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Abstract We study the question of which Henselian fields admit definable Henselian valuations (with or
without parameters). We show that every field that admits a Henselian valuation with non-divisible value
group admits a parameter-definable (non-trivial) Henselian valuation. In equicharacteristic 0, we give
a complete characterization of Henselian fields admitting a parameter-definable (non-trivial) Henselian
valuation. We also obtain partial characterization results of fields admitting ∅-definable (non-trivial)
Henselian valuations. We then draw some Galois-theoretic conclusions from our results.
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1. Introduction

We study the question of which Henselian fields admit non-trivial Henselian valuations
that are definable, i.e. those for which the valuation ring is first-order definable in the
language of rings. Furthermore, we investigate whether parameters are required for these
definitions. Here, we call a field Henselian if it admits some non-trivial Henselian val-
uation. There has been considerable progress in the area of definable Henselian valua-
tions over the last few years. Most recent results are focused on defining a specific given
Henselian valuation on a Henselian field, sometimes with formulae of low quantifier com-
plexity (see [1,5,9,10,12,13,22]). The question considered in this paper, however, is
whether a given Henselian field admits at least some non-trivial definable Henselian valu-
ation. There are many Henselian fields having both definable and non-definable Henselian
valuations (see Example 3.2).

Neither separably closed fields nor real closed fields admit any non-trivial definable
valuations. For real closed fields, this follows from quantifier elimination in the language
of ordered rings Lring ∪ {<}: any definable subset of a real closed field is a finite union
of intervals and points, and in particular it is not a valuation ring. The fact that separa-
bly closed fields do not admit any definable valuations is explained in the introduction
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of [16, p. 1]. Hence, we focus on Henselian fields that are neither separably closed nor
real closed. Any such field K interprets a finite Galois extension F such that for some
prime p, the canonical p-Henselian valuation vp

F is ∅-definable and non-trivial (see § 2 for
the definition of the canonical p-Henselian valuation). This valuation is, in particular,
comparable to any Henselian valuation on F . If vp

F is already Henselian, then its restric-
tion to K gives a non-trivial definable Henselian valuation on K. If vp

F is non-Henselian,
then any Henselian valuation on F is a coarsening of vp

F . Thus, the task of finding defin-
able Henselian valuations on F (and thus on K) comes down to defining (Henselian)
coarsenings of vp

F .
We use two different methods to define coarsenings of a given (definable) valuation on

a field F . In § 3 we introduce p-antiregular ordered abelian groups. The case distinction
between p-antiregular and non-p-antiregular value groups is a key step in several of our
proofs. We also show how to interpret, for any prime p, the maximal p-divisible quotient of
an ordered abelian group by defining (without any parameters) the corresponding convex
subgroup. The construction should be well known to anyone with a good knowledge of
definable convex subgroups of ordered abelian groups. However, our approach is rather
short and self-contained and should be easily accessible to anyone with an interest in
valuation theory. The main result of the section is Proposition 3.7, which gives conditions
on the value group of a Henselian valuation under which some non-trivial coarsening is
∅-definable. In this section we also discuss the construction of a field that will be helpful
in examples and counterexamples at several points later on (see Example 3.8).

The other method we use is introduced in § 4. Here, we discuss a certain class of
parameter-definable convex subgroups of ordered abelian groups. Again, our treatment
is rather short and self-contained. This gives us the means to find a definable Henselian
valuation on K whenever some Henselian valuation on K has a non-divisible value group
(Proposition 4.2).

We then proceed to apply these two basic constructions to give criteria for the existence
of ∅-definable and definable Henselian valuations. These criteria are phrased in terms of
the value group vKK and the residue field KvK of the canonical Henselian valuation vK

on K (see § 2 for the definition of vK).
In § 5 we discuss the existence of a non-trivial ∅-definable Henselian valuation on a

field K. Here, our main result is the following.

Theorem A. Let K be a Henselian field that is not separably closed. Assume that
K satisfies at least one of the following conditions:

(1) KvK is separably closed;

(2) KvK is not t-Henselian;

(3) there is some prime p such that vKK is non-p-divisible and not p-antiregular.

Then K admits a ∅-definable Henselian valuation.

See § 3 for the definition of t-Henselianity. Note that a real closed field K satisfies
none of the conditions in the theorem. In this case, KvK is an Archimedean ordered real
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closed field and is hence t-Henselian without being Henselian, and the value group of any
Henselian valuation on K is divisible. The theorem implies that every (non-separably or
non-real closed) Henselian field of finite transcendence degree over its prime field admits
a non-trivial ∅-definable Henselian valuation (Corollary 5.2). As another consequence, we
get a classification of all fields with small absolute Galois group admitting ∅-definable
Henselian valuations, provided that the canonical Henselian valuation has residue char-
acteristic 0 (Corollary 5.3). However, the conditions described in Theorem A are not
sufficient for a full characterization of fields admitting ∅-definable non-trivial Henselian
valuations (see Example 5.4 and Proposition 5.5).

In § 6 we discuss the existence of a non-trivial definable Henselian valuation on a field
K. Here, we prove the following.

Theorem B. Let K be a Henselian field that is not separably closed. Assume that K

satisfies at least one of the following conditions:

(1) KvK is separably closed;

(2) KvK is not t-Henselian;

(3) vKK is not divisible.

Then K admits a definable non-trivial Henselian valuation (using at most one parameter).

Furthermore, in equicharacteristic 0, this theorem gives rise to a characterization of
Henselian fields admitting non-trivial definable Henselian valuations (see Corollary 6.1).
We also give an example of a Henselian field without a definable non-trivial Henselian val-
uation and an example of a Henselian field that admits a definable non-trivial Henselian
valuation but no ∅-definable one.

We study the existence of (∅-)definable (p-)Henselian valuations tamely branching at
p in the last section of the paper (which also contains the definition of tamely branching
valuations). By the results in [18], these are exactly the Henselian valuations encoded in
the absolute Galois group GK of a field K. Our main result in this context is as follows.

Theorem C. Let K be a field and let p be a prime.

(1) If K admits a Henselian valuation v tamely branching at p, then K admits a
definable such valuation (using at most one parameter).

(2) Assume that ζp ∈ K and, if p = 2 and char(K) = 0, assume also that
√

−1 ∈ K.
If K admits a p-Henselian valuation tamely branching at p, then K admits a ∅-
definable such valuation.

This theorem is an immediate consequence of Propositions 7.2 and 7.8. As an applica-
tion, we also obtain some Galois-theoretic consequences (see Corollaries 7.3 and 7.7).
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2. Canonical (p-)Henselian valuations

Throughout the paper we use the following notation. For a valued field (K, v), we write
Kv for its residue field and vK for its value group. Furthermore, we denote the valuation
ring of v by Ov and its maximal ideal by mv. If p �= char(K) is a prime, we write ζp ∈ K to
denote that K contains a primitive pth root of unity. For basic facts about (p-)Henselian
valued fields, we refer the reader to [8].

2.1. The canonical Henselian valuation

Let K be a Henselian field, i.e. assume that K admits some non-trivial Henselian
valuation. In general, K may admit many non-trivial Henselian valuations, but unless
K is separably closed, they all induce the same topology on K. When we ask which
Henselian fields admit a definable non-trivial Henselian valuation, we do not specify
which one should be definable. In all our constructions, we define coarsenings of the
canonical Henselian valuation. Recall that on a Henselian valued field, any two Henselian
valuations with non-separably closed residue field are comparable.

