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SUMMARY
Due to physically demanding tasks in construction, workers are exposed to significant safety
and health risks. Measuring and evaluating body kinematics while performing tasks helps to
identify the fundamental causes of excessive physical demands, enabling practitioners to implement
appropriate interventions to reduce them. Recently, non-invasive or minimally invasive motion
capture approaches such as vision-based motion capture systems and angular measurement sensors
have emerged, which can be used for in-field kinematics measurements, minimally interfering with
on-going work. Given that these approaches have pros and cons for kinematic measurement due to
adopted sensors and algorithms, an in-depth understanding of the performance of each approach will
support better decisions for their adoption in construction. With this background, the authors evaluate
the performance of vision-based (RGB-D sensor-, stereovision camera-, and multiple camera-based)
and an angular measurement sensor-based (i.e., an optical encoder) approach to measure body
angles through experimental testing. Specifically, measured body angles from these approaches were
compared with the ones obtained from a marker-based motion capture system that has less than
0.1 mm of errors. The results showed that vision-based approaches have about 5–10 degrees of error
in body angles, while an angular measurement sensor-based approach measured body angles with
about 3 degrees of error during diverse tasks. The results indicate that, in general, these approaches
can be applicable for diverse ergonomic methods to identify potential safety and health risks, such as
rough postural assessment, time and motion study or trajectory analysis where some errors in motion
data would not significantly sacrifice their reliability. Combined with relatively accurate angular
measurement sensors, vision-based motion capture approaches also have great potential to enable us
to perform in-depth physical demand analysis such as biomechanical analysis that requires full-body
motion data, even though further improvement of accuracy is necessary. Additionally, understanding
of body kinematics of workers would enable ergonomic mechanical design for automated machines
and assistive robots that helps to reduce physical demands while supporting workers’ capabilities.
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Introduction
Construction workers are frequently exposed to excessive physical demands in a relatively dangerous
and unhealthy working environment that may lead to health and safety issues.1 Despite recent
improvements by adopting best practices (e.g., tool box meetings and structured hazard analysis
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processes) to deal with these issues, the construction sector still remains as one of the hazardous
industries, showing higher rates of fatal and nonfatal injuries than other industries.2 Consequently,
evaluating and controlling physical demands from the job, equipment and environment not to exceed
one’s capabilities is essential to prevent and mitigate potential health and safety risks.

In-depth evaluation and control of physical demands should begin with measuring body kinematics
that include body position, displacement, velocity and acceleration.3 Human motions not only create
loads on the involved musculoskeletal system (e.g., muscles and tendons) by themselves or combined
with external forces, but they also have an important role in accompanying an action by transmitting
forces generated from a body (i.e., active muscle contraction) to the external environment.4 As a result,
kinematics data can provide contextual information on the fundamental causes of changing physical
demands as a worker’s behavior is affected by physical work environmental factors (e.g., geometry
of the workplaces, temperature, and types of tools), as well as individual factors (e.g., anthropometry
and preferred working techniques).5 Also, enhanced awareness of body kinematics of workers helps
to support effective design of automated machines and assistive robotics that can not only reduce
physical demands from work, but also enhance workers’ capabilities by improving ergonomics
in human-machine (or robot) interaction.6,7 Such an understanding of workers body kinematics
would also inform contemporary research in construction ergonomics and robotics, given current
developments in architecture, gerontechnology, exoskeletons, anthropomorphic robotics, augmented
reality, and industrialized construction environments because they all demand highly interdependent
and integrated kinematics systems solutions.9−15

Generally, measuring body kinematics is enabled by using motion capture techniques that are
based on optical, inertial, mechanical, magnetic or acoustic approaches. Among them, optical motion
capture systems are the most popular solution to obtain three-dimensional (3D) full-body motion data
by tracking active or passive markers attached to the body. They have been widely used for diverse
applications including clinical motion analysis and biomechanical study. Despite their precision and
reliability, their applications in practice have been limited due to the need for complex laboratory
settings, the high cost of devices and the time-consuming procedure for data collection. Their most
critical drawback is the need for simulating tasks in a controlled environment by assuming that
captured motions correspond to typical activities under real conditions.8 However, considering the
continuously changing and unstructured nature of working environments in construction, it is hard to
simulate construction tasks in a controlled setting by reflecting all possible situations that would exist
on sites. As a result, an effective and easily accessible means for collecting in-field motion data at
construction sites is required to evaluate potential safety and health risks of workers while performing
tasks.

Recently, vision-based (i.e., markerless) motion capture approaches have gained interest. These
approaches appear to be promising as an in-field motion data collection method by addressing some
of the major challenges that exist with optical motion capture systems. For example, as these vision-
based approaches obtain body kinematics data by processing two-dimensional (2D) or 3D images
directly collected from real conditions, they do not need complex laboratory settings or markers
attached to a human body. Also, 2D or 3D images can be collected using any type of existing
ordinary video cameras or affordable 3D image-sensing devices (e.g., RGB-D (Red, Green, Blue and
Depth) sensors and stereovision cameras). The ease of use, non-invasiveness and cost-effectiveness
of vision-based approaches can broaden the spectrum of their applications for job analysis under real
conditions. Additionally, the use of body fixed sensors such as Inertial Measurement Units (IMUs) or
angular measurement sensors (e.g., goniometers, optical encoders, strain gauges or magnetic sensors)
has provided effective solutions for in-field motion measurement.8 Combined with a wireless data
transmission capability, these approaches allow us to obtain real-time motion data. For 3D full-
body kinematic measurements, several commercialized IMU-based (e.g., XsensTM (Xsens North
America, Inc., xsens.com)) or mechanical (e.g., Gypsy 7TM (Meta Motion, metamotion.com)) motion
capture systems are available, but the need for wearing a full-body suit equipped with sensors may
interfere with on-going work. Instead, wearing light-weight and wearable angular measurement
sensors attached only at a specific body joint of interest may minimize workers’ discomfort during
performing tasks, though they only provide one degree of freedom joint angle.

