3)/2} > (2p+ 4q)/3 + 2 (indeed, the opposite inequalities imply 4p + 3 <
q < 4p+3). 0

Proof of corollary 1.5.b°. Denote m = 6k —p and ¢ = 4k — p — 1. Since p < k, we
have m > 2p+q+3 and m > (2p + 4q)/3 + 2. Hence by (L) K", =7 is free.
Since 2m =p+3q+3 > 3¢ +4, by (D) E™(DP x §9) 2 7, (Vyy_gp+1)- So the

corollary follows from corollary 1.4.d. O
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Deduction of corollary 1.5.a from known results. Consider the following diagram

/_—\

T T q
(Vi gpi1) —= E™(DP! x §9) ——= Em(SP x §4) — = EP(SP x §9)

Here & is a map such that arr = id and a(f#g) = a(f) for each f € E™(SP x S9)
and g € E™(SPT%); such a map exists by [24, Torus lemma 6.1] (& := p~ o~ pr; ya
in the notation of that lemma). Hence 77 is injective and gxr is injective.

Take any f € E™(S? x S9). Let ' :=rra(f). Then a(f’) = a(f). Then by [24,
corollary 1.6.i] and since the smoothing obstruction assuming values in E™(SP*4)
is changed by [g] € E™(SPT%) if f is changed to f#g, we obtain quf = quf =
gur7a(f). Since gy is surjective, we see that gxr7 is surjective. |

2. Proofs

2.1. Standardization and group structure

Definition of the inclusion R? C R™ and of R, D', Oy, 1x, 1, TP, TV, For each
¢ < m identify the space R? with the subspace of R given by the equations x44+1 =
Tgto =+ = Ty, = 0 [11] (note that the notation in [12,32] is slightly different).
Analogously identify D?, 59 with the subspaces of D™ 5.

Define R, R™ C R™ and D'*, D™ C S™ by equations x; > 0 and z; < 0, respec-
tively. Then S™ = D7 U D™. Note that 0 x S™~! = §D7 = D™ = D' N D™ #
Sm=1 Denote by 0 the vector of k zero coordinates,

Ip:=(1,06) €8*, l:=m—-p—q—1, TP%9:=SPxS% and
TV .= DE x §9.

Assume that m > p + q. Informally, the standard embedding is the smoothing of

the composition

DPTL 5 pitl = patl . pril = patl » @ x %Dp“ S
DTt % D! x pptt = pmtt,
Formally, define the standard embedding
i = impg: DPTLx DI — D™ by () = (yy/2 — []2, 0, 2) / V2.

See [34, footnote 9]. Note that i(DPF! x S7) C S™, i(DPT! x D1) C DT and im p.q
is the restriction of in41,p+1,q but not of i,,41,p¢+1. Denote by the same notation
‘i’ restrictions of i (it would be clear from the context, to which sets).

Take a subset X C SP. A map f: X x §9 — S™ is called standardized if

(X xInt DY) CInt DT and  flxxps =impaq-

Cf. [26, remark after definition of the standard embedding in §2].
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A homotopy F': X x S x I — S™ x I is called standardized if

F(X xItDL x I) CInt DT x I and  F|y,pe g =ixidl.

LEMMA 2.1 (Standardization lemma; proved in §2.3). Let X denote either DY or
SP. For X = SP assume that m > 2p + q + 3.

(a) Each embedding X x S — S™ is isotopic to a standardized embedding.

(b) If standardized embeddings X x S9 — S™ are isotopic, then there is a
standardized isotopy between them.

Definition of the reflections R,R;. Let R:R™ — R™ be the reflection of
R™ with respect to the hyperplane given by equations z; =z =0, i.e.,

R(x1,20,%3,...,Tm) = (=21, —T2,23,...,Tm). Let R; be the reflection of R™
with respect to the hyperplane ; = 0, i.e., Rj(z1,Z2, ..., Tj—1,T5, Tjq1,. .., LTm) i=
(xlax% vy Lj—1y LGy L1y e e ey xm)

LEMMA 2.2 (Group Structure lemma). Let X denote either DY or SP. For
X = D¥ assume that m > q+ 3, for X = SP assume that m > 2p+ q+ 3. Then
a commutative group structure on E™(X x S9) is well-defined by the following
construction.

