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Nonlinear dispersion for ocean surface waves
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Two expressions for the nonlinear dispersion relation for gravity waves on water
of constant depth are derived, one for wave fields with discrete amplitude spectra,
the other for wave fields with continuous wavenumber energy spectra. Numerical
examples for wave quartets and for two-dimensional Pierson–Moskowitz spectra are
given, and an important possible application is discussed.
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1. Introduction
The studies of nonlinear waves initiated by Stokes in the middle of the nineteenth

century (Stokes 1847) focused on finite-amplitude effects for a single wave train. In
this case, the mechanism of nonlinear interaction between waves which appears at
third order in the steepness is not readily apparent. Work of Tick (1959), Phillips
(1960) and Longuet-Higgins (1962) investigating the interaction between several wave
trains first shed light on the importance of this resonant energy exchange mechanism,
and elucidated how waves of small steepness change their amplitudes and frequencies
in the presence of other such waves.

The mutual effects on the phase speed of two interacting wave trains were first
studied explicitly by Longuet-Higgins & Phillips (1962), by means of classical
asymptotic expansion techniques. A unified method for treating arbitrarily many
modes, or indeed a continuum of modes, is provided by the Zakharov equation
(Zakharov 1968), which was employed by Hogan, Gruman & Stiassnie (1988) to
extend Longuet-Higgins & Phillips’ analysis to capillary-gravity waves. A thorough
comparison of the two methods was made by Zhang & Chen (1999) for collinear
waves in deep water. Madsen & Fuhrman generalized the theory to include the
effects of finite depth and an ambient current for bi-directional waves (2006), and
subsequently for multi-directional, irregular waves (2012).

In what follows, an investigation into the nonlinear corrections on the frequencies is
undertaken using the Zakharov equation. General forms for the corrected frequency are
thus available for continuous one-dimensional (1D) and two-dimensional (2D) energy
density spectra, giving an analogue to the Stokes correction for any wave of a spectral
sea-state. These are applied to a number of calculated examples in deep water.

The theoretical background is developed in § 2. Results for some simple cases, as
well as for Pierson–Moskowitz (PM) spectra in one and two dimensions are presented
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in § 3. The main conclusion on the importance of these results to wave forecasting is
indicated in § 4. Some comments on the robustness of the results are also given in
appendix A, which deals with deterministic and random quartets of waves.

2. Theoretical background
For a wave field with a discretized spectrum, Zakharov’s equation with the complex

amplitudes Bn = B(kn, t) reads

i
dBn

dt
=

N∑
p,q,r=1

Tnpqrδ
qr
npei∆npqr tB∗pBqBr, n= 1, 2, . . . ,N, (2.1)

where Tnpqr = T(kn, kp, kq, kr) are the kernels defined in Mei, Stiassnie & Yue (2018),
δqr

np is a Kronecker delta function such that

δqr
np =

{
1 for kn + kp = kq + kr,

0 otherwise,
(2.2)

and ∆npqr = ωn + ωp − ωq − ωr. The asterisk denotes a complex conjugate. Here ωi
are the frequencies (in rad s−1), g is the constant acceleration of gravity (taken to be
9.8 m s−2 in computations), t is time (in s) and k= (kx, ky) is the wavenumber.

The linear dispersion relation for gravity waves in water of constant depth h is

ω2
n = g|kn| tanh(|kn|h). (2.3)

The relation of the complex amplitudes Bn to the free surface elevation η is given, to
leading order, by

η=
1

2π

∑
n

(
ωn

2g

)1/2

(Bnei(kn·x−ωnt)
+ *). (2.4)

Substituting Bn = |Bn| exp(i arg Bn) into (2.1) and separating the real and imaginary
parts:

d|Bn|

dt
=

∑
p,q,r

Tnpqrδ
qr
np|Bp||Bq||Br| sin(θnpqr), (2.5a)

d(arg Bn)

dt
=−|Bn|

−1
∑
p,q,r

Tnpqrδ
qr
np|Bp||Bq||Br| cos(θnpqr), (2.5b)

where
θnpqr =∆npqrt− arg Bn − arg Bp + arg Bq + arg Br. (2.5c)