The canonical Henselian valuation vK on K is defined as follows. If K admits a
Henselian valuation with separably closed residue field, then vK is the (unique) coarsest
such valuation. In this case, any Henselian valuation with non-separably closed residue
field is a proper coarsening of vK and any Henselian valuation with separably closed
residue field is a refinement of vK . If K admits no Henselian valuations with separably
closed residue field, then vK is the (unique) finest Henselian valuation on K and any two
Henselian valuations on K are comparable.

2.2. The canonical p-Henselian valuation

Let K be a field and let p be a prime. We define K(p) to be the compositum of all
Galois extensions of K of p-power degree. A valuation v on K is called p-Henselian if
v extends uniquely to K(p); furthermore, we say that K is p-Henselian if it admits a
non-trivial p-Henselian valuation. Note that every Henselian valuation is p-Henselian for
all primes p but, in general, the converse is not true.

There is a canonical p-Henselian valuation, analogous to the canonical Henselian valua-
tion. Here, one replaces the notion of ‘separably closed’ by ‘admitting no Galois extensions
of degree p’. Again, on a p-Henselian field, any two p-Henselian valuations whose residue
fields admit Galois extensions of degree p are comparable. The canonical Henselian val-
uation vp

K on K is defined as follows: if K admits a p-Henselian valuation with residue
field p-closed, i.e. not admitting Galois extensions of degree p, then vp

K is the (unique)
coarsest such valuation. In this case, any p-Henselian valuation with residue field not
p-closed is a proper coarsening of vp

K , and any p-Henselian valuation whose residue field
is p-closed is a refinement of vp

K . If there are no p-Henselian valuations with p-closed
residue field on K, then vp

K is the (unique) finest p-Henselian valuation on K. Whenever
K admits a non-trivial p-Henselian valuation, vp

K is non-trivial and comparable to all
p-Henselian valuations on K.

Unlike the canonical Henselian valuation, in most cases the canonical p-Henselian val-
uation is definable in Lring.
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Theorem 2.1 (Main Theorem in [14]). Let p be a prime. Consider the (elementary)
class of fields

Kp := {K �= K(p) | ζp ∈ K if char(K) �= p, and
√

−1 ∈ K if p = 2 and char(K) = 0}.

Then, the canonical p-Henselian valuation is uniformly ∅-definable in Kp, i.e. there is a
parameter-free Lring-formula φp(x) such that in any K ∈ Kp we have

φp(K) = Ovp
K

.

3. Antiregular value groups

In this section we use specific properties of the value group of the canonical p-Henselian
valuation to define (Henselian) coarsenings without parameters. We first recall some work
by Hong on defining valuations with regular value groups that we make use of in some of
our proofs. We then define a property of ordered abelian groups that we call antiregular
and show a definability result for non-antiregular value groups. Throughout the section,
all quotients of ordered abelian groups considered are assumed to be quotients by convex
subgroups.

Definition. Let Γ be an ordered abelian group and let p be a prime. Then, Γ is
p-regular if all proper quotients of Γ are p-divisible. Furthermore, Γ is regular if it is
p-regular for all primes p.

Note that p-regularity is an elementary property of Γ :

Γ is p-regular ⇐⇒ ∀γ0, . . . , γp (γ0 < · · · < γp → ∃δ (γ0 � pδ � γp)).

Furthermore, an ordered abelian group is regular if and only if it is elementarily equivalent
to an Archimedean ordered group. See [25] for more details on (p-)regular ordered abelian
groups. Hong proved the following definability results about (p-)Henselian valuations with
(p-)regular value groups.

Theorem 3.1 (Hong [12, Theorems 3 and 4]). Let (K, v) be a valued field.

(1) Assume that (K, v) is p-Henselian and that we have ζp ∈ K if char(K) �= p. If vK

is p-regular and not p-divisible, then v is definable.

(2) If (K, v) is Henselian and vK is regular but not divisible, then v is ∅-definable.

We can use this theorem to give an example of a field admitting both definable and
non-definable non-trivial Henselian valuations.

Example 3.2. Consider the field K = R((Q))((Z)) (for details on power series fields
see [7, § 4.2]). This field admits exactly two non-trivial Henselian valuations: the power
series valuation v1 with residue field R((Q)) and value group Z is Henselian and has no
non-trivial coarsenings as its value group has (Archimedean) rank 1. Furthermore, as
R is non-Henselian, the power series valuation u with value group Q and residue field
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R is the only non-trivial Henselian valuation on the field R((Q)). Thus, v1 has exactly
one Henselian refinement v2: namely, the refinement of v1 by u, with value group Z ⊕ Q

(ordered lexicographically) and residue field R.
As v1K is regular and non-divisible, v1 is ∅-definable by Theorem 3.1. We claim that v2

is not ∅-definable: note that we have R ≡ R((Q)) in Lring since R((Q)) is also real closed
(see [8, Lemma 4.3.6 and Theorem 4.3.7]). Furthermore, there is an elementary equiva-
lence of lexicographically ordered sums Z⊕Q⊕Q ≡ Z⊕Q in Loag = {+, <, 0} since finite
lexicographic sums preserve elementary equivalence (see the proof of Theorem 3.3 in [11])
and the Loag-theory of divisible ordered abelian groups is complete [20, Corollary 3.1.17].
The Ax–Kochen/Ersov theorem [23, Theorem 4.6.4] implies that

(K, v2) ≡ (R((Q)) ((Q))((Z))︸ ︷︷ ︸
w1

, w1) ≡ (R ((Q))((Q))((Z))︸ ︷︷ ︸
w2

, w2)

holds. Thus, v2 cannot be ∅-definable: any parameter-free first-order definition of v2

would have to define both w1 and w2 on the field R((Q))((Q))((Z)).
Moreover, v2 is not even definable with parameters: by [6, Theorem 4.4 and Remark 3

on p. 1147], on any field K the only possible definable Henselian valuation with real
closed residue field is the coarsest such valuation. As v1 is a proper coarsening of v2 with
real closed residue field, v2 is not definable.

We now define an antipodal property to p-regularity.

Definition. Let Γ be an ordered abelian group and let p be a prime. Then, Γ is
p-antiregular if no non-trivial quotient of Γ is p-divisible and Γ has no rank-1 quotient.
Furthermore, Γ is antiregular if it is p-antiregular for all primes p.

Here, an ordered abelian group has rank 1 if its Archimedean rank is 1. Again, p-anti-
regularity is an elementary property of Γ :

Γ is p-antiregular ⇐⇒ ∀γ ∃δ ∀ε (|ε| � p|γ| → δ + ε /∈ pΓ )

with the standard notation |γ| := max{γ,−γ}.

Example 3.3 (antiregular ordered abelian groups). For i ∈ Z, let Zi be a copy
of Z as an ordered abelian group. Consider the lexicographically ordered sums

Γ :=
⊕
i∈Z

Zi and Δ :=
⊕

i∈Z, i�0

Zi.

Then both Γ and Δ are antiregular, as all of their non-trivial quotients are either isomor-
phic to Γ or Δ, so, in particular, neither Γ nor Δ has a rank 1 quotient or a p-divisible
quotient for any prime p. The element (. . . , 0, 0, 0, 1) ∈ Δ is a minimal positive element,
and Γ has no minimal positive element. Thus, we have

Γ �≡ Δ

as ordered abelian groups. Note that any ordered abelian group that has an antiregu-
lar quotient is again antiregular, so there are many examples of elementary classes of
antiregular ordered abelian groups.
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Question 3.4. Is there a (first-order) classification for antiregular ordered abelian
groups that is similar to the one that exists for regular ones?