Let 0:=[i]. Let —[f] :=[f], where f(z,y):= Raf(z, Ray). For standardized
embeddings f,g: X x ST — 8™ let [f]+ [g] be the isotopy class of the embedding
sfq defined by

flay y € DY
sre(z,y) == (@, y) ;‘ )
R(g(z, Ry)) ye DL
The two formulas agree on X x (D N DY) because i(x,y) = Ri(z, Ry).

The proof modulo lemma 2.1 is given in [25, § 3] and, with more details, in [34,
§3.2].
Define the ‘embedded connected sum’ or ‘local knotting’” map

A EM(SP) - EM(TP) by #(g) = Oftg = [il#g.

Identify 1 x S? and —1 x S? with the first and the second component of S 1S9,
respectively. Clearly, for m > 2p 4+ ¢ + 3 the map ;# is a homomorphism.

2.2. Proof of theorem 1.2 using lemmas 2.1, 2.2

Before reading this subsection a reader might want to grasp the idea by reading
the proof of a simpler result in [34, §2.4] (although the proof here is formally
independent of [34, §2.4]).

LEMMA 2.3. For m = p+ q+ 3 the following is exact sequence of groups:
C s BrEL(athy X (gl 1 g (pp ey Y by

Here V' is the restriction-induced map; N'[f] is the obstruction to the existence
of a vector field on f(1, x S9t1) normal to f(TV"™) (see accurate definition in
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[84, after lemma 2.6]), and u' is the composition of T and the map p'" : 7,(S') =
Tq(Viz1,1) = Tg(Vin—gp+1) induced by ‘adding p vectors’ inclusion.

Proof. Consider the following diagram.

Fm+] (TJI:HI) P pm+l (Se+1)

é)\’ l{ \E\\A
v 1"

’

7rq(Sl) --t Tg(Vin—gp+1) > Tg(Vin—qp)
,,_,u/ lT 3? \\\)\//
E7’L(T£+1’q) v o Em(Tﬁle) X 7)77.(171(5’1)

| - ’
P _ W
7 G -

\ BN

B (51) — 41 (Vi) —= B H(TE7)

| :
$ (874 %
% v

Tg—1(Vin—qp) ~F T (qu_l)

Here

e the /v’ \" sequence is the exact sequence of the ‘forgetting the last vector’
bundle S — Vi pi1 = Vin—gp;

e the exact 7p&- and Tpé-sequences are defined in theorem 1.7.

Let us prove the commutativity.

Let us prove that &p = p”’\ for the left upper square. By the Standardization
lemma 2.1.a each element of E™H(TP7H!) is representable by a standard-
ized embedding f: D x S9t1 — S™*! Since leixD‘i“ =i, there is a normal
(m — q)-framing of f(D*"") extending flpe  petr and a normal (p + 1)-framing

P xD%

of f(Dfrl) extending f|DiXDi+1' Then &[flo,xsqa] = p”’N'[f] by definitions of X’

and &.

Relation N\ = 7X follows by definitions of A" (§2.2) and of A" (recalled in [34,
§3.4]). The commutativity of other squares and triangles is obvious.

Clearly, 't/ = 0. So the exactness of the M u'v/’ sequence follows by the Snake
lemma, cf. [11, proof of (6.5)]. O

Definition of the Zeeman homomorphism
C = Cm,n,q : 7"’c;{(SMinil) — E{]”(Sq (] Sn) for ¢ < n,

cf. [32, Definition of Ze in p.9]. Denote by iy, 4 : ST — S™ the standard embedding.
For a map z : S — S™~"~! representing an element of 7,(S™ ") let

Co: 87— S™ be the composition §9 " 257 gm—n=ly gn 1, gm

where i:=1ipmm-n—1n-
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We have (,(S9) Nimn(S™) Ci(S™ "1 x S")Ni(Op_rn x S™) =0. Let ([z]:=
[C(E u im,n]'

Clearly, ¢ is well-defined, is a homomorphism, and A\( = id 7, (S™~"~1).

