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We consider the problem of enumerating d-irreducible maps, i.e., planar maps all of whose

cycles have length at least d, and such that any cycle of length d is the boundary of

a face of degree d. We develop two approaches in parallel: the natural approach via

substitution, where these maps are obtained from general maps by a replacement of all d-

cycles by elementary faces, and a bijective approach via slice decomposition, which consists

in cutting the maps along shortest paths. Both lead to explicit expressions for the generating

functions of d-irreducible maps with controlled face degrees, summarized in some elegant

‘pointing formula’. We provide an equivalent description of d-irreducible slices in terms of

so-called d-oriented trees. We finally show that irreducible maps give rise to a hierarchy of

discrete integrable equations which include equations encountered previously in the context

of naturally embedded trees.
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Secondary 05C30, 05A19

1. Introduction

1.1. General introduction

The enumeration of planar maps has been of constantly renewed interest in combinatorics

since Tutte’s seminal papers [30, 31, 32, 33], some of its developments arising from

theoretical physics or probability theory. Among the various enumeration techniques used

so far, let us mention Tutte’s original recursive decomposition, the matrix integral approach

[1] and the more recent use of bijections with trees [29]. While the first two approaches

are fairly systematic (i.e., they allow us to translate the counting problem into equations

almost automatically), a weakness of the third one is that it relies on some preliminary
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divination of the family of trees with which a bijection is to be found. In practice, one

usually solves the counting problem via another approach and, guided by knowledge of

the result, discovers the bijection afterwards. For this reason, the numerous bijections

found in the literature might seem to be a myriad of rather ad hoc tools. Recently, some

authors have undertaken the task of understanding the general underlying principles of

the bijective approach and providing a unified framework, the ‘master bijection’, in which

all the previously known bijections appear as special cases [4, 6, 7].

On the other hand, it was realized that one of the desirable features of trees, namely that

they are easy to enumerate thanks to their natural recursive structure, could be directly

achieved at the level of the maps themselves via the so-called slice decomposition [12].

This approach, close in spirit to Tutte’s approach, has the merit of relying on a simple

systematic construction, which consists in cutting a map along some shortest paths. The

parts obtained in this decomposition are maps with geodesic boundaries, called slices for

short, and may themselves be iteratively cut into smaller slices, reproducing a recursive

tree-like structure. We observe that slices were also used in [27] under the name of DMGB

(discrete maps with geodesic boundaries).

In this paper, we extend the slice decomposition formalism to the case of maps with

a girth constraint, i.e., with a control on the minimal length of their cycles. Such maps

were already considered in the master bijection framework and we shall indeed recover

some of the results of [6, 7]. We actually consider the slightly more general case of

irreducible maps, i.e., maps with a girth constraint and without separating shortest cycles

(as we shall see below, it is indeed more general since the former may be recovered by

setting some parameter to 0). Irreducible triangulations and quadrangulations, respectively,

were first enumerated by Tutte [30], and by Mullin and Schellenberg [28] using a

substitution approach (these authors used the denomination ‘simple’ instead of irreducible,

which is slightly misleading since a simple map is now understood as a map without

loops or multiple edges). These results were later promoted to bijections with trees

[21, 23].

We actually start by extending the Tutte–Mullin–Schellenberg substitution approach to

arbitrary irreducible maps. As a key ingredient, we use an expression for the generating

function of maps with a boundary which originates combinatorially from the slice

decomposition. It turns out that slice decomposition somehow ‘commutes’ with the

substitution approach. We are therefore led to studying irreducible slices and their recursive

decomposition.

Before presenting the outline of the paper in more detail, we would like to discuss the

influence of Philippe Flajolet on this work. Making an exhaustive list is an impossible

task so let us focus on two particular examples. First, the slice decomposition [12] was

inspired by the combinatorial theory of continued fractions [19]. This theory is far more

general than the context of planar maps, but it proved to be the key to understanding the

phenomenon of ‘discrete integrability’, to which we will return below. Second, Philippe

was no stranger to counting maps via substitution: in [5], he and his coauthors showed

that a universal ‘Airy phenomenon’ occurs when, generally speaking, one decomposes a

map into (multi)connected ‘cores’. Figuring out whether the same phenomenon subsists

in the present context of irreducible maps is an intriguing open question.

https://doi.org/10.1017/S0963548314000340 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000340


916 J. Bouttier and E. Guitter

1.2. Definitions

A planar map is an embedding of a connected graph in the sphere without edge crossing,

considered up to continuous deformation. It is made of vertices, edges and faces. A rooted

map is a map with a distinguished oriented edge, the root edge. The face on the right

of the root edge is called the outer face (whose degree is called the outer degree of the

map), the other ones being referred to as inner faces. For n and d two positive integers, a

d-angular dissection of the n-gon is a rooted map whose outer degree is n and where all

inner faces have degree d.

The girth of a map is the minimal length (number of edges) of its cycles, a cycle being

a simple closed path on the map. Note that, by this definition, trees have an infinite girth

since they contain no cycle. In a map not reduced to a tree, the degree of every face is

larger than or equal to the girth (which is finite).

Given a non-negative integer d, we say that a rooted map is d-irreducible if its girth is

at least d and any cycle of length d is the boundary of an inner face of degree d. Note

that every rooted map is 0-irreducible. Furthermore, by definition, a d-irreducible map

with outer degree smaller than or equal to d is either a tree (with one face of even degree

� d) or is reduced to a cycle of length d (delimiting two faces of degree d). A d-irreducible

d-angular dissection will be called an irreducible d-angular dissection for short. Note

finally that maps of girth at least d are simply (d − 1)-irreducible maps containing no

(d − 1)-valent face, and in this sense, the class of irreducible maps is more general than

that of maps with controlled girth.

Let us denote by F (d)
n (z; xd+1, xd+2, . . .) the generating function of d-irreducible maps

with outer degree n, counted with a weight z per inner face of degree d and, for all

i � d + 1, a weight xi per inner face of degree i. Our motivation for choosing a different

notation for the weight of faces of degree d is that it plays a very different role in the

forthcoming expressions. From the above remark, for n � d we have

F (d)
n (z; xd+1, xd+2, . . .) =

{
Cat(n/2) for n < d,

Cat(d/2) + z for n = d,
(1.1)

where Cat(k) is equal to
(
2k
k

)
/(k + 1) (the kth Catalan number, counting rooted trees with

k edges, hence an outer degree 2k) for integer k and 0 for non-integer k.

Let us now discuss a few interesting specializations of F (d)
n . First, by taking all xi,

i � d + 1, to 0, we obtain the generating function f(d)
n (z) = F (d)

n (z; 0, 0, . . .) of irreducible

d-angular dissections of the n-gon, depending on the single variable z coupled to the

number of inner faces. Second, by conversely taking z = 0, we forbid all faces of degree

d hence all cycles of length d, so that F (d)
n (0; xd+1, xd+2, . . .) coincides with the generating

function of rooted maps of girth at least d + 1 and outer degree n, as studied in [7]. Note

that, in the particular case d = 0, Fn(x1, x2, . . .) = F (0)
n (0; x1, x2, . . .) is simply the generating

function of arbitrary maps with outer degree n. Finally, a third specialization concerns

bipartite planar maps, i.e., maps all of whose faces have even degrees: it is obtained by

taking n and d even, and setting all odd xi to 0.
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1.3. Overview of the main results

Our main result is a general expression for F (d)
n in terms of two auxiliary quantities, which

we denote by R(d) and S (d), and which may be interpreted as d-irreducible slice generating

functions. As such, these quantities are themselves determined by an explicit system of two

equations, which is algebraic whenever we impose a bound on the face degrees (i.e., xi = 0

for i large enough). A particularly elegant expression for F (d)
n is via a pointing formula,

which amounts to counting annular maps, i.e., rooted maps having a distinguished inner

face of degree d. This pointing formula has a clear combinatorial interpretation from the

slice decomposition. We now mention a number of other interesting results appearing

along the way.

We find that R(d) and S (d) are particular members (corresponding essentially to the first

two values k = −1, 0) of a larger family of generating functions V (d)
k (k � −1) of so-called

d-irreducible k-slices, where k controls some excess boundary length of the slice (a more

precise definition will come in due course). We provide a closed system of equations for

V
(d)
k which results from an elementary recursive decomposition of k-slices. We are then

able to explicitly eliminate all V (d)
k with k � 1, yielding the desired system of two equations

determining R(d) and S (d).

While all the enumeration is carried out in terms of slices, we also discuss, in the case

of irreducible d-angular dissections, an equivalent formulation in terms of trees: more

precisely, V (d)
k may in this case be interpreted as the generating function of so-called

d-oriented k-trees, reminiscent of the d/(d − 2)-trees considered in [6, 7]. In the particular

cases d = 3 and d = 4, d-oriented trees reduce to ternary and binary trees, respectively,

and we recover the bijections of [21, 23].

Finally, we consider slices subject to a control of an extra parameter, namely their

maximal length. In the case of not necessarily irreducible maps, generating functions of

these objects are known to be solutions of a hierarchy of ‘discrete integrable equations’

[9, 12, 17, 18]. We show that this phenomenon subsists in the d-irreducible case and give

the corresponding equations. Particular attention is paid to the cases d = 3 and d = 4, for

which we recover integrable equations describing so-called naturally embedded trees, in

their ternary [26] and binary [8] flavour, respectively. In particular, answering a question

raised by Bousquet-Mélou, we provide a combinatorial explanation of Proposition 25

in [8], in the same spirit as those previously found for well-labelled trees [12] and very

well-labelled trees [2].

1.4. Outline of the paper

We now come to the detailed plan of the paper. We begin by describing the substitution

approach to the enumeration of d-irreducible maps. For pedagogical reasons, we first

address the simplest cases d = 4 (Section 2.1) and d = 3 (Section 2.2). The general case is

treated in Section 3. We proceed by induction on d and explain in Section 3.1 how F (d)
n

is related to F (d−1)
n . We deduce in Section 3.2 a relation between F (d)

n and the generating

function Fn of arbitrary maps. We then exploit known expressions for Fn to obtain F (d)
n ,

first in the simpler bipartite case (Section 3.3), then in the general case (Section 3.4). This

yields the first derivation of our main result, together with the pointing formula. The

quantities R(d), S (d) and V
(d)
k appear in this derivation as mere intermediate products. In
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Section 4, we take the time to discuss their combinatorial significance as slice generating

functions. We recall in Section 4.1 the definition of slices and extend it to what we

call k-slices. We then show in Section 4.2 that V
(d)
k is simply the generating function of

d-irreducible k-slices. In Section 5, we obtain a recursive decomposition of these slices,

actually in two variants (Sections 5.1 and 5.2). The closed system for the V
(d)
k is deduced

in Section 5.3 and we discuss in Sections 5.4 (bipartite case) and 5.5 (general case) how to

eliminate the V (d)
k with k � 1. This yields a second route to the system of equations satisfied

by R(d) and S (d). Section 6 discusses the equivalent formulation in terms of trees (for the

case of irreducible d-angular dissections): we define d-oriented k-trees in Section 6.1

and exhibit their one-to-one correspondence with slices. An alternative description of

the correspondence as a closure algorithm is given in Section 6.2. Some simplifications

occurring in the bipartite case are mentioned in Section 6.3. Section 7 is devoted to the

bijective proof of the pointing formula: we explain in Section 7.1 how to build an annular

map out of slices, and present in Section 7.2 the inverse mapping (involving the notion

of ‘lift’). Combined with the results of Section 5, this provides a second derivation of

our main result. Section 8 is devoted to discrete integrable equations: we first discuss

the particular cases of irreducible quadrangular (Section 8.1) and triangular (Section 8.2)

slices, related to naturally embedded trees, and we then write down the general equations

in Section 8.3. Section 9 discusses other aspects of irreducibility: in Section 9.1 we relax

the definition of d-irreducibility for maps with outer degree d and solve the corresponding

enumeration problem. Section 9.2 deals with the enumeration of d-irreducible maps with

two marked faces of degree strictly larger than d. Finally, we consider in Section 9.3 a

generalized notion of annular maps, leading to beautiful identities extending the pointing

formula.

2. First simple cases

As a preamble to Section 3, where we shall explain in detail the substitution approach

to d-irreducible maps, let us discuss in the simplest case of quadrangular and triangular

dissections how this approach allows us to obtain expressions for generating functions

of irreducible maps at no cost. More precisely, substitution tells us that these generating

functions may be obtained from those of arbitrary maps by a simple renormalization of

the weights xi. This turns out to be sufficient to determine them fully.

2.1. Irreducible quadrangular dissections

We have at our disposal a number of expressions for the generating functions of general

(not necessarily irreducible) quadrangular dissections, counted with a weight x4 per face.

Recall that Fn(x1, x2, . . .) denotes the generating function of arbitrary planar maps with

outer degree n, counted with weights xi per inner face of degree i. In this section, we denote

by Fn = Fn(0, x2, 0, x4, 0, 0, . . .) its specialization to xi = 0 for i different from 2 or 4, that is

to say we consider maps with only bivalent or tetravalent inner faces. The expression for

Fn takes a particularly simple form if we introduce the series R ≡ R(x2, x4), solution of

R = 1 + x2R + 3x4R
2 (which itself may be understood as a generating function of some
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kind). In particular, we have [18, 12]

F2 = R −
(
x4R

3
)
,

F4 = 2R2 − 3R
(
x4R

3
)
, (2.1)

F6 = 5R3 − 9R2
(
x4R

3
)
.

We now claim that there exist two formal power series X2 ≡ X2(z) and X4 ≡ X4(z)

such that the generating function f(4)
n ≡ f(4)

n (z) of irreducible quadrangular dissections of

the n-gon, counted with a weight z per face, is obtained from Fn by the substitution

x2 → X2(z) and x4 → X4(z). Furthermore, the ‘renormalized face weights’ X2 and X4 are

entirely determined by the condition (1.1) for d = 4. We will prove these statements in

greater generality in Section 3 below. At this stage, let us simply justify them heuristically

by noting that a general quadrangular dissection may be obtained from an irreducible one

by a renormalization procedure which, so to say, consists in replacing each (four-valent)

face of the latter by a more general quadrangular dissection with outer degree 4. In fact

we also need to eliminate multiple edges, which is achieved by introducing bivalent faces

and renormalizing them out.

Defining r(4) = R(X2(z), X4(z)), we deduce from (2.1) that

f
(4)
2 = 1 = r(4) −

(
X4(z)(r

(4))3
)
,

f
(4)
4 = 2 + z = 2(r(4))2 − 3 r(4)

(
X4(z)(r

(4))3
)
, (2.2)

f
(4)
6 = 5(r(4))3 − 9(r(4))2

(
X4(z)(r

(4))3
)
.

Now it is interesting to note that we do not need any precise expression for X2 or X4.

Indeed, eliminating X4 from the first two equations of (2.2) yields

z + (r(4))2 − 3r(4) + 2 = 0, (2.3)

which fully determines r(4) as a function of z. Once r(4) is known, we may get f
(4)
6 from

the third equation which, after elimination of X4, simply reads

f
(4)
6 = 9(r(4))2 − 4(r(4))3. (2.4)

Differentiating both equations (2.3) and (2.4) with respect to z, we deduce in particular

(3 − 2r(4))
dr(4)

dz
= 1

and

df
(4)
6

dz
= 6r(4)(3 − 2r(4))

dr(4)

dz
= 6r(4). (2.5)

This result is a particular example of a more general pointing formula, which will be

discussed in detail later.

