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Abstract

Let k be a finite field and L be the function field of a curve C/k of genus g ≥ 1. In the first part of this note
we show that the number of separable S -integral points on a constant elliptic curve E/L is bounded solely
in terms of g and the size of S . In the second part we assume that L is the function field of a hyperelliptic
curve CA : s2 = A(t), where A(t) is a square-free k-polynomial of odd degree. If ∞ is the place of L
associated to the point at infinity of CA, then we prove that the set of separable {∞}-points can be bounded
solely in terms of g and does not depend on the Mordell–Weil group E(L). This is done by bounding the
number of separable integral points over k(t) on elliptic curves of the form EA : A(t)y2 = f (x), where f (x)
is a polynomial over k. Additionally, we show that, under an extra condition on A(t), the existence of a
separable integral point of ‘small’ height on the elliptic curve EA/k(t) determines the isomorphism class
of the elliptic curve y2 = f (x).
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1. Introduction

Let k be a finite field and L be the function field of a curve C/k. The purpose of
this note is to discuss arithmetical properties satisfied by integral points on isotrivial
elliptic curves over L, that is, when the j-invariant of the elliptic curve is an element
of k. More specifically, we study integral points on constant elliptic curves and some
of their quadratic twists.

The first property is related to a long-standing conjecture of S. Lang that roughly
says that the number of integral points is bounded independently of the model, for a
certain class of models. To make this statement more precise, let L be a number field, S
a finite set of places of L containing the archimedean places, RS the ring of S -integers
of L and E an elliptic curve over L.

Conjecture 1.1 (Lang). The number of S -integral points on a quasi-minimal model of
an elliptic curve E/L is bounded solely in terms of the field L, the set S and the rank
of the Mordell–Weil group E(L).
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For more information on this conjecture, including the definition of the quasi-
minimal model of an elliptic curve, we refer the reader to the introduction of [1].

Hindry and Silverman [1] show that Lang’s conjecture is a consequence of
Szpiro’s celebrated conjecture. Moreover, they prove that Lang’s conjecture is true
unconditionally if L is the function field of a curve over a field of characteristic zero
and E/L is nonconstant. In Section 2 we prove the following theorem and we explain
how it can be seen as a version of Lang’s conjecture for constant elliptic curves over
function fields, that is, when E/L can be defined by a Weierstrass cubic over k.

Theorem 1.2. Let E/k be an elliptic curve, C/k a curve of genus g ≥ 1 and S ⊂ C a
finite nonempty set of points. Then the number of nonconstant separable k-morphisms
ψ : C −→ E satisfying ψ−1(O) ⊂ S is bounded by

(2
√
|S | + 4(g − 1) + 1)4g.

Notice that, unlike Lang’s conjecture, the above bound on the number of integral
points on constant elliptic curves is in terms solely of the genus of C and |S | and not
the rank of its Mordell–Weil group. Moreover, our bound is ‘geometric’ in that it does
not depend on the base field k of the curve C, but only on the geometry of C. Below,
for a specific choice of S , we give a bound in terms of g that is arithmetic in nature,
that is, dependent on k.

We let A(t) be a square-free polynomial of odd degree d > 1 over a finite field k of
odd characteristic. We write∞ for the point at infinity of the curve CA : y2 = A(t). Let
f (x) be a cubic polynomial over k defining an elliptic curve E : y2 = f (x) with point
at infinity O. We prove in Corollary 3.3 that the number of nonconstant separable
k-morphisms ψ : CA −→ E satisfying ψ−1(O) ⊂ {∞} is bounded above by |k|2d−3. As
before, the above bound is independent of the rank of the Mordell–Weil group.

In Section 3, to prove that the bound in Corollary 3.3 holds, we consider integral
points over k(t) on elliptic curves of the form EA : A(t)y2 = f (x). Using elementary
methods, we prove that if P = (F,G) is a separable integral point on EA then

deg F < deg A − 1.

Additionally, in Section 3 we show that EA can have a separable integral point of much
lower degree only for certain curves E. Indeed, Theorem 3.4 shows that if deg A′(t) = 0
and P = (F,G) is a separable integral point on EA satisfying

deg F ≤
deg A − 1

2
,

then j(E) = 1728.