This same substitution in (2.4) yields

η=
1

2π

∑
n

(
ωn

2g

)1/2

(|Bn|ei(kn·x−ωnt+arg Bn) + *). (2.6)

From (2.6) it is clear that the wave amplitudes an and the frequencies Ωn are

an =
1
π

(
ωn

2g

)1/2

|Bn|, (2.7a)
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Ωn =ωn −
d
dt
(arg Bn). (2.7b)

Splitting the sums in (2.5a,b) into two parts, where enp = 1 for n= p and enp = 2 for
n 6= p, and noting that sin(θnpnp)= 0 and cos(θnpnp)= 1, we find

d|Bn|

dt
=

∑
p

∑
q 6=n

∑
r 6=n

Tnpqrδ
qr
np|Bp||Bq||Br| sin(θnpqr), (2.8)

d(arg Bn)

dt
=−

∑
p

enpTnpnp|Bp|
2
− |Bn|

−1
∑

p

∑
q 6=n

∑
r 6=n

Tnpqrδ
qr
np|Bp||Bq||Br| cos(θnpqr). (2.9)

In cases without resonant quartets, or without nearly resonant quartets, sin(θnpqr) and
cos(θnpqr) oscillate on a fast time scale, and the integration over time of (2.8) and (2.9)
yields at leading order

|Bn(t)| = |Bn(0)|, (2.10)

arg(Bn)=−

(∑
p

enpTnpnp|Bp|
2

)
t+ arg(Bn(0)). (2.11)

Substituting (2.11) into (2.7b) gives the discrete nonlinear dispersion relation

Ωn =ωn +
∑

p

enpTnpnp|Bp|
2. (2.12)

For a continuous wavenumber energy spectrum Ψ (k) it is assumed that the number
of modes N tends to infinity. In the limit they become densely distributed over the
relevant domain in the wavenumber plane. This passage to a continuum of modes
is accompanied by the assumption that the phases, i.e. arg Bn, to leading order are
uncorrelated and uniformly distributed over (−π,π]; they are denoted below by ε(k).

The limit of a continuous wavenumber energy spectrum Ψ (k) is approached by
considering a square grid of wavenumbers with spacing dk, so that

a2
n/2=Ψn =Ψ (k) dk. (2.13)

Using (2.7a,b) and (2.13) and taking the limit dk→ 0, (2.6) is rewritten as

η(x, t)=
∫

cos(k · x−Ωt+ ε(k))
√

2Ψ (k) dk (2.14a)

(see Kinsman 1984, chap. 8), and (2.12) is rewritten as

Ω(k)=ω(k)+ 4π2g
∫

ek,k1T(k, k1, k, k1)
Ψ (k1)

ω(k1)
dk1, (2.14b)

where

ek,k1 =

{
1 for k= k1,

2 otherwise.
(2.15)
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Equation (2.14b) is the continuous nonlinear dispersion relation. The kernel
T(ki, kj, ki, kj) for finite depth is given in (3.9a,b) and (4.11) of Stiassnie & Gramstad
(2009). The applicability of (2.14a), (2.14b) depends on the validity of the transition
from (2.8), (2.9) to (2.10), (2.11). For continuous spectra the above transition must
be based on the assumption that the ensemble averages of sin(θnpqr) and cos(θnpqr)
remain zero, which is true only as long as the phases arg Bn maintain their random
independence. Note that this is exactly the condition used to ensure the applicability
of the kinetic equation, and implies a separation between the time scale of nonlinear
interaction and that of phase mixing, more details of which may be found in L’vov
& Nazarenko (2010, § 2) or Zakharov et al. (1992, § 2.1.4–5). In particular, this
means that the spectrum must be sufficiently broad for this approach to be strictly
applicable.

