Natural Language Engineering (2022), 28, pp. 223-248 CAMBRIDGE

doi:10.1017/S1351324920000455 UNIVERSITY PRESS

ARTICLE

Unsupervised Arabic dialect segmentation for machine
translation

Wael Salloum* and Nizar Habash

AT Research Department, Mendel.ai, San Jose, CA, USA
*Corresponding author. E-mail: wael@ccls.columbia.edu

(Received 12 November 2018; revised 19 May 2020; accepted 22 May 2020; first published online 23 September 2020)

Abstract

Resource-limited and morphologically rich languages pose many challenges to natural language process-
ing tasks. Their highly inflected surface forms inflate the vocabulary size and increase sparsity in an already
scarce data situation. In this article, we present an unsupervised learning approach to vocabulary reduc-
tion through morphological segmentation. We demonstrate its value in the context of machine translation
for dialectal Arabic (DA), the primarily spoken, orthographically unstandardized, morphologically rich
and yet resource poor variants of Standard Arabic. Our approach exploits the existence of monolin-
gual and parallel data. We show comparable performance to state-of-the-art supervised methods for DA
segmentation.

Keywords: Machine translation; Morphology; Arabic dialects; Unsupervised learning

1. Introduction

Resource-limited, morphologically rich languages pose many challenges to natural language pro-
cessing (NLP) tasks. The highly inflected surface forms of these languages inflate the vocabulary
size and increase sparsity in an already scarce data situation. NLP in general, and machine transla-
tion (MT) in particular, can greatly benefit from unsupervised learning approaches to vocabulary
reduction, such as unsupervised morphological segmentation. Dialectal Arabic (DA) is an iconic
representative of such languages: it has limited parallel and task-specific labeled data, and its
large vocabulary is the result of its rich inflectional morphology and unstandardized sponta-
neous orthography. While these dialects have been historically primarily spoken, they are quite
frequently written in social media today. The scarcity of DA parallel and labeled text is more
pronounced when considering the large number of dialects and subdialects, the varying levels
of dialectness and code switching, the diversity of domains and genres, and the timespan of the
collected text. Hence, the need for unsupervised learning solutions to vocabulary reduction that
use a more sustainable and continuously fresh source of training data arises, namely monolin-
gual data. In this work, we utilize huge collections of monolingual Arabic text along with limited
DA-English parallel data to improve the quality of DA-to-English MT.

We propose an unsupervised learning approach to morphological segmentation consisting of
three successive systems. The first system uses word embeddings learned from huge amounts of
monolingual Arabic text to extract and extend a list of possible segmentation rules for each vocab-
ulary word and scores these rules with an expectation maximization (EM) algorithm. The second
system uses the learned segmentation rules in another EM algorithm to label select DA words in
DA-English parallel text with the best segmentation choice based on the English alignments of the

© The Author(s), 2020. Published by Cambridge University Press.

o
https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press @ CrossMark

https://doi.org/10.1017/S1351324920000455
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1351324920000455&domain=pdf
https://doi.org/10.1017/S1351324920000455

224 W. Salloum and N. Habash

word segments. Finally, the third system implements a supervised segmenter by training an aver-
aged structured perceptron (ASP) on the automatically labeled text. The three systems can be used
independently for other purposes. We evaluate the performance of our segmenter intrinsically on
a portion of the labeled text and extrinsically on MT quality.

2. DA challenges

Contemporary Arabic is a collection of varieties: Modern Standard Arabic (MSA), which has a
standard orthography and is used in formal settings, and DAs, which are commonly used infor-
mally and with increasing presence on the web, but which do not have standard orthographies.
There are several DA varieties which are identified primarily by geography, for example, Gulf
Arabic, Levantine Arabic, Egyptian Arabic. (Habash 2010). DAs differ from MSA phonologically,
morphologically, and to some lesser degree syntactically. The differences between MSA and DAs
have often been compared to Latin and the Romance languages (Habash 2006).

On Arabic morphology and orthography. In the context of this article, we focus on two challenging
areas for modeling Arabic: morphology and orthography. Morphologically, Arabic (MSA and DA)
has a rich inflectional system, expressed both templatically and affixationally, and several classes of
attachable clitics. For instance, the Levantine Arabic word <~y w+H4y-ktb-w+hA*®* “and they
will write it” has two proclitics (4 , w4 “and” and 4 - H+ “will”), one prefix - y- “3rd person,”
one suffix s -w “plural,” and one pronominal enclitic w4 +hA “it/her.” Orthographically, Arabic
is written with optional diacritics that specify short vowels, consonantal doubling, and the nuna-
tion morpheme (Habash 2010). The diacritics are almost never written outside of the domains of
religious text, children’s books, and non-native learners’ textbooks. The almost universal absence
of these diacritics together with the language’s rich morphology lead to a high degree of ambigu-
ity, for example, the Buckwalter Arabic Morphological Analyzer (BAMA) produces an average of
12 analyses per word (Buckwalter 2004). Moreover, some Arabic letters are often spelled inconsis-
tently which leads to an increase in both sparsity (multiple forms of the same word) and ambiguity
(same form corresponding to multiple words), for example, variants of Hamzated Alif, | > or, | <,
are often written without their Hamza (-): | A; and the Alif-Magsura (or dotless Ya) s Y and
the regular dotted Ya s y are often used interchangeably in word final position (El Kholy and
Habash 2010). Furthermore, in the case of DA, there are no orthographic standards; as such, there
is a huge problem with orthographic variants causing model sparsity, for example, Habash et al.
(2018) report on a single Egyptian word encountered online in 27 spellings.

NLP challenges. Arabic’s complex morphology and high degree of ambiguity are usually handled
through preprocessing using tools for analysis, disambiguation, and tokenization (Habash and
Rambow 2005; Diab et al. 2007; Pasha et al. 2014; Abdelali et al. 2016; Khalifa et al. 2016; Zalmout
and Habash 2017a). The lack of standard orthographies for the dialects and their numerous vari-
eties cause new challenges to NLP (Habash et al. 2012¢; Eskander et al. 2013; Habash et al. 2018).
DAs are rather impoverished in terms of available tools and resources compared to MSA, for
example, there is very little parallel DA-English corpora and almost no MSA-DA parallel cor-
pora. The number and sophistication of morphological analysis and disambiguation tools in DA
is very limited in comparison to MSA (Duh and Kirchhoff 2005; Habash and Rambow 2006; Abo
Bakr et al. 2008; Habash et al. 2012a; Khalifa et al. 2017) MSA tools cannot be effectively used to
handle DA: Habash and Rambow (2006) report that less than two-thirds of Levantine verbs can
be analyzed using an MSA morphological analyzer; and Habash et al. (2012a) report that 64% of
Egyptian Arabic words are analyzable using an MSA analyzer.

In this article, we present an approach that minimizes the requirement of developing morpho-
logical preprocessing tools for DA through exploiting readily available monolingual corpora and

2 Arabic transliteration is in the Buckwalter scheme (Habash et al. 2007).

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

Natural Language Engineering 225

(limited but relatively easy to obtain) parallel corpora. Our approach is easily reusable for other
languages and dialectal varieties, and it can be applied to a variety of genres and domains that may
be relatively poor even for standardized languages.

3. Related work
3.1 Dialectal Arabic natural language processing

Extending MSA resources. Much work has been done in the context of MSA NLP (Habash 2010).
Specifically for Arabic-to-English statistical machine translation (SMT), the importance of tok-
enization using morphological analysis has been shown by many researchers (Habash and Sadat
2006). For the majority of Arabic dialects, dialect-specific NLP resources are nonexistent or in
their early stages. Several researchers have explored the idea of exploiting existing MSA-rich
resources to build tools for DA NLP, for example, Chiang et al. (2006) built syntactic parsers for
DA trained on MSA treebanks. Such approaches typically expect the presence of tools/resources to
relate DA words to their MSA variants or translations. Given that DA and MSA do not have much
in terms of parallel corpora, rule-based methods to translate DA to MSA or other methods to col-
lect word pair lists have been explored. For example, Abo Bakr et al. (2008) introduced a hybrid
approach to transfer a sentence from Egyptian Arabic into MSA. This hybrid system consisted of a
statistical system for tokenizing and tagging, and a rule-based system for constructing diacritized
MSA sentences. Moreover, Al-Sabbagh and Girju (2010) described an approach of mining the
web to build a DA-to-MSA lexicon. In the context of DA-to-English SMT, Riesa and Yarowsky
(2006) presented a supervised algorithm for online morpheme segmentation on DA that cut the
out-of-vocabulary words (OOVs) by half.

DA morphological analysis. By comparison to MSA, only a few efforts have targeted DA morphol-
ogy (Kilany et al. 2002; Habash and Rambow 2006; Abo Bakr et al. 2008; Salloum and Habash
2011; Mohamed et al. 2012; Habash et al. 2012a; Hamdi et al. 2013; Khalifa et al. 2017; Samih
et al. 2017a; Samih et al. 2017b; Zalmout and Habash 2019). Efforts for modeling DA morphol-
ogy generally fall into two camps. First are solutions that focus on extending MSA tools to cover
DA phenomena. For example, Abo Bakr et al. (2008) and Salloum and Habash (2011) extended
the BAMA/SAMA databases (Buckwalter 2004; Graff et al. 2009) to accept DA prefixes and suf-
fixes. These solutions are fast and cheap to implement but are limited in their modeling of DA
linguistic phenomena. The second camp is interested in modeling DA directly. The earliest effort
on Egyptian that we know of is the Egyptian Colloquial Arabic Lexicon (Kilany et al. 2002). This
resource was the base for developing the CALIMA Egyptian morphological analyzer (Habash et al.
2012a). Another effort is the work by Habash and Rambow (2006) which focuses on modeling DAs
together with MSA using a common multi-tier finite-state machine framework. Eskander et al.
(2013) presented a method for automatically learning inflectional classes and associated lemmas
from morphologically annotated corpora. Hamdi et al. (2013) takes advantage of the closeness
of MSA and its dialects to build a translation system from Tunisian Arabic verbs to MSA verbs.
Eskander et al. (2016) presented an approach to annotating words with a conventional orthogra-
phy, a segmentation, a lemma, and a set of features. They use these annotations to predict unseen
morphological forms, which are used, along with the annotated forms, to create a morphological
analyzer for a new dialect. The second approach to modeling Arabic dialect morphology results in
better quality morphological analyzers compared to the shallow techniques presented by the first
camp. However, they are expensive and need a lot more resources and efforts. Furthermore, they
are harder to extend to new dialects since they require annotated training data and/or handwritten
rules for each new dialect.