We now collect some useful facts about antiregular ordered abelian groups.

Lemma 3.5. Let Γ �= {0} be an ordered abelian group.

(1) If Γ is p-antiregular, then we have [Γ : pΓ ] = ∞.

(2) If Γ � Γ ′ and the index [Γ ′ : Γ ] is finite, then Γ is p-antiregular if and only if Γ ′

is p-antiregular.

Proof. (1) Assume that [Γ : pΓ ] = n, and let Δ be a minimal convex subgroup of
Γ with [Δ : pΔ] = n. Choose a system of representatives {x1, . . . , xn} for Δ/pΔ (and
hence also for Γ/pΓ ). The quotient Γ/Δ is p-divisible. If the quotient is trivial, then
Γ = Δ and Δ has an Archimedean rank-1 quotient as follows: let xi be maximal among
x1, . . . , xn and let Δ0 be the maximal convex subgroup of Δ not containing xi; then, by
the minimality of Δ, Δ/Δ0 has Archimedean rank 1. If the quotient is non-trivial, Γ has
a non-trivial p-divisible quotient. In either case, Γ is not p-antiregular.

(2) Consider ordered abelian groups Γ � Γ ′ with [Γ ′ : Γ ] finite. Then, there is a
one-to-one correspondence between convex subgroups Δ′ of Γ ′ and convex subgroups Δ

of Γ with Δ′ ∩ Γ = Δ and [Δ′ : Δ] finite. In particular, Γ ′/Δ′ is p-divisible if and only
if Γ/Δ is p-divisible and Γ ′/Δ′ has rank 1 if and only if Γ/Δ has rank 1. Thus, Γ ′ is
p-antiregular if and only if Γ is. �

The next lemma gives the means to define a coarsening of a ∅-definable valuation with
non-antiregular value group without parameters.

Lemma 3.6. Let Γ be an ordered abelian group and let p be a prime. Define

D := {Δ � Γ | Δ convex and Γ/Δ is p-divisible}.

Then, we have the following.

(1) Δ0 :=
⋂

Δ∈D Δ is a convex subgroup of Γ such that Γ/Δ0 is p-regular.

(2) If Γ is not p-divisible and every p-regular quotient of Γ is p-divisible, then Δ0 is
∅-definable: for any γ ∈ Γ , we have

γ ∈ Δ0 ⇐⇒ ∃ε ∀α (|α| < |γ| → ε − α /∈ pΓ ).

Proof. (1) Since all convex subgroups of Γ are linearly ordered by inclusion, it is clear
that Δ0 is a convex subgroup of Γ . Every non-trivial convex subgroup of Γ/Δ0 is of the
shape Δ/Δ0 for some Δ ∈ D. Hence,

(Γ/Δ0)/(Δ/Δ0) ∼= Γ/Δ

is p-divisible and so Γ/Δ0 is p-regular.
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(2) As all p-regular quotients of Γ are p-divisible by assumption, Γ/Δ0 is p-divisible.
Assume that γ ∈ Δ0. Let 〈γ〉 be the convex hull of the subgroup generated by γ in Δ0.

We claim that Δ0/〈γ〉 is not p-divisible. Assume for a contradiction that Δ0/〈γ〉 was
p-divisible. Then, as Γ/Δ0 is p-divisible, we also get that Γ/〈γ〉 is p-divisible. This implies
that 〈γ〉 ∈ D and hence Δ0 = 〈γ〉. In particular, by the definition of Δ0, there is some
n � 1 with γ /∈ pnΔ0. Consider the maximal convex subgroup Bγ of Δ0 such that γ /∈ Bγ ,
i.e.

Bγ := {δ ∈ Δ0 | ∀n ∈ Z : |nδ| < γ}.

Now, Δ0/Bγ is a non-p-divisible rank-1 quotient of Δ0 and thus of Γ . Hence, Γ has
a non-p-divisible p-regular quotient, contradicting our assumption on Γ that no such
quotient exists. This proves the claim.

By the claim, we can choose some ε ∈ Δ0 \ 〈γ〉 such that

ε + 〈γ〉 /∈ p(Δ0/〈γ〉)

holds. Hence, for any α ∈ 〈γ〉, we have

ε − α /∈ pΔ0 = pΓ ∩ Δ0.

Thus, we have for all γ ∈ Δ0

Γ |= ∃ε ∀α (|α| < |γ| → ε − α /∈ pΓ ).

Conversely, if γ /∈ Δ0 holds, then we have γ /∈ Δ for some Δ ∈ D. As Γ/Δ is p-divisible,
for every ε ∈ Γ there is some α ∈ Δ such that ε − α ∈ pΓ holds. Thus, we have for all
γ ∈ Γ \ Δ0

Γ |= ∀ε ∃α (|α| < |γ| ∧ ε − α ∈ pΓ ).

�

Remark. Let Γ be an ordered abelian group and let p be a prime as in the assumptions
of Lemma 3.6 (2), i.e. assume that Γ �= pΓ holds and that every p-regular quotient of Γ

is p-divisible. Define Δ0 as before. An alternative way to show that Δ0 is ∅-definable is
to check that one has

Δ0 =
⋃

α∈Sp

Γα

for Sp and Γα as defined in [4, Definition 1.1].

We can now prove our first result on defining Henselian valuations without parameters.

Proposition 3.7. Let (K, v) be a Henselian field and let p be a prime. If the value
group vK is not p-divisible and not p-antiregular, then some non-trivial (Henselian)
coarsening of v is ∅-definable on K.
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Proof. Assume that vK is not p-divisible and not p-antiregular. If char(K) �= p,
we may assume that K contains a primitive pth root of unity ζp: as v is Henselian, it
extends uniquely to a Henselian valuation w on F := K(ζp). By Lemma 3.5, the value
group wF of the prolongation is again non-p-divisible and not p-antiregular. Note that
K(ζp) is ∅-definably interpretable in K in the following sense. We identify the additive
groups (K(ζp), +) and (Kd, +), where d = [K(ζp) : K]. The appropriate multiplicative
structure on Kd can be defined using only the (parameter-free) minimal polynomial f of
a chosen primitive pth root of unity ζp over K: note that for any other choice of ζp (and,
hence, possibly of f) this defines the same multiplication on Kd. To see that there can,
in fact, be different such polynomials, consider the decomposition of x4 +x3 +x2 +x+1
over F19 as (x2 − 4x + 1)(x2 + 5x + 1). As K(ζp) is ∅-definably interpretable in K, any
parameter-free definition of a non-trivial coarsening of w gives rise to a parameter-free
definition of a non-trivial coarsening of v. Assuming that ζp ∈ K if char(K) �= p, the
non-p-divisibility of vK now implies K �= K(p).

If vK admits a non-p-divisible rank-1 quotient, then the corresponding coarsening is
∅-definable by Theorem 3.1.

Otherwise, vK admits some non-trivial p-divisible quotient by assumption. If vK

admits a non-p-divisible p-regular quotient, then the corresponding coarsening is defin-
able by Theorem 3.1, say via the formula φ(x, t) for some parameter t ∈ K. Note that
vK has at most one non-p-divisible p-regular quotient and that no proper refinement of
v has p-regular value group. In particular, there is only one p-Henselian valuation with
non-p-divisible p-regular value group on K. By [17, Theorem 1.5], p-Henselianity is an
elementary property of a valued field in the language Lval := Lring ∪ {O}. Thus, the set

X = {t ∈ K | Owt := φ(K, t) is a p-Henselian valuation ring
with wtK �= pwtK and wtK p-regular}

is ∅-definable. Hence, the parameter-free formula

ψ(x) ≡ ∃t ∈ X (x ∈ φ(K, t))

defines the unique p-Henselian valuation on K with non-p-divisible p-regular value group
that is a non-trivial coarsening of v.