Although the above derivation is valid for finite depth, taking the deep-water limit
simplifies the kernels dramatically. In this case, substituting ω2

n = g|kn| into the kernel
yields

T(ki, kj, ki, kj)=−
1

16π2(|ki||kj|)1/2

[
3(|ki||kj|)

2

+ (ki · kj)(ki · kj − 4(|ki| + |kj|)(|ki||kj|)
1/2)

+
2(ωi −ωj)

2(ki · kj + |ki||kj|)
2

g|ki − kj| − (ωi −ωj)2
+

2(ωi +ωj)
2(ki · kj − |ki||kj|)

2

g|ki + kj| − (ωi +ωj)2

]
(2.16)

(see Leblanc 2009). The examples to be treated subsequently are given for deep water
only. Note that an early derivation of (2.12) and (2.14b) was outlined in a conference
in 1988 (see Stiassnie 1991), as well as by Dyachenko & Zakharov (1994) and
Zakharov (1999). Appendix A provides some further justification of the assumptions
underlying (2.12) and (2.14b), via direct numerical computations for a quartet of
waves.

3. Results
3.1. Simple cases, based on (2.12)

The simplest example that shows the corrections to frequency due to nonlinearity is
the third-order Stokes wave (Stokes 1847, p. 450), with the well-known frequency
correction

Ω =ω+ 1
2ωk2a2, (3.1)

where a is the wave amplitude, k the wavenumber and ω the linear frequency.
The collinear bi-modal case, where the spectrum consists of two wave trains with
wavenumbers ka and kb, likewise has a simple form:

Ωa =ωa

(
1+

1
2
ε2

a +
ωb

ωa
·

k2
a

k2
b
· ε2

b

)
, (3.2a)

Ωb =ωb

(
1+

1
2
ε2

b +
ωa

ωb
·

kb

ka
· ε2

a

)
. (3.2b)

Here kb > ka, and εa = kaaa, εb = kbab are the slopes of the two waves involved. It
is readily observed that the longer wave has a substantial effect on the shorter wave,
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but not vice versa. Note that when k= (kx, 0) and k1 = (k1x, 0), the Zakharov kernel
simplifies to

T(k, k1, k, k1)=


kxk2

1x

4π2
for k1x < kx,

k2
xk1x

4π2
for k1x > kx,

(3.3)

(see equation (4.18) in Zakharov 1992). Expressions similar to (3.2a) and (3.2b), albeit
with more modes, have been obtained by Qi et al. (2018), and used to improve the
performance of their nonlinear phase-resolved reconstruction method.

3.2. Pierson–Moskowitz spectra, based on (2.14b)
A more realistic case, with energy distributed over a continuum of modes, consists of
taking a unidirectional PM spectrum, which is given in terms of wavenumber k by

Ψ (k)=
0.004

k3
exp(−0.554g2U−4k−2), for k> 0, (3.4)

where U is the wind velocity at ten metres above the sea surface, blowing in the
x-direction. In the unidirectional setting we assume that all wavevectors k have no
component in the y-direction, and are written as scalar wavenumbers, so that ki =

(ki, 0) is denoted by ki. Substituting (3.4) with (3.3) into (2.14b) and integrating over
k1 gives

Ω(k)=ω(k)+ 2k
(∫ k

0
k1ω(k1)Ψ (k1) dk1 + k

∫
∞

k
ω(k1)Ψ (k1) dk1

)
, (3.5)

which can be evaluated analytically to yield

Ω =ω(1+ 0.004[κ−0.25Γ (0.25, κ)+ κ−0.75γ (0.75, κ)]), (3.6)

where κ = 0.554g2U−4k−2, and Γ , γ are incomplete gamma functions; see Gradshteyn
& Ryzhik (1980, p. 941). Equation (3.6) enables one to obtain a value for the relative
correction of the phase speed due to the presence of other waves in the spectrum.
Denoting the linear/nonlinear phase speed by c/C respectively, c=ω/k and C=Ω/k
give

C− c
c
= 0.00405(κ−0.25Γ (0.25, κ)+ κ−0.75γ (0.75, κ)). (3.7)

The dashed line in figure 1 shows (C − c)/c as a function of the dimensionless
wavenumber k/kp, where kp = 0.6657(g/U2) is the peak of the PM spectrum (3.4).
For k= kp the nonlinear correction for the phase speed (C − c)/c is only 0.4 %, but
this grows to 12.8 % for k= 100kp.