Morphological tokenization for MT. Reducing the size of the vocabulary by tokenizing morpho-
logically complex words proves to be very beneficial for any statistical NLP system in general,

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

226 W. Salloum and N. Habash

and MT in particular. Sadat and Habash (2006) explored a number of tokenization schemes for
Arabic when translating to English (one scheme at a time). However, Zalmout and Habash (2017b)
experimented with different tokenization schemes for different words in the same Arabic text.
Their work showed that these different target languages (English, French, Spanish, Russian, and
Chinese) require different Arabic (source) language tokenization schemes. It also showed that
combining different tokenization options while training and decoding the SMT system improves
the overall performance. The work we present in this article is similar to their work in that the seg-
mentation of a word is influenced by the target language (in our case English) and this can change
if the target language changes. We differ from that work in that we do not use predetermined tok-
enization schemes or combine them; instead, we learn to segment words, and that segmentation
is dependent on the word itself and its context.

3.2 MT ofdialects

Dialects present many challenges to MT due to their spontaneous, unstandardized nature, and the
scarcity of their resources. In this section, we discuss different approaches to handle dialects in the
context of MT.

MT for closely related languages. Using closely related languages has been shown to improve
MT quality when resources are limited. Haji¢ et al. (2000) argued that for very close languages,
for example, Czech and Slovak, it is possible to obtain a better translation quality using simple
methods, such as morphological disambiguation, transfer-based MT, and word-for-word MT.
Zhang (1998) introduced a Cantonese-Mandarin MT that uses transformational grammar
rules. In the context of Arabic dialect translation, Sawaf (2010) built a hybrid MT system that
uses both statistical and rule-based approaches for DA-to-English MT. In his approach, DA
is normalized into MSA using a dialectal morphological analyzer. In this work, we present a
rule-based DA-MSA system to improve DA-to-English MT. Our approach used a DA morpho-
logical analyzer (ADAM) and a list of handwritten morphosyntactic transfer rules. This use of
“resource-rich” related languages is a specific variant of the more general approach of using
pivot/bridge languages (Kumar et al. 2007; Utiyama and Isahara 2007). In the case of MSA
and DA variants, it is plausible to consider the MSA variants of a DA phrase as monolingual
paraphrases (Callison-Burch et al. 2006; Du et al. 2010). Also related is the work by Nakov and
Ng (2011), who use morphological knowledge to generate paraphrases for a morphologically rich
language, Malay, to extend the phrase table in a Malay-to-English SMT system.

DA-to-English MT. Two approaches have emerged to alleviate the problem of DA-English parallel
data scarcity: using MSA as a bridge language (Sawaf 2010; Salloum and Habash 2011; Salloum and
Habash 2013; Sajjad et al. 2013) and using crowdsourcing to acquire parallel data (Zbib et al. 2012).
Sawaf (2010) and Salloum and Habash (2013) used hybrid solutions that combine rule-based
algorithms and resources such as lexicons and morphological analyzers with statistical models to
map DA to MSA before using MSA-to-English MT systems. Sawaf (2010) classified words into 15
dialects plus MSA as part of the mapping process to MSA. Sawaf (2010) and Salloum and Habash
(2013) achieve around 1.6% and 1.4% BLEU point increases, respectively, over a baseline that does
not map DA to MSA.

Pivoting approaches. Sawaf (2010) built a hybrid MT system that uses both statistical and rule-
based approaches to translate both DA and MSA to English. In his approach, DA is normalized
into MSA using a character-based normalizer, MSA and DA-specific morphological analyzers,
and a class-based n-gram language model to classify words into 16 dialects (including MSA).
These components produce a lattice annotated with probabilities and morphological features
(part-of-speech, stem, gender, etc.), which is then n-best decoded with character-based and word-
based, DA and MSA language models. The 1-best sentence is then translated to English with the
hybrid MT system. He also showed an improvement of up to 1.6% BLEU by processing the SMT

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

Natural Language Engineering 227

training data with his technique. Salloum and Habash (2011; 2012) and Sajjad et al. (2013) applied
character-level transformation to reduce the gap between DA and MSA. This transformation was
applied to Egyptian Arabic to produce EGY data that looks similar to MSA data. They reduced
the number of OOV words and spelling variations and improved translation output.

Cheaply obtaining DA-English parallel data. Zbib et al. (2012) demonstrated an approach to
cheaply obtain DA-English data via Amazon’s Mechanical Turk (MTurk). They created a DA-
English parallel corpus of 1.5M words and used it along with a 150M MSA-English parallel
corpus to create the training corpora of their SMT systems. They found that the DA-English
system outperforms the DA+MSA-English even though the ratio of DA data size to MSA data
size is 1:100. They concluded that simple vocabulary coverage is not sufficient and the domain
mismatch is a more important problem. Similar to Zbib et al. (2012), in this work, we add 3.5M
words DA-English parallel data to their 1.5M words data and we build three SMT systems such as
DA-English, MSA-English, and DA+MSA-English where the ratio of DA data size to MSA data
size becomes 1:10.

3.3 Supervised learning approaches to morphological segmentation

Supervised learning techniques, like MADA, MADA-ARZ, and AMIRA (Habash and Rambow 2005;
Diab et al. 2007; Habash et al. 2013; Pasha et al., 2014), have performed well on the task of mor-
phological tokenization for Arabic MT. They require handcrafted morphological analyzers, such
as SAMA (Graff et al. 2009) or CALIMA (Habash et al. 2012b) in addition to treebanks to train
tokenizers. Using the analyzer, the system turns an input sentence into a lattice of analyses that
can be decoded using a context-sensitive model trained on the manually annotated treebank.
This is expensive and time-consuming and thus hard to scale to different dialects. Alongside the
work on DA morphological tokenization, there has been work on dialectal segmentation. Most
recently, some neural models have been achieving good performance without the need to create
linguistically motivated analyzers. For example, in Samih et al. (2017a, b), the authors propose a
dialectal segmentation model using a deep learning-based, character-level sequence tagger. The
model uses character embeddings fed into a bidirectional LSTM layer followed by a CRF layer
that computes the probability distribution over the output tags. The model rivals MADAMIRA-
EGY on Egyptian and outperforms an SVM ranker on Levantine, Gulf, and Maghribi dialects.
Most recently, Zalmout and Habash (2019) presented a joint multi-feature cross-dialectal mor-
phological disambiguation model for MSA and Egyptian Arabic using adversarial training for
cross-dialectal morphological knowledge transfer. Their models achieve state-of-the-art results
for both Arabic variants.

3.4 Unsupervised learning approaches to morphological segmentation

Given the wealth of unlabeled monolingual text freely available on the Internet, many unsuper-
vised learning algorithms (Creutz and Lagus 2002; Stallard et al. 2012; Narasimhan et al. 2015)
took advantage of it and achieved outstanding results, although not to a degree where they outper-
form supervised methods, at least on DA to the best of our knowledge. Traditional approaches to
unsupervised morphological segmentation, such as MORFESSOR (Creutz and Lagus 2002; Creutz
and Lagus 2007), use orthographic features of word segments (prefix, stem, and suffix). However,
many researchers worked on integrating semantics in the learning of morphology (Schone and
Jurafsky 2000; Narasimhan et al. 2015), especially with the advances in neural network-based dis-
tributional semantics (Narasimhan et al. 2015). Most recently, Erdmann et al. (2019) presented a
linguistically motivated alternative to greedy or other unsupervised methods, requiring only mini-
mal language-specific input with large unannotated corpora. In their evaluations, they consistently
outperform competitive unsupervised baselines and approach the performance of state-of-the-art
models such as MADAMIRA (Pasha et al. 2014) and Farasa (Abdelali et al. 2016).

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

228 W. Salloum and N. Habash

In this work, we leverage the use of both approaches. We implement an unsupervised learn-
ing approach to automatically create training data which we use to train supervised algorithms for
morphological segmentation. Our approach incorporates semantic information from two sources,
Arabic (through monolingual data) and English (through parallel data), along with linguistic
features of the source word and its target segments to learn a morphological segmenter.

4. Our approach to unsupervised segmentation

Inspired by the supervised tokenization approaches discussed above (Habash and Rambow 2005;
Habash et al. 2013; Pasha et al. 2014), our approach to unsupervised morphological segmentation
consists of three components with strong parallels to the supervised methodology:

1. Monolingual identification of segmentation rules. In this component, we build a system that
learns Arabic segmentation rules from monolingual text using distributional semantics
(Section 5). This component is analogous to a morphological analyzer in that it produces
out-of-context segmentation options.

2. Alignment guided segmentation choice. In this component, we build a system that cre-
ates synthetic segmentations of Arabic words in a way that optimizes their alignment
with English words in a parallel text (Section 6). This component effectively incorporates
English semantics in choosing the best in-context segmentation of an Arabic word in a sen-
tence. This is strongly analogous to manual human annotation. However, it is cheaper in
that it does require special training to do annotation for the specific NLP task of segmen-
tation. It is also more flexible and tunable, since different approaches to MT or different
target languages may require optimizing for different segmentation choices.

3. Supervised segmentation using synthetic data. Starting from the automatically segmented
(labeled) data created by the previous component, we train a tagger that learns to score all
possible segmentations for a given word in a sentence (Section 7).

One challenge to this approach is that the automatic labeling of words will introduce errors that
will affect the quality of the supervised segmenter. To reduce the number of errors in the auto-
matically labeled data, we only label words when the system has a high confidence in its decision.
This will result in many unlabeled words in a given sentence that raises another challenge to the
supervised segmenter which we solve by modifying the training algorithm.

The underlying assumption of this approach is that if the unsupervised labeling process does
not cover all words in the vocabulary, the supervised segmenter will learn to generalize to the
missed words and OOVs. We evaluate this approach on two Arabic dialects: Egyptian and
Levantine. The next three sections discuss the three systems used in this approach and present
the experimental setup, examples, and discussion.

5. Monolingual identification of segmentation rules

Given a word out of context, we would like to generate a ranked list of possible segmentations of
it. For example, the word - ;,¢ L mAtjwzt “I-did-not-marry” should be ideally segmentable into
o 5sf W MA tjwzt, o o< L or mA tjwz t but not w5 £b mAtj wzt (a nonsensical segmentation).
Our approach to learn segmentation rules from monolingual data consists of three steps: word
clustering, rule learning, and rule scoring.

5.1 Word clustering based on word embeddings

We learn word vector representations (word embeddings) from huge amounts of monolingual
Arabic untokenized text using Word2Vec (Mikolov et al., 2013). For every Arabic word x, we then

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

Natural Language Engineering 229

compute the closest N words using cosine distance (with cosine distance above threshold D,). We
consider these N words to be x’s semantic cluster. Every cluster has a source word. It is important
to mention that a word x might appear in y’s cluster but not vice versa.

