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RUTGERKUYPER, AND PAUL E. SCHUPP

Abstract. A coarse description of a set A ⊆ � is a set D ⊆ � such that the symmetric difference of A
andD has asymptotic density 0.We study the extent to which noncomputable information can be effectively
recovered from all coarse descriptions of a given set A, especially when A is effectively random in some
sense. We show that ifA is 1-random and B is computable from every coarse description D of A, then B is
K-trivial, which implies that ifA is in fact weakly 2-random then B is computable. Our main tool is a kind
of compactness theorem for cone-avoiding descriptions, which also allows us to prove the same result for
1-genericity in place of weak 2-randomness. In the other direction, we show that ifA �T ∅′ is a 1-random
set, then there is a noncomputable c.e. set computable from every coarse description of A, but that not all
K-trivial sets are computable from every coarse description of some 1-random set. We study both uniform
and nonuniform notions of coarse reducibility. A set Y is uniformly coarsely reducible to X if there is a
Turing functional Φ such that ifD is a coarse description ofX , then ΦD is a coarse description ofY . A setB
is nonuniformly coarsely reducible to A if every coarse description of A computes a coarse description of B .
We show that a certain natural embedding of the Turing degrees into the coarse degrees (both uniform
and nonuniform) is not surjective. We also show that if two sets are mutually weakly 3-random, then their
coarse degrees form a minimal pair, in both the uniform and nonuniform cases, but that the same is not
true of every pair of relatively 2-random sets, at least in the nonuniform coarse degrees.

§1. Introduction. There are many natural problems with high worst-case com-
plexity that are nevertheless easy to solve in most instances. The notion of “generic-
case complexity” was introduced by Kapovich, Myasnikov, Schupp, and Shpilrain
[18] as a notion that is more tractable than average-case complexity but still allows a
somewhat nuanced analysis of such problems. That paper also introduced the idea
of generic computability, which captures the idea of having a partial algorithm that
correctly computes A(n) for “almost all” n, while never giving an incorrect answer.
Jockusch and Schupp [17] began the general computability theoretic investigation
of generic computability and also defined the idea of coarse computability, which
captures the idea of having a total algorithm that always answers and may make
mistakes, but correctly computes A(n) for “almost all” n. We are here concerned
with this latter concept.Wefirst need a good notion of “almost all” natural numbers.

Definition 1.1. Let A ⊆ �. The density ofA below n, denoted by �n(A), is |A�n|
n .

The upper (asymptotic) density �(A) of A is lim supn �n(A). The lower (asymptotic)
density �(A) of A is lim infn �n(A). If �(A) = �(A) then we call this quantity the
(asymptotic) density of A, and denote it by �(A).
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We say that D is a coarse description of X if �(D � X ) = 0, where � denotes
symmetric difference. A set X is coarsely computable if it has a computable coarse
description.

This idea leads to natural notions of reducibility.

Definition 1.2. We say that Y is uniformly coarsely reducible to X , and write
Y �uc X , if there is a Turing functional Φ such that if D is a coarse description of
X , then ΦD is a coarse description of Y . This reducibility induces an equivalence
relation≡uc on 2�. We call the equivalence class ofX under this relation the uniform
coarse degree of X .

Uniform coarse reducibility, generic reducibility (defined in [17]), and several
related reducibilities have been termed notions of robust information coding by
Dzhafarov and Igusa [9].Work on such notions hasmainly focused on their uniform
versions. (One exception is a result on nonuniform ii-reducibility in Hirschfeldt and
Jockusch [13].) However, nonuniform versions of these reducibilities also seem to
be of interest. In particular, we will work with the following nonuniform version of
coarse reducibility.

Definition 1.3. We say thatY is nonuniformly coarsely reducible toX , and write
Y �nc X , if every coarse description ofX computes a coarse description ofY . This
reducibility induces an equivalence relation≡nc on 2�. We call the equivalence class
of X under this relation the nonuniform coarse degree of X .

Note that the coarsely computable sets form the least degree in both the uniform
and nonuniform coarse degrees. Uniform coarse reducibility clearly implies nonuni-
form coarse reducibility. We will show in the next section that, as one might expect,
the converse fails. The development of the theory of notions of robust informa-
tion coding and related concepts have led to interactions with computability theory
(as in Jockusch and Schupp [17]; Downey, Jockusch, and Schupp [7]; Downey,
Jockusch, McNicholl, and Schupp [6]; and Hirschfeldt, Jockusch, McNicholl, and
Schupp [14]), reverse mathematics (as in Dzhafarov and Igusa [9] and Hirschfeldt
and Jockusch [13]), and algorithmic randomness (as in Astor [1]).
In this paper, we investigate connections between coarse reducibility and algo-
rithmic randomness. In Section 2, we describe natural embeddings of the Turing
degrees into the uniform and nonuniform coarse degrees, and discuss some of their
basic properties. In Section 3, we show that no weakly 2-random set can be in the
images of these embeddings by showing that if X is weakly 2-random and A is
noncomputable, then there is some coarse description of X that does not compute
A. More generally, we show that if X is 1-random and A is computable from every
coarse description ofX , thenA isK-trivial. Our main tool is a kind of compactness
theorem for cone-avoiding descriptions. We also show that there do exist noncom-
putable sets computable from every coarse description of some 1-random set, but
that not all K-trivial sets have this property. In Section 4, we give further examples
of classes of sets that cannot be in the images of our embeddings. In Section 5,
we show that if two sets are relatively weakly 3-random then their coarse degrees
form a minimal pair, in both the uniform and nonuniform cases, but that, at least
for the nonuniform coarse degrees, the same is not true of every pair of relatively
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2-random sets. These results are analogous to the fact that, for the Turing degrees,
two relatively weakly 2-random sets always form a minimal pair, but two relatively
1-random sets may not. In Section 6, we conclude with some open questions.
We assume familiarity with basic notions of computability theory (as in [27]) and
algorithmic randomness (as in [5] or [24]). For S ⊆ 2<�, we write �S� for the open
subset of 2� generated by S; that is, �S� = {X : ∃n (X � n ∈ S)}. We denote the
uniform measure on 2� by �.

§2. Coarsenings and embeddings of the Turing degrees. We can embed the Turing
degrees into both the uniform and nonuniform coarse degrees, and our first con-
nection between coarse computability and algorithmic randomness comes from
considering such embeddings. While there may be several ways to define such
embeddings, a natural way to proceed is to define a map C : 2� → 2� such that C(A)
contains the same information as A, but coded in a “coarsely robust” way. That is,
we would like C(A) to be computable from A, and A to be computable from any
coarse description of C(A).
In the case of the uniform coarse degrees, onemight think that the latter reduction
should be uniform, but that condition would be too strong: If ΓD = A for every
coarse description D of C(A) then Γ�(n)↓ ⇒ Γ�(n) = A(n) (since every string
can be extended to a coarse description of C(A)), which, together with the fact that
for each n there is a � such that Γ�(n)↓, implies thatA is computable. Thus we relax
the uniformity condition slightly in the following definition.

Definition 2.1. A map C : 2� → 2� is a coarsening if for each A we have
C(A) �T A, and for each coarse descriptionD of C(A), we haveA �T D. A coarsen-
ing C is uniform if there is a binary Turing functional Γ with the following properties
for every coarse description D of C(A):
1. ΓD is total.
2. Let As (n) = ΓD(n, s). Then As = A for cofinitely many s .