Equation (2.3) is more transparent upon setting

r(4)(z) = 1 + z T (z), (2.6)

since it then reads

T = 1 + z T 2. (2.7)
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(a) (b)

Figure 1. (Colour online) (a) An irreducible triangular dissection of the square.

(b) An irreducible quadrangular dissection of the hexagon.

This allows us to identify T with the generating function of binary trees (with a weight z

per inner vertex). Using [zn]T = Cat(n), we arrive at

[zn+2]f(4)
6 =

6

n + 2
Cat(n) (2.8)

for the number of irreducible quadrangular dissections of the hexagon with (n + 2) squares,

n � 0 (see Figure 1 for an example with n = 12). We recover here a result of [28, 23].

More general formulas are obtained along the same lines. From the expression

F2m = Cat(m)Rm − 3

m − 1

(
2m

m − 2

)
x4R

m+2 (2.9)

for the generating function of arbitrary quadrangular dissections of the 2m-gon [18, 12],

we readily deduce that the generating function of irreducible ones reads

f
(4)
2m(z) =

(
2m

m − 2

)(
3

m − 1
(r(4))m−1 − 2

m
(r(4))m

)
(2.10)

and satisfies the pointing formula

df
(4)
2m

dz
=

(
2m

m − 2

)
(r(4))m−2.

However the general coefficient of f
(4)
2m(z) does not seem to be ‘nice’. In contrast, Mullin

and Schellenberg [28] obtained a nice general coefficient when considering irreducible

dissections whose outer boundary is simple. We may recover their formula from the

expression [10, equation (5.16)],

F̃2p =
(3p − 3)!

p!(2p − 1)!

(
px

p−1
4 R3p−2 + (2 − 3p)xp4R

3p
)

(2.11)

for the generating function of arbitrary quadrangular dissections of the 2p-gon with a

simple outer boundary. It is not difficult to check that this formula remains valid if we

also allow for bivalent faces provided R is taken as the solution R = 1 + x2R + 3x4R
2 as

https://doi.org/10.1017/S0963548314000340 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000340


On Irreducible Maps and Slices 921

before. Substituting x4 → X4(z) and R → r(4) in (2.11) and noting that

X4(z)(r
(4))3 = z T (z) and [zk]T (z)p =

p

2k + p

(
2k + p

k

)
,

we obtain after some algebra that the number of irreducible quadrangular dissections of

the 2m-gon with k inner faces and a simple outer boundary reads

[zk]f̃(4)
2p =

(3p − 3)!

(p − 3)!(2p − 1)!

(2k − p − 1)!

k!(k − p + 1)!
(2.12)

which, by the reparametrization m = p − 2 and n = k − p + 1, coincides for m > 0 with

Mullin and Schellenberg’s formula. Let us observe that, in contrast to the present approach,

these authors started directly from Brown’s formula [14] for the number of quadrangular

dissections of the 2p-gon which are both simple (i.e., have no multiple edges) and have a

simple outer boundary.

2.2. Irreducible triangular dissections

We may now play the same game with triangular dissections. As before, we have simple

expressions for the generating functions of general triangular dissections, with weight

x3 per face. In this section, Fn = Fn(x1, x2, x3, 0, 0, . . .) denotes the generating function of

planar maps with outer degree n and all inner faces of degree at most 3 (as obtained by

specializing xi = 0 for i > 3). Introducing the series R, S in the variables x1, x2, x3 specified

by the equations R = 1 + x2R + 2x3RS , S = x1 + x2S + x3(S
2 + 2R), we have [12]

F1 = S −
(
x3R

2
)
,

F2 = S2 + R − 2S
(
x3R

2
)
,

F3 = S3 + 3RS − (3S2 + 2R)
(
x3R

2
)
,

F4 = S4 + 6RS2 + 2R2 − (4S3 + 8RS)
(
x3R

2
)
.

(2.13)

We now claim that there exists three formal power series X1 ≡ X1(z), X2 ≡ X2(z), X3 ≡
X3(z) such that the generating function f(3)

n ≡ f(4)
n (z) of irreducible triangular dissections of

the n-gon, counted with a weight z per inner face, is obtained from Fn by the substitution

x1 → X1(z), x2 → X2(z) and x3 → X3(z). Again, the renormalized face weights X1, X2 and

X3 are entirely determined by (1.1) for d = 3. Setting r(3)(z) = R(X1(z), X2(z), X3(z)) and

s(3)(z) = S(X1(z), X2(z), X3(z)), we can now write

f
(3)
1 = 0 = s(3) −

(
X3(z)(r

(3))2
)
,

f
(3)
2 = 1 = (s(3))2 + r(3) − 2s(3)

(
X3(z)(r

(3))2
)
,

f
(3)
3 = z = (s(3))3 + 3r(3)s(3) − (3(s(3))2 + 2r(3))

(
X3(z)(r

(3))2
)
,

f
(3)
4 = (s(3))4 + 6r(3)(s(3))2 + 2(r(3))2 − (4(s(3))3 + 8r(3)s(3))

(
X3(z)(r

(3))2
)
.

(2.14)

Eliminating X3, the first three equations lead to the following algebraic system determining

r(3) and s(3) in terms of z:

r(3) = 1 + (s(3))2, z + (s(3))3 − s(3) = 0. (2.15)
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As for f
(3)
4 , we deduce from the fourth equation

f
(3)
4 = 2 + 2(s(3))2 − 3(s(3))4 (2.16)

and, upon differentiating with respect to z,

df
(3)
4

dz
= 4s(3)(1 − 3(s(3))2)

ds(3)

dz
= 4 s(3) (2.17)

since, from (2.15),

(1 − 3(s(3))2)
ds(3)

dz
= 1.

Equation (2.15) for s(3) is more transparent upon setting

s(3)(z) = z T (z), (2.18)

as it then reads

T = 1 + z2 T 3. (2.19)

This allows us to identify T with the generating function of ternary trees (with a weight

z2 per inner vertex). Using [z2n]T =
(
3n
n

)
/(2n + 1), we arrive at

[z2n+2]f(3)
4 =

2

n + 1
×

(
3n
n

)
2n + 1

(2.20)

for the number of irreducible triangular dissections of the square with 2n + 2 triangles,

n � 0 (the number of triangles in a dissection of the square must be even: see Figure 1

for an example with n = 7). We recover here a result of [30].

3. Approach by substitution

A natural approach to irreducible maps is via substitution. Intuitively speaking, a d-

irreducible map is obtained by erasing the contents of all cycles of length d in a general

map. This naive viewpoint can be made more precise by combining the following two

observations.

(i) Rooted maps of girth at least d and outer degree n are obtained from (d − 1)-

irreducible maps with outer degree n by forbidding all inner faces of degree d − 1.

(ii) Rooted maps of girth at least d and outer degree n are alternatively obtained from

d-irreducible maps with outer degree n by substituting each inner face of degree d with

an arbitrary rooted map of girth d and outer degree d.

Observation (i), which was made earlier in Section 1.2, implies that the generating function

of rooted maps of girth at least d and outer degree n is equal to F (d−1)
n (0; xd, xd+1, . . .).

Observation (ii), which we will justify in the forthcoming subsection, implies that the same

generating function is equal to F (d)
n (Gd(xd, xd+1, . . .); xd+1, . . .), where

Gd(xd, xd+1, . . .) = F
(d−1)
d (0; xd, xd+1, . . .) − Cat(d/2) (3.1)

is the generating function of rooted map of girth d and outer degree d (indeed a map of

girth at least d and outer degree d has girth exactly d unless it is reduced to a tree). Since
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v

m
n

d−m

v

Figure 2. (Colour online) The no-shortcut lemma: v and v′ are two vertices m edges away in one direction

(hence d − m in the other direction) along the outer boundary (blue) of a map of girth d and outer degree d. A

simple path from v to v′ (red) containing at least one inner edge necessarily has length n � max(m, d − m).

we are expressing the same quantity in two ways, we get the basic identity

F (d−1)
n (0; xd, xd+1, . . .) = F (d)

n (Gd(xd, xd+1, . . .); xd+1, . . .). (3.2)

Let us now complete the proof of this identity, before explaining how it allows us to

compute F (d)
n in practice.

3.1. The basic substitution relation

We now justify the observation (ii) made above. More precisely, we shall prove that we

have a bijection between, on the one hand, the set of rooted maps of girth at least d

and outer degree n and, on the other hand, the set of pairs of the form (M, (mf)f∈Fd(M)),

where M is a d-irreducible map of outer degree n, Fd(M) is the set of its d-valent inner

faces and, for f ∈ Fd(M), mf is a rooted map of girth d and outer degree d.

Starting from such a pair (M, (mf)f∈Fd(M)), we define a rooted map M′ by ‘gluing’

inside each face f ∈ Fd(M) the map mf . More precisely, we identify clockwise each edge

of mf incident to the outer face with an edge of M incident to f, starting from the root

edge of mf , which is identified with an edge of f selected in some canonical manner (for

instance by breadth-first search from the root of M). Note that the boundary of f and

that of the outer face of mf are both simple, thus by identification they yield a cycle of

M′. M′ is a rooted map (with the same root as M) of outer degree n, and we claim that

its girth is at least d. The proof relies on two lemmas, the first of which will also be useful

later on.

No-shortcut lemma. In a map of girth d and outer degree d, if v and v′ are two outer

vertices m edges away in one direction or the other along the boundary, then any simple

path from v to v′ containing at least one inner edge has length larger than or equal to

max(m, d − m) (which itself is larger than or equal to d/2).

Proof. Consider a simple path from v to v′ containing at least one inner edge (see

Figure 2), and denote its length by n. Adding the shorter boundary between v′ and v,

we obtain a closed path of length n + min(m, d − m), which is not necessarily simple
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but encircles at least one inner face. Thus, by possibly removing some edges we obtain

a cycle of length at most n + min(m, d − m). Since the map has girth d, we deduce

n � d − min(m, d − m) = max(m, d − m).

Encircling lemma. Given a cycle C ′ of M′, there exists a cycle C of M such that C ′ lies

in the closed region bounded by C , and such that the length of C is at most that of C ′.

Proof. Let C ′ be a cycle of M′ of length �. If C ′ remains within a single d-valent face f

of M, then the statement is clearly true: C ′ is a cycle of mf , so � � d and we may take

C to be the boundary of f, which has length d. Otherwise, C ′ necessarily visits at least

two vertices of M. We orient C ′ anticlockwise, and denote by v1, v2, . . . , vp (2 � p � �) the

successive vertices of M visited along C ′. We then let γ′
i (1 � i � p) be that part of C ′

between vi and vi+1 (with vp+1 = v1), where γ′
i is a simple open oriented path which is

either reduced to a single edge of M, or made of edges not in M that are all inside the

same d-valent face fi of M. In the former case we let γi = γ′
i , while in the latter case we let

γi be the part of the boundary of fi going from vi to vi+1 in the anticlockwise direction: the

no-shortcut lemma ensures that the length of γi is at most that of γ′
i . Upon concatenating

γ1, . . . , γp together we obtain a closed path C̃ on M of length at most �. However, we are

not assured that it is a cycle encircling C ′, so we cannot yet conclude. Instead, we let R′

be the closed region bounded by C ′ and, for 1 � i � p, ri be the closed region bounded

by γi ∪ γ′
i if γi �= γ′

i , or the empty set otherwise. Then, R = R′ ∪ r1 ∪ · · · ∪ rp is a simply

connected closed region whose boundary is the cycle C we are looking for. Indeed, note

first that it obviously contains C ′. Secondly, if ri is non-empty, then γ′
i has ri on its right

and R′ on its left, and thus the interior of R is simply connected and, furthermore, any

edge of C ′ not in M cannot be on the boundary of R. Therefore, the boundary of R is a

cycle C whose edges form a subset of those of C̃ , and thus its length is at most �.

The encircling lemma immediately implies that the girth of M′ is at least d (more

precisely it is equal to the girth of M, which is at least d, with equality if and only if

Fd(M) is non-empty). Furthermore, since M is irreducible, this lemma also implies that

any cycle of length d in M′ necessarily remains within a single d-valent face of M: the

boundaries of d-valent faces of M are thus precisely the outermost cycles of length d in

M′. This shows that, starting from M′, we may recover M by erasing all the edges and

vertices that are interior to the outermost d-cycles. Then, for a given f ∈ Fd(M), the edges

and vertices of M′ that lie within f form the map mf . In conclusion, the mapping that

maps (M, (mf)f∈Fd(M)) to M′ is injective. It remains to check that it is surjective.

Let us now start conversely with an arbitrary rooted map M′ of outer degree n and

girth at least d and consider the set Cd(M′) of its outermost cycles of length d, i.e., those

cycles of length d whose interior is not strictly included in the interior of another cycle of

length d. For C ∈ Cd(M′), the edges and vertices of M′ that lie within C form a map mC

which clearly has girth d and outer degree d (we discuss its rooting below). Now we have

the crucial property that two distinct cycles in Cd(M′), say C1 and C2, cannot overlap, i.e.,

the intersection of their interiors is necessarily empty. Indeed, since the interior of one

cycle cannot be included in the interior of the other, if we assume that these interiors
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Figure 3. (Colour online) Illustration of the proof that two outermost cycles of length d in a map of girth d

do not overlap. If two cycles C1 and C2 of length d overlap (hence we may find two vertices v and v′ such that

the part of C1 between v and v′, of length n1 lies in the interior of C2, and vice versa), we can build a cycle C12

(dashed line) encircling them both, and having length at most 2d − (n1 + n2) � d, hence equal to d.

have a non-empty intersection, there exist two vertices v and v′ at the intersection of C1

and C2 such that one of the parts of C1 between v and v′ lies in the interior of C2 and

one of the parts of C2 between v and v′ lies in the interior of C1 (see Figure 3). Calling

n1 and n2 the lengths of these parts, we have n1 � d/2 and n2 � d/2 by the no-shortcut

lemma applied to mC2
and mC1

, respectively. We can then build a cycle C12 by following

the outer boundary of the union of the interiors of C1 and C2 (note that this union is

connected but not necessarily simply connected: see Figure 3). This cycle has length at

most (d − n1) + (d − n2) � d, hence it has length d from the girth condition on M′. The

interiors of C1 and C2 are then strictly included in the interior of the cycle C12 of length d,

a contradiction. Since outermost cycles of length d do not overlap, we may unambiguously

replace the content of each such cycle by a simple face of degree d, resulting in a rooted

map M of outer degree n and girth at least d, such that all cycles of length d are the

boundary of an inner face of degree d, hence a d-irreducible map (note that the outer face

of M′ is unaffected by the substitution since it cannot belong to the interior of a cycle).

In particular, we may identify Fd(M) with Cd(M′). For each f ∈ Fd(M), associated with

C ∈ Cd(M′), we select an edge of M incident to f by the same canonical procedure as

before: this provides a canonical rooting of mf ≡ mC . Obviously, applying the previous

construction to (M, (mf)f∈Fd(M)) restores M′, hence the mapping from (M, (mf)f∈Fd(M))

to M′ is surjective. It is therefore a bijection.

