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The time evolution of pressure statistics in freely decaying homogeneous isotropic
turbulence (HIT) is investigated via eddy-damped quasi-normal Markovian (EDQNM)
computations. The present results show that the time decay rate of pressure-based
statistical quantities, such as pressure variance and pressure gradient variance, are
sensitive to the breakdown of permanence of large eddies. New formulae for
the associated time-decay exponents are proposed, which extend previous relations
proposed in Lesieur, Ossia & Metais (Phys. Fluids, vol. 11, 1999, p. 1535). Particular
attention is paid to finite-Reynolds-number (FRN) effects on the pressure spectrum
and pressure statistics. The results also suggest that Reλ = O(104) must be considered
to observe a one-decade inertial range in the pressure spectrum with Kolmogorov
−7/3 scaling. This threshold value is larger than almost all existing direct numerical
simulation (DNS) and experimental data, justifying the discussion about other possible
scaling laws. The −5/3 slope reported in some DNS data is also recovered by the
EDQNM model, but it is observed to be a low-Reynolds-number effect. Another
important result is that FRN effects yield a departure from asymptotic theoretical
behaviours which appear similar to some effects attributed to intermittency by most
authors. This is exemplified by the ratio between pressure-based and velocity-based
Taylor microscales. Therefore, high-Reynolds-number DNS or experiments such that
Reλ = O(104) would be required in order to remove FRN effects and to analyse pure
intermittency effects.

Key words: acoustics, isotropic turbulence, turbulence theory

1. Introduction

The free decay of homogeneous isotropic turbulence (HIT) is still a timely subject
of research due to its relevance in understanding the physical behaviour of turbulent
flows and its implications in turbulence modelling. The evolution in time of the
physical quantities associated with the energy spectrum, such as the turbulent kinetic
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n
u2 nl nε

Power-law exponent −2(σ − α + 1)
σ − α + 3

2
σ − α + 3

−3(σ − α)+ 5
σ − α + 3

TABLE 1. Analytical formulae derived by Comte-Bellot & Corrsin (1966) for power-law
exponents in HIT decay at high Reλ. σ is such that E(k→ 0, t) ∝ kσ . Coefficient α
accounts for breakdown of permanence of large eddies, with α =max[0, 0.65(σ − 3.2)].

energy u2, the integral length scale l and the energy dissipation rate ε, can be
described by power laws in HIT decay. After the seminal work by Taylor (1935),
several comprehensive reviews have been published (e.g. Batchelor 1953; Hinze 1975;
Davidson 2004; Sagaut & Cambon 2008), but the full agreement of the scientific
community about some basic aspects, such as the quantification of the power-law
exponent related to the decay of u2, has not been reached at the present time.

It appears that initial conditions drive the emergence and evolution of different
stable decay regimes. The two classical cases investigated in the literature are
referred to as Saffman turbulence (E(k → 0, 0) ∝ k2) and Batchelor turbulence
(E(k→ 0, 0) ∝ k4). In a famous work by Comte-Bellot & Corrsin (1966), analytical
formulae are derived to recover the power-law exponents as a function of the slope
of the energy spectrum at the large scales σ . These formulae, which are reported in
table 1, have to be corrected by a coefficient α to take into account the breakdown
of ‘permanence of large eddies’ (i.e. E(k, t) = E(k, 0), k � kl) due to non-local
energy transfers (Eyink & Thomson 2000; Lesieur 2008). For integer values of
σ, α = 0 for σ = 1, 2, 3 and α ≈ 0.52 for σ = 4. These formulae have been extended
to non-integer values of σ by Meldi & Sagaut (2012): α =max[0, 0.65(σ − 3.2)].