Proposition 2.2. Let C and F be coarsenings and A and B be sets. Then
1. B �T A if and only if C(B) �nc C(A).
2. If C is uniform then B �T A if and only if C(B) �uc C(A).
3. C(A) ≡nc F(A), and
4. if C and F are both uniform then C(A) ≡uc F(A).
Proof. 1. Suppose that C(B) �nc C(A). Then C(A) computes a coarse description
D1 of C(B). Thus B �T D1 �T C(A) �T A.
Now suppose that B �T A and let D2 be a coarse description of C(A). Then

C(B) �T B �T A �T D2. Thus C(B) �nc C(A).
2. Suppose that C is uniform and that B �T A. Let D2 be a coarse description
of C(A). Let As be as in Definition 2.1, with D = D2. Then C(B) �T B �T A,
so let Φ be such that ΦA = C(B). Let X �T D2 be defined as follows. Given n,
search for an s > n such that ΦAs (n)↓ and let X (n) = ΦAs (n). (Note that such an
s must exist.) Then X (n) = ΦA(n) = C(B)(n) for almost all n, so X is a coarse
description of C(B). SinceX is obtained uniformly fromD2,wehaveC(B) �uc C(A).
The converse follows immediately from 1.
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3. Let D3 be a coarse description of F(A). Then C(A) �T A �T D3. Thus
C(A) �nc F(A). By symmetry, C(A) ≡nc F(A).
4. If F is uniform then the same argument as in the proof of 2 shows that we can
obtain a coarse description of C(A) uniformly from D3, whence C(A) �uc F(A).
If C is also uniform then C(A) ≡uc F(A) by symmetry. 

Thus uniform coarsenings all induce the same natural embeddings. It remains to
show that uniform coarsenings exist. We give an example similar to one obtained
independently by Dzhafarov and Igusa [9]. Let In = [n!, (n + 1)!) and let I(A) =⋃
n∈A In; this map first appeared in Jockusch and Schupp [17]. Clearly I(A) �T A,
and it is easy to check that if D is a coarse description of I(A) thenD computes A.
Thus I is a coarsening.
To construct a uniform coarsening, let H(A) = {〈n, i〉 : n ∈ A ∧ i ∈ �}
and define E(A) = I(H(A)). The notation E denotes this particular coarsening
throughout the paper.

Proposition 2.3. The map E is a uniform coarsening.
Proof. Clearly E(A) �T A. Now let D be a coarse description of E(A). Let
G = {m : |D ∩ Im| > |Im|

2 } and let As = {n : 〈n, s〉 ∈ G}. Then G =∗ H(A),
so As = A for all but finitely many s , and the As are obtained uniformly fromD. 

A first natural question is whether uniform coarse reducibility and nonuniform
coarse reducibility are indeed different. A positive answer can be given by showing
that, unlike in the nonuniform case, the mappings E and I are not equivalent up
to uniform coarse reducibility. Recall that a set X is autoreducible if there exists
a Turing functional Φ such that for every n ∈ � we have ΦX\{n}(n) = X (n).
Equivalently, we could require that Φ not ask whether its input belongs to its oracle.
In an earlier version of this paper, we defined the following Δ02 version of this
notion: A set X is jump-autoreducible if there exists a Turing functional Φ such that
for every n ∈ � we have Φ(X\{n})′(n) = X (n). We then showed that if E(X ) �uc

I(X ) then X is jump-autoreducible, and that neither 2-generic sets nor 2-random
sets can be jump-autoreducible, so that both of these kinds of sets witness the
difference between E andI in the uc-degrees. Igusa [personal communication] noted
that in [9], he and Dzhafarov established results that imply that if E(X ) �uc I(X )
then X is in fact autoreducible, so that 1-genericity and 1-randomness suffice to
witness the difference between E and I in the uc-degrees. To explain their results,
we need to define two reducibilities introduced in [9].

Definition 2.4. A set X is mod-finite reducible to a set Y , written as X �mf Y ,
if there is a Turing functional Φ such that for any C such that C � X is finite, ΦC
is total and ΦC � Y is finite.
A setA is a partial oracle if it is a set of triples of the form 〈n, i, s〉 with i < 2, such
that for each n there is atmost one i with 〈n, i, s〉 ∈ A for some s . For a partial oracle
A, let dom(A) be the set of n such that 〈n, i, s〉 for some i and s . If n ∈ dom(A), let
(A)(n) be the unique i such that 〈n, i, s〉 ∈ A for some s . For a set Z, we say that
the partial oracle A is a partial oracle for Z if (A)(n) = Z(n) for all n ∈ dom(A).
A set X is cofinitely reducible to a set Y , written as X �cf Y , if there is a Turing
functional Φ such that if A is any partial oracle for Y with cofinite domain then ΦA

is a partial oracle for X with cofinite domain.
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For both of these notions, the original definition in [9] also requires thatΦY = X ,
but as shown in that paper, dropping this condition does not affect either definition.
As noted in [9], the nonuniform versions of both of these notions are the same as
Turing reducibility.
Dzhafarov and Igusa [9] showed that I induces an embedding from the mod-
finite degrees into the uniform coarse degrees, and thatH induces an embedding of
the Turing degrees into the mod-finite degrees. (They worked with slightly different
maps, but it is easy to adapt their proofs to our maps.) Igusa [personal communi-
cation] noted that, since E(X ) = I(H(X )), these facts imply that E(X ) �uc I(X ) if
and only ifH(X ) �mf X . Dzhafarov and Igusa [9] also showed that mf-reducibility
implies cf-reducibility, and (as part of their proof that another one of their reducibil-
ities, mr-reducibility, does not imply cf-reducibility) that if X is not autoreducible
then H(X ) �cf X . Thus if X is not autoreducible then H(X ) �mf X , and hence
E(X ) �uc I(X ).
Figueira, Miller, andNies [10] showed that no 1-random set is autoreducible, and
it is easy to see that same is true of 1-generic sets.

Proposition 2.5. If X is 1-generic, then X is not autoreducible.

Proof. Suppose for the sake of a contradiction thatX is 1-generic and is autore-
ducible via Φ. For a string �, let �−1(i) be the set of n such that �(n) = i . If � is a
binary string, let � \ {n} be the unique binary string � of the same length such that
�−1(1) = �−1(1)\{n}. Let S be the set of strings � such thatΦ�\{n}(n)↓ �= �(n)↓ for
some n. Then S is a c.e. set of strings and X does not meet S. Since X is 1-generic,
there is a string � ≺ X that has no extension in S. Let n = |�|, and let � � � be a
string such that Φ�\{n}(n)↓. Such a string � exists because � ≺ X and Φ witnesses
that X is autoreducible. Furthermore, we may assume that �(n) �= Φ�\{n}, since
changing the value of �(n) does not affect any of the conditions in the choice of �.
Hence � is an extension of � and � ∈ S, which is the desired contradiction. 

Thus we have the following result, where the fact that E(X ) �nc I(X ) for all X
follows from Proposition 2.2.