As a final remark, note that this bijection preserves the following parameters:

• the number of d-valent inner faces of M′ is equal to the total number of d-valent

inner faces in all mf , f ∈ Fd(M),

• for each k > d, the number of k-valent inner faces of M′ is equal to the total number

of k-valent inner faces in M and all mf , f ∈ Fd(M).

It follows that the generating function of rooted map of girth at least d and outer degree

n is indeed equal to F (d)
n (Gd(xd, xd+1, . . .); xd+1, . . .), which concludes the proof of the basic

identity (3.2).
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3.2. General strategy

We turn to discussing the practical use of the basic identity (3.2) in computing F (d)
n . We

first claim that there exists a series Xd(z; xd+1, . . .) such that

Gd(Xd(z; xd+1, . . .), xd+1, . . .) = z, (3.3)

in other words Gd admits a compositional inverse with respect to its first variable. Observe

indeed that Gd is a series in xd, xd+1, . . . whose constant term is zero (since any map

contributing to Gd contains at least one inner face) and whose coefficient of xd is 1

(corresponding to the map reduced to a single d-gon), i.e.,

Gd(xd, xd+1, . . .) = A(xd+1, . . .) + xd(1 + B(xd+1, . . .)) + x2
dC(xd, xd+1, . . .) (3.4)

where A,B are formal power series in xd+1, xd+2, . . . without constant term. Since 1 + B

is invertible in the ring of formal power series in xd+1, xd+2, . . ., the series xd(1 + B) +

x2
dC , viewed as a series in xd whose coefficients are series in xd+1, xd+2, . . ., admits a

compositional inverse D with respect to the variable xd, satisfying D(0, xd+1, xd+2, . . .) = 0.

The desired series is then Xd(z; xd+1, . . .) = D(z − A(xd+1, . . .), xd+1, . . .), the substitution

being well defined as A has no constant term. Note that when specializing xi = 0 for all

odd i, we have Gd(0, xd+1, . . .) = A(xd+1, . . .) = 0 for d odd (since there are no maps with odd

outer degree and all inner faces of even degree), hence Xd(0; xd+1, . . .) = D(0, xd+1, . . .) = 0.

Replacing xd by Xd(z; xd+1, . . .) in (3.2), we obtain the reciprocal identity

F (d)
n (z; xd+1, . . .) = F (d−1)

n (0;Xd(z; xd+1, . . .), xd+1, . . .). (3.5)

By iterating this relation d times, we relate F (d)
n to the generating function Fn(x1, x2, . . .) =

F (0)
n (0; x1, x2, . . .) of arbitrary maps with outer degree n. Namely, we have the general

substitution relation

F (d)
n = Fn(X

(d)
1 , X

(d)
2 , . . . , X

(d)
d , xd+1, . . .), (3.6)

where the series X
(d)
j (z; xd+1, . . .), 1 � j � d, are defined inductively by

X
(d)
j (z; xd+1, . . .) =

{
Xd(z; xd+1, . . .) for j = d,

Xj(0;X(d)
j+1, . . . , X

(d)
d , xd+1, . . .) for j < d.

(3.7)

In the bipartite case (n, d even, xi = 0 for i odd), we showed above that Xj(0; xj+1, . . .) = 0

for j odd so that, by (3.7), X(d)
j = 0. In other words, (3.6) relates the generating function

of bipartite d-irreducible maps to the generating function of bipartite maps without

irreducibility constraints (alternatively, this can be shown by writing the bipartite analogue

of (3.2), relating directly F (d−2)
n and F (d)

n ).

While Fn is a well-studied quantity for which convenient expressions are known (see

below), we have a priori no such expressions for X
(d)
1 , . . . , X

(d)
d which appear in (3.6).

However, these d unknown quantities may in principle be determined by the conditions

(1.1), and then eliminated from the expression of F (d)
n . In Section 2 we saw two cases where

this elimination can been carried out smoothly, and this can be done in general, as we

shall see in the following subsections. We first concentrate on the bipartite case, where the

expressions are somewhat simpler.
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3.3. Elimination in the bipartite case

In the bipartite case, both the outer degree n and the girth d are even integers, hence we

write n = 2m, d = 2b. The generating function F2m of bipartite, not necessarily irreducible

maps is given by [18, 12]

F2m = Cat(m)Rm −
∑
j�1

min(m,j−1)∑
k=1

2k + 1

2m + 1

(
2m + 1

m − k

)(
2j − 1

j + k

)
x2jR

m+j , (3.8)

where R is the formal power series determined by the equation

R = 1 +
∑
j�1

(
2j − 1

j

)
x2jR

j . (3.9)

For concreteness, let us mention that the general coefficient of R explicitly reads[∏
j�1

(x2j)
nj

]
R =

(∑
j�1 jnj

)
!(

1 +
∑

j�1(j − 1)nj
)
!

∏
j�1

1

nj!

(
2j − 1

j

)nj

, (3.10)

as seen by applying the Lagrange inversion formula [16, 20, 24]. We may rewrite (3.8) in

a more compact form by introducing the shorthand notations

Am,k =
2k + 1

2m + 1

(
2m + 1

m − k

)
(3.11)

(note that Cat(m) = Am,0) and

Uk =
∑

j�k+1

(
2j − 1

j + k

)
x2jR

j+k, (3.12)

so that

F2m = Rm

m∑
k=0

Am,k

(
δk,0 − UkR

−k(1 − δk,0)
)
. (3.13)

We now apply the general substitution relation (3.6), to get

F
(d)
2m = (R(d))m

m∑
k=0

Am,k

(
δk,0 − U

(d)
k (R(d))−k(1 − δk,0)

)
(3.14)

where R(d) and U
(d)
k are the series obtained by substituting, for all j between 1 and b, the

formal variable x2j by the series X
(d)
2j in R and Uk respectively (recall that X(d)

j = 0 for j

odd in the bipartite case). In particular, since the variables x2j with j > b are unaffected

by the substitution, we have

U
(d)
k =

∑
j�k+1

(
2j − 1

j + k

)
x2j(R

(d))j+k, for k � b. (3.15)

We are therefore left with the b unknown quantities R(d) and U
(d)
k , k = 1, . . . , b − 1, which

replace the original unknowns X
(d)
2j , j = 1, . . . , b.

We then observe that the condition (1.1) implies that F (d)
2m = Cat(m) for 1 � m � b − 1,

which may be viewed as a system of b − 1 linear equations for U(d)
1 , . . . , U

(d)
b−1 (note that the
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condition F
(d)
0 = 1 is readily satisfied since F0 = 1). It may easily be solved by introducing

the inverse B = (Bn,m)n,m�0 of the semi-infinite unitriangular matrix A = (Am,k)m,k�0, whose

coefficients read explicitly

Bn,m = (−1)n+m

(
n + m

2m

)
. (3.16)

Multiplying (3.14) by Bn,m(R(d))−m and summing over m from 0 to n, we obtain that

U(d)
n = −

n∑
m=0

Bn,mCat(m)(R(d))n−m, for 1 � n � b − 1. (3.17)

Plugging (3.15) and (3.17) into (3.14) yields

F
(d)
2m =

b−1∑
k=0

k∑
�=0

Am,kBk,�Cat(�)(R(d))m−� −
m∑

k=b

∑
j�k+1

Am,k

(
2j − 1

j + k

)
x2j(R

(d))m+j . (3.18)

This expression may be further simplified using the two hypergeometric identities

b−1∑
k=�

Am,kBk,� = (−1)b−�−1 b − �

m − �

(
2m

m − b

)(
b + �

2�

)
, (3.19)

m∑
k=b

Am,k

(
2j − 1

j + k

)
=

b + j

m + j

(
2m

m − b

)(
2j − 1

j + b

)
, (3.20)

which are routinely obtained via Gosper’s algorithm and may easily be checked by

induction on b, resulting in the expression

F
(d)
2m =

(
2m

m − b

)(b−1∑
�=0

(−1)b−�−1 b − �

m − �

(
b + �

2�

)
Cat(�)(R(d))m−�

−
∑

j�b+1

b + j

m + j

(
2j − 1

j + b

)
x2j(R

(d))m+j

)
. (3.21)

Interestingly, this expression involves only the (so far unknown) series R(d). This quantity

is in turn determined by the last case of condition (1.1), namely that F
(d)
d = Cat(b) + z,

which may be rewritten in the form

z +

b∑
�=0

(−1)b−�

(
b + �

2�

)
Cat(�)(R(d))b−� +

∑
j�b+1

(
2j − 1

j + b

)
x2j(R

(d))b+j = 0. (3.22)

In particular, if we impose a bound on the face degrees (i.e., we take x2j = 0 for j larger

than some fixed M), then R(d) and hence F (d)
m are algebraic. This is notably the case for

irreducible d-angular dissections, where we specialize x2j = 0 for all j, keeping z as the

only formal variable, to get

f
(d)
2m(z) =

(
2m

m − b

) b−1∑
�=0

(−1)b−�−1 b − �

m − �

(
b + �

2�

)
Cat(�)(r(d))m−� (3.23)
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Figure 4. (Colour online) An example of irreducible hexangular dissection of the octagon.

where r(d)(z), the corresponding specialization of R(d), satisfies the algebraic equation

z +

b∑
�=0

(−1)b−�

(
b + �

2�

)
Cat(�)(r(d))b−� = 0. (3.24)

A remarkable formula follows from differentiating (3.21) with respect to R(d) (keeping

the x2j , j > b, fixed): observe that

∂F
(d)
2m

∂R(d)
=

(
2m

m − b

)
(R(d))m−b ∂F

(d)
d

∂R(d)
. (3.25)

Since F
(d)
d = Cat(b) + z, it follows, by multiplying both sides by ∂R(d)/∂z, that we have

the pointing formula

∂F
(d)
2m

∂z
=

(
2m

m − b

)
(R(d))m−b (3.26)

and, in particular, for m = b + 1,

∂F
(d)
d+2

∂z
= (d + 2)R(d). (3.27)

These formulas generalize, in some sense, the expression [12]

F•
2m =

(
2m

m

)
(R(d))m (3.28)

for the generating function of pointed rooted bipartite (not necessarily irreducible) planar

maps, which we recover in the case d = 0 (upon understanding z as a weight per vertex).

Let us now give some examples. Taking b = 2 and xi = 0 for all i, we recover the case of

irreducible quadrangular dissections discussed in Section 2.1: (3.23) yields the expression

(2.10) for the generating function of irreducible quadrangular dissections of the 2m-gon

and (3.24) yields the algebraic equation (2.3) for r(4). Now taking b = 3 and still xi = 0 for

all i, we obtain generating functions of irreducible hexangular dissections (see Figure 4),
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namely

f
(6)
2m(z) =

(
2m

m − 3

)(
10

m − 2
(r(6))m−2 − 12

m − 1
(r(6))m−1 +

3

m
(r(6))m

)
, (3.29)

where r(6) satisfies

z − (r(6))3 + 6 (r(6))2 − 10 r(6) + 5 = 0. (3.30)

The first few terms read

r(6) = 1 + z + 3 z2 + 17 z3 + 120 z4 + 948 z5 + 8022 z6 + · · · ,
f

(6)
8 = 14 + 8 z + 4 z2 + 8 z3 + 34 z4 + 192 z5 + 1264 z6 + 9168 z7 + · · · , (3.31)

f
(6)
10 = 42 + 45 z + 45 z2 + 105 z3 + 450 z4 + 2547 z5 + 16785 z6 + 121815 z7 + · · · ,

consistent with the pointing formula.

3.4. Elimination in the general case

We now repeat the same strategy in the general case, i.e., when the maps are not necessarily

bipartite. Our starting point is the expression found in [12] for the generating function Fn

of general maps with outer degree n. It involves generating functions of three-step paths,

i.e., lattice paths in Z2 made of three types of steps: up-steps (1, 1), down-steps (1,−1)

and level steps (1, 0). We let

Pk(n; r, s) =

	(n−k)/2
∑
j=0

n!

j!(j + k)!(n − 2j − k)!
rjsn−2j−k,

P+
k (n; r, s) =

	(n−k)/2
∑
j=0

(k + 1) n!

j!(j + k + 1)!(n − 2j − k)!
rjsn−2j−k,

(3.32)

respectively, denote the generating polynomials of arbitrary and non-negative three-step

paths from (0, 0) to (n, k), counted with a weight r per down-step and s per level step (a

path is said to be non-negative if it only visits vertices with non-negative ordinates). Note

that, for k � 0, Pk(n; r, s) is well defined (the sum over j then starts in practice at j = −k)

and equals r−kP−k(n; r, s). Then, we have [12]

Fn = P+
0 (n;R, S) −

∑
k�1

P+
k (n;R, S)Vk, (3.33)

where Vk is defined by

Vk =
∑

j�k+2

xjP−k−1(j − 1;R, S) (3.34)

and R, S are formal power series determined by the equations

R = 1 + V0, S = V−1. (3.35)

Clearly, (3.33) yields (3.13) in the bipartite case where S = 0, P+
2k(2m;R, 0) = Am,kR

m−k ,

V2k = Uk , V2k+1 = 0.

https://doi.org/10.1017/S0963548314000340 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000340


On Irreducible Maps and Slices 931

Applying the general substitution relation (3.6), we get

F (d)
n = P+

0 (n;R(d), S (d)) −
∑
k�1

P+
k (n;R(d), S (d))V (d)

k , (3.36)

where R(d), S (d) and V
(d)
k are the series obtained by substituting, for all j between 1 and d,

the formal variable xj by the series X
(d)
j in R, S and Vk respectively, namely

R(d) = R(X(d)
1 , X

(d)
2 , . . . , X

(d)
d , xd+1, . . .),

S (d) = S(X(d)
1 , X

(d)
2 , . . . , X

(d)
d , xd+1, . . .), (3.37)

V
(d)
k = Vk(X

(d)
1 , X

(d)
2 , . . . , X

(d)
d , xd+1, . . .).

Note that, in particular,

V
(d)
k =

∑
j�k+2

xjP−k−1(j − 1;R(d), S (d)), for k � d − 1. (3.38)

We are left with d unknowns R(d), S (d) and V
(d)
1 , . . . , V

(d)
d−2, which replace the original

unknowns X
(d)
1 , . . . , X

(d)
d . Similarly to the previous section, we may determine these

quantities using the conditions (1.1). Here, we need the inverse of the semi-infinite

unitriangular matrix (P+
k (n; r, s))n,k�0, which is denoted by (Qn,k(r, s))n,k�0 with the explicit

form

Qn,k(r, s) =

	(n−k)/2
∑
j=0

(n − j)!

k!j!(n − 2j − k)!
(−r)j(−s)n−2j−k. (3.39)

Multiplying (3.36) by Qk,n(R
(d), S (d)) and summing over n, the conditions (1.1) amount to

V
(d)
k = −

	k/2
∑
j=0

Qk,2j(R
(d), S (d)) Cat(j) − δk,dz, for 1 � k � d (3.40)

(recall that Cat(j) = 0 for non-integer j). In particular, comparing this expression with

(3.38) for k = d − 1 or d yields the equations

	(d−1)/2
∑
j=0

Qd−1,2j(R
(d), S (d)) Cat(j) +

∑
j�d+1

xjP−d(j − 1;R(d), S (d)) = 0,

z +

	d/2
∑
j=0

Qd,2j(R
(d), S (d)) Cat(j) +

∑
j�d+2

xjP−d−1(j − 1;R(d), S (d)) = 0

(3.41)

which determine the power series R(d) and S (d). As before, if we impose a bound on the

face degrees (xj = 0 for j > M), then R(d) and S (d) are algebraic. It follows that F (d)
n is also

algebraic, since by (3.40) (for k � d − 2) and (3.38) (for k � d − 1), (3.36) is a polynomial

in R(d) and S (d). This polynomial admits an expression similar to (3.18) (mutatis mutandis)

which we do not find particularly illuminating: no simplification as nice as (3.21) has

been found. Remarkably, however, a pointing formula stills holds in the form

∂F (d)
n

∂z
= Pd(n;R

(d), S (d)) (3.42)
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and may be viewed as a generalization of the formula [12]

F•
n = P0(n;R, S) (3.43)

for the generating function of pointed rooted maps. We will prove (3.42) in Section 7

below using a combinatorial argument.

