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Materials adsorbed onto the surface of a fluid – for instance, crude oil, biogenic slicks
or industrial/medical surfactants – will move in response to surface waves. Owing to
the difficulty of non-invasive measurement of the spatial distribution of a molecular
monolayer, little is known about the dynamics that couple the surface waves and the
evolving density field. Here, we report measurements of the spatiotemporal dynamics
of the density field of an insoluble surfactant driven by gravity–capillary waves in a
shallow cylindrical container. Standing Faraday waves and travelling waves generated
by the meniscus are superimposed to create a non-trivial surfactant density field. We
measure both the height field of the surface using moiré imaging, and the density
field of the surfactant via the fluorescence of NBD-tagged phosphatidylcholine, a
lipid. Through phase averaging stroboscopically acquired images of the density
field, we determine that the surfactant accumulates on the leading edge of the
travelling meniscus waves and in the troughs of the standing Faraday waves. We
fit the spatiotemporal variations in the two fields using an ansatz consisting of a
superposition of Bessel functions, and report measurements of the wavenumbers and
energy damping factors associated with the meniscus and Faraday waves, as well
as the spatial and temporal phase shifts between them. While these measurements
are largely consistent for both types of waves and both fields, it is notable that the
damping factors for height and surfactant in the meniscus waves do not agree. This
raises the possibility that there is a contribution from longitudinal waves in addition
to the gravity–capillary waves.

Key words: capillary waves, Faraday waves, waves/free-surface flows

1. Introduction
The calming effect of surface oil on oceanic waves was recognized by sponge

and pearl divers as early as the time of Pliny the Elder. Franklin, Brownrigg &
Farish (1774), citing Pliny’s account, also reported on sailors calming ocean waves
with oil. Franklin et al. concluded from experiments that oil significantly damps
short-wavelength small-amplitude waves, and conjectured that it would also induce
damping of larger long-wavelength waves. Lord Kelvin (Thomson 1871) first identified
short-wavelength capillary-driven waves and long-wavelength gravity-driven waves as
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two regimes within the same mathematical formulation. Kelvin’s famous dispersion
relation describing the wavelength dependence of the speed of gravity–capillary waves
shows a crossover from capillary to gravity waves at the minimum wave speed.

Much effort has since been devoted to studying the damping effect of surfactants
on gravity–capillary waves (Reynolds 1880; Levich 1941; Dorrestein 1951; Goodrich
1961; Lucassen-Reynders & Lucassen 1970). With or without a surfactant, energy
is lost due to the viscosity of the fluid and the vorticity of the flow. By adding a
surfactant, the surface can experience additional tangential stresses which, balanced
by viscous stress in the bulk, increase the vorticity of the bulk flow. These tangential
surface stresses are a consequence of the complex relation between surface stress
and strain rate, which depends upon the bulk flow, surface velocity and surfactant
density. The primary contribution to the tangential surface stress is the Marangoni
effect (Behroozi et al. 2007), in which the advection of the surfactant monolayer by
the passing wave results in gradients in the surfactant density field, inducing surface
tension gradients and vorticity in the bulk fluid flow. Thus, beyond quantifying the
damping effect of surfactants on gravity–capillary waves, it is important also to
understand the distribution of surfactant on the surface of the fluid. In this paper,
we combine two experimental techniques to measure both the surface height and
surfactant density fields. Using a physically motivated ansatz, we quantify both fields
and measure parameters such as the complex wavenumber and phase. This provides
a spatiotemporal description of the surfactant accumulation within the wave pattern.

Surface waves can be generated and sustained in a variety of ways, depending on
how energy is injected into the fluid system. A vertically vibrated fluid will generate
both travelling meniscus waves, excited by the contact line at the container wall,
and standing Faraday waves, first observed by Faraday (1831). When the driving
acceleration a(t)= a0 sin(ωt) is weak, only meniscus waves perturb the fluid surface.
However, when a0 is increased beyond a critical acceleration amplitude ac, so that
the injection of energy exceeds the dissipation due to the bulk viscosity, the meniscus
wave becomes unstable to Faraday waves, which grow to a finite amplitude (Benjamin
& Ursell 1954; Chen & Viñals 1999). The parameter ac depends on the driving
frequency ω, the container geometry, contact line dynamics and fluid properties
(Benjamin & Scott 1979; Douady 1990; Edwards & Fauve 1994; Bechhoefer et al.
1995; Chen & Viñals 1999). The emergent Faraday waves can be either harmonic
(frequency ω) or subharmonic (frequency ω/2), while the meniscus waves are always
harmonic.

Recently, there have been advances in our understanding of the relationship between
the surface height field h(r, t) of meniscus waves and its interaction with surfactant
molecules adsorbed onto the surface, described by the density field Γ (r, t). The theory
of surfactant-laden meniscus waves in a cylindrical geometry, developed by Bock
(1991), Saylor, Szeri & Foulks (2000) and Picard & Davoust (2006), proceeds from
the treatment of two-dimensional travelling gravity–capillary waves in a Cartesian
geometry (Lucassen-Reynders & Lucassen 1970). In this theory, the fluid motion in
the incompressible bulk is modelled with the linearized Navier–Stokes equations, and
the vertical and horizontal displacements of the surface satisfy the surface stress and
kinematic boundary conditions. Bock (1991) showed that, for a fluid of equilibrium
height h0, the deviation in the surface height field 1h(r, t)= h(r, t)− h0 for inward-
and outward-travelling cylindrical gravity–capillary waves follow Hankel modes of
the first and second kinds. Recognizing that meniscus waves are a superposition
of inward- and outward-travelling waves, Saylor et al. (2000) found that meniscus
waves follow a J0 Bessel mode. Subsequently, Picard & Davoust (2006) derived an
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expression for the deviation of the surfactant density field from an equilibrium density
Γ0. The quantity 1Γ (r, t) = Γ (r, t) − Γ0 also follows a J0 Bessel mode, with the
same wavenumber and damping factor as the surface height field. Because the motion
of a fluid surface element is affected by gradients in the interfacial surface tension
σ(Γ ), the magnitude of the surface compression modulus ε = Γ0dσ/dΓ controls the
phase shift between the 1h and 1Γ fields (Lucassen-Reynders & Lucassen 1970).