Finally, assume that the value group vK of v only has p-divisible p-regular quotients;
in particular, vK is not p-regular. As v is Henselian, v is comparable to the canonical p-
Henselian valuation vp

K . If vp
K is a coarsening of v, we have found a ∅-definable coarsening

of v. Otherwise, the value group of the canonical p-Henselian valuation vp
KK also admits

only p-divisible p-regular quotients. Thus, Lemma 3.6 applies and Δ0 is ∅-definable in
vp

KK. Now, the corresponding non-trivial ∅-definable coarsening w of vp
K has p-divisible

value group and is hence also a coarsening of v.
Note that any coarsening of a Henselian valuation is again Henselian. Thus, we have

shown that if v is Henselian and vK is non-p-divisible and not p-antiregular, then some
non-trivial, Henselian coarsening of v is ∅-definable. �
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Next, we repeat the construction given in [24] of a field that is elementarily equivalent
in Lring to a Henselian field but which does not admit any non-trivial Henselian valuation.
Following [24], we give the following definition.

Definition. A field K is called t-Henselian if there is some Henselian field L with
L ≡ K.

Fields that are t-Henselian but non-Henselian play an important role in several of the
examples in this paper. Consider a field K that is t-Henselian but not Henselian. Clearly,
no field elementarily equivalent to K can admit a ∅-definable non-trivial Henselian val-
uation. However, for the field K as discussed in the following example, any Henselian
field elementarily equivalent to K admits a parameter-definable Henselian valuation (see
Example 5.4). This follows from the fact that the canonical 2-Henselian valuation v2

K is
∅-definable and has an antiregular value group.

Example 3.8 (a t-Henselian field that is not Henselian). Let K0 := Qalg and
let v0 be the trivial valuation on K0. For n � 1, one iteratively constructs valued fields
(Kn, vn) with vnKn = Z and Knvn = Kn−1 and such that Hensel’s Lemma holds for
polynomials of degree at most n as follows.

Choose a minimal algebraic extension Kn of Kn−1(Xn−1) with

Kn−1(Xn−1) ⊆ Kn � Kn−1((Xn−1))

such that Hensel’s Lemma holds on (Kn, vn) for polynomials of degree at most n, where
vn is the restriction of the power series valuation on Kn−1((Xn−1)) to Kn. One can of
course choose K1 = K0(X0) with v1 the X0-adic valuation, as Hensel’s Lemma holds
trivially for all polynomials of degree 1. Note that we get a place pn : Kn → Kn−1 ∪{∞}
that is p-Henselian for all primes p � n.

The field K is then taken as the inverse limit of

(Kn ∪ {∞}, pn) with projections sn : K ∪ {∞} → Kn−1 ∪ {∞}.

It follows from the arguments given in [24, p. 338] that K admits no non-trivial Henselian
valuation.

The canonical 2-Henselian valuation v2
K on K now corresponds to the place

s2 : K → K1 ∪ {∞}

as pn is 2-Henselian if and only if n � 2. As usual, the quotients of v2
KK correspond

to the value groups of coarsenings of v2
K . Since the coarsenings of v2

K correspond to the
places sn for n � 2 and none of them has a p-divisible value group for any prime p or
has a value group of rank 1, we conclude that the group v2

KK is antiregular.

4. Defining coarsenings of valuations using subgroups

In this section we discuss a class of parameter-definable convex subgroups of an ordered
abelian group. The motivation for this comes from [2]. We then apply our construction to
show that a field admitting a Henselian valuation with non-divisible value group admits
a non-trivial parameter-definable Henselian valuation.
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Lemma 4.1. Let Γ be an ordered abelian group and let p be a prime. Take any γ ∈ Γ

with γ > 0 and define

Δγ := {δ ∈ Γ | [0, p|δ|] ⊆ [0, pγ] + pΓ},

where |δ| = max{δ, −δ}. Then Δγ is a convex {γ}-definable subgroup of Γ with γ ∈ Δγ .
Furthermore, no non-trivial convex subgroup of Γ/Δγ is p-divisible.

Proof. By definition, Δγ is a {γ}-definable convex subset of Γ containing γ with
Δγ = −Δγ . We now show that Δγ is a subgroup of Γ . As Δγ is convex, it suffices to
show that for all δ ∈ Δγ we have δ + δ ∈ Δγ . Since we have Δγ = −Δγ , it suffices to
consider the case δ > 0. Take any δ ∈ Δγ with δ > 0 and β ∈ Γ with

0 � |β| � p(δ + δ).

In case when we have |β| � pδ we immediately get |β| ∈ [0, pγ]+ pΓ . Otherwise, we have
pδ < |β| � p(δ+δ), so we get |β|−pδ � pδ. This implies again |β| ∈ [0, pγ]+pΓ . Overall,
we get [0, p(δ + δ)] ⊆ [0, pγ] + pΓ , i.e. δ + δ ∈ Δγ as required.

Let Δ̃ � Γ be a convex subgroup with Δγ ⊆ Δ̃. If Δ̃/Δγ is p-divisible, then for
any δ̃ ∈ Δ̃ there is some δ ∈ Δγ with δ̃ − δ ∈ pΓ . Fix some δ̃ ∈ Δ̃ and take any
β̃ ∈ [0, p|δ̃|] ⊆ Δ̃. Then, there is some β ∈ Δγ with

β̃ ∈ β + pΓ ⊆ [0, pγ] + pΓ.

Thus, we get δ̃ ∈ Δγ and hence Δ̃ = Δγ . As any convex subgroup of Γ/Δγ corresponds
to a subgroup Δ̃ � Γ as above, we conclude that Γ/Δγ has no non-trivial p-divisible
convex subgroup. �

If Γ is the value group of a definable valuation v on a field K, the construction in the
lemma gives rise to a definable coarsening of v. As discussed in the next remark, this is
a special case of a construction introduced by Arason, Elman and Jacob (see [2]).

Remark. Let (K, v) be a valued field and let t ∈ mv. Consider the set

Tt := {x ∈ K× | ∃z : v(t−p) � v(xzp) � v(tp)}.

It is straightforward to check that if v is ∅-definable, Tt is a t-definable subgroup of K×.
In [2] the authors introduce a method for obtaining definable valuation rings from certain
definable subgroups of K×, and they discuss conditions under which this valuation ring
is non-trivial. Using the notation and machinery from [2] (in particular, Theorem 2.10
and Lemma 3.1), one can show that there is a valuation ring O(Tt, Tt) ⊆ K that is trivial
if and only if Tt = K×.

Now, let Δv(t) be the convex subgroup of vK as defined in Lemma 4.1. The valuation
ring O(Tt, Tt) is exactly the coarsening of v that is obtained by quotienting vK by the
convex subgroup Δv(t). This valuation can also be described as the finest coarsening w

of v such that we have t ∈ O×
w and such that no non-trivial convex subgroup of wK is

p-divisible.
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Proposition 3.7 and Lemma 4.1 are the two main ingredients needed to show that
on any field admitting a Henselian valuation with non-divisible value group there is a
non-trivial definable Henselian valuation.