The attention of the scientific community on HIT decay has been mostly focused
on the energy transfer and on the decay law of the velocity-based statistical quantities.
Also, a limited number of papers in the literature are devoted to the analysis of the
pressure spectrum and the related statistics. Some early works, e.g. Heisenberg (1948),
investigated the pressure gradient variance (∇p)2 and Batchelor (1951) did background
work starting from the joint Gaussian assumption (JGA) of the velocity field. In his
work, Batchelor highlighted the correlation between the pressure and velocity fields.
Without using the JGA hypothesis, Hill & Wilczak (1995) derived a theory relating the
pressure structure function to fourth-order velocity structure functions. The statistics
related to the energy spectrum being extremely sensitive to its shape at large energetic
scales, i.e. near the spectrum peak, we can assume that the pressure statistics should
exhibit a significant sensitivity to the shape of the energy spectrum.

After the publication of a number of papers studying pressure statistics through
experiments (Uberoi & Corrsin 1953; Pearson & Antonia 2001; Tsuji & Ishihara 2003)
and direct numerical simulation (DNS) (Schumann & Patterson 1978; Kim & Antonia
1993; Pumir 1994; Gotoh & Fukayama 2001; Yeung, Donzis & Sreenivasan 2012),
several questions remain open.

A first question concerns the time decay rate of pressure-related statistical moments,
such as (∇p)2 and p2. Formulae for associated time-decay exponents were proposed
in Lesieur, Ossia & Metais (1999) neglecting the influence of the breakdown of the
permanence of large eddies. Since this phenomenon is known to have a dramatic effect
on time evolution of velocity-related statistical moments, its influence on pressure-
based quantities needs to be addressed.
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Reference Reλ DNS/Exp. Ep slope Inertial region
length

Schumann &
Patterson (1978)

<35 DNS NA

Kim & Antonia
(1993)

53 DNS −7/3 <1 decade

Pumir (1994) 21.6–77.5 DNS −7/3 �1 decade
Cao et al. (1999) 103–218 DNS −5/3 <1 decade
Gotoh & Rogallo
(1999)

39–172 DNS −5/3, Reλ 6 Rec 1 decade

Lesieur et al. (1999) 21–235 DNS/LES NA
Vedula & Yeung
(1999)

21–235 DNS −5/3 1 decade

Gotoh & Fukayama
(2001)

38–478 DNS −7/3, −5/3 bump �1 decade

Pearson & Antonia
(2001)

40–4250 Exp. NA

Tsuji & Ishihara
(2003)

200–1200 Exp. −7/3, Reλ > 600 <1 decade

Donzis et al. (2012) 8–1000 DNS NA
Yeung et al. (2012) 140–1000 DNS NA

TABLE 2. Slope of the pressure spectrum Ep in the inertial region recovered in numerical
and experimental studies reported in the literature. An approximate estimation of the length
of the inertial region, expressed in decades, is also reported. NA denotes references in
which the pressure variance spectrum is not available.

A second key issue is the origin of the observed departure of some pressure-based
statistical quantities from their theoretical asymptotic behaviours. These asymptotic
behaviours are usually derived by considering Taylor-microscale Reynolds numbers
of either Reλ → 0 or Reλ → +∞, and rely on the JGA hypothesis. Among the
most well-known results is the existence of a k−7/3 inertial range in the pressure
variance spectrum at small scales at very large Reynolds number, which is tied to the
existence of Kolmogorov’s k−5/3 inertial range in the kinetic energy spectrum. This
−7/3 spectral slope has not yet been observed over one full decade in either DNS
or experimental results (see table 2), while it is not observed at all in many cases.
A striking phenomenon is that a −5/3 slope for the pressure variance spectrum as
been reported in several DNS results (Gotoh & Rogallo 1999; Cao, Chen & Doolen
1999; Vedula & Yeung 1999). While the possible role of intermittency of pressure
fluctuations and the related statistical quantities in the departure from JGA-based
predictions has been addressed by many authors, e.g. Donzis, Sreenivasan & Yeung
(2012), the influence of finite-Reynolds-number (FRN) effects has received much less
attention. FRN has recently been proved to have very significant effects on velocity
statistical moments, e.g. Bos et al. (2012) and Tchoufag, Sagaut & Cambon (2012).
These effects are very similar to possible intermittency effects on anomalous scaling
laws. Therefore, the analysis of FRN effects on pressure-based statistical quantities
is important, since most existing data (see table 2) have been obtained at Reynolds
numbers at which strong FRN effects exist on the velocity field.