After a manual error analysis of the data, we picked a high cosine distance threshold D, = 0.35,
since we need only words that we have high confidence in their belonging to a cluster in order to
produce high-quality segmentation rules. This high threshold results in many words having small
or even empty clusters. In small clusters, the main word will not have enough segmentation rules,
limiting the possibility of identifying the optimal segmentation in the next step. For example,
the word ;<1 mAtjwzt “I-did-not-marry” might have ;,<.. mAtjwz “did-not-marry” but not
;<1 Atjwz “married,” which is the desired stem. We attempt to solve this problem with a rule
expansion algorithm discussed in Section 5.2. The empty clusters happen when the closest word
to the cluster’s main word is beyond the distance threshold. This means that we will not have any
labeled examples for this word; hence, it will be an OOV word for the supervised segmenter. We
address this issue later on by designing the segmenter so that it generalizes to unseen words.

Even with this high threshold, many words end up with very large clusters due to Word2Vec
putting thousands of certain types of words very close in the vector space (e.g., proper names,
words that appeared only few times in the training data). This adds noise to the rule scoring
training data discussed later. We solve this problem by deciding on a maximum cluster size
N =200.

5.2 Rule learning

Rule extraction. We extract segmentation rules from the clusters learned previously. For every
word x, for every word y in x’s cluster where y is a substring of x, we generate a segmentation rule
X — p + y — q where y is the stem, p+ is the prefix (the substring of x before y starts), and —q is
the suffix (the substring of x after y ends). A rule might have an empty prefix or suffix denoted as
P+ and -Q, respectively. If y happens to appear at different indices inside x, we generate multiple
rules (e.g., x is “hzhzt” and y is “hz” we produce “hzhzt — P+ hz -hzt” and “hzhzt — hz+ hz -t).
We define a function dist(x — y) as the cosine distance between words x and y if there is a rule
from x to y, equal to 1 if x = y, and 0 otherwise:

cosineDistance(x, y), ifdx— p+y-q
dist(x = y) =11, ifx=y (1)
0, otherwise

Rule expansion. Given the high cluster admission threshold, we consider expanding the rule set
by adding further segmentations. We build an acyclic directed graph from all the extracted rules
where words are nodes and rules are edges. Since a rule is always directed from a longer word to
a shorter one, the graph will not have cycles and will not have very long paths. Figure 1 shows
a partial segmentation graph built from some rules that lead to the word ;,<1 Atjwz “I marry/he
married.” We then expand the rules by generating a rule x — y for every node x that has a path
to node y in the graph. To do so, we recursively scan the graph starting from leaves (words that
cannot be segmented) all the way back to the beginning of the graph and add a rule x — y to the
graph if there are two rules x — w and w — y where w is a word. The recursive scan insures that
we fully expand w and add its outgoing edges to the graph before we expand x. It also allows us to
compute a confidence score conf(x — y) that starts with the cosine distance between x and y and
will increase the more paths we find between them:

conf(x — y) =dist(x — y) + Z conf(x — w) x conf(w — y) (2)

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

230 W. Salloum and N. Habash

wAtjwz
(1335)

wAtjwzth hAtjwz
(136) (396)
wAtjwzt
(381)
mAAtjwzt | Atwz Ar) tiwz
j (15,616) (1712)
(381) —_—
mAtjwz$
(70)
€291 LEGEND
Atjwztny |
(55) prefix+ +suffix
RO et S word (cosine distance)
mAtjwzt |+t (0.4045) mAtiwz (frequency)
(523) (348)

Figure 1. Example of a segmentation graph that leads to the word Atjwz “I marry/he married.” The frequencies of the words
are enclosed in parenthesis inside the nodes. The cosine distance and split affixes are on the arcs.

Projected frequency. The main reason for segmentation is to reduce the vocabulary size and
thus increase word frequencies which improves the quality of any subsequent statistical system.
However, chopping affixes off a word (as opposed to clitics) may affect the integrity of the word,
for example, it may slightly change the meaning of the word or may cause it to align to more gen-
eral words (e.g., segmenting “parking” to “park -ing” in English may negatively affect alignment
depending on the foreign language). Additionally, every time we make a segmentation decision,
we may introduce errors. Therefore, it is important to know at what point we do not need to seg-
ment a word anymore. To do so, we consider word frequencies as part of scoring the rules because
frequent words are likely to be aligned and translated correctly to their inflected English transla-
tions without the need for segmentations. For example, in Figure 1, we might not want to segment
“Atjwz” to “tjwz” considering its high frequency and the number and frequencies of words that
lead to it. We define a projected frequency score of a word as:

pfy)= Z conf(x — y) x log(freq(x)) (3)

xeV

where x is any word in the vocabulary V and log(freq(x)) is the logarithm of x’s frequency. We use
logarithms to smooth the effect of frequent words on the final score to better represent y as a hub
for many words. Note that conf(y — y) = 1 and thus we include log(freq(y)) in the score.

Word-to-stem score. Given the projected frequency scores, we compute the ratio pf(y)/pf(x) that
represents the gain we get from segmenting x to y. For example, if x is frequent and has many
words that lead to it, and y gets most of its projected frequency from x, then the ratio will be small.
But if x is infrequent (i.e., not a hub) and y has a high pf score through other sources, then the
ratio will be high. Now, we can compute the final word-to-stem (a2s) score, which we will be using
next, as follows:

a2s(a— s) = conf(a — s) x pf(s)/pf(a) (4)

Fully reduced words. All the rules extracted so far will segment a word to a shorter word with at
least one affix. The automatic annotations need to have some examples where words do not get
segmented in order for the segmenter to learn such cases. Therefore, we need to identify a list of
words that cannot be segmented and thus produce rules that transform a word to itself with no
affixes. Such rules will be of the form x — P + x -Q. The list does not have to be complete; it

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

Natural Language Engineering 231

Algorithm 1 Affix-stem joint probability estimation.

1: // Initialization:
Za_msq a2s(a— s)
Yamspegd2s(a—)

2: v(p,s) < forall p, s

D> psq 425(a —)
Yamsprq 02s(a—)

3: u(g,s) « forall g, s
4: // Estimation:

5: for round :=1— MAX do

6: // Collect counts:

7 for each rule a — psq do

8 ao(p,s) = ZP’ Yoo v(pss) xv(p',s)
9: cu(g, s) = Zq, Yoo ulg,) xulq',s)
10: 8 < a2s(a— s) X ¢y(p, s) X cu(q, $)

11: count,(p,s) +=146
12: count,(q,s) +=196
13: total +=§

14: // Estimate joint probabilities:

15: v(p, s) < count,(p, s)/total for all p, s

16: u(g, s) < count,(q, s)/total for all g, s

17: // Calculate rule scores:

18: score(a — psq) = a2s(a — s) x v(p, s) x u(q, s) for all rules a — psq

just needs to be of high confidence. To generate the list, we consider words that appear on the
target side of rules but never on the source side. We then reduce the list to only frequent stems
(with over 3000 occurrences) that have at least three words that can be segmented to them, which
gives us enough confidence as we have seen them in various contexts and they have appeared in at
least three clusters but yet do not have any substrings in their own clusters. These thresholds are
determined empirically. We compute the word-to-stem score for these fully reduced rules using
this equation:

a2s(a — a) = Z conf(x — a) (5)

5.3 Rule scoring

Since a rule a — psq produces three segments: a stem s, a prefix p, and a suffix g, we define its
score as the product of the word-to-stem score a2s(a — s), the joint probability of the prefix and
the stem v(p, s), and the joint probability of the suffix and the stem u(qg, s):

score(a — psq) = a2s(a — s) x v(p,s) x u(q, s) (6)

Affix correlation. To estimate the correlation between a prefix p and a prefix p’, we iterate over all
stems s’ and compute

corryper(p's p) = Z v(p,s') x v(p,s') 7)

s

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

232 W. Salloum and N. Habash

This score indicates the similarity in morphosyntactic behavior of these two prefixes. For example,
the Egyptian prefix 4+a» h+ “will” and the MSA prefix + ., ws+ “and will” attach to present tense
verbs; therefore, we would expect them to share many of the stems in the rules they appear in,
which leads to a high correlation score.”

We similarly define suffix correlation as:

corra(q,q) =Y ug,s) x u(q,s) (8)

S/

Affix-stem correlation. Using these affix correlation scores, we can estimate the correlation

between a prefix p and a stem s by iterating over all prefixes p’ that we have seen with s in a
rule and summing their correlation scores with p:

c(p,9) = Z cortyre(p', p) = Z Z v(p,s) x v(p',s) ©)
P s
We similarly define suffix-stem correlation as:
(@)=Y corrag(q,q) =Y Y ulgs) xuq,s) (10)
q/ q/ S/

Affix-stem joint probabilities. Given affix—stem correlation scores, we can define the prefix-stem
joint probability, v(p, s), and the suffix-stem joint probability, u(g, s), as follows:

_ Cv(Pa s) _ Cu(% s)
M5} = Y s o) “3)= >

q/’ P Cu(q/, S/)

11)

To estimate the parameters in these recursive equations, we implement the EM algorithm shown
in Algorithm 1 The initialization step uses only word-to-stem scores computed earlier, that is, it
is equivalent to the first round in the following EM loop with the exception that § <— a2s(a — s).
We found that running the EM algorithm for 50 rounds provides good results.

5.4 Experimental data

We use two sets of monolingual Arabic text: about 2B tokens from Arabic GigaWord Fourth
Edition which is mainly MSA (Parker et al. 2009) and about 392M tokens of Egyptian text,® result-
ing in about 2.4B tokens of monolingual Arabic text used to train Word2Vec (Mikolov et al. 2013)
to build word vectors. In this work, we did not have access to a sizable amount of Levantine text
to add to the monolingual data. Access to Levantine text would help this task learn Levantine seg-
mentation rules and thus hopefully improve the final system. We did not want to use the Levantine
side of the parallel data to keep this system separate from the second system to avoid any resulting
biases.

6. Alignment guided segmentation choice

In the previous section, we learned and scored segmentation rules for words out of context. In
this section, we use these rules and their scores to learn in-context segmentations of words guided

PIn practice, we iterate over the N stems with the highest v(p, s') values for a prefix because some prefixes, like + 5 Wt “and,”
attach to tens of thousands of stems and that unnecessarily slows the algorithm. We found N = 500 to be fast and provide
good results.

“The 392M Egyptian words were selected from the LDC catalog numbers: LDC2012E30, LDC2012E51, LDC2012E94,
LDC2012E96, LDC2012E75, LDC2012E77, LDC2012E107, LDC2012E19, LDC2012E54, and LDC2012E17 (Al-Badrashiny
etal 2016).

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

Natural Language Engineering 233

by their English alignments in parallel text. The premise of this approach is that if we find enough
Arabic words where we are confident in their segmentation choices in-context given the English
translation, then we can use those segmentation choices as labeled data to train a supervised
segmenter.