Proposition 4.2. Assume that some Henselian valuation v on K has a non-divisible
value group. Then, some non-trivial (Henselian) coarsening of v is definable on K (using
at most one parameter).

Proof. Let (K, v) be Henselian such that vK is not p-divisible for some prime p. If vK

is not p-antiregular, then it admits a ∅-definable non-trivial coarsening by Proposition 3.7.
Thus, we may assume that vK is p-antiregular, which means that it has no non-trivial
p-divisible quotient and no rank-1 quotient.

Consider F := K(ζp) in the case when char(K) �= p: by Lemma 3.5, the unique
prolongation w of v to K(ζp) will again have non-p-divisible and p-antiregular value
group. If we define a coarsening of w with parameters from K on F , its restriction to K

is also definable (with parameters from K). If char(K) = p, we set F := K.
We now have F �= F (p) and, as [F : K] is prime to p, for any t ∈ mv with p � v(t)

we get p � w(t). By construction, vp
F is ∅-definable on F . Note that, by Henselianity, w

is comparable to vp
F . If vp

F is a coarsening of w, we have found a non-trivial ∅-definable
coarsening of w (and thus of v). Hence, we may assume that vp

F refines w.
Choose any t ∈ mv ⊆ mw with p � v(t). Then, we also have p � w(t) =: γ. Define

Γ := wF and consider the convex subgroup

Δγ = {δ ∈ Γ | [0, p|δ|] ⊆ [0, pγ] + pΓ}

of Γ as in Lemma 4.1. We claim that Δγ �= Γ holds. Assume for a contradiction that we
have Δγ = Γ . Let 〈γ〉 denote the convex subgroup of Γ generated by γ. Then, we have
for all δ ∈ Δγ = Γ that

|δ| ∈ [0, pγ] + pΓ ⊆ 〈γ〉 + pΓ

holds. Thus, Γ/〈γ〉 is p-divisible, and thus, as Γ is p-antiregular, trivial. Now, the maximal
convex subgroup of Γ not containing γ, i.e.

Bγ := {δ ∈ Γ | ∀n ∈ Z : |nδ| < γ},

is a proper convex subgroup of Γ such that Γ/Bγ has rank 1. This contradicts the
p-antiregularity of Γ . Thus, we conclude that Γ �= Δγ .

Hence, the coarsening of w that corresponds to quotienting wF by Δγ is a non-trivial
{t}-definable coarsening of w. Its restriction to K is a non-trivial {t}-definable coarsening
of v. �

5. Definitions without parameters

We are now in a position to prove our main theorem on the existence of a parameter-free
definable Henselian valuation on a Henselian field, as stated in the introduction.
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Theorem A. Let K be a Henselian field that is not separably closed. Assume that
K satisfies at least one of the following conditions:

(1) KvK is separably closed;

(2) KvK is not t-Henselian;

(3) there is some prime p such that vKK is non-p-divisible and not p-antiregular.

Then K admits a ∅-definable Henselian valuation.

Proof. Let K �= Ksep be a Henselian field.

(1) If KvK = Kvsep
K , then K admits a ∅-definable Henselian valuation by [13, Theo-

rem 3.10].

(2) If KvK is not t-Henselian, then K admits a ∅-definable Henselian valuation by [10,
Proposition 5.5].

(3) If vKK is non-p-divisible and is not p-antiregular for some p, then some non-trivial
(Henselian) coarsening of vK is ∅-definable by Proposition 3.7.

Hence, if K satisfies one of the assumptions of the theorem, then K admits a non-trivial
∅-definable Henselian valuation. �

Note that Henselian real closed fields do not satisfy any of the conditions in the the-
orem: if K is Henselian and real closed, then KvK is real closed (and thus t-Henselian
and not separably closed) and vKK is divisible.

We first draw some conclusions from Theorem A. Recall that we use GK to denote the
absolute Galois group of a field K. We say that GK is small if K has only finitely many
Galois extensions of degree n for any natural number n.

Corollary 5.1. Let K be a non-separably closed Henselian field with GK small or
with finite transcendence degree. Then K admits a ∅-definable Henselian valuation unless
vKK is divisible and KvK is t-Henselian but not separably closed.

Proof. Let K be Henselian and assume that K �= Ksep. If K admits no ∅-definable
Henselian valuation, then, by Theorem A, KvK is t-Henselian but not separably closed.
If vKK is not divisible, Theorem A implies that vKK is p-antiregular and not p-divisible
for at least one prime p.

Let K be a field of finite transcendence degree or such that GK is small. The index
[vKK : pvKK] is then finite for any prime p. Hence, Lemma 3.5 implies that vKK is not
p-antiregular. �

Corollary 5.2. Let K be a Henselian field, neither separably closed nor real closed,
and assume that the transcendence degree of K is finite. Then K admits a ∅-definable
Henselian valuation.
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Proof. Assume that trdeg(K) is finite and that K �= Ksep. By Corollary 5.1, K

admits a ∅-definable Henselian valuation unless KvK is t-Henselian but not Henselian.
However, [8, Theorem 3.4.2] implies that trdeg(KvK) is also finite. By [19, Lemma 3.5],
every t-Henselian field of finite transcendence degree is Henselian. Thus, KvK cannot be
t-Henselian but not Henselian. �

Corollary 5.3. Let K be a Henselian field with GK small and char(KvK) = 0. Then
K admits no ∅-definable Henselian valuation if and only if K ≡ KvK .

Proof. Let K be a Henselian field with GK small, char(KvK) = 0, which does not
admit a ∅-definable Henselian valuation. Corollary 5.1 implies that vKK is divisible and
KvK is t-Henselian. By [24, Lemma 3.3], there is some Henselian L � KvK . Note that
GKvK

, and hence GL, is also small. Using Corollary 5.1 once more, we get that LvL is
t-Henselian and vLL is divisible. Since the restriction of vL to KvK is trivial, we have
char(LvL) = 0. Using the Ax–Kochen/Ersov theorem [23, Theorem 4.6.4] several times,
we conclude that

KvK ≡ L ≡ LvL((Q)) ≡ LvL((Q))((Q)) ≡ L((Q)) ≡ KvK((Q)) ≡ K.

On the other hand, if K ≡ KvK , we have that K is either separably closed (and hence
admits no non-trivial ∅-definable Henselian valuation) or, by the definition of vK , that
KvK is t-Henselian but not Henselian. In the latter case, K cannot admit a ∅-definable
non-trivial Henselian valuation, lest KvK be Henselian. �

Note that by [10, Construction 6.5 and Proposition 6.7], there are fields with small
absolute Galois group that are t-Henselian but not Henselian. Hence, there are Henselian
fields with small absolute Galois group that admit no non-trivial ∅-definable Henselian
valuation. Furthermore, Example 6.2 shows that there are Henselian fields with small
absolute Galois group not admitting any non-trivial definable Henselian valuation.

We now give an example illustrating that, in general, Theorem A does not give rise to
a full classification of which Henselian fields admit ∅-definable Henselian valuations.

Example 5.4 (a field admitting a ∅-definable Henselian valuation satisfying
conditions (1)–(3) in Theorem A). Let K be the field as constructed in Example 3.8,
so K is elementarily equivalent to a Henselian field but not Henselian and v2

K is a ∅-
definable and p-antiregular value group for all p.