Theorem 2.6 (Dzhafarov and Igusa [9] and Igusa [personal communication]).
If X is 1-random or 1-generic, then E(X ) �nc I(X ) but E(X ) �uc I(X ).
The maps E and I can also be used to distinguish generic reducibility from its
nonuniform analog. Let us first review the relevant definitions from [17]. A generic
description of a set A is a partial function that agrees with A where defined, and
whose domain has density 1. A set A is uniformly generically reducible to a set B,
written A �ug B, if there is an enumeration operatorW such that if Φ is a generic
description of B, thenW graph(Φ) is the graph of a generic description of A. We can
define the notion of nonuniform generic reducibility in a similar way: A �ng B if for
every generic description Φ of B, there is a generic description Ψ of A such that
graph(Ψ) is enumeration reducible to graph(Φ).
It is easy to see that E(X ) �ng I(X ) for allX . On the other hand, Dzhafarov and
Igusa [9] showed that I induces an embedding from the cofinite degrees into the
uniform generic degrees, and that H induces an embedding of the Turing degrees
into the cofinite degrees. As in the case of coarse reducibility, Igusa [personal
communication] noted that these facts imply that E(X ) �ug I(X ) if and only if
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H(X ) �cf X . Thus, arguing as before, if X is not autoreducible then E(X ) �ug

I(X ). Thus we have the following fact.
Theorem 2.7 (Dzhafarov and Igusa [9] and Igusa [personal communication]).
If X is 1-random or 1-generic, then E(X ) �ng I(X ) but E(X ) �ug I(X ).
We finish this section by showing that, for both the uniform and the nonuniform
coarse degrees, coarsenings of the appropriate type preserve joins but do not always
preserve existing meets.

Proposition 2.8. Let C be a coarsening. Then C(A ⊕ B) is the least upper bound
of C(A) and C(B) in the nonuniform coarse degrees. The same holds for the uniform
coarse degrees if C is a uniform coarsening.
Proof. By Proposition 2.2 we know that C(A ⊕ B) is an upper bound for C(A)
and C(B) in both the uniform and nonuniform coarse degrees. Let us show that it
is the least upper bound. If C(A), C(B) �nc G then every coarse descriptionD ofG
computes both A and B, so D �T A⊕ B �T C(A⊕ B). Thus G �nc C(A⊕ B).
Finally, assume that C is a uniform coarsening and let C(A), C(B) �uc G . Let Φ
be a Turing functional such that ΦA⊕B = C(A⊕B). Every coarse descriptionH of
G uniformly computes coarse descriptions D1 of C(A) and D2 of C(B). Since C is
uniform, there are Turing functionals Γ and Δ such that, letting As (n) = ΓD1 (n, s)
andBs (n) = ΓD2 (n, s), we have thatA⊕B = As ⊕Bs for all sufficiently large s . Let
E be defined as follows. Given n, search for an s � n such that ΦAs⊕Bs (n)↓, and let
E(n) = ΦAs⊕Bs (n). If n is sufficiently large, then E(n) = ΦA⊕B(n) = C(A⊕B)(n),
so E is a coarse description of C(A ⊕ B). Since E is obtained uniformly from H ,
we have that C(A⊕ B) �uc G . 

Lemma 2.9. Let C be a uniform coarsening and let Y �T X . Then Y �uc C(X ).
Proof. Let Φ be a Turing functional such that ΦX = Y . Let D be a coarse
description of C(X ) and let As be as in Definition 2.1. Now define G(n) to be
the value of ΦAs (n) for the least pair 〈s, t〉 such that s � n and ΦAs (n)[t]↓. Then
G =∗ Y , so G is a coarse description of Y . 

Proposition 2.10. Let C be a coarsening. Then C does not always preserve existing
meets in the nonuniform coarse degrees. The same holds for the uniform coarse degrees
if C is a uniform coarsening.
Proof. Let X,Y be relatively 2-random and Δ03. Then X and Y form a minimal
pair in the Turing degrees, while X and Y do not form a minimal pair in the
nonuniform coarse degrees by Theorem 5.6 below. Since every coarse description of
C(X ) computes X we see that C(X ) �nc X and C(Y ) �nc Y . Therefore C(X ) and
C(Y ) also do not form a minimal pair in the nonuniform coarse degrees.
Next, let C be a uniform coarsening. We have seen above that there exists some
A �nc C(X ), C(Y ) that is not coarsely computable. Then A �T X,Y , so A �uc

C(X ), C(Y ) by the previous lemma. Thus, C(X ) and C(Y ) do not form a minimal
pair in the uniform coarse degrees. 


§3. Randomness, K-triviality, and robust information coding. It is reasonable to
expect that the embeddings induced by E (or equivalently, by any uniform coars-
ening) are not surjective. Indeed, if E(A) �uc X then the information represented

https://doi.org/10.1017/jsl.2015.70 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2015.70


1034 DENIS R. HIRSCHFELDT ET AL.

by A is coded into X in a fairly redundant way. If A is noncomputable, it should
follow thatX cannot be random. As we will see, we can make this intuition precise.

Definition 3.1. Let X c be the set of all A such that A is computable from every
coarse description of X .

We will show that if X is weakly 2-random then X c = 0, and hence E(A) �nc X
for all noncomputableA (since every coarse description of E(A) computesA). Since
no 1-random set can be coarsely computable, it will follow that X �≡nc E(B) and
X �≡uc E(B) for all B. We will first prove the following theorem. Recall that a set
A is K-trivial if it has the lowest possible initial segment prefix-free Kolmogorov
complexity up to an additive constant, i.e., K(A � n) � K(n) +O(1). Let K be the
class of K-trivial sets. (See [5] or [24] for more on K-triviality.)

Theorem 3.2. If X is 1-random then X c ⊆ K.
By Downey, Nies, Weber, and Yu [8], if X is weakly 2-random then it cannot
compute any noncomputable Δ02 sets. Since K ⊂ Δ02, our desired result follows from
Theorem 3.2.

Corollary 3.3. If X is weakly 2-random then X c = 0, and hence E(A) �nc X
for all noncomputable A. In particular, in both the uniform and nonuniform coarse
degrees, the degree of X is not in the image of the embedding induced by E .
By analogy with the terminology used for the natural embedding of the Turing
degrees in the enumeration degrees, whenever an embedding e of the Turing degrees
into the degree structure arising from a reducibility r has been fixed, an r-degree x
is said to be quasi-minimal if x �= e(0) and e(a) � x for all Turing degrees a > 0.
Corollary 3.3 shows that every weakly 2-random set has quasi-minimal degree in
both the nc-degrees and the uc-degrees.
To prove Theorem 3.2, we use the fact, established by Hirschfeldt, Nies, and
Stephan [15], that A is K-trivial if and only if A is a base for 1-randomness, that
is, A is computable in a set that is 1-random relative to A. The basic idea is to
show that if X is 1-random and A ∈ X c, then for each k > 1 there is a way to
partition X into k many “slices” X0, . . . , Xk−1 such that for each i < k, we have
A �T X0⊕· · ·⊕Xi−1⊕Xi+1⊕· · ·⊕Xk−1 (where the right hand side of this inequality
denotes X1 ⊕ · · · ⊕ Xk−1 when i = 0 and X0 ⊕ · · · ⊕ Xk−2 when i = k − 1). It will
then follow by van Lambalgen’s Theorem (which will be discussed below) that each
Xi is 1-random relative to X0 ⊕ · · · ⊕ Xi−1 ⊕ Xi+1 ⊕ · · · ⊕ Xk−1 ⊕ A, and hence,
again by van Lambalgen’s Theorem, thatX is 1-random relative toA. SinceA ∈ X c

implies thatA �T X , we will conclude thatA is a base for 1-randomness, and hence
is K-trivial. We begin with some notation for certain partitions of X .