To measure workers’ body kinematics non-invasively or minimally invasively at construction sites,
both vision-based and angular measurement sensor-based approaches are viable means, although
several limitations such as sensitivity to self-occlusions (i.e., occlusions of specific body joints
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by other body parts) of vision-based approaches and limited use of angular measurement sensors
still remain.8,16−18 Given the pros and cons of these approaches, an in-depth understanding of the
performance of each approach can lead to better decisions for appropriate uses of these approaches
in construction.

With this background, this paper reports on the evaluation of motion data obtained from
vision-based and angular measurement sensor-based approaches through an experimental study.
Specifically, three emerging vision-based approaches for collecting motion data during construction
tasks are selected. Those are: (1) RGB-D sensor-based;17 (2) stereo-vision camera-based;19 and (3)
multiple camera-based16,18 approaches. An optical encoder, which is a potentiometer-based electro-
goniometers,20 is applied as an angular measurement sensor. Also, a marker-based motion capture
system (OptotrakTM, Northern Digital, Inc., Waterloo, Canada) is used as the ground truth of motion
data. To compare the accuracy of motion data, selected joint angles from each approach are compared
with the ones from OptotrakTM during performance of several dynamic tasks. Based on the results,
the performance of these approaches and their potential application areas for analyzing construction
tasks are discussed.

State-of-the-Art in In-Field Body Kinematics Measurements
This section describes the technical aspects and procedures of the state-of-the-art approaches that
enable us to non-invasively or minimally invasively measure body kinematics while workers perform
tasks at construction sites. Those include: (1) vision-based approaches, and (2) angular measurement
sensor-based approaches. Also, by reviewing previous work on these approaches, the pros and cons
of each approach are summarized.

Vision-based motion capture approaches
Vision-based approaches aim to extract full-body motion data by processing 2D or 3D images.21

Previous research efforts have developed several vision-based approaches: (1) RGB-D sensor-
based;17,22−25 (2) stereo-vision camera-based;19,53 and (3) multiple camera-based16,18 approaches.
While RGB-D sensor- and stereovision camera-based approaches take an advantage of the 3D imaging
sensors that directly provide 3D information on scenes, a multiple camera-based approach relies on
photogeometric acquisition of 3D body joint locations (i.e., 3D reconstruction) from tracked 2D joint
locations of multi-view images.

RGB-D sensor-based approach. Several computer vision algorithms have been developed to
estimate human poses by detecting the 3D positions of body joints directly from RGB-D images.22−25

Recently, motion capture solutions such as iPi Desktop Motion Capture (www.ipisoft.com) and
OpenNI (www.openni.org) that use a Microsoft Kinect sensor have provided effective solutions for
extracting skeleton-based motion data from 3D images obtained by RGB-D sensors.

The Kinect sensor that was initially developed for video gaming is capable of providing both depth
and color information at the resolution of 640×480 and the rate of 30 frames per second (fps).26

This sensor is equipped with an infrared (IR) projector, a color camera and an IR camera. Using the
projected structured IR lights, it measures the depth, reconstructing 3D scenes with point cloud.27

Combined with the 3D sensing feature of the Kinect sensor, the iPi Desktop Motion Capture software
provides a marker-less solution for collecting full-body motion data. Figure 1 shows an example of
an RGB-D image with a pre-defined body model, and the corresponding motion data. Basically, the
algorithm in this software is model based, which means that motion data can be tracked by matching
the surface of a pre-defined body model with a depth image (Fig. 1A). Then, the tracked motion data
can be exported into any types of motion data formats such as the Biovision Hierarchy (BVH) motion
data (Fig. 1B). This software also provides several post-processing algorithms to refine tracking and
filtering algorithms for noise removal and smoothing.

The following are the advantages of an RGB-D sensor-based motion capture approach: (1) no
need for markers or sensors attached to human body, which allows for motion capture without
interfering with on-going work; (2) low cost (e.g., approximately 150–250 USD); (3) an easy-to-use
and easy-to-carry means for in-field motion data collection.17 Technically, this approach is robust
to self-occlusions because the iPi software provides an inverse kinematics algorithm that can adjust
incorrectly tracked body parts due to occlusions. However, as the Kinect sensor uses IR light, the use
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Fig. 1. RGB-D sensor (i.e., KinectTM)-based motion capture. (A) RGB-D image with a body model. (B)
Skeleton-based motion data (BHV).

of this approach is limited only in an indoor environment due to its sensitivity to sunlight. Also, the
short operating range of the Kinect sensor (within 4 m) is one of the disadvantages of this approach.

Stereovision camera-based approach. A stereovision system is designed to extract 3D information
from a stereo image pair.28 Stereovision works in a similar way to 3D sensing in human vision.
It begins with identifying image pixels that correspond to the same point in a physical scene
observed by multiple cameras. The 3D position of a point can then be established by triangulation
using a ray from each camera. The more the corresponding pixels identified, the more the 3D
points that can be determined with a single set of images. Correlation stereo methods attempt
to obtain correspondences for every pixel in the stereo image, resulting in tens of thousands of
3D values generated with every stereo image. Bumblebee XB3TM manufactured by Point Grey
Technologies (www.ptgrey.com) is one of the widely used stereovision cameras. The stereo camera
measures line-of-sight distance using two lenses with a narrow baseline in a self-contained unit. This
allows for both optical and depth data to be collected with a few environmental restrictions (e.g.
outdoor environments) and limited field-of-view.