Consider the canonical Henselian valuation vL on L = K((Q)). Note that vL is the
power series valuation on L, thus vLL = Q is divisible and LvL = K is t-Henselian but
not separably closed. In particular, it does not follow from Theorem A that L admits a
∅-definable Henselian valuation.

We claim that vL is ∅-definable. Fix any prime p. As K is 2-Henselian, v2
L refines

vL. Thus, v2
LL has a p-divisible quotient (namely Q) and is therefore not p-antiregular.

Furthermore, v2
L is the composition of vL and v2

K , so, as v2
KK is p-antiregular, Q is the

only p-regular quotient of v2
LL. Hence, v2

LL has no non-p-divisible p-regular quotient and
so some non-trivial convex subgroup with p-divisible quotient is ∅-definable in v2

LL by

https://doi.org/10.1017/S0013091516000341 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000341


Defining coarsenings of valuations 679

Lemma 3.6. However, LvL is the only such quotient and v2
L is ∅-definable by Theorem 2.1.

Thus, vL is ∅-definable.

The arguments given in the example above can in general be used to prove the following
addition to Theorem A.

Proposition 5.5. Let K be a Henselian field with char(KvK) = 0. If

(1) there is some Henselian L � KvK with vLL non-divisible and

(2) vKK is divisible,

then K admits a ∅-definable non-trivial Henselian valuation.

Proof. Let K be a Henselian field such that KvK ≺ L for some Henselian L with vLL

non-divisible. Fix a prime p with vLL �= pvLL. Then, in particular, L is not separably
closed and hence neither are KvK nor K. Since KvK is t-Henselian but not Henselian,
L admits no ∅-definable non-trivial Henselian valuation. Thus, by Theorem A, vLL is
p-antiregular.

Consider the field M := L((vKK)) with the power series valuation w. By the Ax–
Kochen/Ersov theorem [23, Theorem 4.6.4], we have

(K, vK) ≡ (M, w).

Note that vMM ≡ vKK ⊕ vLL holds (with the sum ordered lexicographically). There-
fore, vMM is not p-divisible and not p-antiregular. Hence, M admits a ∅-definable non-
trivial Henselian valuation by Theorem A. Thus, K also admits a ∅-definable non-trivial
Henselian valuation. �

It would be very interesting to have a complete classification for the existence of non-
trivial ∅-definable Henselian valuations. A necessary condition is that any elementarily
equivalent field also admits a non-trivial Henselian valuation. We now ask whether this
condition is also sufficient.

Question 5.6. Let K be a Henselian field such that any L ≡ K is Henselian. Does K

admit a non-trivial ∅-definable Henselian valuation?

It follows immediately from Corollaries 5.2 and 5.3 that if K is a Henselian field of finite
transcendence degree or if it has a small absolute Galois group such that additionally
(char(K), char(KvK)) = (0, 0) holds, the answer to this question is positive.

6. Definitions with parameters

Theorem B. Let K be a Henselian field that is not separably closed. Assume that K

satisfies at least one of the following conditions:

(1) KvK is separably closed;

(2) KvK is not t-Henselian;

(3) vKK is not divisible.

Then K admits a definable non-trivial Henselian valuation (using at most one parameter).
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Proof. Let K �= Ksep be a Henselian field. If KvK is not separably closed, or not
t-Henselian, or there is a prime p with vKK non-p-divisible and not p-antiregular, we get
a ∅-definable non-trivial Henselian valuation on K by Theorem A.

If vKK is not p-divisible for some prime p, some non-trivial (Henselian) coarsening of
vK is definable using at most one parameter by Proposition 4.2.

Thus, if K satisfies any of the assumptions (1)–(3), then K admits a definable non-
trivial Henselian valuation (using at most one parameter). �

In equicharacteristic 0, Theorem 1 gives rise to a classification of fields admitting
definable Henselian valuations.

Corollary 6.1. Let K be a non-separably closed Henselian field with char(KvK) = 0.
Then K admits a definable non-trivial Henselian valuation if and only if at least one of
the following conditions hold:

(1) KvK is separably closed;

(2) KvK is not t-Henselian, or for some Henselian L � KvK , the value group vLL is
not divisible;

(3) vKK is not divisible.

Proof. Let K �= Ksep be a Henselian field with char(KvK) = 0. If K satisfies at
least one of the three conditions in the corollary, then K admits a definable non-trivial
Henselian valuation by Theorem 1 and Proposition 5.5. For the other direction, assume
that K satisfies

(1) KvK �= Kvsep
K and

(2) vLL is divisible for all Henselian KvK ≺ L and

(3) vKK is divisible.

We need to show that K admits no definable non-trivial Henselian valuation. The key
argument of the proof is relative quantifier elimination in the Denef–Pas language; how-
ever, first we need to do some work to set the situation up.

Since we have KvK �= Kvsep
K , any Henselian valuation is a coarsening of vK . Take

L � KvK with vLL divisible. Note that as the extension KvK ⊂ L is regular, the
restriction of vL to KvK is Henselian and hence trivial. Thus, we also get char(LvL) = 0.

Consider an ℵ0-saturated elementary extension (M, v) of (K, vK) in Lval = Lring∪{O},
where O is a unary predicate that is interpreted as the valuation ring. Then, vM is a
divisible ordered abelian group and F := Mv is an ℵ0-saturated elementary extension
of KvK in Lring and is thus Henselian [24, Lemma 3.3]. In particular, vF is non-trivial
and hence vM is a proper refinement of v: namely, the composition of v and vF . By our
assumption, we get that vF F is divisible (and thus vMM is too). Note that the restriction
of vM to KvK is trivial, thus we get char(MvM ) = 0.

We want to consider (M, vM ) as a structure in the Denef–Pas language LDP, which
is an extension of Lring (see [21] for details). A valued field (N, w) can be made into an
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LDP-structure if and only if there is an angular component map ac on N , i.e. a multi-
plicative map ac: N → Nw with ac(0) = 0 and which coincides on O×

w with the residue
map. If there is no such map for (M, vM ), any sufficiently saturated Lval-elementary
extension (N, w) of (M, vM ) has a cross-section since (M, vM ) is Henselian of equichar-
acteristic 0. Hence, (N, w) has an angular component map and can be considered as an
LDP-structure. In particular, we have char(Nw) = 0 and wN divisible.

Assume for a contradiction that K admits a definable non-trivial Henselian valua-
tion, i.e. that some non-trivial coarsening of vK is definable. Then, via the elementary
embedding

(K, vK) ≺ (M, v),

some non-trivial coarsening of v is Lring-definable on M (using the same Lring-formula and
the same parameters from K ⊆ M). Thus, some proper coarsening of vM is Lring-definable
in the Henselian valued field (M, vM ). Furthermore, via the elementary embedding

(M, vM ) ≺ (N, w),

some proper coarsening of w is Lring-definable in N .
In particular, this induces a definition of a proper, non-trivial convex subgroup of the

divisible ordered abelian group wN .
Note that we have char(Nw) = 0. By the relative quantifier elimination result in LDP

the following holds in a Henselian valued field (N, w) of equicharacteristic 0 (see [21,
Theorem 4.1]): any LDP-definable subset of wN (using parameters from N) is already
definable in the ordered abelian group wN (using parameters from wN). However, in
a divisible ordered abelian group (like wN), there can be no proper, non-trivial convex
definable subgroups. Hence, no non-trivial proper coarsening of w is definable on N and
thus there can be no non-trivial definable Henselian valuation on K. �

Example 6.2 (a Henselian field that does not admit any non-trivial definable
Henselian valuation). Refining the construction by Prestel and Ziegler as repeated in
Example 3.8, one can construct a t-Henselian non-Henselian field k of characteristic 0
with k �= ksep and Gk small (see [10, Construction 6.5 and Proposition 6.7]). By [10,
Proposition 5.8], vLL is divisible for any Henselian L � k. Consider the field K := k((Q)).
By Corollary 6.1, K does not admit a non-trivial definable Henselian valuation.

