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Transient dynamics of an elastic Hele-Shaw cell
due to external forces with application to

impact mitigation

A. Tulchinsky1 and A. D. Gat1,†
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(Received 12 January 2016; revised 19 May 2016; accepted 14 June 2016;
first published online 12 July 2016)

We study the transient dynamics of a viscous liquid contained in a narrow gap
between a rigid surface and a parallel elastic plate. The elastic plate is deformed
due to an externally applied time-varying pressure field. We model the flow field via
the lubrication approximation and the plate deformation by the Kirchhoff–Love plate
theory. We obtain a self-similarity solution for the case of an external point force
acting on the elastic plate. The pressure and deformation field during and after the
application of the external force are derived and presented by closed-form expressions.
We examine a distributed external pressure, spatially uniform and linearly increasing
with time, acting on the elastic plate over a finite region and during a finite time
period, similar to the viscous–elastic interaction time-scale. The interaction between
elasticity and viscosity is shown to reduce by an order of magnitude the pressure
within the Hele-Shaw cell compared with the externally applied pressure. The results
thus suggest that elastic Hele-Shaw configurations may be used to achieve significant
impact mitigation.

Key words: Hele-Shaw flows, low-Reynolds-number flows, lubrication theory

1. Introduction
We study the transient dynamics of a viscous liquid contained in the narrow gap

between a flat rigid surface and a parallel elastic plate, subjected to an external
time-varying pressure field. In such configurations, external energy applied to the
system does not immediately dissipate owing to the creation of elastic potential
energy, yielding viscous–elastic transient dynamics.

Recent works on external-force-induced fluid-structure dynamics include Duchemin
& Vandenberghe (2014), who examined the response of a thin elastic sheet, floating
over a liquid, to impact by a small rigid body. A similar configuration was studied
by Vella et al. (2015), who examined the formation and evolution of wrinkles due to
indentation of a thin elastic plate floating over a liquid surface. In addition, various
works have focused on embedding shear-thickening fluids within elastic structures in
order to modify stiffness and damping properties under dynamic deformations and
enhance impact mitigation. These include Fischer et al. (2006), who experimentally
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studied the response of a beam, integrated with a shear-thickening liquid layer,
to oscillatory excitations. Fabrics impregnated with shear-thickening fluids and
subjected to ballistic impacts were numerically examined by Lee & Kim (2012)
and experimentally by Lee, Wetzel & Wagner (2003), who measured the ballistic
penetration length. Tan et al. (2016) examined the dynamic response of two parallel
elastic plates, separated by a layer filled with a shear-thickening fluid, and subjected
to external projectiles.

Works involving viscous flow in the gap between an elastic plate and a rigid
surface include Chauhan & Radke (2002), who examined a configuration of an
elastic shell positioned over a viscous film laying on a rigid surface in the context
of contact-lens dynamics during blinking. Corneal air-puff tests, which examine the
intraocular pressure via an air jet applied to the eye (Han et al. 2014), also include
a similar configuration of an external pressure applied to an elastic shell laying
over a liquid film. The peeling and busting dynamics of a viscous liquid contained
between a rigid surface and an elastic sheet were studied by Hosoi & Mahadevan
(2004) and Lister, Peng & Neufeld (2013). Taylor–Saffman instability in elastic
Hele-Shaw cell configurations was examined by Pihler-Puzović et al. (2012) and
Al-Housseiny, Christov & Stone (2013), who showed that elasticity delays the onset
of the instability. Trinh, Wilson & Stone (2014) studied an elastic plate, either pinned
or free-floating, moving over a thin viscous film layer. The displacement dynamics
of a liquid entrained between an elastic sheet and a rigid surface, due to injection of
another fluid, was studied experimentally, numerically and analytically by Peng et al.
(2015) and Pihler-Puzović et al. (2015).

The aim of this work is to relate the externally applied pressure field to the elastic
deformation and pressure distribution created within the Hele-Shaw cell, during
and after the application of an external pressure field. Specifically, we examine the
pressure impulse mitigation properties of such configurations. This work is arranged
as follows. In § 2 we present the problem formulation. In § 3 we obtain relevant
Green’s functions and self-similar solutions for the governing equations. In § 4 we
examine the system dynamics during and after application of external forces and the
impulse mitigation properties of such configurations. In § 5 we present experimental
data, and we conclude in § 6.