For Faraday waves, Kumar & Matar (2002, 2004) used a linear stability analysis
to determine the wave’s critical acceleration and wavelength, and predicted that
the Faraday wave emerges with a spatial displacement (phase shift) between the
fields 1h and 1Γ . Inspired by reports (Douady, Fauve & Thual 1989) of a rotating
Faraday wave, Martín & Vega (2006) conjectured that the rotation was induced by
the presence of a contaminant and showed that the drift can be generated when the
reflection symmetry of the streaming flow breaks. Ubal, Giavedoni & Saita (2005)
executed numerical simulations of the gravity-modulated Navier–Stokes equations and
predicted that neither 1h nor 1Γ evolve sinusoidally in time. They found that 1h
lags behind 1Γ , characterized as a temporal phase shift between the two fields.

Many experiments with surfactant-laden gravity–capillary waves have focused on
quantifying energy dissipation through either direct or indirect measurements of the
surface height field alone (Case & Parkinson 1957; Davies & Vose 1965; Jiang,
Chiew & Valentini 1993; Henderson & Miles 1994; Henderson 1998; Saylor et al.
2000; Behroozi et al. 2007), and these works have demonstrated that the damping
rate does not depend on whether the gravity–capillary waves are either standing or
travelling. Despite this progress, a quantitative understanding of the spatiotemporal
dynamics of Γ (r, t) remains elusive. Previous measurements of Γ have utilized
surface potential measurements in a small region near an electric probe (Lange &
Hühnerfuss 1984; Hühnerfuss, Lange & Walter 1985; Lange & Hühnerfuss 1986).
These studies report a temporal phase shift between 1Γ and 1h, with the caveat
that it is necessary to account for both the response time of the probes and the finite
time for the wave to pass from the surface potential probe to the wave height probe
(Lucassen-Reynders 1987). In this paper, we present novel methods for measuring the
spatial and temporal dynamics of 1Γ and 1h, using stroboscopic imaging to avoid
this complication. These methods allow us to quantify the accumulation of surfactant
relative to the crests/troughs of the surface waves. In addition, we test the extent to
which the spatiotemporal dynamics can be described by a superposition of solutions
for the meniscus and Faraday waves.

Our experimental apparatus, shown schematically in figure 1 and described in
detail in § 2, consists of a shallow cylindrical container holding a thin layer of
water covered with a monolayer of fluorescently tagged lipids. We drive the system
with vertical oscillations just above onset for the Faraday instability and make
stroboscopic measurements of both the surface height field h(r, t) and the surfactant
density field Γ (r, t). To obtain h, we illuminate the fluid with a target pattern, and
use a combination of ray tracing and nonlinear fitting to invert the resulting moiré
image. For Γ , we phase-average the fluorescence intensity from the tagged molecules
using images acquired stroboscopically over many cycles of the driving oscillation,
and convert these to quantitative measurements of the surfactant density field. A
key advantage of these techniques is that they are non-invasive. Additionally, this
and similar optical techniques (Vogel et al. 2001; Fallest et al. 2010; Strickland et al.
2014; Swanson et al. 2014) for measuring Γ depend upon the mean distance between
the fluorophores and therefore are not affected by the dynamics of either molecular
rearrangement or domain formation/relaxation.
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White light

LED

Camera

Silicon wafer

FIGURE 1. (Colour online) Experimental apparatus. The container (black) is connected
by low-friction air bushings to an electromagnetic shaker, and filled with a thin layer of
water onto which a monolayer of NBD-PC surfactant is deposited. The shaker vibrates
the container vertically with acceleration a(t)= a0 sinωt, generating meniscus and Faraday
waves. The fluorescence imaging system involves a ring of blue LEDs around the outer
edge that excites the fluorophore on the lipids; digital images of the fluorescence emission
are collected through an optical notch filter. A silicon wafer sits flush with the bottom
surface of the container, and reflects the excess light from the LEDs away from the
camera. The moiré imaging system consists of a patterned light source shining downwards
on the fluid surface, and the camera that records the distorted reflection of the pattern.

In § 3, we show that our data are well approximated by a linear superposition of a
standing Faraday wave mode and a travelling meniscus wave mode. We decompose
the data into these two separate components in order to examine the spatiotemporal
dynamics of each. We determine that the surfactant accumulates on the leading edge
of the meniscus waves and in the troughs of the Faraday waves. The meniscus
waves are represented by J0 Bessel functions. The fields 1h and 1Γ have the same
wavenumber within experimental error, but the damping factors for the two fields do
not agree. Since the temporal phase shift between the two fields is measured to be as
large as 2 rad, in excess of the theoretical maximum of π/2 rad (Lucassen-Reynders
& Lucassen 1970), we conjecture that longitudinal waves (Lucassen 1968b) may also
be present. The Faraday waves are represented by Jn Bessel functions. The fields
1h and 1Γ have the same symmetry number n and the same wavenumber within
experimental error. We observe that the whole Faraday wave pattern rotates around
the centre of the pattern in the same direction as an observed spatial phase shift
between 1h and 1Γ fields. Both fields evolve sinusoidally and are temporally phase
shifted by roughly 2.4 rad.

In § 4, we discuss our observations about surfactant-covered meniscus and Faraday
waves in the context of their respective theoretical frameworks. We also consider the
possible presence of resonantly excited longitudinal waves in our system, which could
account for the anomalously large temporal phase shifts and the disagreement in the
damping factors. We highlight the suitability of using measurements of 1Γ and the
temporal phase shift between 1h and 1Γ as a way to probe the interfacial rheology.
Finally, we contrast the dynamics of these molecular monolayers with the dynamics
of a monolayer of millimetric sized particles (Sanlı, Lohse & van der Meer 2014).
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2. Experiment
We excite travelling meniscus waves and standing Faraday waves on a surfactant-

covered fluid layer by subjecting the system to a vertical sinusoidal oscillation,
shown schematically in figure 1. A mechanical driving system provides the vertical
acceleration, and two quasi-independent imaging systems measure the response of
both the surfactant and the fluid surface. The fluorescence imaging (FI) system
directly measures the surfactant density field Γ (r, t) (details provided in § 2.2), and
the moiré imaging (MI) system indirectly measures the surface height field (§ 2.3).
Finally, we use a physically motivated ansatz (§ 2.4) to support the ray tracing and
image analysis in order to convert the MI data to a surface height field h(r, t) and to
quantify properties of the deviations of the surface height field 1h(r, t)= h(r, t)− h0
and surfactant density field 1Γ (r, t)= Γ (r, t)− Γ0.