In the present work, time evolution of the pressure spectrum in freely decaying
HIT, as well as the related statistical quantities, are addressed using an eddy-damped
quasi-normal Markovian (EDQNM) model. Since the EDQNM model is known to be
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among the most reliable tools for HIT analysis at all Reynolds numbers and is free of
any intermittency effects, it enables FRN effects to be isolated.

The paper is organized as follows: in § 2 the EDQNM model is briefly recalled, and
the setup of the numerical simulations is described. The time evolution of the pressure
spectrum and the validity of the Kolmogorov scaling for pressure are investigated in
§ 3. The influence of viscous effects is investigated, and a threshold value for Reλ to
obtain a one-decade k−7/3 range is identified. Section 4 displays results dealing with
the power-law decay of the statistical quantities related to the pressure. An extension
of Lesieur’s relations is proposed, which accounts for the breakdown of permanence
of large eddies. In § 5 the ratio between the Taylor microscales related to the pressure
and velocity fields is addressed, the results being extensively compared with those
reported in the literature. The emphasis is on FRN effects, and their similarity with
intermittency effects at Reynolds numbers considered by most authors. Conclusions are
given in § 6.

2. EDQNM model and setup of the simulations

The EDQNM model is a quasi-normal closure based on the discretization of the
Lin equation, which is the spectral counterpart of the Kármán–Howarth equation. The
model accurately describes the triadic energy transfer in wavenumber space and can
be used to evaluate several statistics in turbulence, up to three-point fourth-order
correlations. It has proved to be a reliable, robust and efficient method to investigate
HIT free decay (e.g. Meldi, Sagaut & Lucor 2011; Tchoufag et al. 2012). The works
of Orszag (1970), Lesieur (2008) and Sagaut & Cambon (2008) provide an exhaustive
discussion.

A number of sets of computations have been performed, imposing as initial
condition 103 6 Reλ 6 2 × 106. Defining kl(0) the initial position of the peak of
the energy spectrum, the largest resolved scale is k0 = 10−10 kl(0). The minimum
resolution is set to kmax = 10/η(0), where η(0) is the initial value of the Kolmogorov
scale. The initial energy spectrum is a simplified version the energy spectrum
formulated by Pope (2000):

E(k)=
{

A kσ , kl� 1,
Ck ε

2/3k−5/3fl(kl), kl� 1,
(2.1)

with

fl(kl)=
(

kl

[(kl)c1 +c2]1/c1

)5/3+σ
. (2.2)

The free parameter c1 in (2.2) is set to 1.5, while the parameter c2 is computed in
order to recover l(0) = 1. For each set, four computations for integer values of the
parameter σ = 1, 2, 3 and 4 have been carried out to investigate the sensitivity of the
pressure statistics to details of the kinetic energy spectrum. Combining the results of
the computations for each value of σ , it is possible to describe HIT decay in the range
5 6 Reλ 6 5000. All the results are referred to the normalized time scale τ = t/t0, with
t0 = ε(0)−1/3 l(0)2/3 being the initial characteristic turnover time.

The EDQNM model has been used to compute the triadic energy transfer and,
simultaneously, to compute the pressure spectrum Ep. Starting from the relation
between the pressure fluctuations and the fourth-order velocity correlations, the
application of the JGA approximation allows the following form of the pressure
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spectrum to be recovered:

Ep(k)= k2

4π

∫
r+q=k

E(r)E(q)
sin4β

r4
dq, (2.3)

where [k, r, q] is the basis used to compute the energy triadic interactions in the
spectral space, and β is the angle facing r in the triangle formed by the three
vectors. The mean-square pressure fluctuation p2, the pressure integral length lp and

the pressure gradient (∇p)2 have been respectively recovered as:

p2 =
∫ ∞

0
Ep(k) dk, (2.4)

lp = π2

∫ ∞
0

Ep(k) k−1 dk∫ ∞
0

Ep(k) dk
, (2.5)

(∇p)2 =
∫ ∞

0
k2 Ep(k) dk. (2.6)

These quantities have been sampled in the range 5 6 Reλ 6 5000 and the power-law
exponents have been recovered by local polynomial fitting.