2. Problem formulation

We study transient creeping flow in the narrow gap between a rigid surface and a
parallel elastic plate due to time-varying external pressure acting on the elastic plate.
The configuration and coordinate system are defined in figure 1. Hereafter, asterisked
superscripts denote characteristic values and capital letters denote normalized variables.
The subscript ⊥ denotes the vector component perpendicular to the x–y plane and no
subscript denotes the two-dimensional vector components parallel to the x–y plane.

The liquid pressure is p, the liquid velocity is v = (u, u⊥), the gap between the
surfaces is h, the liquid viscosity is µ, the liquid density is ρl, the deformation of the
plate is d, the plate bending resistance is s, the plate thickness is b, the plate density
is ρs, and the external pressure field is pe. The characteristic length scale in the x–y
plane is l∗, the characteristic liquid pressure is p∗, the initial liquid film height is h0,
the characteristic deformation is d∗, the characteristic speed in the x–y plane is u∗,
the characteristic speed in the z direction is u∗⊥ and the characteristic stress resultant
acting perpendicular to the z direction is n∗.
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FIGURE 1. (Colour online) Illustration of the configuration and coordinate system. The
plates are parallel to the x–y plane. pe(x, y, t) is the external pressure field and h is the
gap between the rigid surface and the elastic plate.

We define the small parameters

ε1 = h0

l∗
� 1, ε2 = d∗

h0
� 1,

ρlh2
0

µt∗
� 1,

ρsbl∗4

t∗2s
� 1,

n∗d∗

l∗2p∗
� 1 (2.1a−e)

corresponding to assumptions of shallow geometry, small ratio of transverse plate
deformations to viscous film height, small Womersley number, negligible solid inertia
and negligible membrane effects, respectively. Under the assumptions given in (2.1),
the Hele-Shaw cell’s upper elastic plate dynamics are governed by the Kirchhoff–Love
equation (Timoshenko & Woinowsky-Krieger 1959)

−s∇4d+ p− pe = 0, (2.2)

where order of magnitude analysis yields p∗= sd∗/l∗4. The boundary condition requires
that sufficiently far from the location of the external force the deformation vanishes

d(|x|→∞)→ 0. (2.3)

The Newtonian, incompressible fluid located within the elastic cell is governed by the
continuity

(∇,∇⊥) · v = 0, (2.4)

and momentum equations

ρl

(
∂v

∂t
+ v · (∇,∇⊥)v

)
=−(∇,∇⊥)p+µ(∇,∇⊥)2v, (2.5)

with the boundary condition that pressure is uniform sufficiently far from the location
of the external pressure

∇p(|x|→∞)→ 0, (2.6)

as well as no-slip and no-penetration at the solid–liquid interfaces

(u, u⊥)
∣∣

z=−h = (0, 0), (u, u⊥)
∣∣

z=d =
(
∂d
∂t
+ u · ∇d,−b

2
∇

(
∂d
∂t

))
, (2.7a,b)

where the term (b/2)∇(∂d/∂t) represents in-plane velocities due to angular speed.
We define the normalized variables

P= p
p∗
, (X, X⊥)=

(
x
l∗
,

x⊥
h0

)
, (U,U⊥)=

(
u
u∗
,

u⊥
u∗⊥

)
, D= d

d∗
, (2.8a−d)
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corresponding to the normalized pressure P, coordinates (X,Z), fluid velocity (U,U⊥)
and solid deformation D. Substituting (2.8) into (2.5) and (2.4) yields, in leading order,
the lubrication approximation

∇P= 1
12
∇2
⊥U+O

(
ρlh2

0

µt∗
, ε2

1

)
, ∇⊥P=O

(
ε2

1
ρlh2

0

µt∗
, ε4

1

)
(2.9a,b)

and
∂U⊥
∂Z
+∇ ·U= 0, (2.10)

where order of magnitude yields p∗ = 12µu∗l∗/h2
0 and u∗ = u∗⊥/ε1. Substituting (2.8)

into (2.7) yields the leading-order boundary conditions

(U,U⊥)
∣∣

Z=−1= (0, 0), (U,U⊥)
∣∣

Z=ε2D=
(

O
(
ε1b
l∗

)
,
∂D
∂T
+O

(
ε1ε2b

l∗

))
, (2.11a,b)

where order of magnitude analysis yields u∗⊥ = d∗/t∗. Substituting (2.9) into (2.10),
integrating with respect to Z,