Definition 3.4. Let X ⊆ �. For an infinite subset Z = {z0 < z1 < · · · } of �,
let X � Z = {n : zn ∈ X}. For k > 1 and i < k, define

Xki = X � {n : n ≡ i mod k} and Xk�=i = X � {n : n �≡ i mod k}.

Note thatXk�=i ≡T X \{n : n ≡ i mod k} and �(X�(X \{n : n ≡ i mod k})) � 1
k .

Van Lambalgen’s Theorem [28] states thatY⊕Z is 1-random if and only ifY and
Z are relatively 1-random. The proof of this theorem shows, more generally, that if
Z is computable, infinite, and coinfinite, then X is 1-random if and only if X � Z
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and X � Z are relatively 1-random. Relativizing this fact and applying induction,
we get the following version of van Lambalgen’s Theorem.

Theorem 3.5 (van Lambalgen [28]). The following are equivalent for all sets X
and A, and all k > 1.

1. X is 1-random relative to A.
2. For each i < k, the set Xki is 1-random relative to X

k
�=i ⊕ A.

The last ingredient we need for the proof of Theorem 3.2 is a kind of compactness
principle, which will also be used to yield further results in the next section, and is
of independent interest given its connection with the following concept defined in
[14].

Definition 3.6. Let r ∈ [0, 1]. A set X is coarsely computable at density r if there
is a computable set C such that �(X � C ) �1−r. The coarse computability bound
of X is

�(X ) = sup{r : X is coarsely computable at density r}.

As noted in [14], there are sets X such that �(X ) = 1 but X is not coarsely
computable. In other words, there is no principle of “compactness of computable
coarse descriptions.” (Although Miller (see [14, Theorem 5.8]) showed that one
can in fact recover such a principle by adding a further effectivity condition to
the requirement that �(X ) = 1.) The following theorem shows that if we replace
“computable” by “cone-avoiding,” the situation is different.

Theorem 3.7. Let A and X be arbitrary sets. Suppose that for each ε > 0 there is
a set Dε such that �(X � Dε) � ε and A �T Dε . Then there is a coarse description
D of X such that A �T D.

Proof. The basic idea is that, given a Turing functional Φ and a string � that is
“close to” X , we can extend � to a string � that is “close to” X such that ΦD �= A
for all D extending � that are “close to” X . We can take � to be any string “close
to” X such that, for some n, either Φ�(n)↓ �= A(n) or Φ�(n)↑ for all � extending �
that are “close to” X . If no such � exists, we can obtain a contradiction by arguing
that A �T Dε for sufficiently small ε, since with an oracle for Dε we have access to
many strings that are “close to” Dε and hence to X , by the triangle inequality for
Hamming distance (where the Hamming distance between two strings of the same
length is the number of bits on which the two strings differ). In the above discussion
the meaning of “close to” is different in different contexts, but the precise version
will be given below. Further, as the construction proceeds, the meaning of “close
to” becomes so stringent that we guarantee that �(X �D) = 0. We now specify the
formal details.
We obtain D as

⋃
e �e , where �e ∈ 2<� and �0 � �1 � · · · . In order to ensure

that �(X �D) = 0, we require that for all e and all m in the interval [|�e|, |�e+1|],
either D and X agree on the interval [|�e|, m) or �m(X � D) � 2−|�e|, with the
latter true for m = |�e+1|. This condition implies that �m(X � D) � 2−|�e | for all
m ∈ [|�e+1|, |�e+2|], and hence that �(X �D) = 0.
For a string 	, a set Y , and a number n � |�|, we write �n(Y � 	) or �n(	 � Y )
for |{k<n:Y (k) �=	(k)}|

n . Let � and � be strings and let ε be a positive real number.
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Call � an ε-good extension of � if � properly extends � and for all m ∈ [|�|, |�|],
either X and � agree on [|�|, m) or �m(X � �) � ε, with the latter true form = |�|.
In line with the previous paragraph, we require that �e+1 be a 2−|�e|-good extension
of �e for all e.
At stage 0, let �0 be the empty string. At stage e + 1, we are given �e and choose
�e+1 as follows so as to force that A �= ΦDe . Let ε = 2−|�e|.
Case 1. There is a number n and a string � that is an ε-good extension of �e such
that Φ�e(n)↓ �= A(n). Let �e+1 be such a �.
Case 2. Case 1 does not hold and there is a number n and a string 
 that is an
ε-good extension of �e such that |
 | � |�e|+2 andΦ�e(n)↑ for all ε4 -good extensions
� of 
 . Let �e+1 be such a 
 .
We claim that either Case 1 or Case 2 applies. Suppose not. Let Dε

5
be as in the

hypothesis of the lemma, so that �(X � Dε
5
) � ε

5 and A �T Dε
5
. Let c � |�e | + 2

be sufficiently large so that �m(X � Dε
5
) � ε

4 for all m � c and �e has an ε4 -good
extension 
 of length c. Note that the string obtained from �e by appending a
sufficiently long segment of X starting with X (|�e |) is an ε4 -good extension of �e ,
so such a 
 exists, and we assume it is obtained in this manner.
We now obtain a contradiction by showing that A �T Dε

5
. To calculate A(n)

search for a string � extending 
 such thatΦ�e(n)↓, saywith use u, and �m(Dε
5
��) �

ε
2 for all m ∈ [c, u). We first check that such a string � exists. Since Case 2 does not
hold, there is a string � that is an ε4 -good extension of 
 such that Φ

�
e(n)↓. We claim

that � meets the criteria to serve as �. We need only check that �m(Dε
5
� �) � ε

2 for
all m ∈ [c, u). Fix m ∈ [c, u). Then

�m(Dε
5
� �) � �m(Dε

5
� X ) + �m(X � �) � ε

4
+
ε

4
=
ε

2
.

Next we claim that � is an ε-good extension of �e . The string � extends �e since
it extends 
 , and 
 extends �e . Let m ∈ [|�e |, |�|] be given. If m < c, then � and X
agree on the interval [|�e|, m) because 
 and X agree on this interval and � extends

 . Now suppose thatm � c. Then

�m(� � X ) � �m(� �Dε
5
) + �m(Dε

5
� X ) � ε

2
+
ε

4
< ε.

Since � is an ε-good extension of �e for which Φ
�
e(n)↓, and Case 1 does not hold,

we conclude that Φ�e(n) = A(n). The search for � can be carried out computably in
Dε
5
, so we conclude that A �T Dε

5
, contradicting our choice of Dε

5
. (Although 


cannot be computed from Dε
5
, we may use it in our computation of A(n) since it is

a fixed string which does not depend on n.) This contradiction shows that Case 1
or Case 2 must apply.
LetD =

⋃
n �n. Then �(D�X ) = 0, andA �T D since Case 1 or Case 2 applies

at every stage. 

Proof of Theorem 3.2. Let A ∈ X c. By Theorem 3.7, there is an ε > 0 such that
A �T Dε whenever �(X �Dε) � ε. Let k be an integer such that k > 1

ε . As noted
in Definition 3.4, Xk�=i is Turing equivalent to such a Dε (namely X \ {n : n ≡
i mod k}) for each i < k, so we have A �T X

k
�=i for all i < k. By the unrelativized

form of Theorem 3.5, each Xki is 1-random relative to X
k
�=i , and hence relative to
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Xk�=i ⊕A ≡T X
k
�=i . Again by Theorem 3.5,X is 1-random relative toA. ButA �T X ,

so A is a base for 1-randomness, and hence is K-trivial. 