Starbuck et al.19 proposed a stereovision camera-based motion capture approach that addresses the
short operating range of an RGB-D sensor. The 3D point cloud data collected from the stereovision
camera was converted into a format used by an existing kinematic modeling software solution (i.e.,
iPi Motion Capture software) designed for use with RGB-D sensors. Then, using the same algorithm
used in an RGB-D sensor-based approach, skeleton-based motion data was extracted from the 3D
point cloud data. Through a laboratory test, the proposed method was proved to be comparable to the
traditional RGB-D sensor-based approach.19

A stereovision camera-based approach provides additional advantages, beyond the benefits from
the RGB-D sensor-based approach. For example, the use of this approach does not suffer from
environmental conditions, allowing both indoor and outdoor applications. Also, the operating range
of the stereovision camera is flexible according to lens field-of-view, lens separation, and image
size.29 However, as computing depth information from two images is a computationally intensive
task, the frame rate relies on the performance of hardware.29

Multiple camera-based approach. A multiple camera-based motion capture approach aims to
estimate the 3D locations of body joints by processing 2D images from two different views using
multiple video cameras or a 3D camcorder that has two lenses in one camera.16 Han and Lee16

proposed a motion capture process that consists of: (1) 2D pose estimation from one view of images;
(2) correspondence matching of body joints on the other view of images; and (3) 3D reconstruction
of body joints using the corresponding joint locations identified. However, this approach suffered
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Fig. 2. An overview of a multiple camera-based motion capture approach. (A) Initialization. (B) Body joint
tracking. (C) Correspondence matching. (D) 3D reconstruction.

from the need for extensive training images to detect joint locations on testing images, and significant
computation time for 2D pose estimation. To address this issue, Liu et al.18 modified Han and Lee’s16

approach by proposing body joint tracking that accelerates the 2D pose estimation process without
the prior knowledge (training images for joint detection). Figure 2 shows an overview of the modified
approach.

The main idea of 2D joint tracking is that continuous tracking of body joints on consecutive image
frames enables fast estimation of 2D skeletons.18 Once the target joints are initialized in the first
frame (Fig. 2A), the algorithm tracks the joints in consecutive images by detecting the image patch
with the most similar color histogram with that of the initialized target. To reduce computation time, a
modified particle filter tracker was applied to specify a number of reliable candidates for the targets in
the subsequent frames.30 The tracking of different body joints is performed independently, resulting
in a 2D skeleton model (Fig. 2B). The next process is to identify the corresponding body joints on the
image from the other viewpoint by comparing the features of a pixel with the feature descriptors such
as SIFT (Scale-Invariant Feature Transform)31 and SURF (Speeded Up Robust Features)32,33 (Fig.
2C). To obtain more reliable corresponding locations of body joints, the search space is constrained
by epipolar geometry34 and homography.16 Once pairs of corresponding body joints are detected
from two different viewpoints of images, a 3D reconstruction algorithm detects the 3D positions of
each joint through triangulation, resulting in 3D full-body skeleton-based motion data as shown in
Fig. 2D. Camera intrinsic and extrinsic parameters required for 3D reconstruction are obtained by
using Zhang’s35 camera calibration technique.

The strength of a multiple camera-based motion capture approach is that we can use ordinary
video cameras to obtain motion data, and thus this approach is less hardware dependent than RGB-D
sensor- and stereovision camera-based approaches. Also, it is not only cost effective, but also we can
benefit from zoom lenses that collect video images from a distance. Even though the environmental
conditions such as illuminations may affect the performance of 3D skeleton extraction, post-image
processing enables us to obtain clear images even in a noisy environment. From previous studies that
investigated the accuracy of this approach, about ± 10 cm of errors in body length and up to 20 degrees
of errors in joint rotation angles have been reported.16,18 These errors came from either incorrectly
detected joint locations or an inaccurate camera calibration process. Especially, the performance of
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this approach was significantly affected by frequent self-occlusions of forearms (e.g., elbows and
hands), which led to larger errors.16,18

Angular measurement sensor-based approaches
Angular measurement sensor-based approaches directly measure joint angles using sensors attached
to specific body joints without the need for any mathematical transformation in space or time.
Examples of sensors include goniometers and strain gauges.

Goniometers. Goniometers have been used to measure joint range of motion. Traditional goniometers
were made of a mechanical compass that measures the static relative angle between two body
segments.36 Modern goniometers are made of an electrical compass (potentiometer-based) that can
measure static and dynamic relative angles.36,37 The potentiometer changes its resistance with the
rotation of the two body segments connected to it. The principle of operation is that the voltage drop
(V ) across the potentiometer due to a constant electric current (I ) passing through it will depend on
the resistance (R) following Ohm’s law:

V = IR (1)

Calibration of the potentiometer (goniometer) from 0◦ to a full range of motion is conducted once
to produce a calibration chart that describes the relationship between the change in joint angle and
the measured voltage. The use of potentiometer allows for detection of rotary motion as well as for
placement of the sensor at center of joint rotation.