∂D
∂T
−∇2P=O (ε2) . (2.12)

Substituting (2.2) into (2.12) yields the governing equation in terms of deflection D

∂D
∂T
−∇6D=∇2Pe, (2.13)

with boundary condition D(X→∞)→ 0. Alternatively, the governing equation can
be presented with regard to the pressure

∂P
∂T
−∇6P= ∂Pe

∂T
, (2.14)

with boundary condition P(X → ∞) → 0. Equations (2.14) and (2.13) are the
linearized, inhomogeneous form of the sixth-order thin-film equation (Flitton &
King 2004; Al-Housseiny et al. 2013; Lister et al. 2013).

Combining the results from order of magnitude analysis, the characteristic viscous–
elastic time t∗ may be obtained as well as alternative expressions of plate deformation
d∗ and in-plane fluid velocity u∗,

t∗ = 12µl∗6

h3
0s

, d∗ = p∗h2
0t∗2/3

s1/3(12µ)2/3
, u∗ = d∗h2

0s
12µl∗5

. (2.15a−c)

Since we are examining an infinite configuration, there is no inherent length scale
l∗ to the problem and only a relation between t∗ and l∗ may be obtained. However,
t∗ and l∗ may be defined by the external actuation pe. For an external pressure
field pe(x, t) with characteristic pressure p∗, characteristic length le and characteristic
time te, we may set either l∗ = le or t∗ = te (but not necessarily both). If setting
l∗ = le yields te/t∗ � 1, viscous–elastic dynamics may be neglected and we obtain
p(x, t)/pe(x, t)→ 1, d(x, t)/d∗→ 0. For the case in which setting l∗= le yields te∼ t∗,
the characteristic parameters may be computed from (2.15). However, if setting l∗= le
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yields te/t∗ � 1, the scaling is inconsistent and the viscous–elastic dynamics takes
place on a length scale much greater than le. In this case the characteristic time scale
should be defined by the external actuation t∗ = te instead of its length scale. The
characteristic length scale of the viscous–elastic interaction can then be estimated
from l∗ = (teh3

0s/12µ)1/6� le.
In addition, substituting (2.15) into (2.1) makes it possible to more clearly define

the range of validity of the assumptions, yielding an equivalent definition of the
Womersley number ε5

1ρls/12µ2l∗ � 1, and negligible plate inertia requirements
ε6

1ρsbs/144µ2l∗ � 1. Utilizing order-of-magnitude analysis of the plate’s in-plane
force equilibrium n∗ = µu∗l∗/h0, we obtain that the requirement for negligible
membrane effects simplifies to ε2ε

2
1 � 1. Therefore, the requirements of shallow

geometry ε1= h0/l∗ and small deformation to viscous film height ratio ε2= d∗/h0 are
sufficient in order to neglect membrane effects.

In the following sections we examine external pressures modelled as the Dirac delta
function in time. The Dirac delta function represents an external pressure field that
satisfies le/l∗ � 1 and te/t∗ � 1. In this case we may choose arbitrarily t∗ or l∗ of
interest, where we effectively only examine dynamics after the end of the external
application of pressure. Due to the self-similar nature of the problem, the demand on
order of magnitude smaller length-scale le/l∗ � 1 may be translated into additional
demand on the time scale te/t∗ � 1. Thus, any external pressure distributed over a
length scale of le may be modelled as the Dirac delta function for sufficiently large
t∗� 12µl6

e/h
3
0 s. The validity of the assumptions (2.1) during the pressure application

period should be examined with regard to te and le, representing dynamics during the
pressure application, not the arbitrarily chosen t∗ and l∗ time and length scales.

3. Green’s functions and self-similarity

The Green’s function of (2.13) and (2.14) is given by Satsanit & Kananthai (2009)
as

G= 1
4π2

∫
R2

e−(T−T̄)|λ|6+iλ·(X−X̄) dλ, T > T̄, (3.1)

where X̄ and T̄ are the location and time of the delta function, respectively.
Equation (3.1) represents the solution for the evolution of the pressure for external
pressure, ∂Pe/∂T = δ(T − T̄)δ(X − X̄), and thus Pe = θ(T − T̄)δ(X − X̄) + C1(X).
Similarly, equation (3.1) represents the solution for the evolution equation of
the deformation (2.13) for ∂2Pe/∂X2 = δ(T − T̄)δ(X − X̄) and thus Pe = δ(T −
T̄)θ(X − X̄)X + X · C1(T) + C2(T). We note that external pressures of the form
Pe = X ·C1(T)+C2(T) do not create deformation of the plate.