Note that (m,q,q = 7707 = T

Definition of the homomorphism

0= 0Ompq: By (STUSPTY) — E™(TP9) form>p+q+3 and ¢ >0,

cf. [32, §3, Definition of o*]. Denote by EJ"(S?U.S™) C E™(S?U S™) the subset
formed by the isotopy classes of embeddings whose restriction to the first component
is unknotted. Represent an element of EJ*(S? LI SP*?) by an embedding

f:STUSPTY — ™ such that  flge =1ilo, ., x5
and  f(SPT9) Ni(DPT! x §9) = 0.

Join f(SP*9) to i(—1, x S7) by an arc whose interior misses f(SPT?)Ui(DPT! x
S9). Let o[f] be the isotopy class of the embedded connected sum of i|srxga and
flsp+a along the arc. (The images of these embeddings are not necessarily con-
tained in disjoint balls.) For p = 0 the orientation on i(—1, x S7) is ‘parallel’ to the
orientation on i(1, x S7).

The map o is well-defined for m > p + ¢+ 3 and is a homomorphism for m >
2p+ q + 3 [32, lemmas 3.1-3.3]. For p = 0 an interpretation of o and some results
on o are presented in [34, §2.3]. We have o(f) +;#g = o(f#g) [32, remark after
lemma 3.3]

Proof of theorem 1.2. Clearly, the first sentence follows from the ‘moreover’ part.
So let us prove the ‘moreover’ part. Consider the following diagram.

B (T 1 ()

W
' AN / ' AN
/ ¢ o ar \ : LC "
/s V /

Em+1 (TP Q+1) Em(Sq Sp+q) Em(Tp q Em(TP 5q Em 1(Sq 1 L Sp+q 1)
Y o v

E(')n(S Sp+q) Em Tp q Em 1 Sq 1 Sp«}»q—] )
it /
Em ( Sp+q)

Here the X p/v/-sequence is defined in lemma 2.3, maps ¢ and o are defined above,
e i is the inclusion,
e 1 is the restriction-induced map,
® 0y 1= quo,

e the map 7 is well-defined by Dgx(f) = v(f),
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o ;#g:=j#g, where the ‘standard embedding’ j:S7USPT? — S™ is any
embedding whose components are contained in disjoint balls and are isotopic
to the inclusions.

The commutativity of the triangles is clear, except for ;# = o ;#, which follows by

olj] = [il-
The map 7 of theorem 1.2 is well-defined by f(p'z) := oxCz. Let X :=kerr' =
im /.

Recall the Serre theorem: the group m,(S') is finite unless ¢ = 4k — 1 and | = 2k
for some k, and map,_1(S?*) is the sum of Z and a finite group. This and (VF) of
§1.3 imply the assertion on the finiteness of X = im(ru"). Then using the exact
sequence of the ‘forgetting the last vector’ bundle S' — m—q.p+1 = Vimn—qp W€
obtain the assertion on XEZ}:’_’ 1

It suffices to prove that the horizontal sequence of theorem 1.2 is exact.

The exactness of the vo(i¢\)-sequence is [32, theorem 1.6].

The map 7 @ ;# is an isomorphism [12, theorem 2.4]. Hence by the Smoothing
lemma 1.1 and ;# = o,#, the first two third-line groups both have E™(SP*9)-
summands mapped one to the other under o. Taking quotients by these summands
one obtains the exactness of the second line.

Since A¢ =id, we have that ¢ is injective and EJ}(S? U SPTY) =im( @ Kytq
(the mutually inverse isomorphisms are given by x — ((A\x, 2 — (\x) and (y,z) —
Y+ z).

Since the right ¢ is injective, we have im v/ = ker \' = ker (N = imv.

The restriction o| K . s injective because

keroy NKJ", , =im(CN)N K, Cim(NK]",  =0.
If op's = oCx =0, then x € im A = ker ¢/, so @'z = 0. Hence 7 is injective.
Also
kerV =imoy = opim( @ op K", , =imu®opx K" .
Thus the horizontal sequence of theorem 1.2 is exact. O

2.3. Proof of the Standardization lemma 2.1

Proof of (a) for X = D% . Take an embedding g:T}% — S™. Since every two
embeddings of a disk into S™ are isotopic, we can make an isotopy of S and
assume that g =i on DY x DZ.