Strain gauges. Strain gauges work on the same principles as goniometers except that the sensing
element in a strain gauge responds to translation (change in length (�L)) represented as change in
resistance (�R):

�R/R = �L/L (2)

Measuring the joint angle depends on the placement of the strain gauge with respect to the axis
of joint rotation.38 Misalignment can produce significant errors due to the complexity of placing a
translational sensor to detect rotatory motion.39

Experimental Comparison of In-Field Motion Capture Approaches
The section describes an experimental test to compare the accuracy of three vision-based motion
capture approaches and one angular measurement sensor-based approach: (1) an RGB-D sensor-
based approach; (2) a stereovision camera-based approach; (3) a multiple camera-based approach;
and (4) an optical encoder (i.e., a potentiometer-based electrogoniometer).

Testing conditions
Vision-based motion capture approaches and an angular measurement sensor-based approach were
tested through two independent testing sessions as shown in Fig. 3. An exoskeleton is used to align the
optical encoder with the knee flexion axis of rotation. The straps used to attach the exoskeleton to the
lower limb were indistinguishable from the subject’s clothes and skin. As a result, they could affect
performance of image processing for the vision-based approaches, especially the multiple camera-
based approach that tracks body joints using color information. To avoid this, the angular measurement
sensor-based approach was tested in a separate session from the vision-based approaches.

Figure 3 shows the experimental conditions for each testing session. In the session for vision-
based approaches (Fig. 3A), three image sensors were located in front of a subject to collect 2D or
3D images from a front view. The KinectTM sensor (640×480 resolution with 30 fps), Bumblebee
XB3TM stereovision camera (320×240 resolution with about 10 fps) and 3D camcorder (1920×1080
resolution with 29 fps) were positioned 4, 6 and 8 m away from the subject, respectively. The
positions of KinectTM and Bumblebee XB3TM were determined based on the optimal operating
distance proposed by the manufacturer. As the 3D camcorder has zoom lenses, its position was
selected to obtain a clear view of the subject’s whole body. Motion data obtained from an OptotrakTM

system served as a ground truth. OptotrakTM uses active markers attached on the center of body joints
to track body motions. If the markers are captured by at least one of cameras, the system can provide
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Fig. 3. Experimental settings and testing devices. (A) Testing session for vision-based approaches. (B) Testing
session for an angular measurement sensor-based approach.

accurate 3D positions of the markers with an accuracy of up to 0.1 mm. The markers were attached to
the subject’s center and left body joints, including neck, low back, shoulder, elbow, wrist, hip, knee
and ankle joints. Two OptotrakTM cameras were positioned to the left side of the subject to prevent
possible data loss due to occlusions of the markers.

In the session for the angular measurement sensor-based approach (Fig. 3B), the optical encoder
(550 samples per second) was positioned across the left knee to measure knee-included angles; the
optical encoder was placed using a specially designed exoskeleton described in ref. [37], reducing
the effect of soft tissue movements. To obtain ground truth angles, active markers were attached to
left hip, left knee and left ankle joints. Two OptotrakTM cameras were also positioned to the left side
of the subject.

In each session, human motion was simultaneously recorded with these devices. For the
synchronization of motion data, the subject was asked to hold a T-pose at the beginning of the
recording. Data synchronization was manually performed by identifying the T-pose frame across all
measurement techniques.

Testing tasks
To compare the accuracy of motion data for diverse tasks, one male subject simulated three types
of tasks as shown in Fig. 4: (1) basic tasks with movements of specific body parts; (2) lifting and
placing; and (3) walking. The basic tasks were designed to test the measurement accuracy for simple
motions that involve movements of specific body parts. Those include arm-raising to the front and
the side, elbow-bending, back-bending, back-twisting and knee-bending, which are also common
motions in manual work such as construction. For more dynamic motions involving coordinated
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Fig. 4. Testing tasks. (A) Basic tasks. (B) Lifting and placing. (C) Walking.

body movements, a lifting and placing task was selected (also common in construction). Specifically,
the subject was asked to simulate the lifting task by lifting an imaginary object from the ground and
placing it to the side. Lastly, a walking task was intended to test the measurement accuracy for rapid
repetitive movements. To perform identical tasks for two independent sessions, the subject was asked
to practice the task in question for several times before recording two test sessions.

Measures for accuracy comparison
As measures of motion data accuracy for vision-based motion capture approaches, previous studies
have used 3D positions of body joints, body link lengths or joint rotation angles.16−19 However,
due to the difference in body models used in each vision-based approach, the use of these measures
may lead to bias in accuracy comparison. For example, joint locations and corresponding body link
lengths in a multiple camera-based approach can be calculated based on the measured joint locations
of the subject. On the other hand, the RGB-D sensor- and stereovision camera-based approaches
capture motions by matching 3D point clouds with a pre-defined body model, and thus the body link
length from the captured motion data is affected by anthropometric mismatch between the model and
subject. Also, while both RGB-D sensor- and stereovision camera-based approaches provide motion
data in a BVH file format that defines body postures using joint rotational angles, these angles are
not available in the motion data from the multiple camera-based approaches used in this test.16,18

To address this issue, the authors define new body angles that are available from all vision-based
approaches as shown in Fig. 5. Specifically, the body angles of each body part were defined as the
angles between the vector of the body segments and the vertical vector. For example, the vector of
the upper arm is obtained using 3D shoulder and elbow locations, and the angle between the vector
of the upper arm and the vertical vector (y-axis) is calculated as an upper arm (i.e. shoulder) angle.
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Fig. 5. Body angles to be compared.