6.1 Approach

Unsupervised learning of word alignments from a parallel corpus is pretty much established.
A ltool like Giza++ (Och and Ney 2003b) can be run on the Arabic-English parallel data to
obtain many-to-many word alignments. That means, each Arabic word aligns to multiple English
words and each English word aligns to multiple Arabic words. However, these algorithms look at
the surface form without considering morphological inflections.

Our alignment algorithm concerns with aligning the internal structure of Arabic words (the
rule segments) to their English translations. We start by running Giza++ on our Arabic-English
parallel corpora to obtain initial, surface form alignments. We use Giza++ with default sym-
metrization (grow-diag-final-and) as part of the Moses toolkit pipeline for statistical MT (Koehn
et al. 2007). Then, we consider one-to-many aligned pairs (a;, E;;), where a; is an Arabic word
at position i and Eg, = (e1, €2, ..., €] Eﬂi‘) is the sequence of English words aligned to a; ordered by
their position in the English sentence. Since the Arabic side of the parallel data is unsegmented,
the plethora of inflected words will dramatically extend the vocabulary size and the Zipfian tail of
infrequent words, which will negatively affect parameter estimation in Giza++ resulting in many
inaccurate alignments. To reduce the effect of this problem on our algorithm, we expand the def-
inition of E,;, to also include surrounding words of the words aligned to a; by Giza++. The order
of the English words is preserved. We model dropping words from E,, in our alignment model.

Given an aligned pair (a;, E,;) where a; has a set of segmentationrulesR = {r: r = a; > g182¢3},
we estimate an alignment probability for every rule r based on aligning its segments to words in
E,,. We, then, pick the rule with the highest probability, ¥, as the segmentation choice for a; in
that context. It is important to note that the context here is determined by the English translation
instead of the surrounding Arabic words. Note that the rule itself has a score derived from the
Arabic context of the word through word embedding. Therefore, if we incorporate the rule score
in the alignment probability model, we can combine Arabic semantics and English semantics in
determining the segmentation choice in context.

6.2 The alignment model

In order to compute an alignment probability for every pair (r, E;,), we need to estimate how 7’s
segments translate to E,,’s tokens. To translate a source text sequence to a sequence in a target
language, two questions must be asked:

1. What target words/phrases should we produce?
2. Where should we place them?

The IBM models as motivation.

We provide a quick introduction to the IBM models to give a general motivation to our proposed
alignment model. Details that do not relate to our model are not discussed. For detailed discussion
of the IBM models, refer to Brown et al. (1993). IBM Model 1 answers only the first question by
introducing a lexical translation model, t(e;|f;), that estimates how well a source token e; translates
to a target token f;. IBM Model 1 does not model word alignments explicitly which means once
the target words are generated, they can be put in any order in the target sentence. To answer the
second question, IBM Model 2 adds an absolute alignment model, a(i|j, m, n), that measures the
probability of a target token at position j in a target sentence of length m to be aligned to a source

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

234 W. Salloum and N. Habash

word at position i in a source sentence of length n. This independent modeling of translation and
alignment makes the problem easier to solve. IBM Model 3 takes the first question a step further by
modeling fertility which allows source words to produce multiple target words or even get dropped
from translation and allows target words to be inserted without a source word generating them.
Fertility gets handled by two separate models: (a) The fertility model, y(ngys|f), handles source
word fertility by estimating the probability of a source word f to produce zero or more slots to be
filled with target words. If ny,, = 0, source word f will be dropped from translation. If ngys > 0,
one or more target words will be generated. And (b) NULL insertion models the introduction
of new target words without a source translation. While IBM Model 3 keeps the regular lexical
translation model as is t(e;|f}), it reverses the direction of Model 2’s absolute alignment model to
become d(j|i, m, n), which they call an absolute distortion model. IBM Model 4 further improves
Model 3 by introducing a relative distortion model which allows target words to move around
based on surrounding words instead of the length of source and target sentences. Finally, IBM
Model 5 fixes the deficiency in Model 3 and 4 that allows multiple target words to be placed in the
same position.

Our alignment probability model.

The IBM models were originally proposed as MT systems, but now they are widely used as part
of word alignments since more advanced MT approaches were introduced. While our alignment
model is inspired by the IBM models, we have no intention to use it as an MT system; therefore,
we are not bound to design an alignment model that generates fluent translations. In other words,
the placement of English words in their exact positions (the second question) is not essential. Our
model should measure how well a certain segmentation of an Arabic word g;, produced by rule
r=a; — 214293, aligns to English words in the target sequence E,,.

The English sequence could contain words that do not align to any segment of the source
Arabic word. This is a result of erroneous alignments by Giza++ or due to our inclusion of
surrounding words. To handle this, we model dropping words from E,, by introducing a NULL
token on the Arabic side (with index 4) that misaligned English words can align to. This makes the
Arabic sequence of length 4 indexed: 1 for prefix, 2 for stem, 3 for suffix, and 4 for the NULL token.
We use the variable j to refer to this index. The English sequence can be of any length, denoted as
m. As mentioned above, the original order of English words is preserved in the sequence E,, but
re-indexed from 1 to m. We use the variable k to refer to this index.

Definition: Alignment vector. An alignment vector is a vector of m elements denoted as L =
(I, oy ..y L), where I is position in the Arabic segment that ey aligns to. This allows multiple
English words can align to the same token in the Arabic sequence, for example, “and” and “will”
can align to + ~, wH+ “and will.” However, an English word, in our model, cannot align to mul-
tiple Arabic tokens, which forces the English word to pick its best aligned Arabic token. We define
L(r,E,,) as the set of all possible alignment vectors that align Ej,’s words to r’s segments and the
NULL token.

Definitions: Center and direction. We define the center of the English sequence as the English word
that best aligns to the Arabic stem. We denote its index as ke Given ke, we define a direction
vector D = {dj : dy = sgn(k — kstem)}d, where every English word e has a direction dj relative to
the center ey, . This means that the center e, has a direction of 0, words that appear before the
center have a direction of -1, and words that appear after center have a direction of +1,

It is intuitive to assume that the direction of an English word relative to the center could have
an impact on the decision of whether to align it to a prefix, a stem, a suffix, or even NULL to drop
it from alignment as it might align to a previous or subsequent word in the Arabic sentence. To

dsgn is the sign function.

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

Natural Language Engineering 235

motivate this intuition, let us observe closed-class and open-class English words and their relations
to the types of Arabic segments based on their directions from the center.

In our approach to segmentation, an Arabic affix is split from the stem as one unit without
further splitting its internal components which could contain pronouns, prepositions, or parti-
cles such as conjunction, negation, and future particles. These affixes tend to align to closed-class
English words. For example, the Arabic definite article, +)\Al+ “the,” appears only in prefixes (e.g.,
in 41y wAl+ “and the”); similarly, the English word “the” appears only before the center when it
aligns to a prefix. If “the” appears after the center, it probably should be aligned to a subsequent
Arabic word in the source sentence. Moreover, the Arabic conjunction particle, + , w+ “and,”
appears in prefixes (e.g., in +-, wH+ “and will”) or as a separate word , w; therefore, when “and”
appears before or at the center it tends to align to a prefix or a stem, respectively. If “and” appears
after the center, it probably should be dropped. Furthermore, the English word “to” could align
to any token of the source sequence at any position in the target sequence; however, its direction
relative to the center correlates with the position of the Arabic token it aligns to. Here are the four
cases:

1. “to” could align to the prefix particle 4} I+ “to” (as in this example attaching to a verb and
anoun: “Gs) .y IbEt Irfygh “to send to his friend”). In such cases, the English word
“to” has a direction of -1.

2. “to” could align to a stem such as J} <IY “to,” a separate preposition in Arabic. In these
cases, “to” has a direction of 0.

3. “to” could align to a suffix containing the indirect object preposition }- -/ “to” (as in the
suffix- w,--wilk “they, to you” in “w,:.,” ybEtwlk “they send to you”). In such cases, “to” has
a direction of +1.

4. “to” could align to NULL if misaligned which could occur at any value for dy.

Similar to closed-class words, open-class words tend to either align to the stem or to NULL.
For example, there is no prefix or suffix that aligns to the word “send”; therefore, if it appears on
either side of the center, it probably belongs to a surrounding word of the current Arabic word a;.
This motivates the design of a probability distribution that capitalize on this correlation.

Our model answers the two questions introduced earlier with two separate probability
distributions:

1. Lexical translation model: t(ex|g,). This model is identical to IBM Model 1. It esti-
mates the probability of translating an Arabic segment to an English word. For example,
t(“and”|“wH+") represents the probability of producing the word “and” from the prefix
+=y WH+ “and will.”

2. Lexical direction model: z(l|ek, d). This model estimates the probability of aligning an
English word e with direction di to position I in the Arabic sequence. For example,
z(1|“and”, —1) is the probability of the word “and” aligning to a prefix knowing that it
appeared before the center.

In this model, the exact position of the generated English word is not important; instead, the
direction relative to center is what matters.

To compute ke, we find the English word with the highest ¢ x z score as in the following
equation:

kstem = arg max t(exlg2) x z(2lex, 0)

This might seem like a circular dependency: z depends on dj, which is computed from kg, that
depends on z. In other words, using the direction from the center while trying to find the center.

€In Arabic, I+ can be a preposition that attaches to nouns, or a justification particle that attaches to verbs.

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

236 W. Salloum and N. Habash

rows a;
1 | whawihalk | | tany | | wmtahihas |
= T~ 7 ~
Gold Word ,;",’/, RN VS s o
Alignment: - 7 ~ K N S~
- - - < 7 I o 1 \ ST sSo
- - - z] r] - - ~
3: { and | | | will say I it ‘ gain | to | you l and l do l not | ignore ‘ it |
4: say it again
ElE /| BN =
: a : aligned by Giza++
s and | will say it again to you and
L v iy \j addto I/, asa
. surrounding word

Figure 2. Example of sentence alignment that shows how we extract the English sequence £, that aligns to a source word a;.
The figure is organized as rows indexed from 1 to 5 as shown on the left margin. Row 1 and 3 show the source Arabic sentence
and its English translation. Row 2 shows the perfect word-level alignment between the two sentences. Row 4 shows the
automatic process of extracting Eg; by first adding words aligned by Giza++ (in red rectangles) and then adding surrounding
words (identified by the green arrows). Row 5 shows the resulting Eg, .

In fact, we do not need the direction from the center to compute kg,. Instead, we set dy =0 in
z(2|eg, 0), which, when multiplied with t(e|g2), basically asks the question: if word ej were to be
selected as the center, how well will it align to position 2 (the stem) in the source sequence? This
breaks the circular dependency.