2. Lang’s conjecture for constant elliptic curves

We start this section by explaining why Theorem 1.2 is a version of Lang’s
conjecture for constant elliptic curves over finite fields. At the end of the section we
provide a proof of this theorem.
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Let E be an elliptic curve defined over a finite field k, let L = k(C) be the function
field of a curve C of genus g ≥ 1 and let S ⊂ C be a finite nonempty set of points.
Recall that our aim is to bound the number of S -integral points of E in terms solely of
L, S and rank E(L).

The set Mork(C, E) of k-morphisms from C to E is an abelian group canonically
isomorphic to the Mordell–Weil group E0(L), where E0 = E ×k L (see [3, Proposition
6.1]). Under this isomorphism, if O ∈ E(k) is the point at infinity then the k-morphisms
ψ : C −→ E satisfying ψ−1(O) ⊂ S correspond to S -integral points on E0/L. A k-
morphism satisfying this condition is called S -integral.

In this setting, the set of S -integral morphisms is not finite. Indeed, observe that if
φ : E −→ E is the Frobenius endomorphism on E and ψ is an S -integral morphism,
then for every integer n ≥ 0, the k-morphism gn = φn ◦ ψ is S -integral. To avoid such
pathological examples, when discussing S -integral morphisms we disregard those that
are inseparable.

Also, we assume that all of our S -integral morphisms are nonconstant for the
following reason. Notice that with the exception of the constant morphism with
value ∞, all constant morphisms in Mork(C, E) are S -integral. Moreover, under
the isomorphism E0(L) � Mork(C, E), the set of constant morphisms Mor0

k(C, E)
satisfies E0(k) � Mor0

k(C, E). Therefore, by the Hasse–Weil theorem the number of
S -integral morphisms that are constant is bounded by the size of k. Thus to prove
Lang’s conjecture for constant elliptic curves, we only need to bound the number of
nonconstant separable S -integral morphisms in terms of L, S and rank Mork(C, E).

Recall that the degree map, deg : Mork(C, E) −→ Z, defines a nondegenerate
quadratic form on Mork(C, E)/ Mor0

k(C, E) that can be extended to a positive
definite quadratic form on the real vector space Mork(C, E) ⊗ R. As a consequence,
Mork(C, E)/Mor0

k(C, E) is a lattice in Mork(C, E) ⊗ R. This fact and the next result are
the last ingredients needed in our proof of Theorem 1.2.

Lemma 2.1. Let V be an R-vector space of dimension r, Λ ⊂ V be a lattice and
q : V −→ R be a positive definite quadratic form on V. If T is a positive real number
then

|{x ∈ Λ : q(x) ≤ T }| ≤
(
2

√
T
λ

+ 1
)r

for λ = min{q(x) : x ∈ Λ, x , 0}.

Proof. Let Λ(T ) = {x ∈ Λ : q(x) ≤ T }, for a fixed real number T > 0. Suppose that a
and b are distinct elements of Λ(T ) such that a = b in Λ/nΛ, for some positive integer
n. Therefore there exists a nonzero u ∈ Λ such that a − b = nu. As a consequence, if
λ = min{q(x) : x ∈ Λ, x , 0} then

n2λ ≤ n2q(u) = q(nu) = q(a − b) ≤ 2q(a) + 2q(b) ≤ 4T,

and

n ≤

√
4T
λ
.
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Hence, if we choose n such that
√

4T/λ + 1 ≥ n >
√

4T/λ, then the set Λ(T ) will
inject into Λ/nΛ. This implies

|{x ∈ Λ : q(x) ≤ T }| ≤ |Λ/nΛ| ≤ nr ≤

(√4T
λ

+ 1
)r
. �

Proof of Theorem 1.2. Let ψ : C −→ E be a nonconstant separable map satisfying
ψ−1(O) ⊂ S . Let eψ(P) denote the ramification index of ψ at a point P ∈ C and denote
by Rψ the support of the ramification divisor of ψ. The Riemann–Hurwitz formula
shows that

2g − 2 ≥
∑
P∈Rψ

(eψ(P) − 1) =
∑
P∈Rψ

eψ(P) − |Rψ| ≥ 2|Rψ| − |Rψ| = |Rψ|

and ∑
P∈Rψ

eψ(P) ≤ 2g − 2 + |Rψ| ≤ 4(g − 1).