For 2D sea states, the directional spreading of the spectrum may be controlled by

D(θ1)=

{
A1 cosm(θ1) for |θ1|6π/2,
0 for |θ1|>π/2,

(3.8)

where A1 = Γ (1 + m/2, 0)/(
√

πΓ (0.5 + m/2, 0)) is a normalization coefficient (see
Holthuijsen (2007, p. 164), and note that Γ (x, 0) denotes the complete gamma
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FIGURE 1. (Colour online) Plot of relative corrections to phase speed for a unidirectional
and 2D PM spectrum with directional spreading coefficient m= 25, on a logarithmic scale.
Given is (C− c)/c for a unidirectional spectrum (black, dashed line) and values for angles
θ from 0◦ (the principal direction of wave propagation of the 2D spectrum) to 67.5◦.

function). The directional spectrum is then given by D(θ1)Ψ (k1), where Ψ (k1) is the
unidirectional PM spectrum given in (3.4).

Substituting D(θ1)Ψ (k1) into (2.14b) yields

Ω(k)=ω(k)+ 4π2
∫ π/2

−π/2

∫
∞

0
ek,k1T(k, k1, k, k1)

ω(k1)

k1
Ψ (k1)D(θ1) dk1 dθ1, (3.9)

where k1 = (k1 cos(θ1), k1 sin(θ1)), and k = (k cos(θ), k sin(θ)). This allows for a
numerical calculation of the frequency correction for waves k travelling at an angle
to the principal direction of wave propagation (at θ1 = 0). The relative corrections to
the phase speeds derived from the corrected frequency are given in figure 1, where
Ω(k)=Ω(k, θ). With most of the energy concentrated about θ1 = 0 (given m= 25),
the corrections are largest for small angles (nearly collinear waves, or θ close to zero).
For a wave travelling at a large angle to the principal direction of wave propagation,
the corrections are less significant.

4. Relevance to wave forecasting, based on (2.14b)

According to equation (6.4.9) in Holthuijsen (2007) the balance of spectral energy
given by a slowly varying wavenumber spectrum Ψ (k, t, x) in deep water is given by

∂Ψ

∂t
+ cg(k) · ∇xΨ = S(k, t, x). (4.1)

The source term
S= Sin + Snl + Sd (4.2)

represents wave generation by the wind, nonlinear wave interaction (by a stochastic
generalization of Zakharov’s equation) and dissipation by wave breaking, respectively.
In (4.1), cg(k) is the linear group velocity:

cg(k)=
dω
d|k|

k
|k|
=

1
2

√
g
|k|

k
|k|
. (4.3)
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FIGURE 2. (Colour online) Plot of relative corrections to group speed for a unidirectional
and 2D PM spectrum with directional spreading coefficient m= 25, on a logarithmic scale.
Given is the correction (Cg − cg)/cg for a unidirectional spectrum (black, dashed line)
and values for angles θ from 0◦ (the principal direction of wave propagation of the 2D
spectrum) to 67.5◦.

A more accurate formulation of the convective left-hand side of (4.1) would be to
replace the linear group velocity cg by the nonlinear counterpart:

Cg =
dΩ
d|k|
·

k
|k|
. (4.4)

We call the magnitude of the linear/nonlinear group velocity cg/Cg the linear/nonlinear
group speed and refer to it by cg = |cg| or Cg = |Cg|, respectively. In the case of a
1D PM spectrum, an analytical expression can be found by differentiating (3.6) with
respect to k to yield dΩ/dk, and thus

Cg − cg

cg
= 0.0081κ−0.25Γ (0.25, κ)+ 0.0162κ−0.75γ (0.75, κ). (4.5)

From the black dashed line in figure 2, which is calculated from (4.5), the nonlinear
correction to the group speed is about 1.5 % for k = kp, and it grows to 7.7 % for
k= 10kp, and to 26.8 % for k= 100kp.

For a directional PM spectrum, with directional spreading given in (3.8), it is
possible to give the analogous relative corrections to the group speed using (4.4)
together with (2.14b). Figure 2 gives this relative correction to the group speed for
a directional spreading coefficient m = 25, for waves k travelling at various angles
to the principal direction of wave propagation. We believe that these changes are
significant enough to be included in modern wave-forecasting software.