3. Pressure spectrum and Kolmogorov scaling law

The characteristics of the computed pressure spectrum Ep(k, τ ) are investigated in
the present section. We will first restrict our analysis to the case of Reλ > 103 and to
Saffman and Batchelor turbulence. The two decay regimes are associated with a value
of the parameter σ = 2 and σ = 4, respectively.

The evolution in time of the pressure spectrum is shown in figures 1(a) and 1(b)
for the two considered cases. At the large scales, we can observe the presence
of an extended range for which Ep(k, τ ) = Ap(τ )k2. This range, which has been
predicted theoretically and observed numerically by Lesieur et al. (1999), exhibits
a constant slope coefficient 2 which is independent of the parameter σ . Conversely, the
evolution in time of the coefficient Ap(τ ) is governed by the initial conditions enforced
on the energy spectrum since Ap(τ ) ' (8/15)

∫ +∞
0 (E2(k, τ )/k2) dk, yielding a strong

sensitivity to σ . This point will be detailed in § 4. In figure 1, we can also observe
that the peak of the pressure spectrum evolves in time with the same power law as the
energy-spectrum integral length l, which is shown as a vertical line in the plot. Indeed,
the results recovered by the EDQNM model show that the ratio lp/l is constant after
the initial transient fades and it is equal to lp/l = 0.539. This result is in agreement
with the results reported in Batchelor (1951), who predicted a ratio of 0.54 between
the two integral scales.

Let us now consider the compensated pressure spectrum Es
p = Ep/(ε

4/3 k−7/3), which
is displayed in figure 2(a) for Saffman turbulence. The results of Batchelor turbulence
simulations are omitted, the information deducible being the same as observed
for Saffman turbulence. In this case, we consider pressure spectra in the range
100 6 Reλ 6 106. At very high Reλ, a plateau in the inertial range is observed for
more than three decades. A much less developed plateau has been observed as well
in the DNS results by Pumir (1994). Moreover, a bump in the compensated pressure
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FIGURE 1. Evolution of the pressure spectrum Ep(k, τ ) in time for Saffman turbulence (a) and
Batchelor turbulence (b). Two ranges at Ep ∝ k2 and Ep ∝ k−7/3 are clearly observable at large
scales and in the inertial range, respectively. The vertical lines represent the inverse of the
magnitude of the integral length scale l at τ = 0, 102, 104 (continuous, dashed, dashed-dotted
vertical lines, respectively).

10–1

10–2

100

10–8 10–6 10–4 10–2 100

0.5

0

–0.5

10–8 10–6 10–4 10–2 100

(a) (b) 1.0

–1.0

FIGURE 2. Compensated pressure spectrum Es
p = Ep/(ε

4/3 k−7/3) (a) and local slope of the
compensated pressure spectrum (b) in the case of Saffman turbulence. Horizontal lines in (b)
show slopes of 0 and 2/3).

spectrum is observed at scales close to the dissipation region. This phenomenon,
which is classically referred to as the bottleneck effect when dealing with the energy
spectrum, has also been observed in the pressure spectrum by Gotoh & Fukayama
(2001). The slope of this bump, computed by EDQNM results, is ∼1/4 at very
high Reynolds numbers and progressively increases up to 3/10 for Reλ ≈ 600. This
behaviour can be observed in figure 2(b), where the local slope of the pressure
spectra is reported. Analysing pressure spectra at progressively decreasing Reλ, the
plateau of the compensated spectra becomes less and less visible, and the bump region
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degenerates into a small secondary plateau at very low Reynolds number. Moreover,
the slope becomes progressively steeper at lower Reλ, with an asymptotic value of
−5/3.