Example

Consider the Egyptian Arabic sentence Héalxzey Jb elldsans whqwlhAlk tAny wmttjAhlhA$ trans-
lated to English as “And I will say it again to you and do not ignore it.” Figure 2 presents the
Arabic and English sentences in rows 1 and 3 (index is in the left margin), as well as their perfect
word-level alignment (Row 2). For our example, we consider the first word, whqwlhAlk, as a; and
we construct E,, in Row 4 by first including words aligned by Giza++ (in red rectangles) and then
adding surrounding words (identified by the green arrows). Row 5 shows the resulting E,,. Due
to the infrequency of such highly inflected words, Giza++ tends to make errors aligning them.
In this case, it erroneously aligns “again” to a; and misses “will” and “to” which should have been
aligned. Our inclusion of surrounding words results in adding the missed words but also includes
the trailing “and” erroneously. This approach increases recall while compromising precision since
it depends on the probabilistic model to maximize English alignment to a;’s internal structure
while dropping the misaligned English words.

Figure 3 shows the alignment of the Arabic word wyyia, whqwlhAlk from Figure 2 with its
aligned English sequence E,;; = (and, I, will, say, it, again, to, you, and). This example shows how
our model would score an alignment vector L =(1,2, 1,2, 3,4, 3, 3, 4) linking E,, tokens one-to-
many to the four Arabic tokens. L, shown in Part (b) of the figure (index is in the left margin), is
actually the gold alignment vector. Part (a) shows the lexical translation model, t(ex|g),), generating
English words from Arabic tokens under alignment vector L. The English word “say” is picked as
the center over “I” because t(say|qwl) > t(I|qwl). Part (b) shows how the lexical direction model,
z(Ix|ex di), predicts the position an English word e; with direction dj aligns to.

Decoding with the model: finding the best segmentation choice
The probability of an alignment vector L that aligns the words of an English sequence, E,,, to the
four Arabic tokens produced by a rule r and the NULL token is denoted as pjign(Eqg;, L|7) and is
given by this equation:
m
Patign(Eay LIr) = | | tlexlgy,) x z(ler di) (12)
k=1

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

Natural Language Engineering 237

@ a4, whqwihAlk
NULL
’ \
1 e 1 N <
I LN ! 1 b AN
/ N
(b) a; whqwlhAlk

A 7Y Y N X A

(I, e, dy)

4 A
D -1 -1 -1 0 +1 +1 +1 +1 +1
=1
Figure 3. Example of alignment model parameters t and z for an Arabic word aligned to an English phrase.

To find the best segmentation choice for an Arabic word a; with a set of rules R,,, we pick the
rule, r*, that has the highest score when aligned to the English sequence E,,. To evaluate how well
a rule r aligns to E,;, we scan all possible alignment vectors generated from r and E,, to find the
one with the highest probability pyjign(Eq,, LIr). Therefore, the best segmentation choice for a; is
generated by the rule r* that has the best alignment to E,,’s words among all other rules in R, as
shown in the following equation:

k
r’ =arg max max ion(Eq:s L|T 13
g reRy; LeLizy) palzgn(ap Ll) (13)

It is important to note that the rule score computed in Section 5, score(r), is not used directly

in these equations; however, it is used in estimating the model’s parameters ¢ and z.

6.3 Parameter estimation with EM

In this subsection, we present our EM algorithm to estimate our model’s parameters. First, we
start with initializing our parameters and then we explain the EM algorithm used for parameter
estimation.

Initialization. Our initialization step starts by running Giza++ (Och and Ney 2003b) on the unto-
kenized Arabic-English parallel data to produce many-to-many word-level alignments. Using

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

238 W. Salloum and N. Habash

these alignments, we estimate two word translation probability distributions for each Arabic word
a and English word e:

1. The word translation probability: p1(e|a) = countgjigned(a, €)/count(a).

2. The reverse word translation probability: p,(ale) = countjigneq(a, €)/count(e).

where countgjigneq(a, €) is the number of times we saw Arabic word a aligned to English word e
in Giza++ output, while count(x) is the frequency of word x in the parallel corpora. The word
translation probability distribution is used to initialize the t(ex|g,) parameter of our model as
shown in Algorithm 2 in Equation (14). Since the stems are actual Arabic words in our definition,
we will have p;(ex|g2) probabilities for stems; however, this is not possible for affixes. Therefore,
we compute the count c(ex, g;,) by summing over all (a;, ex) pairs where p;(ex|a;) > 0 and a; has
one or more rules, r = g; — G, that generate the segment g;,, and computing the score p; (ex|a;) %
score(a; — G) that is then added to p;(ex|gr) if nonzero. The z(li|e, d) parameters are uniformly
distributed as shown in Algorithm 2, Equation (15).

Parameter estimation. Algorithm 2 presents an EM algorithm where every epoch iterates over
every aligned Arabic-English pair (a;, E;;) in the parallel text and computes counts from every
possible segmentation of g; that aligns to E,’s tokens. In Line 5, we compute the confidence in
this aligned pair, conf, that will be used in computing é. In Line 8, we compute kg, which gives
us the English token, ey, with the highest alignment to the stem in the current segmentation
of a;. If the alignment score of this word, t(ex,,, 182) x z(2|ek,,,,) is lower than a threshold, we
ignore the rule that produced this segmentation. The threshold can be manipulated to trade off
quality and number of labeled segmentation choices. Once kg, is found, the direction vector, D,
can be computed (Line 11). Then, every possible combination of E,, tokens and a; segments are
considered to compute 8, using the last iteration ¢ and z parameters (Line 16), which is combined
with the rule score and the aligned pair confidence score to compute é. § is then used to compute
the counts. Finally, the model’s probabilities are calculated (Lines 23-24) to be used in the next
epoch.

Experiments. We use three parallel corpora obtained from several LDC corpora including GALE
and BOLT data and preprocessed by separating punctuation marks and Alif/Yah normaliza-
tion. The corpora are Egyptian-English (Egy-En) corpus of ~2.4M tokens, Levantine-English
(Lev-En) corpus of ~1.5M tokens, and MSA-English (MSA-En) corpus of ~49.5M tokens. The
combined corpus, which amounts to ~53.5M tokens, is word-aligned using GIZA++ (Och and
Ney 2003a) and used as training data to this step.

We trained the EM algorithm for 50 rounds on this data and we labeled 11.9M words with
acceptable confidence.

7. Supervised segmentation using synthetic data

We train a supervised segmenter to learn how to segment Arabic words in a given sentence. For
every word in the sentence, the segmenter considers a list of rules to transform that word and
scores them using an ASP. The transformation rules are segmentation rules that produce a stem
and affixes. This setup allows for more advanced transformation rules where the stem is not a
partial string of the source word. Examples are spelling variation normalization, templatic mor-
phology segmentation, and even infrequent-to-frequent word translation; although, new features
should be introduced to capture those advanced transformations. The empty affixes “P+” and
“-Q” are not generated in the segmented output. We train and evaluate our segmenter on train/test
split sets of our automatically labeled data.

fThe confidence threshold was determined manually after sorting the labeled examples by confidence.

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

Natural Language Engineering 239

Algorithm 2 Affix-stem joint probability estimation.

1: // Parameter initialization:

t(eklgn) = clex, gn)/ Do (€, gn) (14)
where c(ex, gn) = p1(exlgn) + Z(abek) Zmﬁ%Pl(ekmi) x score(a; — G))
gh mn
z(Ix|ex, di) = 1/4 // uniform (15)
2: // Parameter estimation:
3: for round :=1— MAX do
4: for each aligned pair (a;, E;,) do
5: conf <Y i pi(exlai) x pa(ailex) // Alignment Confidence:
6: // Collect counts:
7: for each ruler=a — g1go¢3 do
8: kstem <— arg maxy t(ex|g2) X z(2|e, 0)
9: if t(ex,,,, 1g2) % z(2lek,,,,, 0) > threshold then
10: // Get direction vector:
11: D < {dy = sgn(k — kstem)}
12: // For each English word:
13: fork:=0— mdo
14: // For each alignment position:
15: forj:==0— 3 do
16: Stz < tlexlg)z(ilex di)/ >y, tlex|gn)z(hlex, di)
17: 8 < conf x score(r) X 8¢,
18: county(e, gj) += 9
19: totaly(gj) += 4
20: count,(j, e, dy) += 6
21: total,(ex, di) +=6
22: // Estimate probabilities:
23: t(ex|gn) < county(ex, gj)/totaly(g;)
24: z(jlex, di) <— count,(j, e, dy) /total, (e, di)

7.1 Challenges of automatically labeled data

Two challenges for training and decoding arise from the nature of our automatically labeled data:
frequent OOVs and unlabeled words in a training sentence.

Frequent words as OOVs. The general case in manually annotated training data for NLP tasks is
that the data are selected randomly from the text expected to be handled by the NLP tool (some-
times with a bias toward more frequent cases in the target area, such as domain, dialect, and
genre). The frequent words in the vocabulary, as a result, will generally be labeled in the training
data. This means that OOVs in a given test set are usually infrequent words and, thus, rare in
those sets. In our setup, we label words with their segmentation choice only when we have high
confidence in our decision. This leaves our partially labeled training data with many unlabeled
frequent words. These words are naturally frequent in a given test set, which means they will be
OOVs for a system trained on our partially labeled training data. This problem requires us, as we
design the segmenter, to give special attention to its ability to learn how to generalize to unseen

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

240 W. Salloum and N. Habash

words, since those unseen words are now a frequent phenomena. To do so, we use the following
strategies:

1. Weintroduce features that deliberately try not to memorize specific segmentations in order
to allow them to generalize to OOVs.

2. Wedrop all segmentation rules learned in Section 5 since they do not extend to a large por-
tion of the vocabulary. To generate a list of rules for a given word in a sentence, the decoder,
now, considers all possible segmentations of that word that produce stems that have been
seen in the parallel data. This will introduce new, unseen affixes, which is intended to
generalize to unseen dialectal morphology.

3. Some of our best features use distance scores from the Arabic and English clusters of
the word being processed (discussed later). Since these clusters were used in creating our
labeled data, all labeled words have both clusters. This results in a generalizability issue as
many other words may have one or no clusters. To solve this issue, we deliberately drop
either or both clusters for some labeled words in a random manner in order to allow other
general features to be trained for such cases.

4. To evaluate our segmenter’s ability to generalize to OOV, we randomly drop some test set
words from the training data to generate OOV’ that we can evaluate on. This allows us to
pick a system with high generalizability.