The other body angles such as lower arm (i.e., elbow), trunk flexion, upper leg (i.e., hip) and lower
leg (i.e., knee) angles are calculated using the same method. However, the trunk axial rotation angle
that indicates how much the back is twisted was computed by using shoulder and hip vectors that
were projected onto the x–y plane. As the motion data from the three vision-based approaches and
OptotrakTM provides 3D locations of body joints, all these angles can be calculated using vectors
defined by two selected 3D joint locations, enabling accuracy comparison.

To measure accuracy of body angles from an angular measurement sensor-based approach, knee-
included angles directly obtained from an optical encoder were compared with the angles determined
by 3D locations of markers attached to hip, knee and ankle joints.

Ground truth body angles were calculated based on 3D marker positions from OptotrakTM. The
markers were attached to the skin near the joints, not the centers of body joints. As a result, body angles
from OptotrakTM may slightly differ from the angles from vision- and angular measurement sensor-
based approaches. To adjust possible discrepancies, the body angles were calibrated using the angles
from a T-pose. Also, the body angles from each approach were smoothed using a Savitzky–Golay
filter40 that has been widely used for post processing of motion data.41

Results

Vision-based motion capture approaches
Figure 6 shows the plots of body angles from the vision-based motion capture approach during one
cycle of diverse basic tasks. Through the visual investigation, it was found that overall body angles
from each approach were closely matched with body angles from an OptotrakTM, while back (flexion
and rotation) and upper leg angles from a multiple camera-based approach in particular showed some
discrepancies during the middle of the tasks.

For the quantitative assessment during these tasks, mean and standard deviation of absolute
errors (MAEs and S.D. of AEs), and maximum and minimum errors (MAX and MIN) in body
angles between four different approaches and OptotrakTM were calculated as shown in Table I.
The RGB-D sensor-based approach showed the most accurate (4.2 degrees of average MAEs) and
reliable (2.8 degrees of average S.D.) results for all body angles. The stereovision camera-based
approach also provided relatively accurate motion data, resulting in 6.2 degrees of MAE, but showed
higher variations (4.2 degrees of average S.D.) than the RGB-D sensor-based approach. The least
accurate results (11.6 degrees of average MAEs) were obtained from the multiple camera-based
approach, especially due to relatively larger errors in lower arm (16.2 degrees of MAEs), truck flexion
(12.5 degrees of MAEs) and trunk rotation (21.9 degrees of MAEs) angles than other body angles.
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Fig. 6. Comparison of body angles from vision-based approaches during basic tasks.

Figure 7 shows the body angles from vision-based approaches during one cycle of a lifting and
placing task. Even for a complex task that involves simultaneous whole body movements, all the
approaches provided robust body angle measurements for all body parts. Unlike basic tasks, any
severe discrepancies in body angles from a multiple camera-based approach were not observed.

Average MAEs during a lifting and placing task were 6.5 (RGB-D sensor-based), 6.6 (stereovision
camera-based) and 10.9 (multiple camera-based) degrees, showing similar errors in body angles
during basic tasks (Table II). Both RGB-D sensor- and stereovision camera-based approaches showed
robust results in this task, even though the errors in body angles in the RGB-D sensor-based approach
were slightly increased. Again, in motion data from the multiple camera-based approach, larger errors
in back (torso flexion and rotation) angles were observed, while upper arm angles were relatively
accurate.

Last, a walking task showed larger discrepancies in the patterns of body angles from all vision-
based approaches as shown in Fig. 8. Motion data from the RGB-D sensor- and multiple camera-based
approaches induced similar errors (7.1 and 11.0 degrees of average MAEs, respectively) with other
tasks, while the stereovision camera-based approach showed the largest errors (12.6 degrees of
average MAEs) among the three tasks (Table III).

An angular measurement sensor-based approach
Figure 9 shows the plots of knee-included angles measured using an optical encoder and an OptotakTM

during the three tasks (among basic tasks, only the knee-bending task was tested). Two plots almost
matched each other, indicating an accurate angular measurement of an optical encoder for all three
tasks. However, small discrepancies were observed at the beginning and end of the cycle of knee-
bending and lifting and placing tasks.
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Table I. Accuracy of body angles from vision-based approaches during basic tasks (unit: degrees).

Stereovision
RGB-D camera Multiple

Body sensor (Bumblebee camera (3D
angles Metrics (KinectTM) (XB3TM) camcorder)

A1. Arm-raising to the front

Upper arm MAE 5.9 3.0 11.3
S.D. of AE 2.5 2.6 6.8
MIN/MAX −9.9 to −0.6 −3.2 to 9.9 −22.0 to 12.0

A2. Arm-raising to the side

Upper arm MAE 4.7 8.2 7.6
S.D. of AE 2.3 3.8 4.2
MIN/MAX −11.1 to −1.9 −14.3 to −0.3 −16.8 to 7.6

A3. Elbow-bending

Lower arm MAE 4.9 8.1 16.2
S.D. of AE 3.4 4.0 4.2
MIN/MAX −9.8 to 8.6 −2.7 to 14.0 10.1 to 24.5

A4. Back-bending

Back flexion MAE 2.5 15.5 12.5
S.D. of AE 2.1 11.2 12.5
MIN/MAX 7.6 0.0 39.0
MIN −3.9 −34.3 −19.7

A5. Back-twisting

Back axial rotation MAE 3.1 11.0 21.9
S.D. of AE 1.9 8.6 18.5
MIN/MAX −6.5 to 4.6 −23.8 to 8.6 −64.6 to 22.5

A6. Knee-bending

Upper leg MAE 5.4 4.3 9.8
S.D. of AE 5.5 4.6 12.0
MIN/MAX −13.7 to 3.3 −14.0 to 9.3 −4.9 to 32.4

Lower leg MAE 1.0 2.4 2.7
S.D. of AE 1.1 2.6 2.8
MIN/MAX −1.7 to 4.1 −6.5 to 7.6 −3.3 to 8.1

Average MAE 4.2 6.2 11.6
Average S.D. 2.8 4.4 8.1

Notes: MAE: mean absolute error; AE: absolute error; S.D.: standard deviation; MAX: maximum value
of errors; MIN: minimum value of errors.