The global picture is therefore the following: at very large Reλ, the pressure
spectrum obeys the −7/3 Kolmogorov scaling and exhibit a kind of bottleneck near
the Kolmogorov scale. At moderate Reλ, the Kolmogorov inertial range is no longer
present, but the bottleneck near the Kolmogorov scale evolves into a small (less than
one-decade long) −5/3 range. This trend, which seems to be independent of the
shape of the energy spectrum, can be clearly appreciated in figure 2(b) for moderate
Reynolds numbers. Tsuji & Ishihara (2003) argued that most of the results from DNS
studies reported in literature did not match with the Kolmogorov scaling because
the Reλ investigated was not sufficiently high to observe a fully developed plateau
of the compensated spectrum. Tsuji & Ishihara (2003) indicate a minimum limit
of Reλ = 600 to recover a plateau. An extensive investigation of the present results
supports the discussion by Tsuji & Ishihara (2003) and suggests that a minimum limit
of Reλ > 104 seems necessary to observe the Kolmogorov scaling. A higher Reynolds
number is required to observe this scaling on the pressure spectrum than on the energy
spectrum. This is justified by the fact that the pressure spectrum is related to the
fourth-order two-point velocity correlation, while the energy spectrum is related to the
second-order one. Indeed, the EDQNM results proposed are not reachable by present
DNS, due to the prohibitive amount of computational resources needed to simulate a
flow at Reλ = 106.

4. Power-law exponents driving the decay of the pressure statistics

The time evolution of pressure statistics is now investigated. Starting from the
assumption Reλ→∞, Lesieur et al. (1999) derived that the decay of the statistical
quantities based on the pressure spectrum is related to that associated to the energy
spectrum, and their decay can also be described by power laws. In particular, the
power-law exponents for pressure statistics are related to the ones governing the decay
law of u2, l and ε, and they exhibit a sensitivity to the parameter σ . Denoting by
nQ the power-law exponent of a quantity Q, the expressions derived by Lesieur et al.
(1999) extended here to account for breakdown of permanence of large eddies are (for
large Reλ):

n
p2 = 2 n

u2 =−4
(σ − α + 1)
σ − α + 3

, (4.1)

nlp = nl = 2
σ − α + 3

, (4.2)

nAp = 3+ 7
2

n
u2 = 3− 7

(σ − α + 1)
σ − α + 3

. (4.3)

Moreover, Batchelor (1951) derived a relation between the pressure gradient and the
dissipation rate: n

(∇p)2
= 1.5 nε =−(9(σ − α)+ 15)/2(σ − α + 3).

The evolution in time of the power-law coefficients for the four quantities under
consideration is displayed in figure 3 for σ = 1, 2, 3, 4. For all the cases, Reλ > 103

and the ratio kl(τ )/k0 > 105. The results recovered are in excellent agreement with
the theoretical results by Batchelor (1951) and Lesieur et al. (1999), a maximum
error of 0.5 % being observed in the prediction of the power-law exponent of (∇p)2.

717 R2-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

62
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.629


M. Meldi and P. Sagaut
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–2.4

–2.8
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0.40

0.35
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–3.6

(a) (b)

(c) (d)

FIGURE 3. Evolution in time of the power-law exponents of the physical quantities associated
to the pressure spectrum. The pressure spectrum coefficient Ap = Epk−2 (a), the mean-square
pressure fluctuation p2 (b), the pressure spectrum integral length scale lp (c) and the pressure

gradient (∇p)2 (d) are respectively represented. The four curves represent the power-law
exponent value for σ = 1, 2, 3, 4. Symbols refer to the theoretical formulae by Batchelor (1951)
and Lesieur et al. (1999), with a proposed correction coefficient α for σ = 4.

In the particular case of Batchelor turbulence (σ = 4), we recall that the numerical
results are in agreement with the theoretical formulae only if the correction term
σeff = 4 − α, α = max[0, 0.65(σ − 3.2)], is considered to represent the effects of
non-local triadic interactions (see Eyink & Thomson 2000; Meldi & Sagaut 2012).
Due to the simplified initial energy spectrum enforced, the numerical results converge
to the theoretical values after a long transitory, which can be estimated in 104t0 units.
Nevertheless, the high resolution achievable by the EDQNM model, combined with the
high initial Reλ enforced, allow us to study the HIT decay at high Reλ over very long
decay times.