Acknowledgement
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Appendix A. Comparisons for four waves, based on (2.12)
If only a single quartet of waves is considered, the Zakharov equations written

for these waves ka, kb, kc and kd become rather simple, and can be solved either
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FIGURE 3. (Colour online) Frequencies Ωi versus time t (in seconds) for each of
the four modes ka, kb, kc, kd in the non-resonant quartet. Solid lines are computed
from (2.7b) by solving the Zakharov equation. Dashed lines are computed from (2.12)
using initial amplitudes |Bi(0)| = πεi

√
2g/ωi/|ki|. Dotted lines are the uncorrected, linear

frequencies ωi.

analytically (Stiassnie & Shemer 2005) in terms of elliptic functions, or by numerical
integration. This allows for a direct comparison of the corrected frequency (2.12) with
(2.7b). For the latter, arg Bn are calculated from (2.8) to (2.9). Since (2.12) is a leading-
order approximation valid in the absence of resonance, or for random waves, these are
the scenarios of interest. For quartets close to resonance, the large energy exchanges
introduce further fluctuations in the frequencies, albeit on the slow Zakharov equation
time scale T2 = ε

2t.
The quartet

ka = [0.9806,−0.1961], kb = [0.9806, 0.1961],
kc = [1.2903−µ, 0.2747+µ], kd = [0.6709+µ,−0.2747−µ]

}
(A 1)

is used for computations, where µ allows for a move out of resonance. Figure 3
shows numerical results for this quartet, where ωa = ωb = 3.1305, ωc = 3.7057, ωd =

2.4189 are the linear frequencies in rad s−1, given as dotted lines. The corresponding
values of steepness are εa = 0.15, εb = 0.12, εc = 0.08, εd = 0.03, and µ=−0.15, so
that min ∆abcd/ωi = 0.0547 > max ε2

i . The initial values are then given by |Bi(0)| =
πεi
√

2g/ωi/|ki| (see Stiassnie & Shemer 2005) while the initial arguments are taken
to be zero.

The solid lines show Ωi, i ∈ {a, b, c, d} obtained from solutions to the Zakharov
equations (2.8), (2.9), whereby Ωi is determined from (2.7b). The dashed lines
show the leading-order Stokes correction given in (2.12), which assumes constant
magnitudes |Bi| (see (2.10)). The leading-order Stokes correction is in all cases
in very good agreement with solutions obtained from the Zakharov equation, and
presents a substantial correction to the linear frequencies.

It is also possible to consider the case of a resonant quartet with random phases and
amplitudes. When µ = 0 in the above quartet, this is very close to exact resonance,
with max ∆abcd/ω ≈ 10−6 < min ε2

i , with the same values of εi as above. Owing to
this resonance, any single solution to the Zakharov equation shows large oscillations in
the amplitudes |Bi(t)| with time, and the leading order corrected frequencies of (2.12),
based on the initial values |Bi(0)|, are not in good agreement with those obtained from
solving the full Zakharov equation. However, the averaged results shown in figure 4
do agree very well with this leading-order correction.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

81
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.818


Nonlinear dispersion for ocean surface waves 57

2.6
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Øi
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Mode c Mode a, b

Mode d

FIGURE 4. (Colour online) Frequencies Ωi versus time t (in seconds) for each of the
four modes ka, kb, kc, kd in the resonant quartet. Solid lines are computed from (2.7b)
after solving the Zakharov equation and averaging over 2000 realizations with random
phases and amplitudes. Dashed lines are computed from (2.12) using initial amplitudes
|Bi(0)| =πεi

√
2g/ωi/|ki|. Dotted lines are the uncorrected, linear frequencies ωi.

In figure 4, the phases are chosen randomly and uniformly distributed over (0, 2π];
the amplitudes are chosen from a Rayleigh distribution with mean µi equal to the
initial amplitude used for the deterministic case, i.e. µi= |Bi(0)|. An average is taken
over 2000 realizations for the resonant quartet. The observed agreement demonstrates
the applicability of (2.12) for a simple, discretized spectrum containing four modes.
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