Example 6.3 (a field L admitting a non-trivial definable Henselian valua-
tion such that there is some non-Henselian K ≡ L). Consider the field K as
constructed in Example 3.8, so K is t-Henselian but not Henselian, v2

K is ∅-definable and
has an antiregular value group.

By [24, Lemma 3.3], there is some elementary extension L � K such that L is
Henselian. We claim that the canonical Henselian valuation vL on L has a non-divisible
value group. By Theorem 2.1, v2

L and v2
K are defined by the same parameter-free for-

mula. As antiregularity is an elementary property of an ordered abelian group, v2
LL is

also antiregular. Since vLL is a quotient of v2
LL, it cannot be p-divisible for any prime p.

Thus, by Theorem 1, L admits a non-trivial definable Henselian valuation. Since we
have L ≡ K and K is t-Henselian but not Henselian, L does not admit any non-trivial
∅-definable Henselian valuation.
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7. Tamely branching (p-)Henselian valuations

In this section we study (p-)Henselian valuations tamely branching at p. In the first
part we show that every field that admits a p-Henselian valuation tamely branching at
p admits a ∅-definable such valuation and we draw some Galois-theoretic conclusions.
In the second part we show that every field that admits a Henselian valuation tamely
branching at p admits a definable such valuation; however, in general, parameters are
required for the definition. We conclude that admitting a tamely branching Henselian
valuation is not an elementary property in Lring, which again has some Galois-theoretic
consequences.

First, we recall the definition of tamely branching valuations.

Definition. Let (K, v) be a valued field and let p be a prime. We call v tamely
branching at p if

(1) char(Kv) �= p and

(2) vK is not p-divisible; and

(3) if [vK : pvK] = p, then Kv has a finite separable field extension of degree divisible
by p2.

7.1. Defining tamely branching p-Henselian valuations

We first consider the problem of defining p-Henselian valuations tamely branching at
p. The existence of these valuations is encoded in the maximal pro-p quotient of the
absolute Galois group of a field, as described by the following theorem.

Theorem 7.1 (Engler, Koenigsmann and Nogueira [18, Theorem 2.15]). Let
p be a prime, let K be a field containing a primitive pth root of unity (in particular,
char(K) �= p), and assume that GK(p) �∼= Zp and, if p = 2, also that GK(p) �∼= Z/2Z or
Z2 � Z/2Z. Then K admits a p-Henselian valuation tamely branching at p if and only if
GK(p) has a non-trivial normal abelian subgroup.

We now turn to the definability of such valuations.

Proposition 7.2. Let K be a field and let p be a prime such that char(K) �= p holds.
Assume that we have ζp ∈ K and, furthermore,

√
−1 ∈ K if p = 2 and char(K) = 0. If

K admits a p-Henselian valuation tamely branching at p, then K admits a ∅-definable
such valuation.

Proof. Let v be a p-Henselian valuation tamely branching at p. We split the proof
into cases.

(1) If Kv = Kv(p), then we have Ov ⊆ Ovp
K

, so the canonical p-Henselian valuation vp
K

is also tamely branching at p: the fact that char(Kvp
K) �= p is immediate. Furthermore, we

have vp
KK = vK/Δ, where Δ is the value group of the valuation v̄ induced by v on Kvp

K .
Since we have Kv = Kv(p), we also get Kvp

K = Kvp
K(p) by the definition of the canonical
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Henselian valuation. Thus, Δ is p-divisible and, as vK is not p-divisible, vp
K is not p-

divisible. Moreover, we get [vK : pvK] = [vp
KK : pvp

KK]. Thus, if [vp
KK : pvp

KK] = p, Kv

admits a finite separable extension of degree divisible by p2: generated by an irreducible
polynomial f(X) ∈ Kv[X], say. Any lift of this polynomial to Ov̄[X] ⊆ Kvp

K [X] is still
irreducible and separable and thus also generates a finite separable extension of degree
divisible by p2. Hence, in this case vp

K is also tamely branching at p as claimed and, since
vp

K is ∅-definable, we have found a ∅-definable p-Henselian valuation on K.

(2) Kv �= Kv(p) and char(Kvp
K) �= p. We then have Ovp

K
⊆ Ov, and thus vp

KK is not
p-divisible. If Kvp

K �= Kvp
K(p) holds, then vp

K is again tamely branching at p. Now assume
that we have Kvp

K = Kvp
K(p) and [vp

KK : pvp
KK] = p. Then either vK is p-divisible or

the value group of the valuation v̄p
K induced by vp

K on Kv is p-divisible. The first case
cannot happen since v is tamely branching at p by assumption. Hence, assume that vp

K

induces a valuation with p-divisible value group on Kv. As v̄p
K is p-Henselian of residue

characteristic different from p and its residue field admits no Galois extension of degree
p, this implies Kv = Kv(p). Thus, we get v = vp

K and so in either case vp
K is a ∅-definable

p-Henselian valuation tamely branching at p.

(3) Kv �= Kv(p) and char(Kvp
K) = p. Define vp

KK =: Γ and v(p) =: γ. Consider the
convex subgroup

Δγ := {δ ∈ Γ | [0, p|δ|] ⊆ [0, pγ] + pΓ}

of Γ as in Lemma 4.1. We claim that Dγ �= Γ holds. Let 〈γ〉 be the convex subgroup of
Γ generated by γ. Then, for any δ ∈ Δγ there is some β ∈ Γ with

δ − pβ ∈ 〈γ〉.

Note that v(p) = 0 holds, so vK is a quotient of Γ/〈γ〉. As vK is not p-divisible, Γ/〈γ〉
is not p-divisible. Hence, we get

Δγ ⊆ 〈γ〉 + pΓ � Γ.

This proves the claim.

By the claim, there is a non-trivial ∅-definable coarsening u of vp
K on K with value

group uK = Γ/Δγ . Lemma 4.1 implies that uK �= puK and char(Ku) �= p. In particular,
u is a proper coarsening of vp

K . Therefore, u is p-Henselian and Ku �= Ku(p) holds. Hence,
u is a ∅-definable p-Henselian valuation tamely branching at p. �

We now give a Galois-theoretic consequence of the above. Together with Theorem 7.1,
Proposition 7.2 yields the following.

Corollary 7.3. Let p be a prime and let K be a field with char(K) �= p and ζp ∈
K. Take some L ≡ K. Then, if GK(p) has a non-trivial normal abelian subgroup, so
does GL(p).
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Proof. Assume that L ≡ K. By [3, Lemma 17], this implies that GK ≡ GL in
the language of inverse systems introduced in [3, § 2]. Moreover, as the maximal pro-p
quotient of a profinite group is interpretable in this language, we even get GK(p) ≡ GL(p).
If GK(p) ∼= Zp or p = 2 and either GK(p) ∼= Z/2Z or Z2 � Z/2Z holds, then, as all these
groups are small, we conclude that GK(p) ∼= GL(p) [3, Proposition 27]. Hence, GL(p)
also has a non-trivial abelian normal subgroup.