Equation (3.1) may be interpreted as the inverse Fourier transform, where the
argument of transformation is e−(T−T̄)|λ|6 . Furthermore, the radial symmetry of the
argument enables representation of (3.1) by the inverse Hankel transform

G= 1
2π

∫ ∞
0

e−(T−T̄)ρ6
J0(ρ|X− X̄|)ρ dρ. (3.2)

Expressing the Bessel function in a series form, and integrating each element
according to ∫ ∞

0
lme−βlndl= Γ (γ )

nβγ
, γ = m+ 1

n
, (3.3)
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where Γ (γ ) is the gamma function, yields a self-similar expression

G= Ψ (η)

(T − T̄)1/3
, η= |X− X̄|

6(T − T̄)1/6
, (3.4)

where

Ψ (η)= 1
12π

∞∑
m=0

32mΓ (1+m/3)(−1)m

Γ (m+ 1)2
η2m. (3.5)

We decompose the series into three separate series

∞∑
k=0

amη
k =

∞∑
k=0

a3kη
3k +

∞∑
k=0

a3k+1η
3k+1 +

∞∑
k=0

akm+2η
3k+2 (3.6)

thus yielding a closed-form expression in terms of generalized hyper-geometric
functions (Slater 1966; Bailey 1972)

Ψ (η) = 1
12π

[
Γ

(
1
3

)
0F4

(
; 1

3
,

2
3
,

2
3
, 1; −η6

)
−9η2Γ

(
2
3

)
0F4

(
; 2

3
, 1,

4
3
,

4
3
; −η6

)
+ 81

4
η4

0F4

(
; 4

3
,

4
3
,

5
3
,

5
3
; −η6

) ]
.

(3.7)

While the function presented in (3.7) can be used by convolution to obtain a
general solution, more insight may be obtained from a solution for the case of
Pe = δ(X − X̄)δ(T − T̄). This may be achieved without convolution by applying the
Laplacian operator in terms of X̄ (i.e. ∆X̄) on the equation defining the Green’s
function. Linearity of the equation, and the relation ∆X̄δ(X− X̄)=1δ(X− X̄), yields(

∂

∂T
−∇6

)
∆X̄G=1δ(X− X̄)δ(T − T̄). (3.8)

Thus, the deformation field due to a unit impulse is

Gd =∆X̄G= Ψd(η)

(T − T̄)2/3
, (3.9)

where

Ψd = − 1
48π

[
4Γ
(

2
3

)
0F4

(
; 1

3
,

1
3
,

2
3
, 1; −η6

)
+ 27η4Γ

(
1
3

)
0F4

(
; 1, 4

3
,

5
3
,

5
3
; −η6

)
− 36η2

0F4

(
; 2

3
,

2
3
,

4
3
,

4
3
; −η6

) ]
. (3.10)

A similar approach may be used to obtain the pressure field due to a unit impulse,
yielding

Gp =−∂G
∂T̄
= Ψp(η)

(T − T̄)4/3
, (3.11)
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FIGURE 2. The similarity shape function versus η: (a) pressure (solid), radial liquid
velocity (dashed), transverse liquid velocity (dotted); (b) deformation (solid), bending
moment (dashed) and transverse shear force (dotted).

where

Ψp = − 1
36π

[
Γ

(
1
3

)
1F5

(
4
3
; 1

3
,

1
3
,

2
3
,

2
3
, 1; −η6

)
+ 243

4
η4

1F5

(
2; 1, 4

3
,

4
3
,

5
3
,

5
3
; −η6

)
− 18η2Γ

(
2
3

)
1F5

(
5
3
; 2

3
,

2
3
, 1,

4
3
,

4
3
; −η6

)]
. (3.12)

Gp, Gd thus give more direct insight regarding the response to external forces and may
be used to convolve Pe directly for general solutions, similarly to a regular Green’s
function. We note that the characteristic liquid pressure p∗ = je/l∗2t∗, where je is the
magnitude of impulse.