We now conclude this section by some examples. Taking d = 3 and xi = 0 for all i,

we recover the case of irreducible triangular dissections discussed in Section 2.1: (3.41)

yields the algebraic equations 1 − r(3) + (s(3))2 = 0 and z + 2r(3)s(3) − (s(3))3 − 3s(3) = 0,

which amount to (2.15). The pointing formula (3.42) yields (2.17) for n = 4, which in

turn implies the expression (2.20) for the number of irreducible triangular dissections of

the square. Now taking d = 5 and still xi = 0 for all i, we obtain the case of irreducible

pentangular dissections. From (3.41) we find that r(5) and s(5) are determined by the

algebraic equations

(r(5))2 − 3r(5)(s(5))2 + (s(5))4 − 3r(5) + 6(s(5))2 + 2 = 0,

z − s(5)
(
3(r(5))2 − 4r(5)(s(5))2 + (s(5))4 − 12r(5) + 10(s(5))2 + 10

)
= 0

(3.44)

and their first few terms read

r(5) = 1 + 3z2 + 73z4 + 3015z6 + 151842z8 + 8493934z10 + 507165545z12 + · · · , (3.45)

s(5) = z + 12z3 + 422z5 + 19780z7 + 1062275z9 + 61781482z11 + 3786534059z13 + · · · .

By the pointing formula df
(5)
6 /dz = 6s(5), the numbers of irreducible pentangular dissec-

tions of the hexagon with up to 14 inner faces are contained in

f
(5)
6 = 5 + 3z2 + 18z4 + 422z6 + 14835z8 + 637365z10 (3.46)

+ 30890741z12 + 1622800311z14 + · · · .

4. Combinatorial interpretation via slices

In this section, we provide a combinatorial interpretation for some of the quantities that

appear in the approach by substitution. We are led to define some particular classes of

maps called slices, generalizing the notion introduced in [12, Appendix A].

4.1. General slices

As explained in [12], equations (3.33) and (3.43) have a direct combinatorial interpretation

resulting from a decomposition of the maps enumerated respectively by Fn and F•
n into

more primitive components called slices, of which R and S are generating functions. More

precisely, a slice is defined as a rooted map with a marked vertex O (later called the apex)

incident to its outer face, and which is of the type displayed in Figure 5, namely it satisfies

the following.

• The right boundary of the map, defined as the path joining the endpoint of the root

edge to O by following the outer face anticlockwise around the rest of the map, is the

unique shortest path in the map between these two points.
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Unique shortest
path from B to O

Shortest path
from A to O

p

p

O

A B

S

p

p + 1

O

A B

R

(a) (b)

Figure 5. (Colour online) Schematic picture of slices of (a) type p/p and (b) type p/p + 1.

Unique shortest

path from B to O

Shortest path from

A to O among paths

avoiding the root edge

p

p + k + 1

O

A B

Vk

Figure 6. (Colour online) Schematic picture of a k-slice of type p/p + k + 1.

• The left boundary of the map, defined as the path joining the origin of the root edge

to O by following the outer face clockwise around the rest of the map, is a shortest

path in the map between these two points.

• The vertex O is the only vertex common to both the right and left boundaries.

Clearly, if we let p � 0 denote the length of the right boundary, that of the left boundary

is either p or p + 1 (it cannot be p − 1, as otherwise the right boundary would not be

the unique shortest path). We shall refer to these slices as being of type p/p or p/p + 1

accordingly. It was shown in [12] that R(x1, x2, . . .) is precisely the generating function

of slices of type p/p + 1 for some (unfixed) p, counted with weights xi per inner face of

degree i, while S(x1, x2, . . .) is the generating function of slices of type p/p for some p.

Note that R incorporates a term 1 accounting for the slice of type 0/1 reduced to the

root edge (with no inner face and with outer face of degree 2), O being the endpoint of

this edge.

In this paper, we extend this notion of slices to what we shall call k-slices, defined as

follows: as displayed in Figure 6, a k-slice is, for a given integer k, a rooted map with a

marked vertex O (the apex) incident to its outer face, satisfying the following requirements.

• The right boundary of the map is the unique shortest path in the map between the

endpoint of the root edge and O.
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• The left boundary of the map is a shortest path in the map among all paths which

join the origin of the root edge to O and do not pass via the root edge.

• The difference of the lengths of the left and right boundaries is k + 1. More precisely,

if the right boundary has length p for some p � 0, the left boundary then has length

p + k + 1, and we say that the k-slice is of type p/p + k + 1.

• The vertex O is the only vertex common to both the right and left boundaries.

• The slice has at least one inner face.

The interest of this definition lies in the following lemma.

Lemma. For all k � −1, the generating function of k-slices, counted with weights xi per

inner face of degree i, is equal to the quantity Vk defined by (3.34).

Remark. The statement does not hold for k < −1, for which there are no k-slices (if the

left boundary has length strictly less than p, the right boundary, of length p, cannot be the

unique shortest path between the endpoint of the root edge and O), while Vk is non-zero.

Proof. It is easily seen that the lemma holds in cases k = −1 and k = 0: the second

requirement for a k-slice is then equivalent to demanding that the left boundary itself be a

shortest path among all paths in the map between the origin of the root edge and O, since

any path between these two points passing via the root edge has length larger than p + 1.

We immediately deduce that the notion of slices of type p/p and p/p + 1 introduced above

matches precisely that of −1-slices of type p/p and 0-slices of type p/p + 1 respectively

(with the slight discrepancy that, due to the last requirement that a k-slice has at least one

inner face, the slice of type 0/1 reduced to the root edge is not considered as a 0-slice).

We conclude that the generating function of −1-slices is equal to S and that of 0-slices is

equal to R − 1. By (3.35), these are equal to V−1 and V0 respectively. In fact, that R and

S satisfy (3.35) may itself be proved via slices [12, Appendix A], and we now adapt the

argument to the case of an arbitrary k � −1.

Starting from a k-slice (k � −1), we consider the face to the left of the root edge: this

face has degree j � k + 2, as otherwise a path of length j − 1 + p (obtained by going

around the face at hand), hence strictly smaller than p + k + 1 and avoiding the root edge,

would join the origin of the root edge to the apex. Considering the successive vertices

clockwise around this face and recording their distance to the apex in the k-slice with the

root edge removed creates a three-step path of length j − 1 starting at height p + k + 1

(the distance from the origin of the root edge to the apex) and ending at height p (the

distance from the endpoint of the root edge to the apex): see Figure 7. We shift all heights

down by −p − k − 1 so as to obtain a three-step path starting at height 0 and ending

at height −k − 1, as counted by P−k−1(j − 1; r, s). Now, for each vertex around the face,

we draw the leftmost shortest path from it to the apex. Cutting along all these shortest

paths results in a decomposition of the map into connected components, each component

being either a 0-slice attached to a down-step, since the lengths of the boundaries differ

by 1 in this case, or a −1-slice attached to a level step, since the length of the boundaries

are then identical. Note that some steps do not give rise to a slice: up-steps never do,

as the leftmost shortest path begins by following the boundary of the face anticlockwise
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p

k + 1

j − 1

p + k + 1

O

RR

R

R
R

R

S

S

xj

Vk

Figure 7. (Colour online) Schematic picture of the slice decomposition of a k-slice by cutting along the leftmost

shortest paths from the vertices incident to the face on the left of the root edge (of degree j = 6 here) to the

apex O. Recording the lengths of these paths creates a three-step path of length j − 1 with height decrease k + 1

(bottom right) with −1-slices (resp. 0-slices) associated with level steps (resp. down-steps). Since we represent

the slice with O on top, the three-step path appears vertically reflected in the slice.

(see Figure 7), while for some down-steps it might occur that a leftmost shortest path

follows the boundary of the face clockwise (in contrast, every level step gives rise to

a non-empty −1-slice). It is not difficult to check that, conversely, gluing a sequence

of 0- and −1-slices attached to some down-steps and all level steps, respectively, of a

path of length j − 1 with total height decrease of k + 1, and closing the path by adding

an extra root edge, thus creating a new face of degree j, rebuilds a k-slice. Translating

this construction into the language of generating function, it follows that the generating

function of k-slices (k � −1) is equal to∑
j�k+2

xjP−k−1(j − 1;R, S) = Vk.

4.2. d-irreducible slices

Lemma. For all k � 1, the generating function of d-irreducible k-slices, counted with a

weight z per inner face of degree d and, for all i � d + 1, a weight xi per inner face of

degree i, is equal to the quantity V
(d)
k defined by (3.37).

Proof. Let Ṽ (d)
k (z; xd+1, xd+2, . . .) be the generating function of d-irreducible k-slices. Let

us show that the basic substitution relation (3.2) may be adapted to k-slices, namely that
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we have

Ṽ
(d−1)
k (0; xd, xd+1, . . .) = Ṽ

(d)
k (Gd(xd, xd+1, . . .); xd+1, . . .), (4.1)

with Gd as in (3.1). Indeed, a k-slice of type p/p + k + 1 is a simply a particular instance

of a rooted map with outer face of degree n = 2p + k + 2 to which we may apply our

substitution approach, keeping the apex unchanged under substitution. By following the

same line of arguments as in Section 3.1, we relate k-slices of type p/p + k + 1 and girth

at least d (left-hand side) to d-irreducible k-slices of the same type (right-hand side). That

the type p/p + k + 1 of slice remains the same is clear, since the substitution does not

alter the lengths of the right and left boundaries of the map. The only non-trivial property

which must be verified is that these boundaries remain shortest paths within the desired

path sets. Here we again use the no-shortcut lemma: starting from a d-irreducible k-slice

of type p/p + k + 1, we easily deduce from the lemma that substituting faces of degree

d by rooted maps with girth d and outer degree d does not alter the distances between

the originally existing vertices (we apply the same idea as in the proof of the encircling

lemma: given a simple oriented path between two such vertices, we may construct a path

in the original map lying to its left, having the same endpoints, and having a smaller

or equal length). It follows that the right boundary remains the unique shortest path (of

the same length) between its endpoints after substitution. Indeed, having another path

of smaller or equal length after substitution would imply having to the left of this path

another path of smaller or equal length which existed before substitution, a contradiction.

As for the left boundary, it remains a shortest path (of the same length) between its

endpoints among all paths which avoid the root edge. Indeed, the existence of a strictly

shorter path avoiding the root edge after substitution would imply the existence to the

left of this path – hence also avoiding the root edge – of a path with even shorter length

already present in the original map, a contradiction. Conversely, erasing the interior of

the outermost cycles of length d in a k-slice of type p/p + k + 1 with girth at least d does

not modify the distances between the remaining vertices, so the conditions on the two

boundaries remain satisfied and these boundaries keep the same lengths.

Taking xd = Xd(z; xd+1, . . .) as in (4.1) and iterating, we obtain that

Ṽ
(d)
k (z; xd+1, . . .) = Ṽ

(d−1)
k (0;Xd, xd+1, . . .) = · · · = Ṽ

(0)
k (0;X(d)

1 , . . . , X
(d)
d , xd+1, . . .), (4.2)

where X
(d)
k (z; xd+1, . . .), 1 � k � d, is defined as in (3.7). But Ṽ

(0)
k (0; x1, x2, . . .) is the

generating function of 0-irreducible, i.e., arbitrary k-slices which is simply Vk(x1, x2, . . .),

from Section 4.1. Thus, by (3.37), Ṽ (d)
k and V

(d)
k coincide.

To conclude this section, let us discuss the simplifications arising in the case of bipartite

maps, i.e., when d is even and xi = 0 for odd i. Then the degree 2p + k + 2 of the outer

face of a k-slice of type p/p + k + 1 is necessarily even, which implies that V
(d)
k = 0 for

odd k, and in particular S (d) = V
(d)
−1 = 0. We then have

V
(d)
2k = U

(d)
k , (4.3)

where U
(d)
k is the quantity introduced in Section 3.3.
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q

r

p 1 p 1
p + m q + m + 1

p + k + 1p + k + 1

O O

P
Q

A AB B

C C

Leftmost shortest path from B to O avoiding the edge BC

(a) (b)

Figure 8. (Colour online) Binary decomposition of a d-irreducible k-slice of type p/p + k + 1 with root edge

AB, for p � 1: we cut along the leftmost shortest path from B to the apex O which avoids the first edge BC of

the right boundary. This path may either merge first with the left boundary (a) or with the right boundary (b).

5. Recursive decomposition of d-irreducible slices

In this section, we shall show that, as generating functions of d-irreducible k-slices, the

quantities V
(d)
k for k < d − 1 satisfy a system of nonlinear equations which express a

recursive decomposition of the k-slices into smaller components, themselves m-slices of

some kind. This provides an alternative route for computing them without recourse to the

substitution procedure. Here, we shall assume that

d � 1 and − 1 � k � d − 2. (5.1)

Then, since the outer face of a k-slice of type p/p + k + 1 has degree 2(p + 1) + k, the

requirement of girth at least d implies that p � (d − 2 − k)/2. In particular, the value

p = 0 may be realized in the range (5.1), which we consider only when k = d − 2. In this

case the condition of d-irreducibility implies that the only d-irreducible (d − 2)-slice of

type 0/d − 1 has a single inner face of degree d. We now describe how to decompose

slices of type p/p + k + 1 with p � 1.

5.1. The binary decomposition procedure

Let us consider a d-irreducible slice of type p/p + k + 1 with p � 1, and let AB be its root

edge: see Figure 8. We then singularize the first edge BC of the right boundary, which

serves as root for a new map obtained by cutting the k-slice along the leftmost shortest

path from B to the apex O, which avoids the edge BC . This marked path has a length

p + m, with m � 1, since the right boundary is the unique shortest path from B to O, and

m � k + 2, since the left boundary gives rise to a path of length p + k + 2 between B and

O and avoiding BC . Clearly the part of the map lying in between the marked path and
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the right boundary is a d-irreducible m-slice (with root edge BC). This m-slice may be of

type q/q + m + 1 for any q � p − 1, as the marked path may hit the right boundary at a

point Q between C and O (note that the marked path ‘sticks’ to the boundary after hitting

it). If m = k + 2, the marked path starts with BA and necessarily coincides with the left

boundary of the k-slice, thus the decomposition amounts to rerooting the slice on BC ,

changing its type to p − 1/p + k + 2. If m � k + 1, the part lying in between the marked

path and the left boundary is a d-irreducible (k − m)-slice. It is of type q′/q′ + k − m + 1,

where q′ is the length of the portion of marked path from B to the point P where it

hits the left boundary (thus q′ = p + m − r, where r � 0 is the distance PO: see again

Figure 8). Since the marked path hits either the right or left boundary, we have either

q = p − 1 or q′ = p + m, i.e., p = max(q + 1, q′ − m).