The ball D™ is contained in a tubular neighbourhood of i(D% x D?) in S™
relative to i(D% x dD%). The image g(D¥ x Int DY) is disjoint from some tighter
such tubular neighbourhood. Hence by the Uniqueness of Tubular Neighbourhood
Theorem we can make an isotopy of S™ and assume that g(D¥ x Int D) N D™ =
(. Then g is standardized. O

Proof of (b) for X = D‘f;_ Take an isotopy g between standardized embeddings
T?? — S™. By the 1-parametric version of ‘every two embeddings of a disk into
S™ are isotopic’ we can make a self-isotopy of id §™, i.e. a level-preserving autod-

iffeomorphism of S™ x I identical on S™ x {0,1}, and assume that g =ixid I on
DY x DY xI.
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g(1T™)

Ay

Figure 1. To the proof of the Standardization lemma 2.1.a for X = S?.

The ball D™ x I is contained in a tubular neighbourhood V' of i(D. x D) x I
in S x I relative to i(D% x dD%) x I. We may assume that V' N S™ x k is ‘almost
D™ for each k =0, 1.

The image g(D% x Int DY x I is disjoint from some tighter such tubular neigh-
bourhood, whose intersection with S™ x k is VN .S™ x k for each k = 0,1. Hence
by the Uniqueness of Tubular Neighbourhood theorem we can make an isotopy of
S™ x I relative to S™ x {0, 1} and assume that g(D% x Int DY x I) N D™ x I = ().
Then g is standardized. O

Extend i to v2DP*! x D! by the same formula as in the definition of i. For
v < V2 denote A, := i(yDPF! x {~1,}) C Int D™.

Proof of (a) for X = SP. See figure 1. Take an embedding g : T?? — S™. Since
m > 2p + g, every two embeddings S? x D? — S™ are isotopic (this is a trivial case
of theorem 1.7). So we can make an isotopy and assume that g =i on S? x D?.

Since m > 2p + ¢ + 1, by general position we may assume that img N A; = 0A;.
Then there is 7 slightly greater than 1 such that img N A, = 0A;. Take the ‘stan-
dard’ g-framing on A, tangent to i(yDPT! x S?) whose restriction to A; is the
‘standard’ normal g-framing of dA; in im g. Then the ‘standard’ (m —p — ¢ — 1)-
framing normal to i(yDPT! x S9) is an (m — p — g — 1)-framing on OA; normal to
im g. Using these framings we construct

e an orientation-preserving embedding H : D™ — D™ onto a tight neighbour-
hood of A in D™, and

e an isotopy h; of id 7?4 shrinking S? x D? to a tight neighbourhood of S? x
{14} in S? x D? such that

H(A ) =A,, Hi(S"x DY) =H(D™)Nimg
and Hi=ihy on SPx DY.

Embedding H is isotopic to id D™ by [13, theorem 3.2]. This isotopy extends
to an isotopy H; of id S™ by the Isotopy Extension theorem [13, theorem
1.3]. Then H{lght is an isotopy of g. Let us prove that embedding Hflghl is
standardized.

We have Hy 'ghy = H; 'ihi =i on SP x D?. Also if H; 'ghi(SP x Int DY) ¢
Int D', then there is 2 € SP x Int D{ such that ghy(xz) € H(D™). Then ghy(z) =
Hi(y) =ih1(y) = ghi(y) for some y € SP x D?. This contradicts to the fact that
gh1 is an embedding. O
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An embedding F : N x I — S™ x I is a concordanceif N x k = F~1(S™ x k) for
each k = 0,1. Embeddings are called concordant if there is a concordance between
them.

Proof of (b) for X = SP. Take an isotopy g between standardized embeddings. The
restriction g|g» pa 1s an isotopy between standard embeddings. So this restriction
gives an embedding ¢’ : S? x DY x S — S™ x S! homotopic to i|gexo x id S*.
Since m + 1 > 2(p + 1), by general position ¢’|grxox st is isotopic to i |grxo x id S?.
Since m > 2p + g + 1, the Stiefel manifold V;,,—, 4 is (p + 1)-connected. Hence every
two maps S* x S — V,,,_,, , are homotopic. Therefore ¢’ is isotopic to i x id S*. So
we can make a self-isotopy of id S™, i.e. a level-preserving autodiffeomorphism of
S™ x I identical on S™ x {0, 1}, and assume that g =ixidI on SP x D% x I.