Unlabeled words in a training sentence. Unlike manually labeled data where all words in a training
sentence are labeled, our data may have many unlabeled words in a given training sentence. This
means that features of a rule cannot depend on the segmentation decision made for the previous
word since we cannot guarantee knowing that decision during training. Therefore, the decoder
cannot use the Viterbi algorithm; instead, it picks the segmentation rule with the highest score for
every word independently. We do, however, use features that look at the possible segmentation
rules of surrounding words which are inspired by the gender/number agreement of Arabic.

7.2 Features
Global linear models allow us to use millions of features to score the different rules of a given word
in context.

A feature is 1 if a certain condition is satisfied by the rule and 0 otherwise. For example, the
feature below fires up when a rule is trying to segment the prefix », wh+ “and will” from a stem
with four letters (which could be a present verb in Arabic):

1, iflength of stem s =4
¢1000(a — psq) = and prefix p = "wh+"
0, otherwise
Salloum (2018) includes a detailed description of the features we used, such as features based
on the main word and its segments, surrounding words, tokens’ length and frequency, affixes,

English and Arabic clusters, and affix correlation. We use the structured perceptron algorithm
with averaging (for regularization) to learn the weights of those features.

7.3 Experiments and evaluation

Experimental setup. We implement our own ASP trainer and decoder.We split the automatically
labeled examples from the previous step into train (~9.9M labeled tokens) and dev and test sets
(1M labeled tokens each).

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

Natural Language Engineering 241

Table 1. The segmentation decoder results in terms of accuracy (number of correct segmen-
tations/total number of tokens) on both the dev and blind test sets. The first section shows
the results on all tokens, while the following sections break the tokens down into categories

dev test

#correct / #tokens =accuracy #correct / #tokens = accuracy

All tokens 710,527 / T21,771 98.44% 684,123 / 693,994 98.58%

Breakdown by INVs and OOVs:

INVs 575,529 / 575531 ~100.00% 556,767 / 556,767 100.00%
00Vs 134,998 / 146,240 92.31% 127,356 / 137,227 92.81%
OOV categories:

NoArabic cluster 18,111 / 19,247 94.10% 14304 / 16,441 87.00%

No English cluster 66,756 / 72,694 91.83% 16,435 |/ 17,947 91.58%

Neither cluster 7423 / 8283 89.61% 1650 / 1959 84.23%
Both clusters 58,690 / 62,582 93.78% 98,689 / 104,798 94.17%
No segmentation 5641 / 7284 77.44% 7379 / 9441 78.16%

Evaluation. We ran hundreds of experiments in a linguistically motivated greedy approach to
engineer good feature types for our segmenter. The systems learned from the top-performing
feature type combinations were then evaluated by the MT experiments to pick the best segmenter.

We empirically determined the number of epochs to be 14. In development and test, we auto-
matically generate OOV's by randomly omitting Arabic and English clusters as discussed earlier.
This makes the non-cluster features fully responsible for segmenting those words without the
reliance on cluster features, which allows the segmenter to tune their weights and thus generalize
to actual MT sets’ OOVs.

Table 1 presents the performance of the best segmenter system in terms of accuracy on both
dev and test sets (the last two columns across all sections). The sections of the table represent
the breakdown of tokens into categories for in-depth evaluation. The accuracy scores for each
of these categories were used to engineer our feature types to ensure that they generalize to fre-
quent OOV belonging to those categories. We also make sure, while automatically generating
OOVs in dev/test sets, that we have enough tokens in each category to guarantee a representative
evaluation.

Since the segmenter’s job is to pick a segmentation rule out of a generated list of rules, we
evaluate only on words with more than one rule (multi-choice) which constitute 721,771 tokens
of the 1M-token dev set and 693,994 tokens of the 1M-token blind test set. The rest of the tokens
have only one segmentation rule: no segmentation. The first section of Table shows the accuracy
of the segmenter on multi-choice tokens. In the second section, we break down the evaluation to
in-vocabulary words (INVs) and OOVs.

Since we might not have Arabic or English clusters for many words in test sets, we define
four categories representing the absence of either cluster, both, or neither. These categories are
mutually exclusive. We also evaluate on OOVs that should not be segmented, yet have multiple
rules, to reduce our decoder’s over-segmentation. The third section of Table presents evaluation
on multi-choice OOV categories. The results on the dev set carry on to the blind test set.

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

242 W. Salloum and N. Habash

8. Evaluation on MT
8.1 MT experimental setup

MT train/tune/test data. We combine the training, dev, and test sets we used to train and evaluate
our segmenter into one parallel corpus and we use it to train our MT systems. The MT tune, dev,
and test sets, however, are selected from several standard MT test sets. We use three Egyptian
sets from LDC BOLT data with two references (EgyDevV2, EgyDevV3, and EgyTestV2), and one
Levantine set from BBN (Zbib et al. 2012) with one reference which we split into LevDev and
LevTest. We use EgyDevV3 to tune our SMT systems. We use the remaining sets for development
and test on both Egyptian and Levantine. For dev, we use EgyDevV2 and LevDev and for test
we use EgyTestV2 and LevTest. It is important to note that the segmenter has never seen these
tune/dev/test sets. The segmenter was only trained on the MT training data.

MT tools and settings. We use the open-source Moses toolkit (Koehn et al. 2007) to build our
Arabic-English phrase-based SMT systems.8 Our systems use a standard phrase-based architec-
ture. The language model for our systems is trained on English Gigaword (Graft and Cieri 2003).
We use SRILM Toolkit (Stolcke 2002) to build a 5-gram language model with modified Kneser-
Ney smoothing. Feature weights are tuned to maximize BLEU on the tuning set using minimum
error rate training (Och 2003). Results are presented in terms of BLEU (Papineni et al. 2002) and
METEOR (Banerjee and Lavie 2005). All evaluation results are case- insensitive. The English data
are tokenized using simple punctuation-based rules. The Arabic text is also Alif/Ya normalized.
For more details on processing Arabic, see (Habash 2010).

8.2 MT experiments

We use the same parallel data to train all of our MT systems and the same dev and test sets to
evaluate. The only difference is the preprocessing of the Arabic side of training, dev, and test data.
Table shows MT experiment results in terms of BLEU and METEOR on dev (first set of columns)
and blind test (second set of columns).

Baseline systems. We build three baseline MT systems to compare our systems against. In the
first baseline system, we Alif/Ya normalize the Arabic side but we leave it unsegmented. We
call this baseline MTuyyseementep. The other two baseline systems are based on two previ-
ous research efforts representing two approaches to morphological segmentation. The first is a
tool for language-independent, unsupervised learning of morphology: MORFESSOR (Creutz and
Lagus 2002) to segment the Arabic side, and the second is a dialect-specific tool that requires
handcrafted resources and is trained on hand-labeled data: MADAMIRA-EGY, the version of
MADAMIRA (Pasha et al. 2014) that handles Egyptian as well as MSA. We use these two tools
to preprocess Arabic and we name the resulting two MT systems after them: MTporpessor and
MTMapamira-Ey, respectively. All Arabic textual data (parallel and monolingual) were used to
train MORFESSOR.

The first section of Table 2 presents results on these baselines. On the dev set, MTyorrrssor
performs significantly better than MTuyxsgementep 00 Egyptian (1.6% BLEU, 1.4% METEOR)
and slightly better on Levantine (0.2% BLEU, 0.3% METEOR). This could be due to the lim-
ited Levantine text in MORFESSOR’s segmentation training data compared to Egyptian and MSA.

8This work is concerned with unsupervised segmentation of Arabic dialects, a preprocessing step that could help improve
the performance of any MT system, whether neural (NMT) or phrase-based SMT. We chose to evaluate on SMT over NMT
because, as of the time of this work, SMT systems still outperform NMT systems when it comes to Arabic dialects. This is
due to many reasons, one of which is the limited size of parallel data. In the recent work of (Oudah et al. 2019), the authors
showed that with 1.2M sentences in Standard Arabic, SMT outperformed NMT and there was a consistent added value of
segmentation.

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

Natural Language Engineering 243

Table 2. Evaluation in terms of BLEU and METEOR (MET) of our two MT systems,
MTconrexr-sensimive @and MTcontexr-InsensiTive , ON @ dev test (first set of columns) and a blind test
set (second set of columns), in comparison with three baselines, MTyysesmenteo s MTMorrEssOR »
and MTwapamira-Ecy - Results in bold show the highest performing system in the column.

Dev Test

Egy Lev Egy Lev

BLEU MET BLEU MET BLEU MET BLEU MET

MTuUnseomenTeD 192 270 135 213 218 281 133 217
MTMorressor 208 284 137 216 217 292 136 224
MT MabAuRA-EGY 215 290 152 224 23.0 300 152 231
MT ConText-Sensimive 210 283 156 229 224 293 156 236

MTconTexT-INSENSITIVE 21.4 29.2 16.2 23.5 23.0 29.9 16.3 24.0

Over MTynseouenten +2.2 +22 427 422 412 +18 +3.0 +23
Over MTyogressor +06 408 425 419 +13 407 427 +16

Over MTmapamira-Ecy —0.1 +0.2 +1.0 +1.1 0.0 —0.1 +1.1 +0.9

MTMapamira-Ecy outperforms the other baselines on both dialects on both metrics. An interest-
ing case is MTMapamira-Ecy results on Levantine dev: it improves over MTynseomenTeD DY 2.3%
BLEU, 2.0% METEOR, and over MTyiogrressor by 1.5% BLEU, 0.8% METEOR. MTMapamira-EGy S
good performance on Levantine can be explained by the fact that these two dialects share many
of their dialectal affixes and clitics (e.g., +-= H+ “will,” = b+ “simple present,” el - -Ik “to you™)
as well as many lemmas. Moreover, most of the phonological differences between Levantine and
Egyptian do not show up in the orthographic form since Arabic writers tend to drop short vowels
and spell some sounds etymologically, thus normalizing them, for example, the words for “leather”
(Egyptian /geld/, Levantine /3eled/, and MSA /dild/) are all written “= jld. This leads to many
Levantine words looking identical to their Egyptian equivalents although they are pronounced
differently.

Our MT systems. We present two MT systems to evaluate two of our segmentation models. The
first model is trained using the best-performing combination of context-sensitive and insensitive
features, while the second model uses the best-performing combination of context-insensitive
features only presented in Table 1. We call the resulting MT systems: MTconrext-Sensrrive and
MT context-InsEnsTIVE Tespectively. We present MT results on our systems in the second sec-
tion of Table. MT conrexr-Insensitive outperforms MTconrext-sensirive across dialects and metrics.
Investigating the output of both systems shows that the inconsistencies generated by context-
based segmentation outweighs the benefits of disambiguation, especially that phrase-based SMT
is robust toward infrequent systematic segmentation errors across training, tuning, and test sets.