To summarize, a d-irreducible slice of type p/p + k + 1 with p � 1 is decomposed into

either a d-irreducible slice of type p − 1/p + k + 2 or a pair of d-irreducible slices, one of

type q/q + m + 1 and one of type q′/q′ + k − m + 1, where m is an integer between 1 and

k + 1 and q, q′ are two non-negative integers such that p = max(q + 1, q′ − m).

Conversely, gluing as in Figure 9 an arbitrary d-irreducible m-slice of type q/q + m + 1,

1 � m � k + 1, with root edge BC , and an arbitrary d-irreducible (k − m)-slice of type

q′/q′ + k − m + 1, with root-edge AB, creates a rooted map of type p/p + k + 1, where

p = max(q′ − m, q + 1) > 0. Here the apex O of the concatenated map is chosen to be the

apex of the m-slice if q′ � q + m + 1 and that of the (k − m)-slice otherwise. This map is

clearly d-irreducible: indeed, in a d-irreducible slice, any simple path joining two vertices

of the left (resp. right) boundary and not entirely included in the boundary has length

at least (resp. strictly larger than) d/2 (as otherwise closing this path with the necessarily

shorter portion of the boundary between the two vertices would create a cycle of length

strictly less than d), which ensures that the concatenation of d-irreducible slices along

their boundaries is still d-irreducible. Moreover, since m � 1, the right boundary of the

resulting map is clearly the unique shortest path in the map from the point B to the apex.

As for the left boundary of the concatenated map, it is clearly a shortest path from A

to O among all paths which avoid both the AB and BC edges. To make sure we have a

k-slice, we must guarantee that this is also true among paths which avoid AB but pass

via BC , which requires that the length of any path from A to B avoiding AB has length

at least k + 1. This is again guaranteed by the condition of girth at least d: any path from

A to B avoiding AB has length at least d − 1 which is larger than or equal to k + 1 in

the range (5.1). This shows that our decomposition is a bijection (in the case of a slice of

type p − 1/p + k + 2, its unique pre-image of type p/p + k + 1 is recovered by a simple

rerooting).

5.2. The iterated decomposition procedure

It is useful to consider a variant of the above binary decomposition procedure (we dub it

‘binary’ since it splits a slice into at most two parts). Simply put, it consists in iterating

the decomposition on all subslices with the same root edge as the original slice. More

precisely, starting again from a slice of type p/p + k + 1 (p � 1) with root edge AB, we

decompose it as follows.
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q

q

p + k + 1

p = q + 1

q + m + 1

q + k −m + 1

O

A B

C

q
q q + m + 1

q + k −m + 1

p + k + 1 =

p = q −m

O

A B

C

Figure 9. (Colour online) The gluing of a d-irreducible m-slice of type q/q + m + 1 with a d-irreducible

(k − m)-slice of type q′/q′ + k − m + 1 yields a d-irreducible k slice of type p/p + k + 1 with

p = max(q′ − m, q + 1).

• As in the binary decomposition, we pick the leftmost shortest path P1 among all paths

from B to the apex O which do not pass via the first edge BC1 of the right boundary.

Since the right boundary is the only shortest path between B and O, the length of

P1 is p + m1 for some m1 � 1. We call C2 the extremity of the first edge of P1 (see

Figure 10).

• We then iterate by picking the leftmost shortest path P2 among all paths from B to

the apex O which stay to the left of P1 and do not pass via the edge BC2. Since P1 is

a leftmost shortest path between B and O, the length of P2 is p + m1 + m2 for some

m2 � 1. We call C3 the extremity of the first edge of P2.

• We continue the process until the sum
∑

i mi, which increases strictly at each step,

reaches k + 2. The corresponding leftmost path Pq , of length p + k + 2, then necessarily
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O

A B

C1
C2

C3

P1
P2

P3

Figure 10. (Colour online) Iterated decomposition of a d-irreducible k-slice with root AB and apex O. We start

with the binary decomposition of Figure 8, i.e., we pick the leftmost shortest path P1 from B to O avoiding

the first edge BC1 of the right boundary. We then iterate the procedure by picking the leftmost shortest path

P2 from B to O staying to the left of P1 and avoiding the first edge BC2 of P1. The process ends after a finite

number of iterations whenever the selected leftmost shortest path (here P3) matches the left boundary of the

slice.

follows the left boundary of the slice. In other words, the extremity Cq+1 of the first

edge of Pq coincides with the origin A of the root edge.

Cutting along all the paths Pj , j = 1, . . . , q − 1 results in a decomposition of the slice into

q pieces. Upon rooting the ith piece on the edge BCi, this piece is clearly, by construction,

a d-irreducible mi-slice (the lengths of its right and left boundaries differ by mi + 1). Note

again that, if q = 1, i.e., m1 = k + 2, the slice is kept uncut but rerooted at the edge BC1 so

that we obtain a (k + 2)-slice whose right boundary length is reduced by 1 and whose left

boundary length is increased by 1. To summarize, the iterated decomposition transforms

a slice of type p/p + k + 1 for any p � 1 into a sequence of q slices, the ith slice being an

mi-slice, with mi � 1 and m1 + · · · + mq = k + 2.

If we now define the size of a slice as being the number of its non-left edges, i.e., those

edges which do not belong to the left boundary, then it is clear that, in the iterated

decomposition, the sum of the sizes of all the subslices is exactly 1 less than the size of

the original slice. This is because all non-left edges of the original slice are non-left edges

of exactly one subslice, except the root edge.

5.3. Recursive equations for the generating functions

We now translate the above decompositions into equations. At this stage, we are interested

in generating functions of d-irreducible k-slices, irrespective of their precise type (i.e., we

disregard the value of p for now). Then, the binary decomposition states that a k-slice

(distinct from the trivial (d − 2)-slice reduced to a single d-valent face) is in one-to-one

correspondence with either a (k + 2)-slice or an ordered pair formed by an m-slice and
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(k − m)-slice, with 1 � m � k + 1. This immediately yields

V
(d)
k = zδk,d−2 +

k+1∑
m=1

V (d)
m V

(d)
k−m + V

(d)
k+2, −1 � k � d − 2, (5.2)

where the term zδk,d−2 is the contribution from the only slice of type 0/k + 1 which,

as noted above, is reduced to a single d-valent face, with k = d − 2. As for the iterated

decomposition, it yields the equivalent form

V
(d)
k = zδk,d−2 +

∑
q�1

∑
mi�1, i=1,...,q

m1+···+mq=k+2

q∏
i=1

V (d)
mi

, −1 � k � d − 2. (5.3)

Both systems of equations determine V
(d)
k for all −1 � k � d − 2 from the data of V

(d)
d−1

and V
(d)
d . These quantities are themselves obtained from (3.38), namely

V
(d)
d−1 =

∑
j�d+1

xjP−d(j − 1;R(d), S (d)),

V
(d)
d =

∑
j�d+2

xjP−d−1(j − 1;R(d), S (d)).
(5.4)

This allows us to determine V
(d)
k for all −1 � k � d in terms of z, the xi (i � d + 1), R(d)

and S (d). Equating the obtained expressions for V
(d)
−1 and V

(d)
0 to the values

V
(d)
−1 = S (d), V

(d)
0 = R(d) − 1, (5.5)

obtained by specializing (3.35), we get algebraic equations which determine R(d) and S (d)

themselves.

It is interesting to note that equation (5.2) can be extended to the value k = d − 1 in

the case z = 0, i.e., when we consider maps of girth at least (d + 1) but not necessarily

(d + 1)-irreducible. Examining the decomposition of (d − 1)-slices, we arrive at

V
(d)
d−1(0; xd+1, . . .) = (5.6)

Gd+1(xd+1, . . .) +

d∑
m=1

V (d)
m (0; xd+1, . . .)V

(d)
d−1−m(0; xd+1, . . .) + V

(d)
d+1(0; xd+1, . . .)

with

V
(d)
d+1(0; xd+1, . . .) =

∑
j�d+3

xjP−k−1

(
j − 1;R(d)(0; xd+1, . . .), S

(d)(0; xd+1, . . .)
)
.

Here we simply used the fact that the p = 0 contribution to V
(d)
d−1(0; xd+1, . . .) is precisely

the generating function Gd+1(xd+1, . . .) of maps of outer degree d + 1 and of girth d + 1

(hence the first term on the right-hand side). Equation (5.6) eventually allows us to obtain

Gd+1(xd+1, . . .) and recover the result of [7].

As an illustration, let us consider the case of 5-angular irreducible dissections (d = 5

and xi = 0 for all i � 6). Using, as before, lower-case letters for generating functions
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specialized at xi = 0, equation (5.2) gives

v
(5)
−1 = v

(5)
1 ,

v
(5)
0 = v

(5)
1 v

(5)
−1 + v

(5)
2 ,

v
(5)
1 = v

(5)
1 v

(5)
0 + v

(5)
2 v

(5)
−1 + v

(5)
3 , (5.7)

v
(5)
2 = v

(5)
1 v

(5)
1 + v

(5)
2 v

(5)
0 + v

(5)
3 v

(5)
−1 + v

(5)
4 ,

v
(5)
3 = z + v

(5)
1 v

(5)
2 + v

(5)
2 v

(5)
1 + v

(5)
3 v

(5)
0 + v

(5)
4 v

(5)
−1 + v

(5)
5 ,

with v
(5)
4 = v

(5)
5 = 0 from (5.4) and, from (5.5), v(5)

−1 = s(5) and v
(5)
0 = r(5) − 1. This leads, by

elimination, to the system of equations

0 = 2 + (r(5))2 + 6(s(5))2 + (s(5))4 − 3r(5)(1 + (s(5))2),

z = s(5)
(
2(r(5))2 + 4(2 + (s(5))2) − r(5)(9 + (s(5))2)

)
,

(5.8)

which is equivalent to (3.44).

5.4. Solving the recursive equations in the bipartite case

In the bipartite case, setting d = 2b, equation (5.2) translates into

U
(d)
k = zδk,b−1 +

k∑
m=1

U(d)
m U

(d)
k−m + U

(d)
k+1, 0 � k � b − 1, (5.9)

which determines U
(d)
k for all 0 � k � b − 1 from the data of U

(d)
b . The latter is itself

determined from (3.15) by

U
(d)
b =

∑
j�b+1

x2j

(
2j − 1

j + b

)
(R(d))j+b (5.10)

with, moreover, the relation U
(d)
0 = R(d) − 1. By a simple extension of the argument leading

to (5.6), we find also in the special case z = 0

U
(d)
b (0; xd+2, . . .) = (5.11)

Gd+2(xd+2, . . .) +

b∑
m=1

U(d)
m (0; xd+2, . . .)U

(d)
b−m(0; xd+2, . . .) + U

(d)
b+1(0; xd+2, . . .)

with

U
(d)
b+1 =

∑
j�b+2

x2j

(
2j − 1

j + b + 1

)
(R(d))j+b+1.

This allows us to deduce the generating function Gd+2(xd+2, . . .) of maps of outer degree

d + 2 and girth d + 2 [7].

It turns out that it is possible to obtain a single algebraic equation for R(d) as follows.

We observe that the system (5.9) is triangular in the sense that the (k + 1)th (with k � 0)

equation allows us to express U
(d)
k+1 in terms of the U

(d)
� with � � k, therefore in terms
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of U(d)
0 . Therefore, we may consider the semi-infinite triangular system of equations

Ũk =

k∑
m=1

ŨmŨk−m + Ũk+1, k � 0, (5.12)

determining the Ũk , k > 0, in terms of Ũ0, and then (5.9) is recovered by identifying Ũ0 =

U
(d)
0 = R(d) − 1 and taking formally Ũb = z + U

(d)
b . Introducing the generating function

Ũ(t) =
∑
k�1

Ũkt
k, (5.13)

equation (5.12) translates immediately into

Ũ0 + Ũ = Ũ

(
Ũ0 + Ũ +

1

t

)
, (5.14)

and hence

t =
Ũ

(1 − Ũ)(Ũ0 + Ũ)
. (5.15)

The Lagrange inversion formula [16, 20, 24] states that, for k > 0,

Ũk =
1

k
[Ũk−1]

(
(1 − Ũ)(Ũ0 + Ũ)

)k
= −1

k

k∑
p=1

(
k

p

)(
k

p − 1

)
(−Ũ0)

p. (5.16)

In particular, taking k = b, the above identification leads to the following algebraic

equation for R(d):

−1

b

b∑
p=1

(
b

p

)(
b

p − 1

)
(1 − R(d))p = z +

∑
j�b+1

x2j

(
2j − 1

j + b

)
(R(d))j+b. (5.17)

We let the reader verify that this coincides with (3.22) via yet another hypergeometric

identity. Recall that the generating functions F
(d)
2n are related to R(d) by the pointing

formula (3.26).

Let us now give a few examples. Irreducible quadrangular dissections are obtained for

b = 2 and x2j = 0 for all j � 3, and hence equation (5.17) reads

(r(4) − 1) − (r(4) − 1)2 = z, (5.18)

which matches (2.3). The case of irreducible hexangular dissections corresponds to b = 3

and x2j = 0 for all j � 4, hence equation (5.17) now reads

(r(6) − 1) − 3(r(6) − 1)2 + (r(6) − 1)3 = z, (5.19)

which matches (3.30). Finally, the case of 2-irreducible quadrangulations, i.e., quadrangu-

lations without multiple edges, corresponds to b = 1, z = 0 and x2j = 0 for all j � 3, in

which case equation (5.17) gives

(R(2) − 1) = x4(R
(2))3, (5.20)
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in agreement with [11]. From (5.11), we then deduce that the generating function G4(x4)

of quadrangulations of outer degree 4 and girth 4 (i.e., without multiple edges) is

G4(x4) = (R(2) − 1)(2 − R(2)).

5.5. Solution of the recursive equations in the general case

Let us now see how to extend to the general (not necessarily bipartite) case the strategy of

Section 5.4. Our goal is again to obtain a system of algebraic equations for R(d) and S (d)

without recourse to substitution, i.e., using the system (5.2) as the starting point. Again we

observe that this system is triangular, with its (k + 2)th (with k � −1) equation allowing

us to express V
(d)
k+2 in terms of the V

(d)
� with � � k, hence eventually in terms of V (d)

−1 and

V
(d)
0 only. Again we introduce the semi-infinite triangular system of equations

Ṽk =

k+1∑
m=1

ṼmṼk−m + Ṽk+2, k � −1, (5.21)

which determines the Ṽk , k > 0, in terms of Ṽ−1 and Ṽ0. Then we may obtain algebraic

equations for R(d) and S (d) by simply identifying Ṽ−1 = V
(d)
−1 = S (d), Ṽ0 = V

(d)
0 = R(d) − 1

and by taking formally Ṽd−1 = V
(d)
d−1 and Ṽd = z + V

(d)
d so as to satisfy (5.2) at k = d − 3

and k = d − 2. If we now introduce the generating function

Ṽ (t) =
∑
k�1

Ṽkt
k, (5.22)

equation (5.2) translates into

Ṽ−1

t
+ Ṽ0 + Ṽ = Ṽ

(
Ṽ−1

t
+ Ṽ0 + Ṽ +

1

t2

)
, (5.23)

and hence

t Ṽ−1 + t2(Ṽ0 + Ṽ ) =
Ṽ

1 − Ṽ
. (5.24)

For fixed Ṽ−1 and Ṽ0, this determines t as a function of Ṽ , hence in principle all Ṽk for

k > 0 in terms of Ṽ−1 and Ṽ0 via a Lagrange inversion

Ṽk =
1

k
[Ṽ k−1]

(
Ṽ

t

)k

.