Otherwise, K admits a p-Henselian valuation tamely branching at p by Theorem 7.1.
Thus, K admits a ∅-definable such valuation by Proposition 7.2, so L also admits a
p-Henselian valuation tamely branching at p. Using Theorem 7.1 once more, we get that
GL(p) has a non-trivial normal abelian subgroup. �

7.2. Defining tamely branching Henselian valuations

The main motivation to study Henselian valuations tamely branching at some prime
p is the fact that they are encoded in the absolute Galois group of the field.

Theorem 7.4 (Koenigsmann [18, Theorem 1]; see also [8, Theorem 5.4.3]).
Let p be a prime. A field K admits a Henselian valuation, tamely branching at p if and
only if GK has a non-procyclic p-Sylow subgroup P �∼= Z2 � Z/2Z with a non-trivial
abelian normal closed subgroup N of P .

The absolute Galois group of a field K is encoded up to elementary equivalence (when
considered in a language for profinite groups) in the theory of K. Hence, for a field K

with small absolute Galois group, admitting a Henselian valuation tamely branching at
some prime p is an elementary property in Lring: when GK is small, we have GK

∼= GL

(as profinite groups) for any L with L ≡ K [15, Proposition 4.2]. The next proposition
gives an alternative way of seeing this.

Proposition 7.5. Let K be a field and let p be a prime. Assume that GK is small. If
K admits a Henselian valuation v tamely branching at p, then there is some ∅-definable
coarsening of v that tamely branches at p.

Proof. We may assume that K contains a primitive pth root of unity ζp: as K admits
a Henselian valuation v tamely branching at p, we have char(K) �= p and so K(ζp) is a
∅-definably interpretable extension of K in the sense of the proof of Proposition 3.7. Let
u be a Henselian valuation on K and let u′ be its unique extension to K(ζp). Now, as
the index [K(ζp) : K] is prime to p, u is tamely branching at p if and only if u′ is tamely
branching at p. Thus, any parameter-free definition of a coarsening of v′ on K(ζp) that
tamely branches at p induces a ∅-definable such coarsening of v on K.

Let v be a Henselian valuation on K that tamely branches at p. Then vK is not p-
divisible and, as GK is small, it is not p-antiregular (see the proof of Corollary 5.1). Thus,
some non-trivial coarsening w of v is ∅-definable by Proposition 3.7. Following the proof
of Proposition 3.7, we get that either the value group of w is p-regular and non-p-divisible
or w is the finest coarsening of v with p-divisible value group.

We claim that there is a ∅-definable coarsening w′ of v with non-p-divisible value group.
Assume first that wK is p-regular and non-p-divisible; then, we can choose w′ = w.
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Assume now that w is the finest coarsening of v with p-divisible value group. Then, v

induces a Henselian valuation v̄ on Kw such that its value group v̄(Kw) is not p-divisible
and has no non-trivial p-divisible quotient. In particular, v̄(Kw) is either p-antiregular
or has finite (Archimedean) rank. As GKw is a quotient of GK [8, Lemma 5.2.6], GKw is
also small and hence Kw admits no Henselian valuation with non-p-divisible p-antiregular
value group (see again the proof of Corollary 5.1). Thus, v̄ is a Henselian valuation of
finite (Archimedean) rank on Kw such that no non-trivial coarsening of it has p-divisible
value group. In particular, v̄ has a (Henselian) rank-1 coarsening u such that the value
group u(Kw) is not p-divisible. Hence, by [19, Lemma 3.6] (or Theorem 3.1), u is ∅-
definable on Kw. Thus, the composition w′ = u ◦ w is a ∅-definable Henselian valuation
on K with non-p-divisible value group. This proves the claim.

We have now found a ∅-definable coarsening w′ of v such that w′K is not p-divisible.
We claim that w′ is tamely branching at p. Since w′ coarsens v, we have char(Kw′) �= p.
Assume that p2 � GKw′ . Then, as GKv is a quotient of GKw′ [8, Lemma 5.2.6], we also
get p2 � GKv. As v is tamely branching at p, we get [vK : pvK] �= p. Furthermore,
p2 � GKw′ implies that all valuations on Kw′ have p-divisible value group. Thus, we get
[w′K : pw′K] = [vK : pvK] �= p. Therefore, w′ is tamely branching at p. �

However, admitting a Henselian valuation tamely branching at some prime p is in
general not an elementary property.

Example 7.6. Consider the field K as constructed in Example 3.8; note that K is
elementarily equivalent to a Henselian field but is not Henselian, v2

K is ∅-definable and
its value group v2

KK is a p-antiregular value group for all primes p.
By [24, Lemma 3.4], there exists some elementary extension L � K such that L

is Henselian. We now show that the canonical Henselian valuation vL on L is tamely
branching at all primes p.

Note that the restriction of vL to K is Henselian and thus trivial. In particular, we get
char(LvL) = 0. Furthermore, vL is comparable to vp

L. Since vp
L and vp

K are definable by
the same formula and p-antiregularity is an elementary property of an ordered abelian
group, vp

LL is p-antiregular. Thus, vLL is p-antiregular but not p-divisible. By Lemma 3.5,
we have [vLL : pvLL] = ∞.

Overall, we get that vL is tamely branching at any prime p. In particular, L admits no
∅-definable non-trivial Henselian valuation. Proposition 7.8 below shows that L nonethe-
less admits for every prime p a parameter-definable Henselian valuation that is tamely
branching at p.

We immediately get the following.

Corollary 7.7. Admitting a Henselian valuation tamely branching at p is not an
elementary property, i.e. there are fields K ≺ L such that GL has a non-procyclic Sylow
subgroup PL �∼= Z2 � Z/2Z admitting a non-trivial abelian normal closed subgroup, but
GK does not.

As a consequence, not every field that admits a Henselian valuation tamely branching
at p admits a ∅-definable such valuation. The next proposition shows that there is,
nevertheless, always a definable such valuation.
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Proposition 7.8. Let K be a field and let p be a prime. Assume that K admits a
Henselian valuation v tamely branching at p. Then K admits a definable such valuation
(using at most one parameter).

Proof. As in the proof of Proposition 7.5 we may assume that ζp ∈ K. We split the
proof into two cases.

(1) If KvK = KvK(p), then we have vK ⊆ vp
K . Proposition 7.2 shows that there is a

∅-definable p-Henselian valuation w that is a coarsening of vp
K and that tamely branches

at p. As w is a coarsening of vK , this gives a ∅-definable Henselian valuation tamely
branching at p.

(2) If KvK �= KvK(p), then we have vp
K ⊆ vK ⊆ v. Define Γ = vp

KK. For any γ ∈ vK

let 〈γ〉 be the convex subgroup generated by γ in Γ . We consider once more the convex
subgroup

Δγ = {δ ∈ Γ | [0, p|δ|] ⊆ [0, pγ] + pΓ}

of Γ as in Lemma 4.1. Note that, as in the proof of Proposition 4.2, Γ = Δγ implies
that the quotient Γ/〈γ〉 is p-divisible. Thus, if there is some γ ∈ vK such that Γ/〈γ〉 is
not p-divisible, then we get a definable coarsening u of v with uK = Γ/Δγ that tamely
branches at p.

On the other hand, if Γ/〈γ〉 is p-divisible for all γ ∈ vK, then vK/〈γ〉 is also p-divisible
for all γ ∈ vK. This implies that vK/Δ̃ is p-divisible for all convex subgroups Δ̃ � vK.
Thus, vK is p-regular but not p-divisible and thus is ∅-definable by Theorem 3.1. �
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