The MAE for knee-included angles from an optical encoder was 2.9, 3.8 and 3.0 degrees for the
three tasks, respectively (Table IV). Compared with an RGB-D sensor-based approach that showed
the most accurate measurements for upper and lower leg angles (1.0−8.8 degrees of MAEs) among
vision-based approaches, this approach provided the most accurate and reliable angular measurements
regardless of types of tasks.
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Fig. 7. Comparison of body angles from vision-based approaches during a lifting and placing task.

Discussion

Performance comparison
Specifications and accuracies of three vision-based motion capture approaches and an optical encoder
are summarized in Table V. The experimental tests in the previous section presented 5.9, 8.5, 11.2
and 3.2 degrees of average MAEs for RGD-D sensor-based, stereovision camera-based and multiple
camera-based approaches and for an optical encoder, respectively. The motion capture performance
of each approach tends to rely on the specifications of devices (e.g., types of raw data, resolution
and fps). For better decisions on appropriate uses of these approaches in construction, it would be
important not only to compare the accuracy but also to understand comparative advantages and
limitations.

Among vision-based approaches, the RGB-D sensor-based approach showed the most accurate
and reliable results for all three tasks as it uses data-rich 3D images and has a high resolution and
frame rate. It is also expected that rapid technological development of RGB-D sensors will enable
us to collect more accurate and reliable 3D point cloud data, contributing to improvement of motion
tracking performance. Despite the robust performance of this approach, its short operating range (less
than 4m) and sensitivity to sunlight may limit its application to confined and indoor areas.

Alternatively, the stereovision camera-based approach can be a practical solution by taking
advantage of its ability to collect 3D images at both indoor and outdoor conditions and longer
operating range. The accuracy of body angles from this approach was also not much different from
the RGB-D sensor-based approach, when excluding the walking task. Considering that walking

Comparison of in-field motion capture approaches in construction 939

https://doi.org/10.1017/S0263574717000571 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000571


Table II. Accuracy of body angles from vision-based approaches during a lifting and placing task
(unit: degrees).

Stereovision
RGB-D camera Multiple

Body sensor (Bumblebee camera (3D
angles Metrics (KinectTM) (XB3TM) camcorder)

Upper arm MAE 3.5 4.6 4.4
S.D. of AE 2.4 3.8 3.3
MIN/MAX −6.3 to 4.4 −13.1 to 6.5 0.3 to 10.4

Lower arm MAE 3.6 7.6 7.5
S.D. of AE 1.9 4.7 3.6
MIN/MAX −4.9 to 8.3 −12.1 to 16.2 −19.3 to 11.1

Back flexion MAE 10.3 11.0 22.7
S.D. of AE 5.1 5.2 11.2
MIN/MAX 2.9 to 16.9 3.1 to 18.4 2.2 to 35.5

Back axial rotation MAE 8.4 5.5 18.8
S.D. of AE 6.2 5.2 4.8
MIN/MAX −23.4 to 11.3 −20.0 to 7.2 −31.1 to −10.5

Upper leg MAE 6.9 7.1 10.3
S.D. of AE 6.2 4.7 2.7
MIN/MAX −19.4 to 1.5 −13.9 to 7.0 4.6 to 14.9

Lower leg MAE 6.0 4.0 1.5
S.D. of AE 5.0 1.8 1.4
MIN/MAX −17.5 to 7.2 −6.7 to 4.0 −6.1 to 3.7

Average MAE 6.5 6.6 10.9
Average S.D. 4.5 4.2 4.5

Notes: MAE: mean absolute error; AE: absolute error; S.D.: standard deviation; MAX: maximum value
of errors; MIN: minimum value of errors.

involves more rapid movements than other tasks in this test, it was likely that the low frame rate (8–
10 fps) of the stereovision resulted in tracking errors of certain body parts (e.g., upper limbs) that
moved quickly. As the frame rate of a stereovision camera is determined by the computational time
for 3D reconstruction and the performance of hardware, the use of an advanced 3D reconstruction
algorithm and a high performance computer can achieve a higher frame rate that helps to reduce
errors in motion data, particularly during tasks involving rapid body movements. Regarding the
operating range of the stereovision camera-based approach, it is recommended to set Bumblebee
XB3TM within 10 m as the quality of 3D point clouds is significantly affected by the distance from
the scene. However, a binocular stereovision system theoretically works with any type of two 2D
cameras that are separated by a short distance, and are mounted parallel to one another. As a result,
this approach is flexible in terms of operating ranges if zoom lenses are used. Recently, a stereovision
system with adjustable zoom lens control has been introduced,42 enabling more practical application
of this approach.