We have not been able to perform the computation but, by inspection of the first terms,

we conjecture that

Ṽ2j−1 = −
∑

k�0,m�0
k+m�j−1

(
j + m − 1

k + 2m

)(
j + m

k + 2m

) (
k+2m
2m

)
2m + 1

(−Ṽ−1)
2m+1(−Ṽ0)

k,

Ṽ2j = −
∑

k�0,m�0
1�k+m�j

(
j + m − 1

k + 2m − 1

)(
j + m

k + 2m − 1

)(
k+2m−1
2m−1

)
2m

(−Ṽ−1)
2m(−Ṽ0)

k,

(5.25)
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for j � 1. In the second equation, the coefficient
(
k+2m−1
2m−1

)
/(2m), for m = 0 and k �

1, should be understood as its m → 0 limit 1/k. Assuming that these expressions are

valid, upon making the identifications mentioned above for Ṽd−1 and Ṽd, we deduce the

equations

∑
k�0,m�0

k+m�d/2−1

(
d/2 + m − 1

k + 2m

)(
d/2 + m

k + 2m

) (
k+2m
2m

)
2m + 1

(−S (d))2m+1(1 − R(d))k

+
∑

j�d+1

xjP−d(j − 1;R(d), S (d)) = 0,

z +
∑

k�0,m�0
1�k+m�d/2

(
d/2 + m − 1

k + 2m − 1

)(
d/2 + m

k + 2m − 1

)(
k+2m−1
2m−1

)
2m

(−S (d))2m(1 − R(d))k

+
∑

j�d+2

xjP−d−1(j − 1;R(d), S (d)) = 0

(5.26)

if d is even, and

∑
k�0,m�0

1�k+m�(d−1)/2

(
(d − 1)/2 + m − 1

k + 2m − 1

)(
(d − 1)/2 + m

k + 2m − 1

)(
k+2m−1
2m−1

)
2m

(−S (d))2m(1 − R(d))k

+
∑

j�d+1

xjP−d(j − 1;R(d), S (d)) = 0,

z +
∑

k�0,m�0
k+m�(d+1)/2−1

(
(d + 1)/2 + m − 1

k + 2m

)(
(d + 1)/2 + m

k + 2m

) (
k+2m
2m

)
2m + 1

(−S (d))2m+1(1 − R(d))k

+
∑

j�d+2

xjP−d−1(j − 1;R(d), S (d)) = 0

(5.27)

if d is odd. These equations determine R(d) and S (d) and are an alternative to the system

(3.41).

6. Bijection between slices and trees

In this section, we exhibit a bijection between slices and some trees which enjoy the same

decomposition structure. For the sake of simplicity, we restrict ourselves to irreducible

d-angular dissections, with d � 3. There seems to be no conceptual difficulty in extending

the forthcoming discussion to general d-irreducible maps, but the corresponding trees

would become more complicated.
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m

d− 2

d + 1
d− 1 −m

Figure 11. Rules for the construction of d-oriented trees (see text). Black

(resp. white) dots represent inner or root vertices (resp. non-root leaves).

6.1. d-oriented k-trees

Recall that, by the iterated decomposition of Section 5.2, the generating functions of

irreducible d-angular k-slices v
(d)
k satisfy

v
(d)
k = zδk,d−2 +

∑
q�1

∑
1�m1 ,...,mq�d−2m1+···+mq=k+2

q∏
i=1

v(d)
mi
, −1 � k � d − 2, (6.1)

as seen by specializing (5.3), and noting that v
(d)
k = 0 for k � d − 1 by (3.38) at xi = 0.

Note that we may restrict the range to 1 � k � d − 2 and still obtain a closed system for

v
(d)
1 , . . . , v

(d)
d−2. This system clearly specifies some trees, which we now describe.

For 1 � k � d − 2, we define a d-oriented k-tree as a planted (with a marked univalent

root vertex) plane tree such that we have the following.

• The edges of the tree carry arrows and are of two types (see Figure 11).

– Inner edges of type m/(d − 1 − m), with 1 � m � d − 2, whose two half-edges carry

respectively m and d − 1 − m arrows pointing away from the associated edge

extremity. These edges connect only inner vertices or the root vertex.

– Leaf edges with one half-edge carrying d − 2 arrows pointing away from the

associated edge extremity and the other half-edge carrying a single arrow pointing

toward the associated extremity (this arrow plays no role in the following but we

decided to introduce it so as to recover trees similar to those of [23]). The first

extremity of the edge is necessarily an inner vertex or the root vertex, and the

second extremity is a leaf of the tree.

• The out-degree of any inner vertex, defined as the total number of arrows pointing

away from that vertex among all the incident half-edges, is d + 1.

• The out-degree of the root vertex is k.

In a d-oriented k-tree, the edge emerging from the root vertex can be a leaf edge only if

k = d − 2, resulting in a tree with a single edge and a single leaf. If it is instead an inner

edge, it must be of type k/(d − 1 − k) linking the root vertex to some inner vertex. The

descending subtrees attached to this vertex form a sequence of a number q � 1 of trees,

the ith one being a d-oriented mi-tree for some mi between 1 and d − 2. From the out-

degree condition on inner vertices, we deduce that
∑

i mi = d + 1 − (d − 1 − k) = k + 2.

We immediately deduce that the generating function of d-oriented k-trees, counted with

a weight z per leaf, is equal to v
(d)
k since it satisfies the same equation (6.1). Otherwise
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O

A

A

B

B

z

C1
C2

C3

P1
P2

P3

(a) (b)

Figure 12. (Colour online) Inductive definition of the bijection between d-irreducible k-slices and d-oriented

k-trees. (a) The (d − 2)-slice reduced to a single inner face is associated with the (d − 2)-tree reduced to a single

leaf edge. (b) Given a k-slice of size > 1, we perform its iterated decomposition: the corresponding k-tree is

obtained by keeping the root edge AB, which we decorate into an edge of type k/(d − 1 − k), and then inductively

constructing the trees associated with the subslices delimited by P1, P2, . . . (thus the edges BC1, BC2, . . . will be

kept in the tree at the next stage).

stated, d-irreducible k-slices with a given number n of inner faces are in one-to-one

correspondence with d-oriented k-trees with n leaves.

Obviously, an explicit bijection between these two sets can be defined via their recursive

decompositions. Recall from Section 5.2 that the size of a d-irreducible k-slice is defined

as the number of its non-left edges (rather than that of its inner faces). Similarly, we

define the size of a d-oriented k-tree as its number of edges (rather than that of leaves).

The only k-slice of size 1 is the (d − 2)-slice reduced to a single d-valent face, and we

associate it with the d-oriented (d − 2)-tree reduced to a single leaf edge. Suppose now

that we have defined the bijection up to size N. Given a k-slice of size N + 1, we perform

its iterated decomposition to obtain a sequence of q � 1 of subslices whose sizes add

up to N. By the induction hypothesis we may associate each subslice with a d-oriented

tree, and we merge the root vertices of these trees together, and add an inner edge of

type k/(d − 1 − k) to obtain the k-tree of size N + 1 corresponding to the k-slice at hand.

Interestingly, the k-tree may be represented as a subgraph of the k-slice by identifying

at each step the added tree edge with the root edge of the slice at hand: see Figure 12.

Figure 13 displays an example of the construction of the 5-oriented 2-tree associated with

a 5-irreducible 2-slice.

To conclude this section, let us discuss the particular case d = 3. Taking the general

rules of Figure 11 at d = 3, we see that the edges of 3-oriented trees are of the type

displayed in Figure 14, with an out-degree 1 for each half-edge leaving an inner vertex.

The constraint of out-degree d + 1 = 4 at each inner vertex implies that all inner vertices

have degree 4, hence the tree is a ternary tree. In other words, irreducible triangular slices

https://doi.org/10.1017/S0963548314000340 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000340


948 J. Bouttier and E. Guitter

A

O

B A

(a) (b)

(c)

Figure 13. (Colour online) Example of the full construction (c) of a d-oriented

k-tree (b) from a d-irreducible k-slice (a) (here d = 5 and k = 2).

1

1

1

4

Figure 14. The rules of Figure 11 in the particular case d = 3. The out-degree of all inner vertices is always 1,

so inner vertices necessarily have degree 4. We deduce that 3-oriented 1-trees reduce to ternary trees.

are in bijection with ternary trees, and we recover the bijection of [21]. The generating

function v
(3)
1 may be identified with the generating function of planted ternary trees with

a weight z per leaf, and satisfies

v
(3)
1 = z + (v(3)

1 )3 (6.2)

accordingly. This is simply equation (6.1) at k = 1, while at k = −1 and k = 0 this equation

yields v
(3)
−1 = v

(3)
1 and v

(3)
0 = v

(3)
−1v

(3)
1 . Setting s(3) = v

(3)
−1 = v

(3)
1 and r(3) = 1 + v

(3)
0 , we recover

equation (2.15). Since the number of leaves in a planted ternary tree is twice the number

of inner vertices plus one, we see that, upon setting s(3) = zT as in Section 2.2, T may be
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0
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−1
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−21

0

3

−1
4

1

2 −2

−1

−30

−4

3
−2

−1

(a)

−4

0

2

2

1

0

−1

−2

−3

A
0

−3

−1

−3

−21

0

3

−1
4

1

2 −2

−1

−30

−4

3
−2

−1

0

−4

−2

1
4

0

(b)

O

A

(c)

Figure 15. (Colour online) The reconstruction of the d-irreducible k-slice of Figure 13 from its associated

d-oriented k-tree (with d = 5, k = 2). (a) We first label the corners of the tree according to the rules explained in

the text and call −p − 1 the minimal label (here p = 3). (b) We then add k + p + 1 new edges (blue edges), thus

creating new corners which we label k, k − 1, . . . ,−p − 1. (c) The slice is obtained by connecting each leaf to the

first corner with the same label encountered anticlockwise around the tree. This slice is of type p/k + p + 1.

interpreted as the generating function for ternary trees with a weight z2 per inner vertex,

and satisfies (2.19) accordingly.

6.2. Alternative description of the mapping from trees to slices

While the k-slice associated with a k-tree may be obtained inductively by following

the above construction backwards (we decompose the k-tree into subtrees, construct

inductively their associated slices and glue them together), we find it worthwhile to

describe an alternative (but equivalent) construction. It is a closing procedure similar to

that of [23], which consists in going anticlockwise around the tree from its root vertex

and, whenever a leaf is followed by at least d edge-sides before encountering a new

leaf, connecting it to the corner following immediately the dth encountered edge-side.

The procedure must in general be repeated several times, and a left boundary must be

restored, before the slice is recovered.

Let us now give a more precise definition of this procedure. Given a d-oriented k-tree,

we consider its contour walk obtained by going anticlockwise around the tree from its root

vertex, thus visiting all corners of the tree successively upon following edge sides. Each

corner receives a height equal to the height of the preceding corner minus 1 unless the

two corners are separated by an edge side that belongs to a leaf edge and corresponds

to the second visit of this edge, i.e., while going away from the leaf: in this case the

height of the second corner is incremented by d − 1 instead (see Figure 15(a)). Starting

from height 0, we reach after a complete exploration of the tree the height k. Indeed, it
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is easily seen by induction that any subtree whose root vertex has out-degree m separates

two corners whose heights differ by m. Calling −p − 1 (with p � 0) the minimum height

obtained along the contour walk, necessarily attained on a leaf, we complete the tree

with a sequence of k + p + 1 new edge sides creating new corners with respective heights

k, k − 1, . . . ,−p − 1 and accordingly extend the contour walk so as to end at the minimal

height −p − 1 (see Figure 15(b)). We define the closure of the tree as the slice obtained by

simply connecting each leaf with height m to its successor, which is the first corner with

the same height m encountered along the contour walk (see Figure 15(c)). The apex of

the slice is the (unique after connection) vertex with smallest height −p − 1. We leave it

as an exercise to the reader to check that the closure of the tree indeed coincides with the

k-slice obtained by the inductive bijection.

Two remarks are in order. First, let us observe that our construction (in particular the

fact that we add new edges to obtain the left boundary) is somewhat reminiscent of the

construction of the ‘discrete map with geodesic boundaries’ associated with a labelled

tree [27] (actually slices and DMGBs are essentially the same objects). However, it is

unclear whether the two constructions could be unified: the involved trees (d-oriented

versus labelled) are quite different and, in the DMGB construction, the slice is obtained

by closing the tree on its right boundary rather than the left one here. Second, our

construction differs from those of [21, 23] by the fact that constructing a slice requires

only a ‘partial closure’ (using the terminology of [21, 23]) whereas constructing a true

dissection instead requires a ‘complete closure’ performed on some unrooted tree. While

it seems possible to define a complete closure of d-oriented trees, we do not explore this

direction here.

6.3. Trees in the bipartite case

We now consider the case of irreducible d-angulations when d is even. As before, we

then set b = d/2. Let us first look at d-oriented (2k + 1)-trees (k � 0), i.e trees with an

odd root out-degree. Then the root edge is necessarily an inner edge connecting the root

vertex to an inner vertex B. The constraint
∑

i mi = 2k + 3 for the sum of the out-degrees

of the descending subtrees at B implies that there is an odd number of such subtrees

with odd root out-degree mi. In particular, there is at least one such subtree with odd

root out-degree. By the same reasoning, this subtree has itself at least a descending

subtree with odd root out-degree and, by iteration, the d-oriented (2k + 1)-tree cannot

be finite. This is consistent with v
(d)
2k+1 = 0 as generating functions count finite trees. As

for d-oriented 2k-trees, they are for the same reason built only out of leaf edges or inner

edges of type 2m/(d − 1 − 2m), i.e., having an even number of arrows 2m followed by

the complementary odd number of arrows 2b − 1 − 2m when descending along the tree.

We may then simplify the trees by converting these edges of type 2m/(d − 1 − 2m) into

simpler edges of type m/(b − m) (see Figure 16). Consistently we convert the leaf edges into

edges with one half-edge carrying b − 1 arrows pointing away from the associated edge

extremity and the other half-edge carrying a single arrow pointing toward the associated

extremity. Once this conversion is done, the out-degree of an inner vertex dangling from

an edge of type m/b − m becomes
∑

i mi + b − m = b + 1 (since before conversion, we had∑
i 2mi + 2b − 1 − 2m = 2b + 1). The generating functions u(d)

k = v
(d)
2k , viewed as generating
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d− 2 m2mb− 1

d + 1 b + 1

d− 1 − 2m b−m

D
escending

along
the

tree

Figure 16. (Colour online) Simplification of the rules of Figure 11 for d-oriented trees in the case d = 2b.

Upon descending along the tree, the original edges (black) are converted into simpler edges (blue) as shown.