The time evolution of the coefficient Ap, which has been derived at low
wavenumbers by the formula Ap = Ep k−2, is consistent with the formula (4.3) as long
as the pressure spectrum peak is at least three decades away from the wavenumber
at which Ap is computed. When the peak of the pressure spectrum moves closer, the
decay of the coefficient Ap is progressively affected by its vicinity.
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0.2
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4
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2

1

0

Saffman turbulence
Batchelor turbulence

Saffman turbulence

Batchelor turbulence

(a) (b)

5 5000

FIGURE 4. Coefficient (λp/λ)/Re
1/2
λ in the high-Reλ formula by Batchelor (1951) (a) and ratio

of the Taylor microscales λp/λ for moderate to low Reλ (b). Experimental data by Uberoi &
Corrsin (1953) and Pearson & Antonia (2001) and numerical DNS results by Gotoh & Rogallo
(1999) and Donzis et al. (2012) are also shown.

5. Decay of the Taylor microscales related to the energy and pressure spectra

A significant effort has been made by the scientific community over many decades
(e.g. Batchelor 1951; Vedula & Yeung 1999; Pearson & Antonia 2001) to find a
relation between the decay of the Taylor microscale λ2 = 15νu2/ε and the equivalent

scale for the pressure spectrum λ2
p = ρ2 (u2)

2
/(∇p)2. In the early work of Batchelor

(1951), which relied on the JGA hypothesis, the following relations have been derived
in the cases of high and low Reλ:{

λp/λ= 0.11Re1/2
λ , Reλ→∞,

λp/λ= 0.81, Reλ→ 0.
(5.1)

The law recovered at high Reλ can also be deduced by dimensional analysis. If λ, λp

and Reλ are described by classical power laws, (5.1) can be rewritten as:

τ
0.5

(
2n

u2 −1.5(nε)
)
τ−0.5 ∝ τ 0.5

(
n

u2 −0.5(nε)
)

(5.2)

substituting n
u2 and nε with the corresponding Comte-Bellot & Corrsin (1966)

formulae values reported in table 1, it is easy to verify that the terms on the left
and right of (5.2) decay with the same power-law exponent, for all of σ ∈ [1, 4].
Moreover, if σ = 1, the power-law exponent is 0 and the ratio between λp and λ is
constant in time.

We now investigate the behaviour of the coefficient Cp = (λp/λ)/Re
1/2
λ . If the

decay power laws are exactly recovered in EDQNM simulations, the coefficient Cp

will be an invariant in HIT decay at high Reλ. The value of this invariant may
exhibit a sensitivity to the parameter σ . The results are shown as a function of
Reλ in figure 4(a), considering the classical decay regimes of Saffman and Batchelor
turbulence. For very high Reλ, the value of Cp is almost constant, in agreement
with Batchelor (1951). However, the value recovered by the EDQNM simulations is
smaller. In the range 1000 6 Reλ 6 5000, Cp ∈ [0.103, 0.106] for Saffman turbulence
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Saffman turbulence
Batchelor turbulence
Pearson & Antonia (2001)
Donzis et al. (2012)

0.6

0.5

0.4

0.3

0.2

0.1

0
50 500

6

4

2

0
500 1000 1500 20005 5000

(a) (b)

FIGURE 5. Power-law exponent m in the relation λp/λ = CpRe
m
λ (a) and function h(Reλ) =

(ν1/2 (∇p)2)/(3ρ2 ε3/2) (b), computed by the EDQNM model and compared with the
experimental data by Pearson & Antonia (2001) (in a only) and the DNS data by Donzis et al.
(2012). The data are locally derived by the analysis of the results reported in the references.

and Cp ∈ [0.107, 0.111] for Batchelor turbulence. Approaching values of Reλ 6 103, Cp

increases faster, and the ratio λp/λ diverges from the high-Reynolds-number behaviour
≈0.11Re1/2

λ . Interestingly (see figure 4b) the curves λp/λ for Saffman and Batchelor
turbulence converge toward a very similar value, which is approximately λp/λ = 0.62,
for low Reλ. This result is in qualitative agreement with Batchelor (1951) and in very
good agreement with the experimental results of Uberoi & Corrsin (1953) and Pearson
& Antonia (2001).