Weak 2-randomness is exactly the level of randomness necessary to obtain Corol-
lary 3.3 directly from Theorem 3.2, because, as shown in [8], if a 1-random set is
not weakly 2-random, then it computes a noncomputable c.e. set. The corollary
itself does hold of some 1-random sets that are not weakly 2-random, because if it
holds of X then it also holds of any Y such that �(Y � X ) = 0. (For example, let
X be 2-random and let Y be obtained from X by letting Y (2n) = Ω(n) (where Ω
is Chaitin’s halting probability) for all n and letting Y (k) = X (k) for all other k.
By van Lambalgen’s Theorem, Y is 1-random, but it computes Ω, and hence is not
weakly 2-random.)
Nevertheless, Corollary 3.3 does not hold of all 1-random sets, as we now show.

Definition 3.8. Let W0,W1, . . . be an effective listing of the c.e. sets. A set A
is promptly simple if it is c.e. and coinfinite, and there exist a computable function
f and a computable enumeration A[0], A[1], . . . of A such that for each e, ifWe is
infinite then there are n and s for which n ∈ We [s] \We [s − 1] and n ∈ A[f(s)].
Note that every promptly simple set is noncomputable.

We will show that if X �T ∅′ is 1-random then X c contains a promptly simple
set, and there is a promptly simple set A such that E(A) �nc X , so X does not have
quasi-minimal nc-degree. (We will discuss the case of uniform coarse reducibility
following Corollary 3.11 below.) In fact, we will obtain a considerably stronger
result by first proving a generalization of the fact, due to Hirschfeldt and Miller
(see [5, Theorem 7.2.11]), that if T is a Σ03 class of measure 0, then there is a
noncomputable c.e. set that is computable from each 1-random element of T .
(We will discuss the relationship between our result and the theory of algorithmic
randomness after we state and prove it.)

Theorem 3.9. Let S0,S1, . . . be uniformly Π02 classes of measure 0. Let D be the
class of all Y for which there are a number m, a Π0,Y1 class P , and a 1-random set Z
such that Z ∈ P ⊆ Sm. Then there is a promptly simple set A such that A �T Y for
every Y ∈ D.
Proof. Let (Vmn )m,n∈� be uniformly Σ01 classes such that Sm =

⋂
n Vmn . We may

assume that Vm0 ⊇ Vm1 ⊇ · · · for allm. For eachm, we have�(
⋂
n Vnm) = �(Sm) = 0,

so limn �(Vmn ) = 0 for each m. Let Θ be a computable relation such that, if we let
PYk = {Z : ∀l Θ(k,Y � l, Z � l)}, then for every set Y , we have that PY0 ,PY1 , . . .
lists all Π0,Y1 classes.
DefineA as follows. At each stage s , if there is an e < s such that no numbers have
entered A for the sake of e yet, and an n > 2e such that n ∈We [s] \We[s − 1] and
�(Vmn [s]) � 2−e for allm < e, then for the least such e, put the least corresponding
n into A. We say that n enters A for the sake of e.
Clearly, A is c.e. and coinfinite, since at most e many numbers less than 2e ever
enter A. Suppose thatWe is infinite. Let t > e be a stage such that all numbers that
will ever enterA for the sake of any i < e are inA[t]. There must be an s � t and an
n > 2e such that n ∈We [s]\We[s − 1] and �(Vmn [s]) � 2−e for allm < e. Then the
least such n enters A for the sake of e at stage s unless another number has already
entered A for the sake of e. It follows that A is promptly simple.
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Now suppose thatY ∈ D. Let the numbers k,m and the 1-random set Z be such
that Z ∈ PYk ⊆ Sm. Let B �T Y be defined as follows. Given n, let

Dns = {X : (∀l � s)Θ(k,Y � l, X � l)} \ Vmn [s].

ThenDn0 ⊇ Dn1 ⊇ · · · . Furthermore, ifX ∈
⋂
s Dns thenX ∈ PYk andX /∈ Vmn . Since

PYk ⊆ Sm ⊆ Vmn , it follows thatX /∈ PYk , which is a contradiction. Thus
⋂
s Dns = ∅.

Since the Dns are nested closed sets, it follows that there is an s such that Dns = ∅.
Let sn be the least such s (which we can find using Y ) and let B(n) = A(n)[sn].
Note that B ⊆ A.
Let T = {Vmn [s] : n enters A at stage s}. We can think of T as a uniform singly-

indexed sequence of Σ01 sets since m is fixed and for each n there is at most one s
such that Vmn [s] ∈ T . For each e, there is at most one n that enters A for the sake of
e, and the sum of the measures of the Vmn [s] such that n enters A at stage s for the
sake of some e > m is bounded by

∑
e 2

−e , which is finite. Thus T is a Solovay test,
and hence Z is in only finitely many elements of T . So for all but finitely many n, if
n enters A at stage s then Z /∈ Vmn [s]. Then Z ∈ Dns , so sn > s . Hence, for all such
n, we have that B(n) = A(n)[sn] = 1. Thus B =∗ A, so A ≡T B �T Y . 


Remark 3.10. The result of Hirschfeldt and Miller mentioned above clearly
follows fromTheorem 3.9, since any Σ03 class of measure 0 is the union of a sequence
of uniformly Π02 classes of measure 0, and {Y} is a Π0,Y1 class. We can see the
Hirschfeldt-Miller result as saying that themembers of an “effectively small” collec-
tion of 1-random sets must share some nontrivial information, sufficient to compute
a noncomputable c.e. set. There have been several results in the theory of algorith-
mic randomness characterizing the amount of information shared by the members
of various particular collections of 1-random sets, and the Hirschfeldt-Miller result
has proved to be a useful tool in the area. (See e.g., [2, 3,8,11].) It is natural to ask
whether it can be extended from the class of 1-random sets to other well known
classes, even if at the cost of passing to a less intuitive notion of what counts as
“effectively small.” One such class, which has often been studied in connection with
algorithmic randomness, is that of the sets of diagonally noncomputable degree,
where a set has diagonally noncomputable (DNC) degree if it computes a total
functionf such thatf(e) �= Φe(e) for all e. Note that every 1-random set hasDNC
degree. (See [5] for more on DNC degrees and their connections with algorithmic
randomness. See Proposition 3.13 below for a connection between 1-randomness
and diagonal noncomputability in our setting.)
Let Q and R be two classes of sets given by relativizable definitions, and let RA
be the relativization of R to A. A set A is low for Q / R if Q ⊆ RA. A set is
weakly 1-random if it does not belong to any Π01 class of measure 0. Let D be as in
Theorem 3.9. If Y ∈ D then Y is not low for 1-randomness / weak 1-randomness,
as there is a Π0,Y1 class of measure 0 containing a 1-random set. Greenberg and
Miller [12] showed that a setA is not low for 1-randomness / weak 1-randomness if
and only if A has DNC degree. For such an A, let us say that the class P is a witness
to the nonlowness of A for 1-randomness / weak 1-randomness if P is a Π0,A1 class of
measure 0 that contains a 1-randomset.Although it is certainly not themost obvious
notion of effective smallness, we can think of a class D of sets of DNC degree as
effectively small if there are uniformly Π02 classes of measure 0 containing witnesses
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to nonlowness for 1-randomness / weak 1-randomness for all the members of D.
Notice that for a 1-random set X , the singleton {X} is a witness to the nonlowness
ofX for 1-randomness / weak 1-randomness, so this notion does extend the notion
of effective smallness in the Hirschfeldt-Miller result. Thus Theorem 3.9 can be seen
as an extension of that result from 1-randomness to diagonal noncomputability.
Namely, Theorem 3.9 and the Greenberg-Miller result above imply that if D is a
family of sets of DNC degree that is effectively small in the sense just above, then
there is a promptly simple set computable from every element of D.