We perform all experiments just above the onset of the Faraday instability in order
to excite a stable (non-chaotic) surface mode. To reach this regime, we quasi-statically
increase the driving acceleration in steps of 1.5 × 10−3 g until the Faraday wave
pattern is just identifiable in the moiré images. Each quasi-static step during this
preparation stage lasts for 90 s, during which the driving acceleration is held constant.
In the data-collection stage, the amplitude of the voltage signal for the electromagnetic
shaker is held constant while we alternately collect MI and FI data. Although we
collect data just above the Faraday wave onset, we nonetheless observe that the entire
pattern rotates on the order of 10◦ min−1. Similar rotations have been observed in
other experiments, with the rotation axis slightly displaced from the centre of the
container (Gollub & Meyer 1983; Douady et al. 1989). During image analysis, we
remove the rotation by rotating images back to a common reference.

To increase the signal-to-noise ratio, all FI is performed stroboscopically to
phase-average over the low-intensity signal. To measure subperiod dynamics, we
set the exposure time for each image to be 1/8th of the subharmonic Faraday wave
oscillation period (see figure 2 for a description). We then average 700 images taken
at the same phase to obtain a set of eight composite images. By adding/subtracting
pairs of these eight images, we can visualize any periodic pattern in the surfactant
distribution that is 1×, 1/2× or 1/4× the Faraday wave period. Finally, each of the
eight phases are interpreted as surfactant concentration through a linear calibration.
Through these means, we are able to probe average dynamics on time scales faster
than a single oscillation. Obtaining this fluorescence composite data takes 14 min
in total, during which time the Faraday wave rotates through roughly 140◦. We
take a series of 32 moiré images during each minute of the data collection both
to account for the rotation and to measure the surface height field. The additional
use of an ansatz (§ 2.4) to fit the fluorescence composite data allows us to further
characterize the observed fields via their amplitudes, wavenumbers, damping factors,
phase shifts, etc.

2.1. Apparatus and materials
In order to produce stable Faraday waves, we drive the system with a constant
sinusoidal acceleration just above the onset acceleration. We use a PM50A MB
Dynamics shaker (peak force 220 N) mounted on a vibration isolation table. The
driving acceleration is transferred from the shaker to the container by two parallel
shafts. Each shaft is guided by a low-friction air bushing, and the parallel placement
of the two bushings suppresses rotational motion. The mounting bar for the container
contains two two-axis ADXL203 accelerometers, sampled at a rate of 20 kHz with
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FIGURE 2. Stroboscopic imaging allows for the collection and phase-averaging of
low-intensity fluorescence images over many cycles. During each second of the experiment,
the container oscillates 20 times with an acceleration a(t) (black curve). During that
second, the camera is triggered at four different phases of the oscillation (eight different
phases of the Faraday wave oscillation). The eight distinct phases (represented as i= 1 to
i= 8) each have an exposure time of 1/8th of the Faraday wave period, represented by
the width of the grey bars. The time from the end of one exposure to the beginning of
the next exposure is one whole Faraday wave period (100 ms), so that we sequentially
sample each of the eight phases cyclically. The same stroboscopic pattern was used for
both experiments, and both the FI and MI data.

a noise threshold of approximately 10−3 g. The power density spectra of the driving
acceleration shows the 20 Hz driving to be greater than the higher harmonics by a
factor of at least 10−3.

To collect data near onset, we separate each experiment into two stages, a
preparation stage wherein the amplitude of the sinusoidal acceleration is increased
in small steps of 1.5× 10−3 g every 90 s, and a data-collection stage with constant
driving. In the preparation stage, we use a proportional control to monitor the
amplitude of the acceleration to within 5 × 10−4 g. In the data-collection stage, we
turn off the proportional control and keep the shaker driving voltage constant. In
both experiments, we observed a small drift in the amplitude of the acceleration of
roughly 5× 10−3 g during the data-collection stage.

The choice of materials in our experiments is guided by two important considera-
tions: the sensitivity of surface experiments to preparation and handling, and the
requirement of a low fluorescence background. The black-anodized container is made
of aluminium machined into a cylindrical well of radius 14.6 cm and depth 0.52 cm.
A 200 mm silicon wafer is embedded into the base of the well so that the wafer’s
top surface is flush with the bottom of the well. The silicon wafer provides both a
reproducible substrate and excellent reflectivity (Strickland et al. 2014).

Prior to each experiment, we clean the container with detergent and perform a
final rinse with 18.2 M� water before drying with dry nitrogen gas. The silicon
wafer is cleaned for 5 min in an oxygen plasma environment, and all glassware is
cleaned by soaking for several hours in a 2 % Contrad 70 solution. These materials
are rinsed with 18.2 M� water and dried with dry nitrogen gas immediately before
the experiment. To initialize each experiment, we fill the container to a depth of
h0 = 0.37 ± 0.02 cm (below the brim of the container) with 18.2 M� water. Using
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a micropipette, we deposit a solution of chloroform and NBD-PC (1-palmitoyl-2-
{12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl}-sn-glycero-3-phosphocholine
from Avanti Polar Lipids) onto the clean water surface. The concentration of
NBD-PC in solution is 1 mg ml−1, and, owing to the low interfacial tension between
chloroform and water, the droplets spread over the fluid surface.

In this paper, we report on two experimental runs: experiment 1 with Γ0 =
0.3 µg cm−2, and experiment 2 with Γ0 = 0.2 µg cm−2. Both runs are below the
critical monolayer concentration for NBD-PC on water, which is Γc = 0.35 µg cm−2

(Tsukanova, Grainger & Salesse 2002). The mean density Γ0 is calculated from the
deposited volume of chloroform solution and the known dimensions of the container.
To reduce disturbance from external air currents and dust, the entire apparatus is
enclosed in a plastic tent, and a combination hygro-thermometer is used to observe
variations in the temperature and humidity within the tent. For experiment 1, the
temperature and humidity were within the range 23.9 ± 0.4 ◦C and 18.5 ± 0.5 %,
respectively; while for experiment 2, they were 24.6± 0.4 ◦C and 18.0± 0.5 %.