Thus

degψ =
∑

P∈ψ−1(O)

eψ(P) =
∑

P∈ψ−1(O)∩Rc
ψ

1 +
∑

P∈ψ−1(O)∩Rψ

eψ(P)

≤ |S | +
∑
P∈Rψ

eψ(P) ≤ |S | + 4(g − 1).

This shows that a nonconstant separable morphism ψ : C −→ E satisfying ψ−1(O) ⊂ S
is contained in the set

{ψ ∈Mork(C, E)/Mor0
k(C, E) : degψ ≤ |S | + 4(g − 1)}.

If we let V = Mork(C,E) ⊗R, Λ = Mork(C,E)/Mor0
k(C,E) and q = deg then Lemma

2.1 shows that the number of nonconstant separable S -integral morphisms is bounded
by (

2

√
|S | + 4(g − 1)

λ
+ 1

)r

where λ = min{deg ψ : ψ ∈ Mork(C, E)\Mor0
k(C, E)}. The result follows by noticing

that λ ≥ 1 and that, for constant elliptic curves, r ≤ 4g (see [2, 10.1]). �

One can improve the upper bound given in Theorem 1.2 by decreasing the upper
bound on the degree of nonconstant separable S -integral morphisms or finding a
nontrivial lower bound for min{degψ : ψ ∈Mork(C, E)\Mor0

k(C, E)}.

3. Integral points on quadratic twists

Let k be a finite field of odd characteristic. Let A(t) be a square-free polynomial
defined over k of odd degree d > 1 and let CA denote the curve defined by s2 = A(t).
We let E/k be an elliptic curve defined by y2 = f (x), for some cubic polynomial f (x).
Let O and∞ be the points at infinity of E and CA, respectively.
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3.1. Bounding separable integral points on constant elliptic curves over function
fields of hyperelliptic curves. As discussed in Section 2, the set of nonconstant
separable k-morphisms ψ : CA −→ E satisfying ψ−1(O) ⊂ {∞} can be thought of as
‘integral points’ on the elliptic curve E over L, the function field of CA. Theorem 1.2
shows that the number of such morphisms can be bounded in terms of g = (d − 1)/2.
In this section, we give an upper bound (see Corollary 3.3) that depends only on d and
the size of k.

To obtain this new bound, we relate the set of ∞-integral k-morphisms to integral
points on a quadratic twist of E. We let EA be the elliptic curve defined over k(t) by
A(t)y2 = f (x). An integral point (F,G) on EA is a point such that F,G ∈ k[t].

Lemma 3.1. The set of nonconstant integral points on EA is in bijection with the set
of nonconstant k-morphisms ψ : CA −→ E satisfying ψ−1(O) ⊂ {∞}. Moreover, integral
points (F,G) with F′ , 0 correspond to nonconstant separable k-morphisms, and vice
versa.

Proof. Clearly, the map

(F(t),G(t)) 7−→ ψ(s, t) = (F(t), sG(t))

defines a bijection between the set of integral points on EA and the set of k-morphisms
ψ : CA −→ E of the form

ψ(s, t) = (F(t), sG(t)), (3.1)

for some polynomials F(t) and G(t). A morphism of this form satisfies ψ−1(O) ⊂ {∞}.
Thus, we are left to show that any k-morphism ψ : CA −→ E satisfying ψ−1(O) ⊂ {∞}
is given by (3.1).

Let σ(t, s) = (t,−s) be the hyperelliptic involution of CA. Using the group law on
E, we define the morphism ψ ◦ σ + ψ : CA −→ E which is invariant under the action
of the group generated by σ. Hence ψ ◦ σ + ψ factors through P1, the quotient of CA

by the group generated by σ. Since a nonconstant map from P1 to E does not exist,
ψ−1(O) ⊂ {∞} implies that ψ ◦ σ + ψ = O, that is, ψ ◦ σ = −ψ.