Corollary 3.11. LetX �T ∅′ be 1-random.There is a promptly simple setA such
that if �(D�X ) < 1

4 then A �T D. In particular,X c contains a promptly simple set,
and there is a promptly simple set A such that E(A) �nc X .

Proof. Say that sets Y and Z are r-close from m on if whenever m < n, the
Hamming distance between Y � n and Z � n (i.e., the number of bits on which
these two strings differ) is at most rn.
Let Sm be the class of all Z such that X and Z are 12 -close fromm on. Since X is
Δ02, the Sm are uniformly Π02 classes. Furthermore, ifX andZ are 12 -close fromm on
for some m, then Z cannot be 1-random relative to X (by the same argument that
shows that ifC is 1-random then there must be infinitely many n such thatC � n has
more 1’s than 0’s), so �(Sm) = 0 for all m. Thus the hypotheses of Theorem 3.9 are
satisfied. LetA be as in that theorem. Suppose that �(D�X ) < 1

4 . Then there is an
m such thatD andX are 14 -close fromm on. LetP be theΠ

0,D
1 class of allZ such that

D and Z are 14 -close fromm on. If Z ∈ P then by the triangle inequality for Ham-
ming distance, X and Z are 12 -close from m on. Thus X ∈ P ⊆ Sm, so A �T D. 

After learning about Corollary 3.11, Nies [25] gave a different but closely con-
nected proof of this result, which works even for X of positive effective Hausdorff
dimension, as long as we sufficiently decrease the bound 14 . However, even for X of
effective Hausdorff dimension 1 his bound is much worse, namely 120 .
It is tempting to conjecture that the last part of Corollary 3.11 holds for uniform
coarse reducibility as well, but that is not the case. Recall the maps H and I
used to define our uniform coarsening E , and our discussion of their relationships
with mod-finite and cofinite reducibilities. Cholak and Igusa [in preparation] have
shown that if X is 1-random and A is noncomputable thenH(A) �cf X , and hence
H(A) �mf X . Dzhafarov and Igusa [9] showed that I induces an embedding from
the mf-degrees into the uc-degrees, so Cholak and Igusa conclude that in this case,
E(A) �uc X . In other words, every 1-random set has quasi-minimal uc-degree.
In the proof of Corollary 3.11, we do not need to assume that our Δ02 set is
1-random as long as the class P can be shown to contain a 1-random set. This will
be the case for instance when X is a coarse description of a 1-random set Y . Of
course, in that case Y c = X c, so we see that the last part of the corollary can be
extended from Δ02 1-random sets to 1-random sets with Δ

0
2 coarse descriptions. This

fact is consistent with Corollary 3.3: Every coarsely computable set is contained in
a Π01 class of measure 0 (since for every computableD and everym, the class of sets
that are 12 -close toD fromm on is a Π

0
1 class of measure 0), so no weakly 1-random

set is coarsely computable. Relativizing this fact, we see that no weakly 2-random
set has a Δ02 coarse description.
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Maass, Shore, and Stob [22, Corollary 1.6] showed that if A and B are promptly
simple then there is a promptly simple set G such that G �T A and G �T B. Thus
we have the following extension of Kučera’s result [19] that two Δ02 1-random sets
cannot form a minimal pair, which will also be useful below.

Corollary 3.12. Let X0, X1 �T ∅′ be 1-random. There is a promptly simple set
A such that if �(D � Xi) < 1

4 for some i ∈ {0, 1} then A �T D.

It is easy to adapt the proof of Corollary 3.11 to give a direct proof of
Corollary 3.12, and indeed of the fact that for any uniformly ∅′-computable
family X0, X1, . . . of 1-random sets, there is a promptly simple set A such that
if �(D � Xi) < 1

4 for some i then A �T D. (We let S〈i,m〉 be the class of all Z
such that Xi and Z are 12 -close fromm on, and the rest of the proof is essentially as
before.)
Let D be a set. Using the terminology of the proof of Corollary 3.11, let Pm be
the class of all Z such that D and Z are 12 -close from m on. Each Pm is a Π0,D1
class, and by the same argument as in that proof, has measure 0. Thus, if any Pm
contains a 1-random set then, by the results of Greenberg and Miller mentioned in
Remark 3.10, D has DNC degree. Thus we have the following fact.

Proposition 3.13. If X is 1-random and �(D�X ) < 1
2 thenD has DNC degree.

In particular, every coarse description of a 1-random set has DNC degree.

It is natural to askwhether every set ofDNCdegree computes a coarse description
of a 1-random set. The following argument shows that this is not the case. If D is
a coarse description of a 1-random set X = X0 ⊕ X1 then D computes a coarse
description Di of each of the Xi . As noted above, Xi is not weakly 1-random
relative to Di . But Xi is 1-random relative to X1−i , so relativizing one direction of
the characterization of lowness for 1-randomness / weak 1-randomness (which, as
noted in [12], is due to Kjos-Hanssen), we see that Di has DNC degree relative to
Di−1. In particular,D0 andD1 areTuring-incomparable, soD does not haveminimal
Turing degree. Kumabe (see [20]) showed that there are minimal DNC degrees, so
not every set of DNC degree computes a coarse description of a 1-random set.
After learning about Corollary 3.11, Igusa [personal communication] asked
whether Theorem 3.9 can also be used to prove an analogous result about nonuni-
form generic reducibility. We now show that it can. Indeed, the following general-
ization of Corollary 3.11 applies not only to coarse and generic reducibilities, but
also to reducibilities arising from notions of approximate computability that allow
a mix of divergences and mistakes, studied by Astor, Hirschfeldt, and Jockusch [in
preparation].
Recall the notion of partial oracle from Definition 2.4. It is easy to see that, as
noted in [9], A �ng B if and only if every partial oracle for B whose domain has
density 1 computes a partial oracle for A whose domain has density 1.

Corollary 3.14. Let X �T ∅′ be 1-random. There is a promptly simple set A
such that if Y is a partial oracle, �(dom(Y )) > 5

6 , and �({n ∈ dom(Y ) : (Y )(n) �=
X (n)}) < 1

6 , then A �T Y . In particular, every partial oracle for X whose domain
has density 1 computes A, and hence E(A) �ng X .

Proof. As in the proof of Corollary 3.11, let Sm be the class of all Z such that
X and Z are 12 -close fromm on, and let A be as in Theorem 3.9. Suppose that Y is
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as in the statement of the corollary. Then there is an m such that for every k > m,
we have �k(dom(Y )) > 5

6 and �k({n ∈ dom(Y ) : (Y )(n) �= X (n)}) <
1
6 . Let P be

the Π0,Y class of all Z such that �k({n ∈ dom(Y ) : (Y )(n) �= Z(n)}) < 1
6 for all

k > m. Note that X ∈ P .
If Z ∈ P thenX � k andZ � k must agree on all but at most k3 many elements of
dom(Y ), and there are at most k6 many numbers below k that are not in dom(Y ),
so the Hamming distance between X � k andZ � k is at most k2 . Thus P(Y ) ⊆ Sm.
So we have X ∈ P(Y ) ⊆ Sm , and hence by Theorem 3.9, A �T Y . 