The third section of Table 2 reports the differences between our best system’s results and
those of the three baselines. MT conrexr-InsensiTive improves over both resource-free baselines
(MTunseementep and MTyoreessor) across dev sets and metrics ranging from 2.2% BLEU on
Egyptian and 2.7% BLEU on Levantine over MTyyseomenTeD t0 0.6% BLEU on Egyptian and 2.5%
BLEU on Levantine over MTpmorressor- These results demonstrate the usefulness of such approach
where resources are unavailable.

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

244

W. Salloum and N. Habash

Table 3. An Arabic sentence .id Lally | od| g 357 43550 “We see them a lot in the Hamra and
Salehieh markets.” translated by the three baselines and our best system

System Processed Arabic English Translation

MTunsecmenTeD bnSwfhn ktyr bswq AlHmrA WAISAIHyp red market ; we see
WAISAlHyp them influenced a lot

MTMorressor b+ nSwfhn ktyr b+ swq to see them a lot in the market

MTMADAM\RA-EGV

MTCONTEXT -INSENSITIVE

AlHmrA w+ Al+ SAlHyp

bn$wfhn ktyr b+ swq AlHmrA
WAISAlHyp

bn+ Swf -hn ktyr b+ swq Al+
HmrA w+ AISAlHyp

the red salihiyah,

we see a lot of hamra
WAISAIHyp market

we see them a lot in souk al
hamra and al-saleheyya

When compared to MTmMapamira-Ecy» however, performance on Egyptian differs from
Levantine. The results on Egyptian are inconclusive: in terms of BLEU, MTMapamira-Ey leads
by 0.1%, while in terms of METEOR, MTconrext-Insensitive leads by 0.2%. These results mean
that our best MT system is on par with MTmapamira-Egy on Egyptian, which we consider
a good result since MADAMIRA-EGY has been optimized for years with a wealth of dialect
and task-specific resources. On Levantine, however, our system outperforms MTyapamira-Ecy
by 1.0% BLEU, 1.1% METEOR. The results on blind test sets, presented in the second set
of columns of Table 2 (Test), agree with the results on the dev sets and confirm their
conclusions.

8.3 Example and discussion

Table 3 presents an example Levantine sentence translated by the three baselines and our best
system. While each baseline has its own errors, our system produces a perfect translation although
the reference does not match it word-for-word due to the several acceptable transliterations of the
mentioned proper names found in our MT training data." This results in penalties by BLEU and,
in this example, METEOR; nevertheless, the translation is sound. The example contains words
with different characteristics that are handled differently and sometimes similarly by the four
systems:

1. The word .g.:i bn$wfhn “we see them” has rich Levantine morphology. Unlike
MTMorrzssor and MTyrapamira-Egy, our system segments this word to three tokens that
map directly to the three English words of the correct translation.

2. The word 3. bswq “in market” has MSA morphology and is segmented cor-
rectly by all systems (except MTuxsegmentep) Which results in correct translations
(MTconrext-InsEnsiTive translates swq to “Souk,” a correct transliteration found in our MT
training data since it is frequently part of a proper noun).

3. The word .41 AIHmrA “Al Hamra” (“Al” is the definite article in Arabic) is a proper noun
although the word literally means “red” which led to the mistakes by MTunseementep and
MTMorrEssor: Both MT CoNTEXT-INSENSITIVE and MTMapaMIrRA-EGY produce an acceptable
transliteration.

"None of the systems discussed in this work has a transliteration component. All transliterations produced by these systems
(e.g., the different transliterations of AISAIHyp) are found in our MT training data.

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

Natural Language Engineering 245

4. The word i\, wAISAIHyp “and Al Salehieh” is the name of the second market
with the conjunction particle 5 w “and” attached to it. Both MTconrext-InsensiTive and
MTMorezssor Succeed in segmenting this word to produce an acceptable translation and
transliteration, although MTmoresssor fails to produce “and.” This word shows an advan-
tage that our segmenter and MORFESSOR have over MADAMIRA-EGY. Since they learn
their morphemes and stems from data, they can better handle morphologically inflected
proper nouns and dialectal/infrequent lemmas that do not appear in MADAMIRA-EGY’s
internal morphological analyzer database.

9. Conclusion and future directions

In this work, we presented an approach to cheaply scale morphological segmentation to many
dialects without the need for DA preprocessing tools. This approach attempts at learning an
underlying Arabic preprocessing models for all Arabic varieties, including MSA. The approach
expects a small amount of DA-English parallel data along with a sizable amount of MSA-English
data.

Our approach learns out-of-context preprocessing rules for DA from unlabeled monolingual
data. We use an unsupervised approach applied on large quantities of unlabeled Arabic text to
extract a list of out-of-context preprocessing rules with weights estimated with EM. We use these
rules in another unsupervised learning approach to automatically label words in the dialectal side
of a DA-English parallel corpus. In a given DA sentence, a word is labeled in context with its best
preprocessing rule which generates tokens that maximize alignment and translation to English
words in the English translation of the corresponding sentence. This synthetic labeled corpus
is used to train a supervised segmenter with features designed to capture general orthographic,
morphological, and morphosyntactic behavior in Arabic words in order to generalize to unseen
words.

We evaluated our approach on morphological segmentation and showed significant improve-
ments on Egyptian and Levantine compared to other unsupervised segmentation systems. We also
showed that our system is on par with the state-of-the-art morphological tokenizer for Egyptian
Arabic built with supervised learning approaches that require manually labeled data, a large bud-
get, and years to build. This shows that our approach can cheaply and quickly scale to more
dialects while still performing on par with the best supervised learning algorithm. Furthermore,
our evaluation on Levantine Arabic showed an improvement of 3% over an unsegmented base-
line, 2.7% over the unsupervised segmentation system, and 1.1% over the supervised tokenization
system, in terms of BLEU. This is especially important given that our system was not trained on
monolingual Levantine text, which means that Levantine preprocessing rules were not learned;
yet, our segmenter was able to generalize to Levantine.

In the future, we plan to evaluate our work on more dialects and subdialects where DA-English
may or may not be available. We also plan to apply our approach to tasks other than morphological
segmentation.

Acknowledgements. This research was supported in part by the Defense Advanced Research Projects Agency (DARPA)
GALE program, contract HR0011-06-C-0022, and the DARPA BOLT program, contract No. HR0011-12-C-0014. Any opin-
ions, findings, conclusions, or recommendations expressed in this work are those of the authors and do not necessarily reflect
the view of DARPA.

References

Abdelali A., Darwish K., Durrani N. and Mubarak H. (2016). Farasa: A Fast and Furious Segmenter for Arabic. In
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:
Demonstrations. San Diego, California: Association for Computational Linguistics, pp. 11-16.

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

246 W. Salloum and N. Habash

Abo Bakr H., Shaalan K. and Ziedan I. (2008). A hybrid approach for converting written Egyptian colloquial dialect into
Diacritized Arabic. In The 6th International Conference on Informatics and Systems, INFOS2008. Cairo University.

Al-Badrashiny M., Pasha A., Diab M.T., Habash N., Rambow O., Salloum W. and Eskander R. (2016). SPLIT: Smart
Preprocessing (Quasi) Language Independent Tool. In Proceedings of the Tenth International Conference on Language
Resources and Evaluation (LREC-2016).

Al-Sabbagh R. and Girju R. (2010). Mining the web for the induction of a Dialectical Arabic Lexicon. In Calzolari N.,
Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M. and Tapias, D. (eds), LREC. European Language
Resources Association.

Banerjee S. and Lavie A. (2005). METEOR: An automatic metric for MT evaluation with improved correlation with human
judgments. In Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation
and/or Summarization, pp. 65-72.

Brown P.F., Pietra S.A. Della P., Della V.J. and Mercer, R.L. (1993). The mathematics of statistical machine translation:
Parameter estimation. Computational Linguistics, 19, 263-312.

Buckwalter T. (2004). Buckwalter Arabic Morphological Analyzer Version 2.0. LDC catalog number LDC2004L02, ISBN
1-58563-324-0.

Callison-Burch C., Koehn P. and Osborne M. (2006). Improved statistical machine translation using paraphrases. In
Proceedings of the Human Language Technology Conference of the NAACL, Main Conference, pp. 17-24.

Chiang D., Diab M., Habash N., Rambow O. and Shareef S. (2006). Parsing arabic dialects. In Proceedings of the European
Chapter of ACL (EACL).

Creutz M. and Lagus K. (2002). Unsupervised discovery of morphemes. In: ACL 2002 Workshop on Morphological and
Phonological Learning. ACL.

Creutz M. and Lagus K. (2007). Unsupervised models for morpheme segmentation and morphology learning. ACM
Transactions on Speech and Language Processing (TSLP), 4(1).

Diab M., Hacioglu K. and Jurafsky D. (2007). Automated methods for processing Arabic text: From tokenization to
base phrase chunking. In van den Bosch A. and Soudi A.morphological analyzer for Egyptian Arabic (eds), Arabic
Computational Morphology: Knowledge-based and Empirical Methods. Kluwer/Springer.

Du J., Jiang J. and Way A. (2010). Facilitating translation using source language paraphrase lattices. In Proceedings of the
2010 Conference on Empirical Methods in Natural Language Processing. EMNLP 2010, pp. 420-429.

Duh K. and Kirchhoff K. (2005). POS tagging of dialectal Arabic: A minimally supervised approach. In Proceedings of the
ACL Workshop on Computational Approaches to Semitic Languages, Semitic 2005, pp. 55-62.

El Kholy A. and Habash N. (2010). Techniques for Arabic morphological detokenization and orthographic denormalization.
In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC).

Erdmann A., Khalifa S., Oudah M., Habash N. and Bouamor H. (2019). A little linguistics goes a long way: Unsupervised
segmentation with limited language specific guidance. In Proceedings of the 16th Workshop on Computational Research in
Phonetics, Phonology, and Morphology. Florence, Italy: Association for Computational Linguistics, pp. 113-124.

Eskander R., Habash N. and Rambow O. (2013). Automatic extraction of morphological lexicons from morphologically
annotated corpora. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Seattle,
Washington, USA: Association for Computational Linguistics, pp. 1032-1043.

Eskander R., Habash N., Rambow O. and Pasha A. (2016). Creating resources for dialectal Arabic from a single annota-
tion: A case study on Egyptian and Levantine. In Proceedings of the International Conference on Computational Linguistics
(COLING), pp. 3455-3465.

Graff D. and Cieri C. (2003). English Gigaword, LDC Catalog No.: LDC2003T05. Linguistic Data Consortium, University of
Pennsylvania.

Graff D., Maamouri M., Bouziri B., Krouna S., Kulick S. and Buckwalter T. (2009). Standard Arabic Morphological
Analyzer (SAMA) Version 3.1. Linguistic Data Consortium LDC2009E73.

Habash N. (2006). On Arabic and its dialects. Multilingual Magazine, 17(81).