Let us write ψ(t, s) = (F0(t, s),G0(t, s)), for some rational functions F0 and G0 of
k(CA). The equation

(F0(t,−s),G0(t,−s)) = ψ(t,−s) = ψ ◦ σ = −ψ = (F0(t, s),−G0(t, s))

implies that F0(t, s) = F(t) is a rational function on t and that G0(t, s) = sG(t), where
G(t) is a rational function on t. Since ψ−1(O) ⊂ {∞}, we see that both F(t) and G(t) are
polynomials and ψ has the desired form.
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To prove the ‘moreover’ part of the theorem, we look at the diagram of the function
field extensions determined by (3.1):

k(t, s)

k(t)

2

k(x, y)

k(x)

2

Both degree-two extensions are separable. Hence k(t, s)/k(x, y) is separable if and
only if k(t)/k(x) is separable. The polynomial F(T ) − x ∈ k(x)[T ] is irreducible, so
the extension k(t)/k(x) is separable if and only if (F(T ) − x)′ = F′(T ) , 0. �

In light of the previous result, we say that (F,G) on EA is a separable integral point
if F,G ∈ k[t] and F′ , 0. In the next result we bound the ‘height’ of such points.

Lemma 3.2. Let (F,G) be a separable integral point on EA. Then G divides F′ and
d/3 ≤ deg F < d − 1.

Proof. An integral point (F,G) = (F(t),G(t)) on EA satisfies the identity

A(t)G(t)2 = f (F(t)). (3.2)

By equating degrees, we arrive at d ≤ 3 deg F.
To show that G divides F′, let β be a root of G(t) of multiplicity r. By (3.2), (t − β)r

divides f (F(t)) and, consequently, F(β) is a root of f (x). By differentiating (3.2), we
arrive at

A′(t)G(t)2 + 2A(t)G(t)G′(t) = F′(t) f ′(F(t)) (3.3)
and we conclude that (t − β)r divides F′(t) f ′(F(t)). If gcd(t − β, f ′(F(t))) , 1 then F(β)
is a root of f ′(x), contradicting the fact that f (x) has no repeated roots. Hence (t − β)r

divides F′(t), which shows that G divides F′.
The desired upper bound for deg F follows from the fact that G(t) divides F′(t).

Indeed, this statement implies degG ≤ deg F − 1 and, after comparing degrees in (3.2),
we arrive at deg F < d − 1. �

Corollary 3.3. The number of nonconstant separable k-morphisms ψ : CA −→ E
satisfying ψ−1(O) ⊂ {∞} is bounded by |k|2d−3.

Proof. By Lemma 3.1, it is enough to count the number of integral points (F,G) on
EA with F′ , 0. From Lemma 3.2, deg G ≤ deg F − 1 and deg F < d − 1. Therefore,
deg G < d − 2 and the number of integral points (F,G) on EA with F′ , 0 is at most

|{(F,G) : F,G ∈ k[t], deg F < d − 1, deg G < d − 2}| = |k|d−1 · |k|d−2,

as desired. �
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3.2. Integral points on quadratic twists and isomorphism classes. In Lemma
3.2 we proved that if (F,G) is a separable integral point on EA : A(t)y2 = f (x), then
d/3 ≤ deg F < d − 1. In this section we prove that if we assume the existence of a
separable integral point (F,G) with d/3 ≤ deg F ≤ (d − 1)/2 then j(E) = 1728, where
E is the elliptic curve defined by y2 = f (x).

Theorem 3.4. Suppose A′(t) ≡ γ ∈ F∗q. Let E : y2 = f (x) be an elliptic curve defined
over k. Suppose (F,G) is an integral point of EA/k(t) satisfying F′ , 0. Then the
following three conditions are equivalent:

(A) 2 deg F ≤ d − 1;
(B) 2 deg G ≤ deg F − 1;
(C) G2 = βF′, for some β ∈ k∗.

Furthermore, if any one of the above conditions is true then j(E) = 1728.

Proof. From (3.2), d + 2 deg G = 3 deg F, and from this it easily follows that (A) is
equivalent to (B). It is also clear that (C) implies (B), so all we need to show is that (B)
implies (C).