2.2. Fluorescence imaging
The FI technique is based on quantifying spatiotemporal deviations of the surfactant
density field (1Γ ) from the mean density by observing the fluorescence intensity in
digital images (Fallest et al. 2010; Strickland et al. 2014; Swanson et al. 2014). The
NBD-PC surfactant molecule contains a fluorophore with an excitation peak at 464 nm
and an emission peak at 531 nm. Eight blue light-emitting diodes (LEDs) (1.5 W,
467 nm, from Visual Communications Company LLC) are mounted around the edge
of the container to provide uniform excitation and illuminate the fluid surface at a
low angle. The silicon wafer substrate reflects unabsorbed light away from the imaging
system, thus minimizing the background noise. An Andor Luca-R camera fitted with a
Newport 530± 10 nm bandpass filter is positioned above the centre of the experiment
and takes images of surfactant fluorescence within a field of view of width 15.4 cm.
Because the camera images its own reflection near the centre of the system, we report
measurements for an annular region of the fluid surface.

We calibrate the fluorescence intensity by performing experiments on a flat fluid
surface covered with a known quantity of surfactant. In order to ensure a uniform
density on the surface, we deposit the chloroform-dispersed surfactant onto the clean
surface of water, wait 60 s for the chloroform to evaporate, and then drive the system
at 20 Hz and 0.2 g (above the Faraday onset) for 60 s. This promotes redistribution
of the surfactant, so that, after turning off the shaker and waiting for the fluid to
settle back to its flat state, the surfactant is uniformly distributed (verified by a visual
inspection of the calibration images). In this state, we collect two types of data: 700
images with the same exposure time as used for the FI composite images, and a
final image with a single 2 s exposure time to provide a consistency check on the
trend. The mean and standard error of the fluorescence intensity as a function of Γ ,
reported in figure 3, are calculated from a composite of 700 images, as is done for
each phase-averaged stroboscopically acquired image. We observe that the calibration
is linear for Γ > 0.1 µg cm−2. This corresponds to a regime in which the equation
of state relating surfactant density and surface tension is also linear (Tsukanova et al.
2002).

To obtain the FI composite images, we average 700 individual stroboscopically
acquired images taken at the same temporal phase (see figure 2), each one corrected
for the accumulated pattern rotation. To measure 1Γ , we first subtract a background
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FIGURE 3. Calibration of surfactant fluorescence intensity as a function of surfactant
density. The stroboscopic exposure data were obtained with the same exposure time,
number of images and gain settings as used for the FI technique. The long-exposure
data were obtained with a single 2 s exposure and no gain, to confirm the trend. The
markers show the mean intensity of the pixels within the field of view, while the error bars
illustrate the standard error of the pixels for the stroboscopic exposure data. The linear fit,
shown as a dashed line, is used in the range Γ > 0.1 µg cm−2 of the experiments.

image (obtained by averaging all eight phases) and then use the linear fit shown in
figure 3 to convert the light intensity values to local surfactant density values at each
pixel. A sample image is shown in figure 4(a), with the brighter areas corresponding
to higher surfactant density.

The effects of surface curvature on the FI calibration can be separated into two
parts: an increase in fluid surface area per pixel, and a change in fluorescence
intensity due to the curvature itself. The former is negligible since surface tilts
are so small (the slope is O(10−3)), and the resulting increase in surface area is
a second-order effect. Therefore, neither LED excitation nor fluorophore emission
will be affected. It is possible that there are nonlinear optical effects due to the
molecular conformation of the surfactants in response to the curvature, for instance
by differences in mean fluorophore separation for surfaces of positive or negative
curvature. Through fluorescence resonance energy transfer (Shrive et al. 1995), such
conformational changes could increase/decrease the emitted light intensity depending
on the sign of the curvature. We observe no evidence for such a bias in the composite
data.

2.3. Moiré imaging
In order to measure the surface height field, we use an MI technique in which
a reflected pattern of dark/light stripes reveals the spatial structure of the reflecting
surface. For a known illumination pattern and known surface height field, a ray-tracing
algorithm can produce a moiré pseudo-image, which should correspond to the
observed image. To invert the moiré image, we assume a physically motivated
functional form for the surface height field (see § 2.4) and search for the optimal
parameters in that ansatz that best reproduce all eight observed images.

The MI system consists of an Andor Luca-R camera which images the surface
height field through a hole in the mask that creates the patterned light source
(see figure 1). The light source pattern is a transparent film printed with a set of
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(a)

(b) (d )

(e) (g)(c)

( f )
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FIGURE 4. (Colour online) Sample FI composite image. (a) Image showing 1Γ from the
i= 2 stroboscopic phase of experiment 1, smoothed by a Gaussian filter of σ = 0.04 cm.
(b) The corresponding 1ΓT , the best fit to (2.2). (c) The meniscus wave (harmonic)
component and (e) the Faraday wave (subharmonic) component of the same 1Γ as shown
in (a). These components are isolated by adding and subtracting (and dividing by 2) the
FI composite images from the i = 2 and i = 6 stroboscopic phases. (d) The meniscus
wave (harmonic) component and (f ) the Faraday wave (subharmonic) component of the
same 1ΓT as shown in (b). (g) This image is generated by subtracting (d) from (c). The
resulting pattern (smoothed with a Gaussian filter of σ = 0.09 cm) is a higher-order mode,
which is not accounted for in the ansatz (2.2). This mode has 24-fold symmetry and
oscillates harmonically with peak-to-mean variation of 0.03 Γc.

concentric black rings of width 1.27 cm, chosen to be close to the wavelengths under
consideration. This film, as well as a green gel filter (Lee Filters 736 Twickenham
Green, with a peak transmission wavelength of 525±50 nm), are sandwiched between
two panes of diffusing ground glass. Two 500 W incandescent bulbs, positioned above
and to the sides of the pattern (outside of the plastic tent), illuminate the fluid surface
through this target pattern. Owing to the angle of the lights and the gel filters (see
schematic in figure 1), most of the light intensity does not reach the fluid surface.
We estimate that the resulting temperature rise inside the tent is approximately 1 ◦C.
Even though the camera is focused on the fluid surface in order to optimize the
low-intensity fluorescence measurements, the short focal length (35 mm) relative to
the distance to the focal plane (67.8 cm) allows the use of a ray-tracing protocol to
deduce the surface height profile. Sample images of the patterned light source, MI
images and best-fitting ray trace are shown in figure 5. To reduce the number of rays
that trace back to either the camera or outside the patterned light source, we use the
same annular field of view considered for the FI images.