Habash N. (2010). Introduction to Arabic Natural Language Processing. Morgan & Claypool Publishers.

Habash N. and Rambow O. (2005). Arabic tokenization, part-of-speech tagging and morphological disambiguation in one
fell swoop. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL 2005), pp.
573-580.

Habash N. and Rambow O. (2006). MAGEAD: A morphological analyzer and generator for the Arabic dialects. In
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association
for Computational Linguistics, pp. 681-688.

Habash N. and Sadat F. (2006). Arabic preprocessing schemes for statistical machine translation. In Proceedings of the
Human Language Technology Conference of the NAACL, Companion Volume: Short Papers, pp. 49-52.

Habash N., Soudi A. and Buckwalter T. (2007). On Arabic transliteration. In van den Bosch A. and Soudi A. (eds.), Arabic
Computational Morphology: Knowledge-based and Empirical Methods. Springer.

Habash N., Eskander R. and Hawwari A. (2012a). A morphological analyzer for Egyptian Arabic. In NAACL-HLT 2012
Workshop on Computational Morphology and Phonology (SSIGMORPHON2012), pp. 1-9.

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

Natural Language Engineering 247

Habash N., Eskander R. and Hawwari A. (2012b). A morphological analyzer for Egyptian Arabic. In Proceedings of the
Twelfth Meeting of the Special Interest Group on Computational Morphology and Phonology, pp. 1-9.

Habash N., Diab M. and Rabmow O. (2012c). Conventional orthography for dialectal Arabic. In Proceedings of the Language
Resources and Evaluation Conference (LREC).

Habash N., Roth R., Rambow O., Eskander R. and Tomeh N. (2013). Morphological analysis and disambiguation for dialec-
tal Arabic. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT).

Habash N., Eryani F., Khalifa S., Rambow O., Abdulrahim D., Erdmann A., Faraj R., Zaghouani W., Bouamor H.,
Zalmout N., Hassan S., Shargi F.A., Alkhereyf S., Abdulkareem B., Eskander R., Salameh M. and Saddiki H. (2018).
Unified guidelines and resources for Arabic Dialect orthography. In: Proceedings of the Language Resources and Evaluation
Conference (LREC).

Hajic J., Hric J. and Kubon V. (2000). Machine translation of very close languages. Proceedings of the 6th Applied Natural
Language Processing Conference (ANLP 2000), pp. 7-12.

Hamdi A., Boujelbane R., Habash N., Nasr A., et al. (2013). The effects of factorizing root and pattern mapping in
bidirectional Tunisian-Standard Arabic machine translation. MT Summit 2013.

Khalifa S., Zalmout N. and Habash N. (2016). YAMAMA: Yet another multi-dialect Arabic morphological analyzer. In
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations.
Osaka, Japan: The COLING 2016 Organizing Committee, pp. 223-227.

Khalifa S., Hassan S. and Habash N. (2017). A morphological analyzer for Gulf Arabic verbs. In Proceedings of the Workshop
for Arabic Natural Language Processing (WANLP).

Kilany H., Gadalla H., Arram H., Yacoub A., El-Habashi A. and McLemore C. (2002). Egyptian Colloquial Arabic Lexicon.
LDC catalog number LDC99L22.

Koehn P., Hoang H., Birch A., Callison-Burch C., Federico M., Bertoldi N., Cowan B., Shen W., Moran C., Zens R.,
Dyer C., Bojar O., Constantin A. and Herbst E. (2007). Moses: Open source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion Volume Proceedings of
the Demo and Poster Sessions, pp. 177-180.

Kumar S., Och F.J. and Macherey W. (2007). Improving word alignment with bridge languages. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pp. 42-50.

Mikolov T., Chen K. Corrado G. and Dean J. (2013). Efficient estimation of word representations in vector space. CoRR.

Mohamed E., Mohit B. and Oflazer K. (2012). Annotating and learning morphological segmentation of Egyptian colloquial
Arabic. In Proceedings of the Language Resources and Evaluation Conference (LREC).

Nakov P. and Ng H.T. (2011). Translating from morphologically complex languages: A paraphrase-based approach. In
Proceedings of the Meeting of the Association for Computational Linguistics (ACL 2011).

Narasimhan K., Barzilay R. and Jaakkola T. (2015). An unsupervised method for uncovering morphological chains.
Transactions of the Association for Computational Linguistics (TACL), 3, 157-167.

Och F.J. (2003). Minimum error rate training for statistical machine translation. In Proceedings of the 41st Annual Conference
of the Association for Computational Linguistics, pp. 160-167.

Och F.J. and Ney H. (2003a). A systematic comparison of various statistical alignment models. Computational Linguistics,
29(1), 19-51.

Och F.J. and Ney H. (2003b). A systematic comparison of various statistical alignment models. Computational Linguistics,
29(1), 19-52.

Oudah M., Almahairi A. and Habash N. (2019). The impact of preprocessing on Arabic-English statistical and neural
machine translation. CoRR, abs/1906.11751.

Papineni K., Roukos S., Ward T. and Zhu W.-J. (2002). BLEU: A method for automatic evaluation of machine translation.
In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311-318.

Parker R., Graff D., Chen K., Kong J. and Maeda K. (2009). Arabic Gigaword Fourth Edition. LDC catalog number No.
LDC2009T30, ISBN 1-58563-532-4.

Pasha A., Al-Badrashiny M., Diab M.T., El Kholy A., Eskander R., Habash N., Pooleery M., Rambow O. and Roth R.
(2014). MADAMIRA: A fast, comprehensive tool for morphological analysis and disambiguation of Arabic. In Proceedings
of the Ninth International Conference on Language Resources and Evaluation (LREC-2014).

Riesa J. and Yarowsky D. (2006). Minimally supervised morphological segmentation with applications to machine trans-
lation. In Proceedings of the 7th Conference of the Association for Machine Translation in the Americas (AMTA 2006),
pp. 185-192.

Sadat F. and Habash N. (2006). Combination of Arabic preprocessing schemes for statistical machine translation. In
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association
for Computational Linguistics. Sydney, Australia: Association for Computational Linguistics, pp. 1-8.

Sajjad H., Darwish K. and Belinkov Y. (2013). Translating dialectal Arabic to English. In The 51st Annual Meeting of the
Association for Computational Linguistics - Short Papers (ACL Short Papers 2013), Sofia, Bulgaria.

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455

248 W. Salloum and N. Habash

Salloum W. (2018). Machine Translation of Arabic Dialects. Ph.D. thesis, Columbia University in the City of New York.

Salloum W. and Habash N. (2011). Dialectal to standard Arabic paraphrasing to improve Arabic-English statistical machine
translation. In Proceedings of the First Workshop on Algorithms and Resources for Modelling of Dialects and Language
Varieties, pp. 10-21.

Salloum W. and Habash N. (2012). Elissa: A dialectal to standard Arabic machine translation system. In Proceedings of the
24th International Conference on Computational Linguistics (COLING 2012): Demonstration Papers, pp. 385-392.

Salloum W. and Habash N. (2013). Dialectal Arabic to English machine translation: Pivoting through modern stan-
dard Arabic. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT).

Samih Y., Eldesouki M., Attia M., Darwish K., Abdelali A., Mubarak H. and Kallmeyer L. (2017a). Learning from relatives:
Unified dialectal Arabic segmentation. In Proceedings of the 21st Conference on Computational Natural Language Learning
(CoNLL 2017). Vancouver, Canada: Association for Computational Linguistics, pp. 432-441.

Samih Y., Attia M., Eldesouki M., Abdelali A., Mubarak H., Kallmeyer L. and Darwish K. (2017b). A neural architecture
for dialectal Arabic segmentation. In Proceedings of the Third Arabic Natural Language Processing Workshop. Valencia,
Spain: Association for Computational Linguistics, pp. 46-54.

Sawaf H. (2010). Arabic dialect handling in hybrid machine translation. In Proceedings of the Conference of the Association
for Machine Translation in the Americas (AMTA).

Schone P. and Jurafsky D. (2000). Knowledge-free induction of morphology using latent semantic analysis. In Proceedings
of CoNLL-2000 and LLL-2000, pp. 67-72.

Stallard D., Devlin J., Kayser M., Lee Y.K. and Barzilay R. (2012). Unsupervised morphology rivals supervised morphology
for Arabic MT. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers-
Volume 2. Association for Computational Linguistics, pp. 322-327.

Stolcke A. (2002). SRILM an Extensible Language Modeling Toolkit. In Proceedings of the International Conference on Spoken
Language Processing.

Utiyama M. and Isahara H. (2007). A comparison of pivot methods for phrase-based statistical machine translation. In
HLT-NAACL, pp. 484-491.

Zalmout N. and Habash N. (2017a). Don’t throw those morphological analyzers away just yet: Neural morphological disam-
biguation for Arabic. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
704-713.

Zalmout N. and Habash N. (2017b). Optimizing tokenization choice for machine translation across multiple target
languages. The Prague Bulletin of Mathematical Linguistics, 108(1), 257-269.

Zalmout N. and Habash N. (2019). Adversarial multitask learning for joint multi-feature and multi-dialect morphologi-
cal modeling. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy:
Association for Computational Linguistics, pp. 1775-1786.

Zbib R., Malchiodi E., Devlin J., Stallard D., Matsoukas S., Schwartz R., Makhoul J., Zaidan O.F. and Callison-Burch C.
(2012). Machine translation of Arabic dialects. In Proceedings of the 2012 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies. Montréal, Canada: Association for
Computational Linguistics, pp. 49-59.

Zhang X. (1998). Dialect MT: A case study between Cantonese and Mandarin. In Proceedings of the 36th Annual Meeting of
the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, ACL 1998,
pp. 1460-1464.

Cite this article: Salloum W and Habash N (2022). Unsupervised Arabic dialect segmentation for machine translation.
Natural Language Engineering 28, 223-248. https://doi.org/10.1017/S1351324920000455

https://doi.org/10.1017/51351324920000455 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000455
https://doi.org/10.1017/S1351324920000455

	
	Introduction
	DA challenges
	Related work
	Dialectal Arabic natural language processing
	 MT of dialects
	 Supervised learning approaches to morphological segmentation
	 Unsupervised learning approaches to morphological segmentation
	Our approach to unsupervised segmentation
	Monolingual identification of segmentation rules
	 Word clustering based on word embeddings
	 Rule learning
	 Rule scoring
	 Experimental data
	Alignment guided segmentation choice
	 Approach
	 The alignment model
	 Parameter estimation with EM
	Supervised segmentation using synthetic data
	 Challenges of automatically labeled data
	 Features
	 Experiments and evaluation
	Evaluation on MT
	 MT experimental setup
	MT experiments
	 Example and discussion
	Conclusion and future directions