Since m > 2p + g + 2, by general position we may assume that img N A; x I =
O0A1 x I. Then there is a disk A C D™ x I such that

IntA DAy x(0,1), AND™ x{0,1} =A 5 x{0,1}
and imgNA=0A; xI.

Take the ‘standard’ ¢-framing on A tangent to i(v/2DP*! x S9) x I whose restric-
tion to Ay x I is the ‘standard’ normal g-framing of 9A; x I in img. Then the
‘standard’ (m —p — ¢ — 1)-framing on dA; x I normal to i(v/2DPH! x S9) x [ is
an (m —p — g — 1)-framing on dA; x I normal to img. Using these framings we
construct

e an orientation-preserving embedding H : D™ x I — D™ x I onto a neighbour-
hood of Ay x I in D™ x I, and

e an isotopy h; of id T4 x I shrinking S? x D? x I to a neighbourhood of S x
{=14} x I in S? x D% x I such that

H(A 5z x1)=A, H((S" x D) xI)=H(D™ x I)Nimg

and Ho (ixidI)= (ixidI)oh; on S? x D? x I.

Analogously to the proof of (a) embedding H is isotopic to id(D™ x I), such
an isotopy extends to an isotopy Hy of id(S™ x I), and H, Lgh, is an isotopy
from g to a standardized isotopy Hflghl. |

2.4. Proof of the Smoothing lemma 1.1
LEMMA 2.4 (proved below). For m = 2p+ q+ 3 there is a homomorphism
G : E™(TP?) — E™(SPT1)  such that & o # = id E™(SP19).

The Smoothing lemma 1.1 follows because lemma 2.4 and g o ;# = 0 imply that
¢4 @ T is an isomorphism. Lemma 2.4 is known [5, proposition 5.6] except for the
non-trivial assertion that & is a homomorphism.

Proof of lemma 2.4. Definition of & and proof that o o ;# = id E™(SPT?). The map
o is ‘embedded surgery of S” x 1,°, cf. equivalent definition below. We give an
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Figure 2. To the proof that & is a homomorphism. This picture illustrates the proof by the
case p=0, ¢ =1 and m = 3 (these values are not within the dimension range m > 2p +
g+ 3). The part above plane ABCD stands for 51” The part below plane A’B'C'D’
stands for 57\_" The part between the planes stands for S m=1 s D! The upper curved lines

stand for f1(SP x S971) = u(SP x S?71). The bottom curved lines stand for f_(SP x
S971) = 4(SP x §971). The union of segments A’ A, B'B, C'C and D' D stands for u(S? x
8971 % D). The union of segments A’A and B’'B stands for i(SP x 1,_1) x D*. The

quadrilateral A’ABB’ stands for the ‘surgery disk’ i(Dp+1 X Di_l) x D'. The union of
the upper curved lines and the segment AB stands for the (p + ¢)-disk Ay. Analogously
for A_. The union of Ay, A_ and the segments C’'C and D’D stands for the (p + ¢)-
sphere that is the image of a representative of &[u]. The union of Ay and CD stands
for ¥y . Analogously for ¥_. The quadrilateral C'CDD’ stands for the tube i(DP*! x
DT Y x Dt

alternative detailed construction following [5, proposition 5.6]. Take f € E™(T?:7).
By the Standardization lemma 2.1.a there is a standardized representative f’ :
P17 — S™ of f. Identify
SPT1 and SPx DY ) D' xoDi
SPxaDY

by a diffeomorphism. Define an embedding
i : D" x ODY — D™ by i'(x,(0,9)) = (=1 = [a]%,y, 00, 2) /V2.

Then ¢ is an extension of the restriction S? x aDi — 0D of iy, p, ¢ Infinite deriva-
tive for |x| = 1 means that i’ meets the boundary regularly. Hence i’ and f|gp Dt

form together a (C'-smooth) embedding g : SPT7 — S™. Let (f) := [g].

The map 7 is well-defined for m > 2p + ¢ + 3 by the Standardization lemma 2.1.b
because the above construction of @ has an analogue for isotopy, cf. [34, beginning
of §3.2].