Without loss of generality, we hereafter assign T̄ = 0. From η, the radial speed of
the signal propagation is obtained as ηref T−5/6, where ηref is a reference state. Utilizing
equations (2.10) and (2.9) together with Gp = T−4/3Ψp(η) we obtain the radial and
transverse fluid speed Gu = T−3/2Ψu(η), Gw = T−5/3Ψw(η), respectively. Substituting
Gd = T−2/3Ψd(η) into the plate’s constitutive equations (Timoshenko & Woinowsky-
Krieger 1959; Reddy 2006) we obtain the bending moment Gm= T−1Ψm(η) and shear
force Gq = T−7/6Ψq(η). Ψp, Ψu, Ψw are presented in figure 2(a) (solid, dashed and
dotted lines, respectively) and Ψd, Ψm, Ψq are presented in figure 2(b) (solid, dashed
and dotted lines, respectively). All Ψi, (i = p, u, w, d, m, q) are similar decaying
oscillating functions of η. However, a difference in the decay rate in time exists due
to the different powers of T multiplying Ψi, where the slowest time decay is of the
deformation, scaling as T−2/3.

4. Impact mitigation and response dynamics to spatially and temporally distributed
external forces
The functions (3.4), (3.9) and (3.11) can now be used to examine the fluid pressure

field and plate deformation field created during and after application of spatially and
temporally distributed external forces. For a temporally uniform external force applied
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FIGURE 3. Dynamics during and after application of a temporally uniform external force
applied at X= X̄: (a,b) show the pressure and deformation during (T = 0.1, T = 0.9) and
after (T = 1.1, T = 2) application of the external pressure, respectively, where Te = 1.
The inserts in (a,b) present the time evolution of the pressure and deformation at the
impact locus, respectively.

at X= X̄ over a finite time interval, defined as

Pe = 1
Te
δ(X− X̄, T)[θ(T)− θ(T − Te)], (4.1)

where θ is the Heaviside function and Te is the instant of release, the pressure field
is immediately obtained from (3.4) as

P= 1
Te

{
G(η, T), T < Te

G(T)−G(T − Te), T > Te.
(4.2)

Similarly, substituting (4.2) into (2.12) and integrating with respect to T , yields the
deformation of the elastic plate. Figure 3(a) presents the fluid pressure field at two
instants during (T = 0.1, 0.9) and after (T = 1.1, 2) the application of external force
of the form of (4.1), where Te= 1. During the application (T <Te), the pressure in the
impact locus decays with time and acts to resist the temporally constant external force.
After the application period (T>Te), the pressure at the locus instantaneously changes
sign, now working to resist the plate’s relaxation and increases with time. The insert
in figure 3(a) focuses on pressure at the locus of application of the external force,
given by

P(X= X̄)= 1
Te



Γ

(
1
3

)
12π

1
T1/3

, T < Te

Γ

(
1
3

)
12π

 1
T1/3
− 1

(T − Te)
1
3

 , T > Te.

(4.3)

From (4.3), the rate of decay during application is ∼T−1/3, and a discontinuity in
pressure occurs at the instant of release (T = Te) of the external force.
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Figure 3(b) presents the deformation field created in the elastic plate. While the
deformation near the impact locus is negative, there is a region of significant positive
deformation adjacent to the minima at the locus. An infinite number of maximum
points of the deformations are expected from (3.9). However, all other maximum
points are small in magnitude compared with the deformation near the locus. The
maxima of this primary positive deformation region propagate radially both during
and after the application of the external pressure field. The insert in figure 3(b)
focuses on deformation at the locus, given by

D(X= X̄)= 1
Te



Γ

(
−1

3

)
6

T1/3, T < Te

Γ

(
−1

3

)
6

(
T1/3 − (T − Te)

1/3) , T > Te.

(4.4)

From (4.4), the deformation during force application is shown to increase as a power
of T1/3, and have a discontinuity in the rate of deformation at the moment of release
of the external pressure (T = Te). This discontinuity may locally give rise to inertial
effects which will invalidate assumptions (2.1) for T→ Te (see discussion at the end
of § 2). Specifically, the solution will be valid only for time scales much greater than
the inertial plate time scale

√
ρsbl4

e/s, where le is the finite actuation length scale.
We note that the characteristic liquid pressure is defined as p∗= fe/l∗2, where fe is the
magnitude of the external force.