The original rule of total out-degree d + 1 for inner vertices translates after conversion into a constraint of total

out-degree b + 1 (bottom).

functions of d-oriented 2k-trees, may thus alternatively be interpreted as counting trees,

with a weight z per leaf, such that the following hold.

• The edges of the tree carry arrows and are of two types:

– inner edges of type m/(b − m), with 1 � m � b − 1, connecting only inner vertices

or the root vertex,

– leaf edges with one half-edge, connected to an inner vertex or to the root vertex,

carrying b − 1 arrows pointing away from this vertex and the other half-edge

carrying a single arrow pointing toward a leaf of the tree.

• The out-degree of any inner vertex is b + 1.

• The out-degree of the root vertex is k.

As such, the u
(d)
k satisfy

u
(d)
k = zδk,b−1 +

∑
q�1

∑
1�m1 ,...,mq�b−1
m1+···+mq=k+1

q∏
i=1

u(d)
mi
, 1 � k � b − 1, (6.3)

with the convention u(d)
m = 0 for m � b. This system of equations is easily seen to follow

from (5.9) in the same way that (6.1) follows from (5.2).

To conclude this section, let us discuss the particular case d = 4, i.e., b = 2. After

conversion, taking the general rules of Figure 16 at b = 2, we see that the edges of the

obtained trees are of the type displayed in Figure 17, with an out-degree 1 for each

half-edge leaving an inner vertex. The constraint of out-degree b + 1 = 3 at each inner

vertex implies that all inner vertices have degree 3, and hence the tree is a binary tree.

In other words, irreducible quadrangular slices are in bijection with binary trees, and we

recover the bijection of [23]. The generating function u
(4)
1 is simply the generating function
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1

1

1

3

Figure 17. (Colour online) The rules of Figure 16 (after conversion) in the particular case d = 4 (b = 2). The

out-degree of all inner vertices is always 1, so inner vertices necessarily have degree 3. We deduce that 4-oriented

2-trees reduce to binary trees.

of planted binary trees with a weight z per leaf, and satisfies

u
(4)
1 = z + (u(4)

1 )2 (6.4)

accordingly. This is simply equation (6.3) at k = 1 while, from (5.3) at k = 0, we deduce

u
(4)
0 = v

(4)
0 = v

(4)
2 = u

(4)
1 . Using r(4) = 1 + u

(4)
0 = 1 + u

(4)
1 , we then recover equation (2.3).

Setting r(4) = 1 + zT as in Section 2.1, i.e., u(4)
1 = zT , we see immediately that T may now

be interpreted as the generating function of binary trees with a weight z per inner vertex,

and satisfies (2.7) accordingly.

7. Bijective proof of the pointing formulas

The purpose of this section is to give a combinatorial proof of the general pointing formula

(3.42) which, by specialization, implies the bipartite pointing formula (3.26), alternatively

obtained as a consequence of the computations of Section 3.3. Observe that the left-hand

side of (3.42), ∂F (d)
n /∂z, is the generating function of d-irreducible maps with outer degree

n and a marked inner face of degree d (which does not receive a weight z). Such a map

is said to be annular and its marked face is called the central face. Our purpose is then to

show that annular d-irreducible maps with outer degree n are in bijection with the objects

naturally counted by Pd(n;R
(d), S (d)), namely three-step paths from (0, 0) to (n, d) endowed

with the following data.

• For each down-step, a slice of type p/p + 1 for some arbitrary p (i.e., either a 0-slice

or the map reduced to a single root edge if p = 0).

• For each level step, a slice of type p/p (i.e., a −1-slice).

This bijection, which should preserve the total number of (non-central) inner faces of

each degree, will of course be a variant of the slice decomposition introduced in [12] and

already encountered in Section 4.1.

7.1. From paths to annular maps

Here, it is simpler to first describe the mapping from slice-decorated three-step paths

to annular maps: see Figure 18. It again consists in gluing the slices together but we

shall be precise about the procedure. Let us denote by h0 = 0, h1, . . . , hn = d the successive

heights of the three-step path and, for 1 � i � n, let Si be the slice attached to the ith step

hi−1 → hi (for an up-step, Si is by convention the map reduced to a single edge).
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qn

qn+d

d

d

n

(a) (b)

Figure 18. (Colour online) The gluing procedure. (a) The partial gluing of a slice-decorated three-step path

from (0, 0) to (n, d). (b) The folding of the left boundary onto the right boundary yielding an annular map. (The

heights of the path represent the relative distance of the lower boundary vertices to the apex in the partial gluing,

hence with the convention of representing the slices pointing upwards, the path appears vertically reflected in

the map.)

We first define the partial gluing S̃n of S1, . . . ,Sn inductively. We take S̃0 to be the vertex-

map (the map reduced to a single vertex with no edge, which we view as a rooted map of

outer degree 0). Let us now assume by induction that we have defined S̃i, the partial gluing

of S1, . . . ,Si, as a d-irreducible map of outer degree i + hi + 2qi for some qi � max(0,−hi),

satisfying the following constraint. When turning around S̃i in anticlockwise direction

starting from the root edge, we divide its outer boundary into three parts.

• A first part of length i, called the lower boundary.

• A second part of length hi + qi, called the right boundary, which is the unique shortest

path between its endpoints.

• A third part of length qi, called the left boundary, which is a (not necessarily unique)

shortest path between its endpoints.

Recall that the outer boundary of the slice Si+1 (assuming that it corresponds to a level

step or down-step) is also split into three parts.

• A first path of length 1, the root edge.

• A right boundary of length pi, for some pi � 0, which is the unique shortest path

between its endpoints.

• A left boundary of length pi + hi − hi+1 (i.e., pi or pi + 1 depending on whether the

i-step is a level step or down-step), which is a shortest path between its endpoints.

For an up-step, we view Si+1 as having a right boundary of length 1 and a left boundary

of length 0. We then naturally define S̃i+1 by gluing the right boundary of S̃i to the left
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boundary of Si+1, identifying the origin of the root edge of Si+1 with the first vertex of the

right boundary of S̃i (in particular, S̃1 = S1). Note that these boundaries do not necessarily

have the same length. For instance, if qi > pi − hi+1 then there remain some unmatched

edges on the right boundary of S̃i, which become part of the right boundary of S̃i+1. It is

easily seen that S̃i+1 has outer degree i + 1 + hi+1 + 2qi+1, with qi+1 = max(qi, pi − hi+1),

and we take its root edge to be that of S̃i. Furthermore, using the data that S̃i and Si+1

are d-irreducible and that their left/right boundaries are shortest paths, it is not difficult

to check that the same properties hold for S̃i+1. Thus, we satisfy the induction hypothesis.

Having defined the partial gluing S̃n, we finish by gluing its right boundary (of length

d + qn) to its left boundary (of length qn), identifying the origin of the root edge to the

first vertex of the right boundary. The d unmatched edges of the right boundary yield a

central inner face of degree d, and the lower boundary yields an outer face of degree n,

thus we obtain an annular map, which is easily shown to be d-irreducible. In particular,

to see that the only cycle of length � d winding around the central face is its boundary,

we use the fact that the right boundary is the unique shortest path between its endpoints,

so that each vertex of the left boundary of S̃n except the first one is identified with a

vertex of the right boundary at distance > d in S̃n.

Finally, let us note the cyclic invariance of the construction. More precisely, we let εi =

hi − hi−1 ∈ {−1, 0, 1}, 1 � i � n, denote the ith increment of our three-step path. Then, for

any m between 1 and n, we consider the circularly shifted sequence εm, εm+1, . . . , εn, ε1, . . . ,

εm−1, which is the sequence of increments of another three-step path from (0, 0) to (n, d).

Attaching to this path the slice sequence Sm,Sm+1, . . . ,Sn,S1, . . . ,Sm−1, we obtain another

slice-decorated three-step path to which we may apply the gluing procedure. It is not

difficult to see that the resulting annular map is the same, except for the position of the

root edge which is moved by m − 1 steps along the outer face.

7.2. Slice decomposition of annular maps

We now explicit the inverse mapping from annular maps to slice-decorated three-step

paths. Because of the cyclic invariance noted above, it is desirable to have a construction

in which the root edge does not play a specific role. Such a construction turns out to be

naturally described on the lift of the annular map which we define as follows. Let M
be a d-irreducible annular map of outer degree n, which we think of as being drawn on

the complex plane, the origin being in the interior of the central face. Then, we define

its lift M̃ as the pre-image of M by the mapping z �→ exp(2iπz), i.e., the map whose

vertices and edges are the pre-images of those of M (it is not difficult to convince oneself

that the notion of lift is well behaved with respect to continuous deformation). The map

M̃ is infinite but locally finite, i.e., each vertex has finite degree (equal to the degree of

its image-vertex in M). Furthermore, the pre-image of the central (resp. outer) face of

M forms a single face of infinite degree, the upper (resp. lower) face of M̃, while each

inner non-central face of M yields infinitely many faces of finite degree. The translation

z �→ z + 1 induces a natural automorphism T of M̃, and we endow M̃ with the graph

distance D̃(·, ·).
Since we are in the plane, the notion of leftmost shortest path from a given vertex of

M̃ to another is defined in an obvious manner. Let us denote by . . . , u−2, u−1, u0, u1, u2, . . .

https://doi.org/10.1017/S0963548314000340 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000340


On Irreducible Maps and Slices 955

d

n

T

u−1 u0 u1 uK(li)
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Figure 19. (Colour online) The slice decomposition of an annular map M (a). We pass to its lift M̃ (b) and

for each vertex �i of the lower boundary, we draw the leftmost shortest path from �i to uK(�i), where K(�i) is

defined by the coalescence lemma (intuitively speaking, this path is the ‘leftmost shortest path from �i to −∞’).

Clearly the figure is invariant by the translation T and we obtain the desired slice decomposition of M.

the vertices incident to the upper face, read in successive order by following the boundary

from −∞ to +∞ (the choice of u0 will turn out to be irrelevant). Note that T (uk) = uk+d

for all k. We then have the following result.

Coalescence lemma. For each vertex v of M̃, there exists a unique integer K(v) such that,

for all k � K(v), any shortest path from v to uk passes through uK(v) (and hence follows

the upper boundary from uK(v) to uk), but some of the shortest paths do not pass through

uK(v)+1. In particular we have

D̃(v, uk) − (K(v) − k) = D̃(v, uK(v)) � D̃(v, uK(v)+1).

In other words, for k → −∞, all shortest paths to uk eventually coalesce with the upper

boundary. The proof of the lemma, which relies crucially on the d-irreducibility of M,

is postponed to the end of this section. Note that K(T (v)) = K(v) + d by translation

invariance.

We now denote by . . . , �−1, �0, �1, �2, . . . the successive vertices incident to the lower

face, again read from −∞ to +∞ so that T (�i) = �i+n for all i (see Figure 19). Here

we pick �0 as an arbitrary pre-image of the origin of the root edge of M, and, at the

price of relabelling the vertices of the upper boundary uk → uk−K(�0), we may assume that
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K(�0) = 0. We then let

εi = D̃(�i, uK(�i−1)) − D̃(�i−1, uK(�i−1)), (7.1)

which clearly belongs to {−1, 0, 1} by the triangular inequality. By translation invariance

we have εi = εi+n. Furthermore, it is easily seen that by planarity K(�i−1) � K(�i) so that,

using the coalescence lemma,

n∑
i=1

εi =

n∑
i=1

(
D̃(�i, uK(�i)) + K(�i) − K(�i−1) − D̃(�i−1, uK(�i−1))

)
= D̃(�n, uK(�n)) − D̃(�0, uK(�0)) + K(�n) − K(�0) = d (7.2)

since T (�0) = �n, so that K(�n) = K(�0) + d and D̃(�0, uK(�0)) = D̃(�n, uK(�n)). Hence the

sequence ε1, . . . , εn forms the increments of a three-step path from (0, 0) to (n, d). Let us

now consider the bounded region delimited by the edge (�i−1, �i) and the two leftmost

shortest paths from �i−1 and �i to uK(�i−1). When K(�i−1) = K(�i) these two paths may

merge before their endpoint and we then remove their common part, letting pi be the

length of the proper part of the path with starting point �i. Clearly, the submap enclosed

within this region is simply a slice of type pi/pi − εi, which we denote by Si (when εi = +1

we obtain a slice reduced to a single edge as desired). Note that Si+n is simply a translate

of Si, so no information is lost by restricting to the interval {1, . . . , n}.
To summarize, starting from a d-irreducible annular map of outer degree n, we have

constructed a slice-decorated three-step path from (0, 0) to (n, d). It is clear that applying

the gluing procedure of the previous section then restores the original annular map. To

establish that we have a bijection, it remains to check that a slice-decorated three-step

path is indeed recovered as the slice decomposition of its gluing.

Consider such a path and its partial gluing S̃n as defined in the previous section. The

lift M̃ of the corresponding annular map M is obtained by gluing infinitely many copies

. . . , S̃ (−1)
n , S̃ (0)

n , S̃ (1)
n , . . .

of S̃n to each other along their left/right boundaries: see Figure 19. Consistent with the

previous notation, let �ni, �ni+1, . . . , �n(i+1) be the vertices of the lower boundary of S̃ (i)
n , and

udi, udi+1, . . . , ud(i+1) be the vertices of the upper boundary, i.e., the last d + 1 vertices of the

right boundary in anticlockwise direction (note indeed that �ni and udi are identified with

vertices of S̃ (i−1)
n in the gluing procedure). Using the data that the left and right boundary

of S̃n are leftmost shortest paths, it is not difficult to check that the leftmost shortest

path in M̃ from �ni to uk follows the left boundary of S̃ (i)
n for all k � di; in particular,

it passes through udi but not udi+1, so that K(�ni) = di, where K(·) is defined as in the

coalescence lemma. This implies that the slice decomposition of M̃ cuts precisely along

the boundaries of the S̃ (i)
n for all i. Furthermore, within each S̃ (i)

n , the leftmost shortest

paths from �ni+k , 0 � k � n, to udi precisely delimit the same slices as those attached to

the original path, so the slice decomposition is indeed the inverse mapping of the gluing

procedure.

It remains to prove the coalescence lemma. We start with the following intermediate

result.
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Wrapping lemma. For v a vertex of M̃ and m an integer, we have D̃(v, Tm(v)) � |m| d.
For m �= 0, equality holds if and only if v is incident to the upper face, and in this case

the unique shortest path from v to Tm(v) follows the upper boundary.

Proof. We may assume m > 0 without loss of generality, upon exchanging the role of

v and Tm(v). Let us consider a path from v to Tm(v): in M its image is a closed

path of the same length whose winding number around the central face is m. The case

m = 1 is simpler: by possibly removing some edges we obtain a cycle of M which, by

d-irreducibility, has length � d with equality if and only if it coincides with the boundary

of the central face. For m > 1, note that the closed path cannot be simple (since the

possible winding numbers for a cycle are 0 or ±1), so it has a multiple vertex. Splitting

at this vertex, we obtain two closed paths of smaller length, whose winding numbers

(around the central face) add up to m. If one of these subpaths has winding number > 1,

we further split it, and so on until we are left with a collection of closed paths of winding

numbers � 1. In particular we have at least m subpaths of winding number 1, each of

them of length � d. Thus the original path has length � md, and equality holds if and

only if all subpaths coincide with the boundary of the central face.