The multiple camera-based approach showed larger errors in body angles than the other two
vision-based approaches. The RGB-D sensor-based and stereovision camera-based approaches benefit
from the 3D imaging hardware that provides richer information (e.g., RGB pixel values + depth
information) on scenes. However, the multiple camera-based approach need to extract motion data
by processing only 2D images that contain less information (e.g., RGB pixel values). An inaccurate
camera calibration process could also lead to errors in 3D triangulation of body joints from two
images. Considering these limitations, a multiple camera-based approach with about 10 degrees
of error in body angles is promising. Despite relatively larger errors, the multiple camera-based
approach has several competitive advantages from a practical point of view, compared with the other
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Fig. 8. Comparison of body angles from vision-based approaches during a walking task.

Fig. 9. Comparison of knee-included angles from an angular measurement sensor-based approach (i.e., an
optical encoder) during the three tasks.

two approaches. For example, as any types of ordinary cameras can be used to collect 2D images,
additional investments in devices are not required. Due to the use of zoom lenses, its operating range
is theoretically unlimited. Less sensitivity to rapid movements is another strength of this approach. In
addition, there is room for further improvement if occlusion issues are handled. One of the reasons of
the least accurate results from the multiple camera-based approach is that it showed relatively larger
errors in lower arm, truck flexion and trunk rotation angles than other body angles. As shown in A3
(elbow-bending), A4 (back-bending) and A5 (back-twisting) tasks in Fig. 4, an elbow or a hip was
occluded by a lower arm or a torso (i.e., self-occlusions), which may lead to incorrect detections of
these joints in the multiple camera-based approach. In these tests, especially, a 3D camcorder was

Comparison of in-field motion capture approaches in construction 941

https://doi.org/10.1017/S0263574717000571 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000571


Table III. Accuracy of vision-based motion capture approaches during a walking task (unit: degrees).

Stereovision
RGB-D camera Multiple

Body sensor (Bumblebee camera (3D
angles Metrics (KinectTM) (XB3TM) camcorder)

Upper arm MAE 7.1 4.5 10.9
S.D. of AE 4.0 2.3 5.5
MIN/MAX −13.3 to 1.8 −8.7 to 6.5 −19.3 to −2.0

Lower arm MAE 10.7 15.9 15.0
S.D. of AE 6.3 11.6 7.7
MIN/MAX −20.6 to 1.1 −41.8 to 17.1 −25.4 to 28.0

Back flexion MAE 5.4 17.3 3.5
S.D. of AE 1.5 1.4 2.2
MIN/MAX 2.3 to 7.9 15.0 to 20.4 −1.7 to 9.4

Back axial rotation MAE 4.8 21.3 15.3
S.D. of AE 4.8 5.3 8.1
MIN/MAX −24.4 to 8.8 14.6 to 32.0 −18.6 to 27.9

Upper leg MAE 8.8 12.1 11.6
S.D. of AE 6.6 7.2 5.5
MIN/MAX −21.2 to 3.8 −27.3 to 4.9 −18.9 to 23.1

Lower leg MAE 5.6 4.2 9.7
S.D. of AE 5.1 2.7 8.9
MIN/MAX −4.3 to 16.6 −6.9 to 11.6 −5.0 to 32.5

Average MAE 7.1 12.6 11.0
Average S.D. 4.7 5.9 6.3

Notes: MAE: mean absolute error; AE: absolute error; S.D.: standard deviation; MAX: maximum
value of errors; MIN: minimum value of errors.

Tablle IV. Accuracy of an angular measurement sensor-based approach (i.e., an optical encoder) during the
three tasks (unit: degrees).

Body angles Metrics Basic task Lifting and placing task Walking task

Knee-included MAE 2.9 3.8 3.0
S.D. of AE 2.7 3.1 2.1
MIN/MAX −10.1 to 2.0 −10.7 to 1.8 −5.6 to 8.8

Notes: MAE: mean absolute error; AE: absolute error; S.D.: standard deviation; MAX: maximum
value of errors; MIN: minimum value of errors.

used to obtain two images from different views. As the distance between two lenses is very short
(3.5 cm), both images are affected by self-occlusions. If two independent cameras are positioned
away from each other, it could be possible to obtain at least one clear view of images, reducing errors
due to self-occlusions.

The optical encoder provided quite accurate measurements for knee-included angles across all
types of tasks. Further, as these sensors are attached to body joints to directly measure joint angles,
they can provide robust angular measurements for body joints with one degree of freedom under
any condition. Although angular measurement sensors, such as the optical encoder, can be used for
all body joints, the use of these sensors could be limited due to the need for straps or exoskeletons
that may lead to interfering with on-going work. Instead, using angular measurement sensor-based
approaches for selected body joints can offset the limitation of vision-based approaches that are
sensitive to self-occlusions. However, soft tissue movements may result in errors in body angles from
these sensors. For example, during the testing of this approach, small differences in knee-included
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Table V. Comparison of specifications and accuracies of vision-based motion capture approaches.