We now turn to explore the relation between the externally applied pressure field
and the fluidic pressure field in order to examine the impact mitigation properties
of such configurations. This necessitates examination of finite external pressures,
distributed both spatially and temporally. We initially focus on a suddenly applied
external pressure, uniform in both space and time with a time period Te,1, a spatial
radius Le and a constant total impulse of 1, given by

Pe,1 = 1
πL2

eTe,1
θ(Le − |X|)[θ(T)− θ(T − Te,1)]. (4.5)

Convolving (3.11) with (4.5), the pressure ratio between the externally applied
pressure and the fluidic pressure at the centre X= 0 can be estimated for T 6 Te,1 as

P(X= 0)
Pe,1

= 1− 0F4

(
; 1

3
,

1
3
,

2
3
,

2
3
; −η6

Le

)
− 27

2
η4

Le
Γ

(
2
3

)
0F4

(
; 1, 4

3
,

4
3
,

5
3
; −η6

Le

)
+ 3η2

Le
Γ

(
1
3

)
0F4

(
; 2

3
,

2
3
, 1,

4
3
; −η6

Le

)
, (4.6)

where ηLe =Le/6T1/6. Equation (4.6) is presented in figure 4 (solid line). Three distinct
periods are evident.

(i) An initial period of the impact, 2.5. ηLe <∞, where the fluidic pressure closely
follows the external pressure.
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FIGURE 4. (Colour online) (a) The liquid pressure at X = 0 divided by the external
pressure during the application period versus ηLe = Le/6T1/6. The solid line denotes the
ratio of pressures as a result of an external pressure rapidly applied at T = 0 and constant
throughout the application period. The dashed line denotes the ratio of pressures as a
result of an external pressure linearly increasing with time. Both external pressures are
distributed evenly on a disk of radius Le. The insert shows a schematic illustration of the
evolution of the external pressures in time for both cases. (b) Ratio of the liquid pressure
at the centre of impact to the external pressure, Pe,2, at the moment of maximal external
pressure, T = Te,2. External radii Le = 0.1, 0.3, 0.6, 1.2, 2.4, 4.8 correspond to orange,
brown, green, blue, purple and red lines, respectively. The insert shows schematically the
evolution of the external pressure in time.

(ii) The interval, 0.5. ηLe . 2.5, shows small oscillations of the pressure ratio going
from mitigation to amplification and vice versa.

(iii) The period 0 6 ηLe . 0.5 where mitigation occurs and grows with time.

However, since at the application of the suddenly applied external pressure, T=0+ and
thus, as ηLe→∞ where P(X= 0)→Pe,1, no mitigation can be achieved from external
pressures where the rise time is an order of magnitude smaller than the viscous–elastic
time scale. Furthermore, in such configurations viscous–elastic interaction may amplify
fluidic pressure to ∼1.3Pe,1.

Next, we turn to examine time-varying external pressures with a rise time of the
order of magnitude of the viscous–elastic time scale. We model an external pressure
field, evenly distributed on a disk of radius Le, linearly increasing in magnitude with
respect to time until Te,2 and then decreasing linearly until vanishing at 2Te,2 (see
insert in figure 4b). The total impulse is 1, and Pe,2 is thus given by

Pe,2 = θ(Le − |X|)
πL2

eT2
e,2
[Tθ(T)− 2(T − Te,2)θ(T − Te,2)+ (T − 2Te,2)θ(T − 2Te,2)]. (4.7)

Convolving (3.11) with (4.7), denoting ηLe = Le/6T1/6 and dividing by Pe,2 yields the
ratio of pressures at the centre for T 6 Te,2

P(X= 0, T)
Pe,2(T)

= η6
Le

G4,1
2,7

(
η6

Le
|

0, 1

−2
3
,−1

3
, 0, 0,−1,−2

3
,−1

3

)
, (4.8)
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FIGURE 5. (Colour online) (a) Schematic illustration of the experimental set-up consisting
of a thin elastic plate floating over a liquid film. At the centre of the plate a linear
actuator deforms the plate and the force applied is measured by a load cell connected to
the actuator. The deformation profile is sampled by a laser profilometer. (b) Experimental
and theoretical deformation d versus r during the application of the external force
fe. Theoretical deformation profiles are obtained by convolution of gd with fe and are
presented by smooth lines (red, blue and yellow, corresponding to t = 0.4 s, t = 0.6 s
and t = 0.8 s, respectively). Circular markers (red, blue and yellow corresponding to
t= 0.4 s, t= 0.6 s and t= 0.8 s, respectively) present the mean value of the experimental
data acquired by the laser profilometer. The insert shows the mean value of load cell
measurements fe versus time t. Error bars depict one standard deviation.