Since both F and G are defined over k, a constant β satisfying (C) is an element of
k. Therefore, to prove that (B) implies (C) we may work over an extension of k where
f (x) factors.

Let f (x) = (x − α0)(x − α1)(x − α2) and denote F − αi by Fi, for i ∈ {0, 1, 2}. Then

f (F) = F0F1F2,

the Fi are pairwise coprime and

FiF j ≡ (αl − αi)(αl − α j)) (mod F)l, (3.4)

for {i, j, l} = {0, 1, 2}.
By equating degrees in (3.2), we obtain deg Fi ≡ d ≡ 1 (mod 2). Consequently, by

unique factorisation and (3.2), we can find a nonconstant polynomial Ni satisfying

gcd(A, Fi) = Ni.

Since the Fi are pairwise coprime, we can find a polynomial S i such that

Fi = NiS 2
i . (3.5)

We write si = deg S i and assume, without loss of generality, that

s0 ≥ s1 ≥ s2 ≥ 0. (3.6)

Also, observe that
G = S 0S 1S 2 (3.7)

and
A = N0N1N2. (3.8)
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Given (3.7) and (3.8), it follows from (3.3) that

γG2 + 2N0N1N2S 0S 1S 2(S ′0S 1S 2 + S 0S ′1S 2 + S 0S 1S ′2) = F′(F0F1 + F0F2 + F1F2).

Thus, from (3.5),

γG2 + 2N0S 0S ′0F1F2 + 2N1S 1S ′1F0F2 + 2N2S 2S ′2F0F1 = F′(F0F1 + F0F2 + F1F2).

For l ∈ {0, 1, 2}, this equality and (3.4) imply

G2 + 2βlNlS lS ′l ≡ βlF′l (mod F)l, (3.9)

where
βl = (αl − αi)(αl − α j)/γ. (3.10)

Since
F′ = F′i = N′i S

2
i + 2NiS iS ′i , (3.11)

(3.9) yields
G2 ≡ βlN′l S

2
l (mod F)l.

Clearly, deg(N′l S
2
l ) < deg Fl = deg F. Therefore if (B) is true, we get deg G2 < deg F;

and ultimately,
G2 = βlN′l S

2
l (3.12)

for l ∈ {0, 1, 2}.
Now consider {i, l} = {1, 2}. Multiplying (3.11) by βi and using (3.12),

βiF′ = G2 + 2βiNiS iS ′i .

Lemma 3.2 implies that G divides 2βiNiS iS ′i . Thus, from (3.7),

S 0S l | 2βiNiS ′i ,

since (S 0S l,Ni) = 1. This in turn implies

S 0S l | 2βiS ′i .

Notice that S ′i = 0, for i = 1, 2, since otherwise (3.6) would imply

si ≤ s0 + sl ≤ si − 1.

Thus, (3.11) becomes
F′i = N′i S

2
i ,

and (3.12) gives
G2 = βiN′i S

2
i = βiF′i = βiF′.

This finishes the proof that (A), (B) and (C) are equivalent.
To show the second part, assume that one of the equivalent statements (A), (B) or

(C) is true. Then the last equality shows that necessarily β = β1 = β2, since F′ , 0.
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By performing a change of variable x 7−→ x + α0, we obtain an elliptic curve
isomorphic to E, and we may assume that α0 = 0. Therefore, from (3.10) we arrive
at

α1(α1 − α2)
γ

= β1 = β2 =
α2(α2 − α1)

γ
.

Thus, α2
1 = α2

2. Since the αi are all distinct, we have α1 = −α2 , 0. This shows that E
is isomorphic over k (or an extension of k) to y2 = x3 − a2x, for a = α2. Since this last
elliptic curve has j-invariant 1728, the result follows. �

We give an example to show that the hypotheses in Theorem 3.4 do not give vacuous
conditions.

Example 3.5. Let k be a finite field of size q ≡ 3 (mod 4). Then

(t(q−1)/2, t(q−3)/4)

is a separable integral point on (tq − t)y2 = x3 − x.
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