Although the axes of the camera, pattern and container are approximately aligned,
we find it necessary to calculate their relative positions and orientations in order to
achieve good ray-tracing results. To obtain the camera position and orientation, we
image a set of metal posts of known height and spacing; to measure the centre of the
target pattern, we image the reflection off of the flat fluid surface. Using these data,
we calculate the spatial resolution of the camera to be 0.0153 cm pixel−1. To obtain
the pixel coordinates of the system origin to subpixel resolution, we find the centre
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(a)

(b) (d )

(e)(c)

( f )

FIGURE 5. Sample MI images. (a) Contrast-enhanced image and (b) binarization of the
target pattern reflected off a flat fluid surface. (c) Contrast-enhanced moiré image and
(d) binarization of the target pattern reflected off the fluid surface at phase i = 2 for
experiment 1. (e) Ray-traced pseudo-image and (f ) binarization of the best-fitting h(r) for
image (c) using parameters given in table 1.

of the meniscus wave pattern in composite data which have not been corrected for
the Faraday wave rotation. The pattern in the rotation-uncorrected composite data is
nearly identical to that in figure 4(c).

To find the best-fitting parameters of the ansatz for h(r, t), we maximize
the cross-correlation between the MI images and ray-traced pseudo-images. The
ray-tracing protocol assumes that each ray corresponds to a pixel and all the rays
start at a single point (the location of the camera). The rays are assumed to reflect
off the fluid surface at the z= 0 plane, a justifiable assumption since the height of the
wave peaks (O(10 µm)) is much less than the distance between neighbouring peaks
(O(1 cm)). When waves are present, the normal to the surface changes orientation
and the reflected ray responds accordingly. Each pixel of the ray-traced pseudo-images
is assigned the intensity of the moiré pattern at the pixel nearest the intersection of
the ray and the plane of the pattern. For the few rays that trace back outside of the
patterned light source, we assign the maximum intensity recordable by the camera.
We account for motion blur due to the oscillation of the wave by averaging three
ray-tracing results for each of the eight MI images.

2.4. Surface height field and surfactant density field ansatz
In order to compare 1h and 1Γ , we use a physically motivated ansatz that allows
us to measure amplitudes, wavenumbers and phases for the waves. In addition, we
assume that 1h and 1Γ are a linear superposition of the Faraday and the meniscus
waves. Our results will indicate that this assumption accounts for the most significant
signals in the data. To distinguish the ansatz from the measured MI and FI data, we
use the subscript T for the ansatz quantities.

Meniscus waves take the form of a superposition of inward- and outward-travelling
Hankel functions (Saylor et al. 2000). The inward-propagating meniscus wave takes
the form Re[eiωtH(1)

0 (kr)], where the complex-valued wavenumber k= kM+ iα measures
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both the spatial wavenumber kM and the damping factor α. Once at the centre, the
waves continue to propagate outwards according to the form Re[eiωtH(2)

0 (kr)]. The
resulting superposition is Re[eiωtJ0(kr)].

Sinusoidally driven Faraday waves on an uncontaminated surface of an infinitely
deep inviscid fluid (Benjamin & Ursell 1954) or finite-depth low-viscosity fluid
(Edwards & Fauve 1994) take the form of a Bessel function Jn(kFr) cos(nθ) cos( 1

2ωt),
where ω is the driving frequency and the spatial wavenumber kF is purely real. We
allow for the Bessel mode to be displaced from the centre of the container, to account
for the observed rotational instability, and use cylindrical coordinates measured with
respect to the pattern centre rather than the axis of the experiment.

Assuming a linear superposition of the meniscus and Faraday waves, our ansatz for
1h is given by

1hT(r, θ, t) = h(r, θ, t)− h0

= 1hMT(r, t)+1hFT(r′, θ ′, t)
= AHRe[ei(ωt+φHM)J0((kHM + iαH)r)]
+BH cos( 1

2ωt+ φHF)Jn(kHFr′) cos(nθ ′ + δH), (2.1)

where the subscripts M and F indicate whether the parameter is associated with the
meniscus wave or the Faraday wave, respectively. The primed coordinates are relative
to the centre of the Faraday wave instead of the axis of the system.

Miles (1967) predicts that 1ΓT of a gravity–capillary wave is proportional to the
Laplacian of the velocity potential, which is in turn proportional to 1hT (Lamb 1945).
Therefore, our 1Γ ansatz takes the same form as (2.1):

1ΓT(r, θ, t) = Γ (r, θ, t)− Γ0

= 1ΓMT(r, t)+1ΓFT(r′, θ ′, t)
= AΓRe[ei(ωt+φΓM)J0((kΓM + iαΓ )r)]
+BΓ cos( 1

2ωt+ φΓ F)Jn(kΓ Fr′) cos(nθ ′ + δΓ ). (2.2)

Note that 1ΓFT can be separated into independent spatial and temporal factors. In
§ 3, we will test whether the temporal dynamics of 1ΓF follow the assumed cos( 1

2ωt)
behaviour.

These Bessel modes for 1h and 1Γ are solutions to the linearized Navier–Stokes
equations (Benjamin & Ursell 1954; Miles 1967; Lucassen-Reynders & Lucassen
1970). In the presence of nonlinear effects such as the Benjamin–Feir instability, these
solutions are not exact; however, for small-amplitude waves, the nonlinearity is small.
In our experiments, Ak ≈ 0.01–0.1, which means that the O((Ak)3) nonlinearity is a
very small effect. Furthermore, the damping effect of the surfactant both suppresses
the Benjamin–Feir instability and affects the relative phase (Segur et al. 2005;
Henderson, Segur & Carter 2010; Kharif & Touboul 2010; Touboul & Kharif 2010;
Akers 2012; Henderson & Segur 2013).

The nine fitting parameters in (2.1) (and the corresponding nine in (2.2)) each
have a physical interpretation. To distinguish the parameters of 1hT and 1ΓT , we
denote their parameters with the subscript H and Γ , respectively. The amplitudes
of the meniscus and Faraday waves are given by AH and BH , respectively. The
spatial wavenumbers of the pattern are: kHM and kHF (real, radial for both waves), α
(imaginary, radial for meniscus wave) and n (real, azimuthal for Faraday wave). The
value of α corresponds to the energy damping rate of the meniscus wave. Only the
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TABLE 1. Summary of experimental parameters and best-fitting parameters (2.1) and (2.2)
for the two experiments. The uncertainty of all parameter values is in the last reported
digit. The centre of the Faraday wave (axis of pattern rotation) is within ±3.5 mm of the
container axis.

relative phase between 1Γ and 1h is independent; we report temporal phase shifts
for both the meniscus wave (φHM − φΓM) and the Faraday wave (φHF − φΓ F). Finally,
there is also a spatial phase shift for the Faraday waves (δH − δΓ ).