Note that 56 and

1
6 in the above result can be replaced by any rationals p and q

such that 2q + (1− p) � 1
2 .

As in the case of coarse reducibility, the last part of this corollary is not true of the
uniform generic degrees. As mentioned above, Cholak and Igusa [in preparation]
have shown that if X is 1-random and A is noncomputable then H(A) �cf X .
Dzhafarov and Igusa [9] showed that I induces an embedding from the cf-degrees
into the ug-degrees, so Cholak and Igusa conclude that in this case, E(A) �ug X .
In other words, every 1-random set has quasi-minimal ug-degree.
Given the many (and often surprising) characterizations of K-triviality, it is
natural to ask whether there is a converse to Theorem 3.2 stating that if A is
K-trivial thenA ∈ X c for some 1-randomX .We now show that is not the case, using
a recent result of Bienvenu, Greenberg, Kučera, Nies, and Turetsky [4]. There are
many notions of randomness tests in the theory of algorithmic randomness. Some,
like Martin-Löf tests, correspond to significant levels of algorithmic randomness,
while other, less obviously natural ones have nevertheless become important tools
in the development of this theory. Balanced tests belong to the latter class.

Definition 3.15. Let W0,W1, . . . ⊆ 2� be an effective list of all Σ01 classes.
A balanced test is a sequence (Un)n∈� of Σ01 classes such that there is a computable
binary function f with the following properties.

1. |{s : f(n, s + 1) �= f(n, s)}| � O(2n),
2. ∀n Un =Wlims f(n,s), and
3. ∀n ∀s �(Wf(n,s)) � 2−n.
For � ∈ 2<� and X ∈ 2� , we write �X for the element of 2� obtained by
concatenating � and X .

Theorem 3.16 (Bienvenu, Greenberg, Kučera, Nies, and Turetsky [4]). There are
a K-trivial set A and a balanced test (Un)n∈� such that if A �T X then there is a
string � with �X ∈

⋂
n Un.

We will also use the following measure-theoretic fact.

Theorem 3.17 (Loomis and Whitney [21]). Let S ⊆ 2� be open, and let k ∈ �.
For i < k, let �i(S) = {Yk�=i : Y ∈ S}. Then �(S)k−1 � �(�0(S)) · · ·�(�k−1(S)).
Our result will follow from the following lemma.

Lemma 3.18. Let X be 1-random, let k > 1, and let (Un)n∈� be a balanced test.
There is an i < k such that Xk�=i /∈

⋂
n Un.

Proof. Assume for a contradiction that Xk�=i ∈
⋂
n Un for all i < k. Let

Sn,s = {Y : ∀i < k (Yk�=i ∈ Un[s])}
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and let Sn =
⋃
s Sn,s . By Theorem 3.17, �(Sn,s )k−1 � �(Un[s])k , so �(Sn) �

O(2n)2−
nk
k−1 = O(2−

n
k−1 ), and hence

∑
n �(Sn) < ∞. Thus {Sn : n ∈ �} is a

Solovay test. However, X ∈
⋂
n Sn , so we have a contradiction. 


Theorem 3.19. There is a K-trivial set A such that A /∈ X c for all 1-randomX .

Proof. Let A and (Un)n∈� be as in Theorem 3.16. Let X be 1-random. By
Theorem 3.7, it is enough to fix k > 1 and show that there is an i < k such that
A �T X

k
�=i . Assume for a contradiction that A �T X

k
�=i for all i < k. Then there

are �0, . . . , �k−1 such that �iX k�=i ∈
⋂
n Un for all i < k. Let m = maxi<k |�i | and let

Vn = {Y : ∃i < k (�iY ∈ Un+k+m)}. It is easy to check that (Vn)n∈� is a balanced
test, and Xk�=i ∈

⋂
n Vn for all i < k, which contradicts Lemma 3.18. 


In work currently in preparation, Greenberg, Miller, and Nies have shone further
light on some of the results in this section. They define a setA to be a kn -base if there
is a 1-random set Z = Z0 ⊕ · · · ⊕ Zn−1 such that A is computable from every join
of k many of the Zi . They have proved several theorems concerning this notion,
including the following: The notion is well-defined, in the sense that if k

′
n′ =

k
n then

the k
′
n′ -bases coincide with the

k
n -bases. If p < q are rationals in (0, 1), then the

p-bases form a proper subideal of the q-bases. The union I of these ideals is a
proper subideal of the ideal of K-trivial sets.
The connection with our work comes from the fact that Theorem 3.7 implies that
ifA ∈ X c for some 1-random setX thenA is an n−1n -base for some n > 1, soA ∈ I.
Greenberg, Miller, and Nies have shown that the converse also holds. Indeed, they
have shown that if A ∈ I then A ∈ Ωc, and in fact there is an ε > 0 such that A
is computable from every D such that �(Ω� D) < ε, where Ω is Chaitin’s halting
probability.

§4. Further applications of cone-avoiding compactness. We can use Theorem 3.7
to give an analog to Corollary 3.3 for effective genericity. In this case, 1-genericity
is sufficient, as it is straightforward to show that if X is 1-generic relative to A
and A is noncomputable, then A �T X (i.e., unlike the case for 1-randomness,
there are no noncomputable bases for 1-genericity), and that no 1-generic set can
be coarsely computable. The other ingredient we need to replicate the argument we
gave in the case of effective randomness is a version of van Lambalgen’s Theorem
for 1-genericity. This result was established by Yu [29, Proposition 2.2]. Relativizing
his theorem and applying induction as in the case of Theorem 3.5, we obtain the
following fact.

Theorem 4.1 (Yu [29]). The following are equivalent for all sets X and A, and all
k > 1.

1. X is 1-generic relative to A.
2. For each i < k, the set Xki is 1-generic relative to X

k
�=i ⊕ A.

Now we can establish the following analog to Corollary 3.3.

Theorem 4.2. If X is 1-generic then X c = 0, and hence E(A) �nc X for all
noncomputable A. In particular, in both the uniform and nonuniform coarse degrees,
the degree of X is not in the image of the embedding induced by E , and indeed is
quasi-minimal.
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Proof. Let A ∈ X c. As in the proof of Theorem 3.2, there is a k such that
A �T X

k
�=i for all i < k. By the unrelativized form of Theorem 4.1, each X

k
i

is 1-generic relative to Xk�=i , and hence relative to X
k
�=i ⊕ A ≡T X

k
�=i . Again by

Theorem 4.1, X is 1-generic relative to A. But A �T X , so A is computable. 

Igusa [personal communication] has also found the following application of
Theorem 3.7.We say thatX is generically computable if there is a partial computable
function ϕ such that ϕ(n) = X (n) for all n in the domain of ϕ, and the domain of
ϕ has density 1. As might be expected, a set is generically computable if and only if
it is generically reducible to the empty set. Jockusch and Schupp [17, Theorem 2.26]
showed that there are generically computable sets that are not coarsely computable,
but by Lemma 1.7 in [14], if X is generically computable then �(X ) = 1, where � is
the coarse computability bound from Definition 3.6.