where G4,1
2,7 is the Meijer G-function (Bateman & Erdelyi 1953; Luke 1969). The result

is shown in figure 4(a) with respect to similarity variable ηLe (dashed line) and with
respect to the time when maximal external pressure is reached (i.e. Te,2) in figure 4(b).
From figure 4, it is evident that for any width of external pressure Le, mitigation may
be achieved if the application time is sufficiently long

ηLe(T = Te,2)= Le

6T6
e,2

.
1
2
. (4.9)

Specifically, for the case of Le = 0.1, mitigation of more than 90 % is achieved for
external pressures applied over the period of Te,2 = 10−3 or longer.

5. Experimental verification

Experiments were conducted to illustrate and verify some of the theoretical results
of § 3. The experimental set-up (see figure 5a) consists of a polyurethane rubber plate
(Econr-60 urethane rubber) floating over a thin silicon-oil film (Xiameterr PMX-200
silicone fluid). The centre of the plate is deformed at a constant velocity of 10 mm s−1

due to application of a spherical indenter with radius of 5 mm. The indenter is
connected to a linear actuator (ThorlabsTM DRV013) and a load cell measuring the
force applied on the elastic plate. The radial deformation profile created during
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force application is sampled by a laser profilometer (MicroEpsilonTM ScanControl
2650-100).

Relevant physical properties of the configuration are the elastic plate thickness
b= 5.5 mm, elastic plate diameter 238 mm, plate bending resistance s= 0.01 Pa m3,
plate material density ρs = 954 Kg m−3, liquid viscosity µ= 60 Pa s, liquid density
ρl = 987 Kg m−3 and initial gap h0 = 6 mm. Figure 5(b) shows the mean value
of four experimental measurements (red, blue and yellow circles, corresponding to
t = 0.4 s, t = 0.6 s and t = 0.8 s, respectively) and theoretical predictions (red, blue
and yellow lines, corresponding to t = 0.4 s, t = 0.6 s and t = 0.8 s, respectively)
versus the radial coordinate r. The insert in figure 5(b) shows the mean value of force
measurements fe(N), applied by the actuator on the centre of the plate versus time t(s).
Error bars indicate one standard deviation. The theoretical deformation is obtained by
convolution of the external force measurements with (3.9) (see equation (A 9)). The
radial location of the minimal radius measured by the laser profilometer was estimated
by correlation to the analytic solution as r= 20 mm. No other fitting parameters are
used and good agreement between the analytical results and experimental data is
evident.

6. Concluding remarks
In this work we examine the dynamics of a liquid film enclosed between a rigid

surface and an elastic plate, under the effect of time-varying external forces acting on
the plate. The presence of a thin viscous film between the upper plate and the lower
surface is shown to distribute localized external forces, where the characteristic speed
of fluid pressure propagation is O(h3

0s/12µl5
e) (for viscous–elastic time scales). Our

results indicate that significant impact mitigation may be obtained for gradual external
loading at the viscous–elastic time scale.

The obtained results may be applied to examine impact mitigation and pressure
propagation in physical configurations complying with the assumptions used in this
analysis. For a configuration consisting of a rubber plate with thickness b = 5 mm
and bending rigidity s= 0.18 Pa m3, gap h0 = 1 mm and liquid viscosity µ= 1 Pa s
(glycerin), external force of 100 N applied uniformly on a disk of radius le = 1 cm
and gradually increasing over te,2 = 1 s (see insert in figure 4b) will create a liquid
pressure propagation speed of 0.1 m s−1 and impact mitigation of p(r= 0)/pe≈ 0.25.
For an aluminium plate with a thickness b = 4 cm, bending rigidity s = 107 Pa m3,
gap h0 = 1 mm and liquid viscosity µ = 60 Pa s (silicon oil), external force of
105 N applied uniformly on a disk of radius le = 1 cm and gradually increasing over
te,2 = 10−4 s yields signal propagation velocity of ≈300 m s−1 and impact mitigation
of p(r= 0)/pe ≈ 0.03.
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Appendix A. Results in dimensional form
Presented here are some of the equations and results in dimensional form. These

include the Green’s equation

∂g
∂t
− h3

0s
12µ
∇6g= δ(x)δ(y)δ(t), (A 1)
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the governing equation for deformation (2.13)