Clearly, 7 o;#(g) =a(0#g) =a(0) +g=0+g=g. O

Proof of lemma 2.4. Beginning of the proof that @ is a homomorphism. See figure 2.
For each n identify

S™ and DY U St x Dt U Dn,
B/DE=S"*1><1 Sn—1x{—1}=8D"

where A is a copy of A.
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Then S~ ! =871 x 0 C S™. Let i = im—1p,4-1. Under the identifications @ =
Sl x {£1}, n € {m,q}, the embedding im ,, goes to i|grxga—1. Hence analo-
gously to (or by) the Standardization lemma 2.1.a each element in E™(T?:?) has a
representative f such that

o f(SP x 5?_'_) C BE;

o f=inpqonSPx 5{ (the image of this embedding lies in ﬁl),

o f=ilgpxga1 xid D! on SP x S9! x D! (the image of this embedding lies in
Sm=1x D).

Take embeddings fi :TP?7 — S™ satisfying the above properties. Then
[f+] + [f-] has a representative u : TP — S™ such that

ou:f+0n5p><ﬁz;
° u:(idSPXR)Of,O(idSpXR)onprﬁ;
® U =i|gpyga1 xid D! on SP x 471 x DL

For completion of the proof that & is a homomorphism we need an equivalent
definition of @.

First we assume that p = 0, i.e. define the embedded connected sum of embed-
dings f_1, f1: S?7 — S™ whose images are disjoint. Take an embedding [ : D x
D? — S™ such that

l=fr on kxD? and I(D'xD%)N f.(S7) =1(kx D%) for k=4+1.
Define h : S7 — S™ by

folw) x DI
h(z):={l(z) x€D'xoDL.
filx) =z € 5?

Then a representative of [fy] + [f1] is obtained from h by smoothing of the ‘dihedral
corner’ along h(S° x dDY). This smoothing is local replacement of embedded (I x
0UO0 x I) x D971 by embedded C x D=1, where C C I? is a smooth curve joining
(0,1) to (1,0) and such that C'U[1,2] x 0U0 x [1,2] is smooth. This smoothing is
‘canonical’, i.e. does not depend on the choice of C. Cf. [10, Proof of 3.3] and, for
non-embedded version, [35].

Let us generalize this definition to arbitrary p. Given embedding f : TP — S™
take an embedding [ : DP*! x D! — S™ such that

l=f onS’x D! and I(DPT x DL)n f(TP7) =1(SP x D).

Define h : SPT4 — S™ by

D q
h(z) = f(x) xe€SPx Dy .
l(z) ze€DPt!x oD
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Then a representative of 7(f) is obtained from h by ‘canonical’ smoothing of the
‘dihedral corner’ along h(SP x 0D%) analogous to the above case p = 0.

This definition is equivalent to that from the beginning of proof of lemma 2.4
because there are a closed e-neighbourhood U of the image of | (for some small
e > 0) and a self-diffeomorphism G : S™ — S™ such that G(D™,i(T??),i'(DP*! x
ODL)) = (U,U N f(T7),U N A(SP+0)).

The result of the above surgery does not depend on the choices involved because
(f) is well-defined.

Completion of the proof that & is a homomorphism.* Recall that a representative
of 7lu] is obtained from u by ‘embedded surgery of i(SP x 1,_1) x 0’. Recall that
the isotopy class of an embedding g : SPT¢ — S™ is defined by the image of g and
an orientation on the image.

Denote

Ay = u(SP x DY) U i(DP*! x DY) x {£1}

~ G x D1y pPtl x pi=t =~ ppta
L

Then the oriented image of the representative of &[u] is obtained by ‘canonical’
smoothing of corners from

(u(TP9) —i(SP x D) x DY) U (i xid D) (DPH x d(DI x Dl)) —

=A_UidDP' x DT x D'UA,
DrtaxouSPTTl x TUDPtI x 1 =~ gPte

This oriented (p + ¢)-sphere is a connected sum of oriented (p 4 ¢)-spheres

i = Ap Ui(DPH x DI x {1} = 0x DPTIUDETT = grte

h
T
&

along the tube i(DPT' x DT') x D!, The image of a representative of o[fy] is
obtained from i by ‘canonical’ smoothing of the ‘dihedral corner’. The cor-
ners of the tube i(DPT! x Dq_fl) x D! can be ‘canonically’ smoothed to obtain
an embedding DP™? x D' — S™. Thus &u] = &[f] +7[f_]. O
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