Owing to the high dimensionality of the parameter space, finding a best fit to this
ansatz takes place in several stages, described below. The full set of fitting parameters
for both 1hT and 1ΓT are provided in table 1, and discussed in detail in § 3.

First, we decompose the FI images into a harmonic component (to fit the meniscus
wave terms) and a subharmonic component (Faraday wave terms) (see figure 4(c,e)).
This can be done by simply adding or subtracting images that are precisely one
half Faraday wave period apart (e.g. images taken at phase i= 1 added to/subtracted
from images taken at i = 5). We use a Levenberg–Marquardt algorithm to fit the
resulting meniscus series and Faraday series to the corresponding terms in (2.2). A
sample comparison of the FI composite data and the best-fitting 1ΓT are shown in
figure 4(b,d,f ).

Solving the inverse problem using the MI images is more challenging, and starts
from an initial 1hT chosen using the fluorescence-determined wavenumbers (with the
missing parameters chosen by hand). Using MATLAB fminsearch, we simultaneously
maximize the cross-correlation of all eight MI images against their corresponding ray-
traced pseudo-images. To minimize the effects of pattern noise on the cross-correlation,
we binarize and then Gaussian-blur both the MI image and the ray-traced pseudo-
image before performing the cross-correlation. The searching algorithm proceeds by
varying the parameters in (2.1) until a best fit is found. A sample image is shown in
figure 5, illustrating that we are able to fit even small features of the surface waves.
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FIGURE 6. (Colour online) Visualization of 1hT and 1Γ for experiment 1, within the
annular field of view. The best fit using the h ansatz (2.1) (mesh surface) and the FI
composite data (colouration) for the i= 2 stroboscopic phase. The peak-to-mean variations
in 1hT and 1ΓT are ±60 µm and ±0.15 Γc, respectively. The 1Γ field is smoothed by
a Gaussian filter of σ = 0.04 cm to reduce noise. In figures 7 and 8, these same data are
decomposed into meniscus and Faraday wave components. A video version of this plot is
available in the online supplementary movie.

3. Results

We present direct measurements of the spatiotemporal dynamics of a surfactant
monolayer on gravity–capillary waves. In figures 4 and 5, we showed that our
measurements of deviations of the surface height field 1h and surfactant density
field 1Γ are well approximated by a linear superposition of a Faraday wave and
a meniscus wave, each represented by a Bessel function. Equations (2.1) and (2.2),
together with the parameters provided by fits to the data (see table 1), allow us to
examine the spatiotemporal dynamics in detail.

In figures 6–8, we present three-dimensional visualizations of the complete 1h and
1Γ fields (a snapshot at a single phase), as well as the same data split into its
meniscus and Faraday wave components. In each case, the best-fitting 1hT is shown
as a surface mesh, with the colouring representing the measured 1Γ : bright green
regions are rich in surfactant, while dark green are depleted. Movie versions of these
figures, showing all eight phases, can be found in the online supplementary material
available at http://dx.doi.org/10.1017/jfm.2015.352. Below, we compare observations
about both the travelling meniscus waves and the standing Faraday waves, along with
the weaker higher-order mode observed in the FI composite data.

For the meniscus waves, we observe that the surfactant accumulates on the leading
edge of the travelling wave, as shown in figure 7(c), where the dashed line (1ΓMT)
leads the solid line (1hMT). The fields 1h and 1Γ both exhibit a Bessel J0 mode,
and the real parts of the associated wavenumbers kHM and kΓM agree, as expected.
We also observe the expected sinusoidal temporal dynamics predicted by Saylor et al.
(2000) and Picard & Davoust (2006). The maximum peak-to-mean variations in 1hMT ,
measured within our annular field of view, are 5 and 8 µm for experiments 1 and
2, respectively. The corresponding values for 1ΓMT are 0.05 and 0.02 Γc. These
variations in 1ΓMT correspond to variations in the surface tension of 0.5 and
1.5 mN m−1, respectively (Tsukanova et al. 2002). The location of the surfactant
relative to the fluid wave corresponds to a temporal phase shift between 1hMT and
1ΓMT , shown in figure 7(c).
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FIGURE 7. (Colour online) Meniscus wave component of 1hT and 1Γ for experiment 1.
(a) The best-fitting 1hMT ansatz from (2.1) (mesh surface) and the harmonic component
of 1Γ (colouration) for the i = 2 stroboscopic phase. (b) Radial slice of both fields
along θ = 2.83 rad, the orange strip shown in (a), at phase i = 2. The solid line is the
best-fitting height field 1hMT(r), and the surfactant density field is shown both as the
data 1ΓM (orange points) and as the ansatz 1ΓMT (dashed line). The lines are the Bessel
modes given in (2.1) and (2.2). (c) The temporal dynamics of 1hMT (solid line) and 1ΓMT
(dashed line) at the location r = 4.79 cm and θ = 2.83 rad, marked by the magenta dot
in (a). The lines are the sinusoids given in (2.1) and (2.2). In all cases, the 1Γ fields
are smoothed by a Gaussian filter of σ = 0.04 cm to reduce noise. A video version of
this plot is available in the online supplementary movie.