Theorem 4.3 (Igusa, personal communication). If �(X ) = 1 then X c = 0, and
hence E(A) �nc X for all noncomputableA. Thus, if �(X ) = 1 and X is not coarsely
computable then in both the uniform and nonuniform coarse degrees, the degree of
X is not in the image of the embedding induced by E , and indeed is quasi-minimal.
In particular, the above holds when X is generically computable but not coarsely
computable.

Proof. Suppose that �(X ) = 1 and A is not computable. If ε > 0 then there is
a computable set C such that �(X � C ) < ε. Since C is computable, A �T C .
By Theorem 3.7, A /∈ X c. 


§5. Minimal pairs in the uniform and nonuniform coarse degrees. For any degree
structure that acts as a measure of information content, it is reasonable to expect
that if two sets are sufficiently random relative to each other, then their degrees form
a minimal pair. For the Turing degrees, it is not difficult to show that if Y is not
computable and X is weakly 2-random relative to Y , then the degrees of X and Y
form a minimal pair. On the other hand, Kučera [19] showed that if X,Y �T ∅′
are both 1-random, then there is a noncomputable set A �T X,Y , so there are
relatively 1-random sets whose degrees do not form a minimal pair. As we will see,
the situation for the nonuniform coarse degrees is similar, but “one jump up.”
For an interval I , let �I (X ) =

|X∩I |
|I | .

Lemma 5.1. Let Jk = [2k − 1, 2k+1 − 1). Then �(X ) = 0 if and only if
limk �Jk (X ) = 0.

Proof. First suppose that lim supk �Jk (X ) > 0. Since |Jk| = 2k , we have �(X ) �
lim supk �2k+1−1(X ) � lim supk

�Jk (X )
2 > 0.

Now suppose that lim supk �Jk (X ) = 0. Fix ε > 0. Let m be sufficiently large so
that |X ∩ Ji | � ε

2 |Ji | for all i � m, let k � m, and let n ∈ Jk . Then

|X ∩ [0, n)| � |X ∩ [0, 2k+1 − 1)| �
m−1∑

i=0

|Ji |+
k∑

i=m

ε

2
|Ji |.

Ifk is sufficiently large then this sum is less than ε(2k−1),whence�n(X ) < ε(2k−1)
n �

εn
n = ε. Thus lim supn �n(X ) � ε. Since ε is arbitrary, lim supn �n(X ) = 0. 
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Theorem 5.2. If A is not coarsely computable and X is weakly 3-random relative
to A, then there is no X -computable coarse description of A. In particular, A �nc X .

Proof. Suppose that ΦX is a coarse description of A and let

P = {Y : ΦY is a coarse description of A}.
Then Y ∈ P if and only if
1. ΦY is total, which is a Π02 property, and
2. for each k there is an m such that, for all n > m, we have �n(ΦY �A) < 2−k ,
which is a Π0,A3 property.

Thus P is a Π0,A3 class, so it suffices to show that if A is not coarsely computable
then �(P) = 0.
We prove the contrapositive. Suppose that �(P) > 0. Then, by the Lebesgue
Density Theorem, there is a � such that �(P ∩ ���) > 3

42
−|�|. It is now easy to

define a Turing functional Ψ such that the measure of the class of Y for which ΨY

is a coarse description of A is greater than 34 . Define a computable setD as follows.
Let Jk = [2k − 1, 2k+1 − 1). For each k, wait until we find a finite set of strings Sk
such that �(�Sk�) > 3

4 and Ψ
� converges on all of Jk for each � ∈ Sk (which must

happen, by our choice of Ψ). Let nk be largest such that there is a set Rk ⊆ Sk with
�(�Rk�) > 1

2 and �Jk (Ψ
� � Ψ�) � 2−nk for all �, � ∈ Rk . Let � ∈ Rk and define

D � Jk = Ψ� � Jk .
We claim that D is a coarse description of A. By Lemma 5.1, it is enough to
show that limk �Jk (D � A) = 0. Fix n. Let Bk be the class of all Y such that ΨY
converges on all of Jk and �Jk (Ψ

Y � A) � 2−n. If ΨY is a coarse description of A
then, again by Lemma 5.1, �Jk (Ψ

Y � A) � 2−n for all sufficiently large k, so there
is an m such that �(Bk) > 3

4 for each k > m, and hence �(Bk ∩ �Sk�) > 1
2 for each

k > m. Let Tk = {� ∈ Sk : �Jk (Ψ� � A) � 2−n}. Then �Tk� = Bk ∩ �Sk�, so
�(�Tk�) > 1

2 for each k > m. Furthermore, by the triangle inequality for Hamming
distance, �Jk (Ψ

� �Ψ�) � 2−(n−1) for all �, � ∈ Tk . It follows that, for each k > m,
we have nk � n − 1, and at least one element Y of Bk is in �Rk� (where Rk is as in
the definition of D), which implies that

�Jk (D �A) � �Jk (D �ΨY ) + �Jk (ΨY �A) � 2−nk + 2−n < 2−n+2.
Since n is arbitrary, limk �Jk (D �A) = 0. 

Corollary 5.3. IfY is not coarsely computable andX is weakly 3-randomrelative
to Y , then the nonuniform coarse degrees of X and Y form a minimal pair, and hence
so do their uniform coarse degrees.
Proof. Let A �nc X,Y . Then Y computes a coarse description D of A. We have
D �nc X , andX is weakly 3-random relative toD, so by the theorem,D is coarsely
computable, and hence so is A. 

For the nonuniform coarse degrees at least, this corollary does not hold of
2-randomness in place of weak 3-randomness. To establish this fact, we use the
following complementary results. The first was proved by Downey, Jockusch, and
Schupp [7, Corollary 3.16] in unrelativized form, but it is easy to check that their
proof relativizes.
Theorem 5.4 (Downey, Jockusch, and Schupp [7]). If A is c.e., �(A) is defined,
and A′ �T D

′, then D computes a coarse description of A.
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Theorem 5.5 (Hirschfeldt, Jockusch, McNicholl, and Schupp [14]). Every non-
low c.e. degree contains a c.e. set A such that �(A) = 1

2 and A is not coarsely
computable.

Theorem 5.6. Let X,Y �T ∅′′ (which is equivalent to E(X ), E(Y ) �nc E(∅′′)).
IfX andY are both 2-random, then there is anA �nc X,Y such thatA is not coarsely
computable. In particular, there is a pair of relatively 2-random sets whose nonuniform
coarse degrees do not form a minimal pair.
Proof. Since X and Y are both 1-random relative to ∅′, by the relativized form
of Corollary 3.12 there is an ∅′-c.e. set J >T ∅′ such that for every coarse description
D of either X or Y , we have that D ⊕ ∅′ computes J , and hence so does D′.
By the Sacks Jump Inversion Theorem [26], there is a c.e. set B such that B ′ ≡T J .
By Theorem 5.5, there is a c.e. setA ≡T B such that �(A) = 1

2 andA is not coarsely
computable. Let D be a coarse description of either X or Y . Then D′ �T J ≡T A

′,
so by Theorem 5.4, D computes a coarse description of A. 

We do not know whether this theorem holds for uniform coarse reducibility.

§6. Open questions. We finish with a couple of questions raised by our results.
Open Question 6.1. Can the bound 14 in Corollary 3.11 be increased?
Open Question 6.2. Does Theorem 5.6 hold for uniform coarse reducibility?
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ComputingK -trivial sets by incomplete random sets.Bulletin of Symbolic Logic, vol. 20 (2014), pp. 80–90.
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