Several DNS studies in the literature have shown a departure from the JGA
behaviour λp/λ = CpRe

m
λ ,m = 0.5, which is usually attributed to intermittency. Vedula

& Yeung (1999) and Donzis et al. (2012) reported a better-fit power law of m = 0.25
and m = 0.34, respectively. The exponent m, computed by the EDQNM model, is
reported in figure 5(a). The results point out that the asymptotic limit m = 0.5 is
approached but not reached at Reλ = 5000, and the values observed in the cited DNS
studies are matched in the range 30 6 Reλ 6 100. Recalling that the EDQNM model
does not account for intermittency, we can conclude that the FRN effects play a
very important role at moderate Reλ and cannot be neglected even at Reλ = O(103).
Similar FRN effects have been observed when considering Kolmogorov −4/5 law
by Tchoufag et al. (2012), and in velocity increments by Bos et al. (2012). In the
latter case, it is shown that anomalous exponents very similar to those predicted by
classical intermittency theories can be due solely to the viscous effects. A confirmation
is given in figure 5(b) by the analysis of the function h(Reλ) = (ν1/2 (∇p)2)/(3ρ2 ε3/2):
the DNS results at moderate Reλ by Donzis et al. (2012) match the present EDQNM
results.

6. Conclusions

The time evolution of the pressure spectrum and the related statistics have been
investigated by EDQNM simulations in the range 5 6 Reλ 6 5000. The pressure
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spectrum has been analysed by considering σ = 1, 2, 3, 4 to investigate its sensitivity
with respect to the shape of the initial energy spectrum.

The analysis of the sampled pressure spectra confirms the presence of two ranges.
The first one, at the large scales, is Ep(k, τ )= Ap(τ ) k2. Its slope does not depend on σ ,
but the time-decay exponent of the coefficient Ap(τ ) is governed by σ (Lesieur et al.
1999). The second range, which represents the inertial region, can be approximated as
Ep(k) ∝ ε4/3 k−7/3. This range becomes progressively less clear at moderate Reλ, as it
merges with a pseudo-bottleneck region close to the Kolmogorov scale. We can argue
that the presence of a short range exhibiting a −5/3 scaling near the Kolmogorov
scale, which has been reported in several DNS, originates in the pseudo-bottleneck and
is due to finite-Reynolds-number effects.

For high Reλ, the computed statistical quantities are in very good agreement with
the theoretical asymptotic framework proposed by Batchelor (1951) and Lesieur et al.
(1999). The time evolution of the coefficient Ap(τ ) is consistent with the proposed
formula only if it is computed at a wavenumber which is at least three decades away
from the pressure spectrum peak. However, this resolution requirement is prohibitive
for a high-Reλ DNS at the present time. New formulae for time decay exponents
for pressure variance and pressure gradient variance, that account for the breakdown
of permanence of large eddies, are observed to be in very good agreement with the
present EDQNM results.

Finally, the ratio between the Taylor microscales λp/λ has been investigated to
obtain insight into finite-Reynolds-number effects. The trends predicted at both very
high and very low Reλ by Batchelor (1951) have been observed. For the high-Reλ
case, the coefficient Cp = λp/(λRe

1/2
λ ) ∈ [0.105, 0.11] and exhibits a low sensitivity to

the parameter σ . The ratio λp/λ converges toward a universal value close to 0.62 at
very low Reλ. Moreover, the comparison with DNS data confirms that FRN effects
are significant for Reλ 6 104, and that they lead to deviation of the results from the
theoretical JGA behaviour. The observed deviations share many features with those
classically attributed to intermittency effects. As an example, they yield the occurrence
of anomalous exponents, e.g. for λp/λ in the present study. Therefore, flows such that
Reλ = O(104) should be considered, to analyse pure intermittency effects on pressure.
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