For the Faraday waves, we observe that the surfactant accumulates in the troughs
of the standing wave, as shown in figure 8(d), where the dashed line (1ΓFT) leads
the solid line (1hFT). The fields 1h and 1Γ both exhibit a Bessel Jn mode, and
the wavenumbers kHF and kΓ F agree, as expected (Miles 1967). We note that the
wavenumber of the Faraday wave is roughly double that for the meniscus wave,
and the values of the wavenumbers can be captured by the finite-depth Kelvin
dispersion relation, ω2 = (gk + σk3/ρ) tanh(h0k), when the accepted values for
the acceleration due to gravity g and density of water ρ are used and the same
surface tension is left as a fitting parameter. The best-fitting surface tensions for
experiments 1 and 2 are 33.3 and 35.6 mN m−1, respectively. The fields 1h and
1Γ both exhibit a sinusoidal azimuthal behaviour with the same symmetry n as
well as a sinusoidal temporal dynamics at half the driving frequency. The maximum
peak-to-mean variations in 1hFT , measured within our annular field of view, are
62 and 64 µm for experiments 1 and 2, respectively. The corresponding values for
1ΓFT are 0.13 and 0.06 Γc. These variations in 1ΓFT correspond to variations in the
surface tension of 1.5 and 3.5 mN m−1, respectively (Tsukanova et al. 2002). Similar
magnitudes in the variations of the surface tension have been observed for 1 Hz
gravity waves contaminated with various molecular monolayers (Lange & Hühnerfuss
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FIGURE 8. (Colour online) Faraday wave component of 1hT and 1Γ for experiment 1.
(a) The best-fitting hFT ansatz from (2.1) (mesh surface) and the subharmonic component
of 1Γ (colouration) for the i = 2 stroboscopic phase. (b) Radial slice of both fields
along θc = 2.83 rad, the orange strip shown in (a), at phase i= 2. The solid line is the
best-fitting height field 1hFT(r, θc), and the surfactant density field is shown both as the
data 1ΓF (orange points) and as the ansatz 1ΓFT (dashed line). The lines are the Bessel
modes given in (2.1) and (2.2). (c) Azimuthal slice of both fields along rc = 4.26 cm,
the cyan strip shown in (a), at phase i = 2. Here, the surfactant density field data 1ΓF
are represented with cyan points. The lines are the sinusoids given in (2.1) and (2.2)
and plotted within a restricted range of the azimuthal dimension [−2π/n, 2π/n] centred
about θc. (d) The temporal dynamics of 1hFT (solid line) and 1ΓFT (dashed line) at the
location rc cm and θc rad, marked by the magenta dot in (a). The lines are the sinusoids
given in (2.1) and (2.2). The magenta circles in (d) plot the behaviour of T (t) given in
(3.1), with error bars much smaller than the symbol size. The 1Γ fields in (a–c) are
smoothed by a Gaussian filter of σ = 0.04 cm to reduce noise. A video version of this
plot is available in the online supplementary movie.

1984). The location of the surfactant relative to the fluid wave corresponds to a
temporal phase shift between 1hFT and 1ΓFT , shown in figure 8(d). We also observe
a small but non-negligible spatial phase shift (δH − δΓ ) between 1ΓFT and 1hFT
equal to 0.33 and 0.76 rad for experiments 1 and 2, respectively. This spatial phase
shift is in the same direction as the rotation of the Faraday wave pattern in both
experiments.

We have also considered a stricter test of the temporal dynamics for 1Γ of the
Faraday waves to determine whether they evolve non-sinusoidally, as indicated by
the numerical solutions of Ubal et al. (2005). As given in (2.2), the ansatz for 1ΓF
can be factored into ST(r′, θ ′)TT(t), where the spatial factor is given by ST(r′, θ ′)≡
BΓ Jn(kΓ Fr′) cos(nθ ′ + δΓ ) and the temporal factor by TT(t) ≡ cos( 1

2ωt + φΓ F). The
subscript T denotes that these quantities are fits to the ansatz, rather than the data.
Since the spatial factor is well characterized by the ansatz (S = ST), as shown in
figures 4(e,f ) and 8(b,c), we can isolate the temporal dynamics of 1ΓF for the data
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by considering the quantity

T (t)=
〈
1ΓF(r′, θ ′, t)
ST(r′, θ ′)

〉
, (3.1)

where the angle brackets denote an average over all space (approximately 5 × 105

pixels in total). In performing the average, we exclude pixels where |ST(r′, θ ′)| <
0.006 Γc to avoid the calculation being badly conditioned. As shown in figure 8(d),
the average temporal dynamics T (t) (and therefore the temporal dynamics of 1ΓF) is
well described by a sinusoidal function.

Our ansatz assumes a linear superposition of the meniscus and Faraday waves.
While this ansatz captures most of the total pattern, there is a residual mode in
the FI data (see figure 4(g)) that generates peak-to-mean variations in 1Γ of 0.03
and 0.01 Γc for experiments 1 and 2, respectively. This higher-order mode probably
arises through a nonlinear interaction between the meniscus and Faraday waves such
as those that give rise to the Benjamin–Feir instability (Segur et al. 2005; Henderson
et al. 2010; Kharif & Touboul 2010; Touboul & Kharif 2010; Akers 2012; Henderson
& Segur 2013). Although this mode has a Bessel mode shape like the Faraday waves
(F(r, θ) ∼ Jm(kr) cos(nθ + φ)) with m = 2n (twice the symmetry number of the
fundamental mode), the distance between neighbouring extrema is comparable to that
of the meniscus waves. Additionally, the higher mode is harmonic in time, unlike the
subharmonic Faraday wave.

We observe that the degree of surfactant mobility depends on the type of wave.
By comparing the Γ amplitudes of the associated Faraday versus meniscus Bessel
modes (BΓ /AΓ ), we find a ratio of 2 for experiment 1, and 5 for experiment 2. This
indicates that Faraday waves have a larger effect than meniscus waves. However, if
the Γ amplitudes are rescaled by the associated h amplitudes, then meniscus waves
have proportionally larger effect: the ratio (BΓ /BH)/(AΓ /AH) is 0.21 for experiment 1,
and 0.78 for experiment 2. The cause of these differences is unclear and could be
due to the difference between travelling versus standing waves, to the difference in
oscillation frequency, or to some subtlety of nonlinearity. In contrast, the observed
differences between the two experiments is clear and indicates that material mobility
depends on Γ0.

There are other subtle differences between the two experiments, suggesting an
array of rich dynamics that depend on the mean surfactant concentration. First, the
temporal phase shifts 1φ = φH − φΓ are consistent for the Faraday waves across
both experiments, but differ for the meniscus waves. Furthermore, only 1φM for
experiment 1 is less than π/2 rad, the expected maximum temporal phase shift for
linear gravity–capillary waves (Lucassen-Reynders & Lucassen 1970). Second, the
two damping factors (αH and αΓ , both associated with the travelling meniscus wave)
agree for experiment 1 but not for experiment 2. From the theoretical predictions of
Picard & Davoust (2006), we would expect agreement.