∂d
∂t
− h3

0s
12µ
∇6d= h3

0

12µ
∇2pe, (A 2)

the governing equation for pressure (2.14)

∂p
∂t
− h3

0s
12µ
∇6p= ∂pe

∂t
, (A 3)

the Green’s function for (A 1)

g(η, t)=
(

h3
0s

12µ

)−1/3
Ψ (η)

t1/3
, (A 4)

the Green’s function for deformation (A 2)

gd(η, t)=
(

h3
0s

12µ

)−2/3
Ψd(η)

t2/3
(A 5)

the Green’s function for pressure (A 3)

gp(η, t)=
(

h3
0s

12µ

)−1/3
Ψp(η)

t4/3
, (A 6)

where η for (A 2–A 6) is

η=
(

h3
0s

12µ

)−1/6 |x|
6t1/6

. (A 7)

The deformation and pressure distribution as a result of a specific external pressure,
pe = pe(x, y, t), are obtained by the convolutions

d= h3
0

12µ

∫ t

0

∫ ∞
−∞

∫ ∞
−∞

gd(x− x̄, y− ȳ, t− t̄)pe(x̄, ȳ, t̄) dx̄ dȳ dt̄ (A 8)

and

p=
∫ t

0

∫ ∞
−∞

∫ ∞
−∞

gp(x− x̄, y− ȳ, t− t̄)pe(x̄, ȳ, t̄) dx̄ dȳ dt̄. (A 9)

REFERENCES

AL-HOUSSEINY, T. T., CHRISTOV, I. C. & STONE, H. A. 2013 Two-phase fluid displacement and
interfacial instabilities under elastic membranes. Phys. Rev. Lett. 111 (3), 034502.

BAILEY, W. N. 1972 Generalized Hypergeometric Series. Hafner.
BATEMAN, H. & ERDELYI, A. 1953 Higher Transcendental Functions, vol. 1. McGraw-Hill.
CHAUHAN, A. & RADKE, C. J. 2002 Settling and deformation of a thin elastic shell on a thin fluid

layer lying on a solid surface. J. Colloid Interface Sci. 245 (1), 187–197.
DUCHEMIN, L. & VANDENBERGHE, N. 2014 Impact dynamics for a floating elastic membrane.

J. Fluid Mech. 756, 544–554.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

41
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.418


530 A. Tulchinsky and A. D. Gat

FISCHER, C., BRAUN, S. A., BOURBAN, P. E., MICHAUD, V. & PLUMMER, C. J. G. 2006 Dynamic
properties of sandwich structures with integrated shear-thickening fluids. Smart Mater. Struct.
15 (5), 1467.

FLITTON, J. C. & KING, J. R. 2004 Moving-boundary and fixed-domain problems for a sixth-order
thin-film equation. Eur. J. Appl. Maths 15 (06), 713–754.

HAN, Z., TAO, C., ZHOU, D., SUN, Y., ZHOU, C., REN, Q. & ROBERTS, C. J. 2014 Air puff
induced corneal vibrations: theoretical simulations and clinical observations. J. Refract. Surg.
30 (3), 208–213.

HOSOI, A. E. & MAHADEVAN, L. 2004 Peeling, healing, and bursting in a lubricated elastic sheet.
Phys. Rev. Lett. 93 (13), 137802.

LEE, B.-W. & KIM, C.-G. 2012 Computational analysis of shear thickening fluid impregnated fabrics
subjected to ballistic impacts. Adv. Compos. Mater. 21 (2), 177–192.

LEE, Y. S., WETZEL, E. D. & WAGNER, N. J. 2003 The ballistic impact characteristics of Kevlarr
woven fabrics impregnated with a colloidal shear thickening fluid. J. Mater. Sci. 38 (13),
2825–2833.

LISTER, J. R., PENG, G. G. & NEUFELD, J. A. 2013 Viscous control of peeling an elastic sheet
by bending and pulling. Phys. Rev. Lett. 111 (15), 154501.

LUKE, Y. L. 1969 The Special Functions and their Approximations. vol. 53. Academic.
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