Stereovision
RGB-D camera Multiple
sensor (Bumblebee camera (3D Optical

Performance (KinectTM) XB3TM) camcorder) encoder

Specifica-tions Raw data 3D images 3D images 2D images Body angles
Operating range Less than 4 m Less than 10 m Unlimited with Unlimited

(unlimited, with zoom lenses
zoom lenses)

Resolution 640×480 320×240 1920×1080 –
fps 30 8–10 29 550

Accuracy (MAEs) Basic tasks 4.2◦ 6.2◦ 11.6◦ 2.9◦
Lifting and placing 6.5◦ 6.6◦ 10.9◦ 3.8◦
Walking 7.1◦ 12.6◦ 11.0◦ 3.0◦
Average 5.9◦ 8.5◦ 11.2◦ 3.2◦

angles were observed at the beginning and end of cycles, which can be attributed to soft tissue
movements, especially when straps are not firmly secured to the leg. Securing straps firmly to the
body to hold the sensor in position is an important factor to obtain accurate body angles from the
sensor.43

Potential application areas of in-field motion capture approaches in construction
Vision- and angular measurement sensor-based motion capture approaches tested in this study are
considered practical means of in-field motion capture, even though about 5–10 degrees of error in
body angles from vision-based approaches and about 3 degrees of error from an angular measurement
sensor-based approach still exist. In construction, tasks are performed in unstructured and varying
environments, and thus work methods and postures are changing over time. Collecting motion data
using these non-invasive and cost effective approaches enables us to understand how workers interact
with the environment at construction sites and to identify potential safety and health risks under given
environments, specifically when accuracies would not significantly matter such as rough postural
assessment, time and motion study and trajectory analysis.

For example, these approaches can be used to specify the severity of working postures. Existing
postural ergonomic risk assessment methods determine the level of ergonomic risks based on classified
postures through human observation.44 Some methods such as Rapid Upper Limb Assessment
(RULA)45 and Rapid Entire Body Assessment (REBA)46 require detailed segmentations of body
postures according to body angles. For example, in RULA, trunk postures are categorized into four
groups according to trunk flexion angles (0◦, 0–20◦, 20–60◦ and over 60◦). Body angles obtained
from these approaches can be used for rough posture classification that is needed for postural
risk assessments. Also, as continuously measured workers’ motions during performing tasks is
enabled, diverse in-depth motion analysis for understanding physical demands can be facilitated.
Traditionally, the pre-determined-motion-time-systems have been widely used to identify workloads
during occupational tasks.47 As these systems rely on human observations to describe workers’ manual
activities, significant human efforts are generally required. However, by using a time series motion
data from the presented approaches, it is possible to accurately and automatically quantify motion-
time values for these systems. In addition, trajectory analysis through in-field motion measurements
helps to evaluate work efficiency, as well as the risk of ergonomic injuries. For example, shorter
trajectories of body movements may imply more efficient movements of a human body, indicating
smaller physical demands. Previous studies on movement patterns during occupational tasks found
that a more “dynamic” pattern of movements is believed to be associated with a lower incidence
of WMSD development.48,49 Analysis of motion patterns and trajectories using vision-based motion
data can broaden our understanding on the job from an ergonomic perspective.

In-field kinematic measurement using vision- and angular measurement sensor-based motion
capture approaches has also great potential to be used for more in-depth analysis of physical
demands such as biomechanical analysis, even though further improvement of motion data accuracy is
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required.50 Biomechanical analysis aims to estimate musculoskeletal stresses as a function of motion
and external force data.4,51 Previous biomechanical studies have relied on laboratory experiments to
collect motion data using marker-based motion capture approaches, which can be replaced by in-field
motion capture approaches that enable on-site biomechanical analysis. As accurate measurement
of all joint angles is necessary for reliable biomechanical analysis, further accuracy improvement
of vision-based motion capture approaches is required. However, the sensitivity of biomechanical
analysis results to motion errors varies depending on body joints.52 For example, Chaffin and Erig52

found that an error of ±10 degrees in the limiting joint angles (e.g., knees and ankles) could cause the
biomechanical analysis results to vary up to ±12% during lifting, pushing and pulling tasks, whereas
errors in other joints could have little or no effect. This result indicates that some angular errors in
body joints that do not involve forceful exertions are acceptable for biomechanical analysis while it is
important to obtain accurate body angles for stressful body joints. So, complemented by the relatively
accurate angular measurement sensors such as optical encoders that are applied to the limiting joints,
the vision-based motion capture approaches enable researchers to perform biomechanical analysis
without significantly sacrificing the reliability of biomechanical analysis.

Conclusions
The study describes the potential of vision-based and angular measurement sensor-based approaches
as a means of measuring workers’ motions. These approaches are compared through laboratory tests
while performing three different types of tasks. Especially, the accuracy of these approaches was
computed by comparing body angles from each approach and a marker-based motion capture. The
comparison results indicated that the overall errors in body angles from vision-based approaches are
about more or less 10 degrees, while an optical encoder, that is one example of angular measurement
sensors, can provide quite accurate body angle measurements (about 3 degrees) for specific body
joints with one degree of freedom. Self-occlusions and rapid movements are major factors that lead
to errors in vision-based approaches.

From a practical perspective, vision-based and angular measurement sensor-based approaches
have great potential as non-invasive motion data collection methods at construction sites. Even though
several obstacles such a limited operating range (RGB-D sensor-based), low frame rates (stereovision
camera) and occlusions (multiple camera-based) still remain to obtain more accurate data from
these approaches, further algorithm refinements and hardware developments are expected to address
these issues. An angular measurement sensor-based approach such as an optical encoder can provide
robust measurements of specific joint movements, despite a small possibility of discomfort by attached
sensors. Especially, combined with vision-based motion capture approaches, an angular measurement
sensor-based approach can enhance the accuracy of in-field motion measurements. Motion data
from these approaches can be used for diverse in-depth analysis without sacrificing its reliability
to better understand workers’ physical demands during occupational tasks including construction.
Also, understanding of how workers behave under given working environments through kinematics
measurements and analysis helps to ergonomically design automated machines and assistive robots,
aiming to both reduce physical demands and enhance workers’ capabilities.
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