4. Conclusions
We have successfully developed a novel technique for measuring the surface

height h and surfactant density Γ fields for waves propagating on a surfactant-covered
fluid. We observe that the surfactant accumulates on the leading edge of travelling
meniscus waves and the troughs of standing Faraday waves. The deviations of both
the surface height field 1h and surfactant density field 1Γ take characteristic Bessel
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forms for both the meniscus and Faraday waves. For the meniscus waves, both fields
follow a J0 Bessel mode, but are temporally phase shifted from each other. For the
Faraday waves, both fields follow the same Jn Bessel mode, but are both temporally
and spatially phase shifted from each other.

For meniscus waves, Saylor et al. (2000) and Picard & Davoust (2006) have
analytically derived 1h and 1Γ . These two fields are expected to share the same
functional form up to a complex-valued coefficient (F(r, t) = F0J0(kr)eiωt where
k= kM + iα) and therefore are expected to have the same wavenumbers and damping
factors. However, this work does not predict the relationship between the values of
F0 for the two fields, which would be necessary to understand the temporal phase
shifts. Lucassen-Reynders & Lucassen (1970) studied two-dimensional travelling
gravity–capillary waves in a Cartesian geometry, and derived a prediction for the
phase shift between the surface area expansion and 1h. For Γ inversely proportional
to the area of the fluid surface, the temporal phase shift between 1h and 1Γ is
predicted to fall between 0 and π/2 rad depending on the surface compression
modulus. This corresponds to the surfactant accumulating somewhere between the
crests of the waves and the leading edge.

In experiment 2, we observe φHM − φΓM > π/2 rad and αH 6= αΓ , both of which
suggest that we may be exciting longitudinal waves in the system. Longitudinal waves,
like gravity–capillary waves, are a solution to the linearized Navier–Stokes equations
for incompressible fluids. By including the effect of the surfactant through the normal
and tangential stress boundary condition, Lucassen (1968a) derived a dispersion
relation, one branch of which corresponds to gravity–capillary waves, which have
roughly equal parts transverse and tangential to motion of the interface, and the other
branch of which corresponds to longitudinal (i.e. Marangoni) waves, which have
significantly more tangential motion than transverse (Lucassen-Reynders & Lucassen
1970). If our system produced transverse and longitudinal meniscus waves, they
would both be J0 Bessel modes. Our technique for measuring 1Γ would measure a
superposition of both waves and the value of αΓ used in the fitting ansatz would be
increased. Because longitudinal waves do not significantly perturb 1h, the damping
factor for 1h would be unchanged. Consequently, the presence of a longitudinal wave
in the system would look like αΓ > αH , as in our observations. The possibility of
a gravity–capillary wave resonantly exciting a longitudinal wave was first suggested
by Lucassen (1968a) because the maximum in energy dissipation coincides with the
equality of the magnitude of the gravity–capillary and longitudinal wavenumbers.
Recently, Ermakov (2003) proposed a mechanism for this resonant excitation that
would explain the coincidence of damping with the wavenumber equality. Future
experiments that measure 1Γ would be able to test this mechanism.

The discrepancies in the measured values of α highlight the importance of
quantifying the surface dilatational viscosity, dilatational elasticity and surface tension
(collectively, the interfacial rheology). Historically, techniques for measuring the
interfacial rheology have relied on extracting the wavenumber and damping factor
from the surface height field h of a travelling gravity–capillary wave (Miyano et al.
1983; Jiang et al. 1993; Saylor et al. 2000; Behroozi et al. 2007). The experiments
described here provide a way to make a more direct measurement, using the Γ field
in addition to the h field.

For Faraday waves, there is theoretical literature relating the interaction between a
surfactant monolayer and a Faraday wave in a fluid of arbitrary depth (Kumar & Matar
2002, 2004; Ubal et al. 2005; Martín & Vega 2006). Kumar & Matar (2002, 2004)
assumed that, in an infinitely broad fluid, both 1h and 1Γ oscillate sinusoidally
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and with zero temporal phase shift. They also predicted a spatial phase shift between
the two fields. In the experimental data, we observe sinusoidal oscillations, but with
a temporal phase shift of approximately 2.4 rad. However, we confirm the spatial
phase shift (δH − δΓ in table 1). Martín & Vega (2006) attribute rotational drift of
Faraday waves to the generation of a streaming flow, under the assumption that the
two fields have no spatial or temporal phase shift. However, it is also plausible that
our observed rotation of the Faraday waves is caused by the spatial phase shift.
Ubal et al. (2005) studied the motion of 1h and 1Γ through numerical simulations
of the two-dimensional Navier–Stokes equations with physically realistic interfaces
and spatially symmetric boundary conditions in a finite-depth fluid. In agreement
with our experiments, they predicted that 1h and 1Γ have similar spatial patterns,
and that maxima in 1Γ would precede maxima in 1h, an effect characterized by a
temporal phase shift. The prediction of peak-to-mean variations in 1Γ ≈ 0.03–0.13 Γc

is consistent with our observations, although for different parameters from those used
in the experiment. However, their conclusion that the two fields have different
non-sinusoidal time dependence does not agree with our data. Additionally, the use
of spatially symmetric boundary conditions in the numerical simulations excludes the
possibility of predicting the drift of the Faraday wave that we observe. Matar, Kumar
& Craster (2004) considered surfactant-covered Faraday waves on thin fluid films
using lubrication theory. In steady state, they find that 1Γ is out of phase with 1h,
and accumulates in the troughs of the Faraday waves. While our fluid thickness is
too large for this result to apply, our observations are consistent with their findings.

For other nonlinear wave effects, such as the Benjamin–Feir instability, the phase
between 1h and 1Γ is expected to affect the dynamic properties of the propagating
waves (Akers 2012). The experimental techniques we present here could prove
valuable for future studies into these nonlinear effects.

Finally, although we have studied the wave-driven accumulation of a molecular
layer of surface contamination, similar effects are known to be present for other
types of surface contamination. For example, Sanlı et al. (2014) used Faraday waves
to redistribute a monolayer of millimetre-scale polystyrene spheres deposited on the
surface. Depending on the concentration of the particulate layer, the macroscopic
contaminant would accumulate in either the antinodes (peak/trough) or the nodes of
the waves. This behaviour is quite different from what we observe at the molecular
scale, suggesting the presence of a crossover in particle size or surface activity.
Because oceanic contamination ranges in size from the molecular scale to flotsam
and jetsam, more work is needed to develop a complete picture of the dynamics of
contamination on surface waves.
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