A corollary of the wrapping lemma is that, for all integers i, j, we have D̃(ui, uj) = |j − i|
and the upper boundary is the unique shortest path from ui to uj: consider a path of

length L between them and, assuming without loss of generality that i < j, pick m > 0

such that i + md � j. By appending the upper boundary from uj to ui+md = Tm(ui) we

obtain a path of length L + i + md − j from ui to Tm(ui), so that L + i + md − j � md,

that is, L � j − i, and equality holds if and only if the path follows the upper boundary.

Proof of the coalescence lemma. Let v again be an arbitrary vertex of M̃. By the

triangular inequality, D̃(v, uk) � |k| − D̃(v, u0) → +∞ for k → ±∞, so in particular there

exists an integer K ′(v) such that, for all k � K ′(v), D̃(v, uk) is larger than the number M

of vertices of M. By the pigeonhole principle, any path in M of length � M necessarily

passes twice through the same vertex. We apply this principle to the image of a shortest

path γ from v to uk , and conclude that γ necessarily passes successively through two

distinct vertices v′ and v′′ of M̃ having the same image in M, i.e., v′′ = Tm(v′) for some

m �= 0. In fact we may assume that D̃(v, v′) < M by applying the principle to the prefix of

length M of γ. Cutting γ at v′ and v′′, we obtain three subpaths γ′, γ′′ and γ′′′. Then, by

concatenating γ′ with T−m(γ′′′) and then with the upper boundary from uk−md to uk , we

obtain another path from v to uk which has length D̃(v, uk) − D̃(v′, v′′) + |m|d. Its length

should be no less than D̃(v, uk) and we deduce from the wrapping lemma that v′ is incident

to the upper face, i.e., v′ = uk′ for some k′. From D̃(v, v′) < M we deduce that k′ > K ′(v),

and since the concatenation of γ′′ and γ′′′ is a shortest path between uk′ and uk , we deduce

from the corollary of the wrapping lemma that it passes through uK ′(v), and hence uK ′(v)

belongs to any shortest path from v to uk for all k � K ′(v). This shows that the set of the

integers K such that, for all k � K , uK belongs to the leftmost shortest path from v to uk ,
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is non-empty. It is bounded from above since D̃(v, uk) → +∞ for k → +∞ thus contains a

maximal element K(v) which clearly satisfies the conditions of the coalescence lemma.

8. Discrete integrable equations

It has been noted on several occasions that maps are related to integrable systems, for

instance, map generating functions are tau-functions of the KP hierarchy [25]. In the

planar setting, a slightly different connection has been uncovered: generating functions of

maps with marked points at a prescribed distance have been shown to satisfy a hierarchy

of ‘discrete integrable equations’ [9, 17, 18], whose combinatorial meaning is now well

understood [12]. Remarkably, the integrability phenomenon subsists in the context of

irreducible maps.

Integrable equations are obtained by adding a new parameter in the game: at the

combinatorial level it consists in controlling the maximal length of the slices. Both the

substitution and the slice decomposition approaches still work in this case. Here, we

choose to emphasize the cases of irreducible quadrangular and triangular dissections, as

they are related to naturally embedded trees. For simplicity, we follow the substitution

approach, with an analysis parallel to that of Section 2. The general case, and the slice

decomposition, are then discussed in the last subsection.

8.1. Integrable equations from irreducible quadrangular dissections

In the case of quadrangular dissections, the starting point is some refined version of

equation (2.1), which states that [18, 12]

F2 = Ri −
(
x4Ri−1RiRi+1

)
,

F4 = Ri(Ri + Ri+1) − (Ri + Ri+1 + Ri+2)
(
x4Ri−1RiRi+1

)
, i � 1,

(8.1)

where Ri is the solution of the equation

Ri = 1 + x2Ri + x4Ri(Ri−1 + Ri + Ri+1), i � 1, (8.2)

where R0 = 0 (here, besides squares weighted by x4, we also possibly allow bivalent faces

with weight x2). More precisely, whenever (8.2) is satisfied, the expressions in the right-

hand side of (8.1) are conserved quantities, i.e., their value does not depend on i and

may moreover be identified with F2 and F4 respectively. This is a sign of integrability for

equation (8.2), which indeed admits the explicit solution [9]

Ri = R
(1 − yi)(1 − yi+3)

(1 − y)i+1(1 − y)i+2
, i � 0, where y +

1

y
+ 1 =

1

x4R2
, (8.3)

where R is the solution of the homogeneous (i.e., without indices) version of (8.2),

R = 1 + x2R + 3x4R
2. Performing the same specialization (x2, x4) → (X2(z), X4(z)) as in

Section 2.1, we deduce that the generating functions f
(4)
2 (z) and f

(4)
4 (z) of irreducible

quadrangulations with a boundary of length 2 satisfy a generalization of (2.2), namely

f
(4)
2 = 1 = r

(4)
i −

(
X4(z)r

(4)
i−1r

(4)
i r

(4)
i+1

)
, (8.4)

f
(4)
4 = 2 + z = r

(4)
i (r(4)

i + r
(4)
i+1) − (r(4)

i + r
(4)
i+1 + r

(4)
i+2)

(
X4(z)r

(4)
i−1r

(4)
i r

(4)
i+1

)
, i � 1,
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where r
(4)
i = Ri(X2(z), X4(z)). Eliminating X4(z), we see that r

(4)
i is now fully determined

by the equation

z + r
(4)
i r

(4)
i+2 − (r(4)

i + r
(4)
i+1 + r

(4)
i+2) + 2 = 0, i � 1, (8.5)

with initial conditions r
(4)
1 = 1 and r

(4)
2 = 1 + z (from (8.4) at i = 1 with r

(4)
0 = 0). In

practice, we may equivalently extend equation (8.5) to include the case i = 0 and use as

initial conditions r(4)
0 = 0 and r

(4)
1 = 1. By substituting (x2, x4) → (X2(z), X4(z)) in (8.3), we

readily obtain the explicit expression

r
(4)
i = r(4) (1 − yi)(1 − yi+3)

(1 − yi+1)(1 − yi+2)
, i � 0, where y +

1

y
=

1

r(4) − 1
, (8.6)

where r(4) is the solution of (2.3). Here, we simplified the equation for y, upon using

the relation X4(z)(r
(4))2 = (r(4) − 1)/r(4) obtained from (2.2). We observe that the same

expression appears in [3, Proposition 4.5], where it is interpreted as a generating function

of symmetric irreducible quadrangular dissections (such objects are indeed obtained by

gluing several copies of a same slice counted by r
(4)
i ).

As in Section 2.1, equation (8.5) is made more transparent upon setting

r
(4)
i (z) = 1 + z Ti−1(z), i � 1, (8.7)

as it then reads

Ti = 1 + z Ti−1Ti+1, i � 1, (8.8)

with initial condition T0 = 0. Here we recognize the equation determining the generating

function of ‘naturally embedded binary trees’ (NEBT) introduced in [8], whose integrabil-

ity has so far remained quite mysterious. Now, from (8.6) and the first line of (8.4), we

simply deduce

Ti =
r
(4)
i+1 − 1

z
=

X4(z)

z
r
(4)
i r

(4)
i+1r

(4)
i+2 = T

(1 − yi)(1 − yi+5)

(1 − yi+2)(1 − yi+3)
, i � 0, (8.9)

where y +
1

y
=

1

zT

and T = (r(4) − 1)/z is solution of (2.7). We recover the particular form of the solution

found in [8, Proposition 25]. Let us summarize the combinatorial steps of our derivation.

First, we note that equation (8.8), which is easily interpreted in the language of NEBT,

also follows from slice decomposition: see Section 8.3 below. Second, generating functions

of irreducible and arbitrary slices are simply related by a change of variables. Thus,

the explicit form (8.3), combinatorially explained in [12, Section 6.2], directly translates

into (8.6). Finally, the fact that Ti = (r(4)
i+1 − 1)/z also has a nice factorized form is a

consequence of the first line of (8.1), combinatorially explained in [12, Section 3.3].
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8.2. Integrable equations from irreducible triangular dissections

If we now play the same game for triangular dissections, we may use the following

expressions [12], valid for i � 1:

F1 = Si−1 −
(
x3RiRi−1

)
,

F2 = (Si−1)
2 + Ri − (Si−1 + Si)

(
x3RiRi−1

)
, (8.10)

F3 = (Si−1)
3 + Ri(2Si−1 + Si) − ((Si−1)

2 + Si−1Si + (Si)
2 + Ri + Ri+1)

(
x3RiRi−1

)
,

where Ri and Si−1 (i � 1) are determined via

Ri = 1 + x2Ri + x3Ri(Si−1 + Si), Si−1 = x1 + x2Si−1 + x3((Si−1)
2 + Ri−1 + Ri), (8.11)

where R0 = 0. These equations are again integrable, with explicit solution

Si−1 = S − x3R
2yi−1 (1 − y)(1 − y2)

(1 − yi)(1 − yi+1)
, Ri = R

(1 − yi)(1 − yi+2)

(1 − yi+1)2
, (8.12)

i � 1, where y +
1

y
+ 2 =

1

x2
3R

3
,

where R and S are solutions of the homogeneous version of (8.11): R = 1 + x2R + 2x3RS ,

S = x1 + x2S + x3(S
2 + 2R).

Specializing these expressions at the particular renormalized values x1 = X1(z), x2 =

X2(z), x3 = X3(z) of Section 2.2, we deduce expressions for the generating functions of

irreducible triangulations with a boundary of length 1, 2 and 3:

f
(3)
1 = 0 = s

(3)
i−1 −

(
X3(z)r

(3)
i−1r

(3)
i

)
,

f
(3)
2 = 1 = (s(3)

i−1)
2 + r

(3)
i − (s(3)

i−1 + s
(3)
i )

(
X3(z)r

(3)
i−1r

(3)
i

)
,

f
(3)
3 = z = (s(3)

i−1)
3 + r

(3)
i (2s(3)

i−1 + s
(3)
i )

− ((s(3)
i−1)

2 + s
(3)
i−1s

(3)
i + (s(3)

i )2 + r
(3)
i + r

(3)
i+1)

(
X3(z)r

(3)
i−1r

(3)
i

)
,

(8.13)

in terms of r(3)
i (z) = Ri(X1(z), X2(z), X3(z)) and s

(3)
i (z) = Si(X1(z), X2(z), X3(z)). Eliminating

X3, r
(3)
i and s

(3)
i are fully determined in terms of z via

r
(3)
i = 1 + s

(3)
i−1s

(3)
i , z + s

(3)
i−1s

(3)
i s

(3)
i+1 − s

(3)
i = 0, i � 1, (8.14)

with initial condition s
(3)
0 = 0. Using s(3) = X3(z)(r

(3))2 from the first line of (2.14), formulas

(8.12) specialize to

s
(3)
i−1 = s(3)

(
1 − yi−1 (1 − y)(1 − y2)

(1 − yi)(1 − yi+1)

)
= s(3) (1 − yi−1)(1 − yi+2)

(1 − yi)(1 − yi+1)
,

r
(3)
i = r(3) (1 − yi)(1 − yi+2)

(1 − yi+1)2
, i � 1, where y +

1

y
+ 1 =

1

(s(3))2

(8.15)

where r(3) and s(3) are solutions of the system (2.15). Here we used

(X3(z))
2(r(3))3 =

(s(3))2

r(3)
=

(s(3))2

(s(3))2 − 1
.

See also [3, Proposition 5.5] for equivalent expressions interpreted as generating functions

of symmetric irreducible triangular dissections.
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Again the equation for s
(3)
i in (8.14) is more transparent upon setting

s
(3)
i (z) = z Ti(z), i � 0, (8.16)

as it reads

Ti = 1 + z2 Ti−1TiTi+1, i � 1, (8.17)

with T0 = 0, allowing us to identify Ti with the generating function of some ‘naturally

embedded’ ternary trees [26] (with a weight z2 per inner vertex). Equation (8.17) was

already encountered in the context of quadrangulations without multiple edges [11], and

this explained its integrability. It is remarkable to find it here in the different context

of irreducible triangulations, hence providing a new explanation for integrability. Let us

mention that a direct bijection between irreducible triangulations and non-separable maps

(themselves in bijection with quadrangulations without multiple edges) was given by Fusy

[22].

8.3. Slices of controlled boundary lengths

Equations (8.1) and (8.10) are particular examples of the general formula [12]

Fn = Z+
i−1,i−1(n; {Rm+1, Sm}m�0) −

∑
k�1

Z+
i−1,i−1+k(n; {Rm+1, Sm}m�0))Vk;i−2, (8.18)

for i � 1, where Vk;p is defined by

Vk;p =
∑

j�k+2

xjZp+k+1;p(j − 1; {Rm+1, Sm}m�0)), k, p � −1. (8.19)

Here Zp,p′(n; {Rm+1, Sm}m�0) (with p, p′ � −1) denotes the generating function of three-step

paths of length n, starting at height p, ending at height p′, where each level step at height

m receives a weight Sm while each down-step from height m + 1 to height m receives a

weight Rm+1. The quantity Z+
p,p′ (with p′ � p � −1) denotes the same generating function

limited to paths whose heights remain larger than or equal to p. It will always be assumed

that R0 = 0 so in practice the paths which dip below 0 do not contribute and Zp,p′ and

Z+
p,p′ depend only on Rm+1 and Sm for m � 0. This assumption also implies that Vk,−1 = 0.

In the above expressions, Rm and Sm must be taken as the solutions of

Rm+1 = 1 + V0,m, Sm = V−1,m, m � 0. (8.20)

The interpretation of Rm+1 (resp. Sm) is that it is the generating functions of slices of

type m′/m′ + 1 (resp. type m′/m′) with 0 � m′ � m. By an argument similar to that of

Section 4.1, the reader will be convinced that Vk;p for k � −1 and p � 0 may then be

understood as the generating function of k-slices of type p′/p′ + k + 1 with 0 � p′ � p and

that (8.19) simply translates the decomposition of Figure 7.

Applying the general substitution relation (3.6), we get

F (d)
n = Z+

i−1,i−1(n; {R(d)
m+1, S

(d)
m }m�0) −

∑
k�1

Z+
i−1,i−1+k(n; {R(d)

m+1, S
(d)
m }m�0)V

(d)
k,i−2 (8.21)
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for i � 1, where R(d)
m , S (d)

m and V
(d)
k,p are the series obtained by substituting, for all j between

1 and d, the formal variable xj by the series X(d)
j in Rm, Sm and Vk,p. As before, the V

(d)
k,p for

k � d − 1 are easily determined in terms of R(d)
m , S (d)

m via (8.19), the xj for j � d + 1 being

kept unsubstituted. In particular, in the specialized case of irreducible d-angulations, we

have v
(d)
k,p = 0 for k � d − 1. As for the V

(d)
k,p for −1 � k � d − 2, one way to determine

them is to use conditions (1.1) again: (8.21) yields a linear system for the V
(d)
k,p with

1 � k � d, which we may solve. To that end, we note that the inverse of the semi-infinite

unitriangular matrix (Z+
i−1,i−1+k(n; {rm+1, sm}m�0))n,k�0 admits an explicit expression in

terms of monomer–dimers [34], which reduces to (3.39) when rm = r and sm = s for all m.

This means that we may repeat the same strategy as that of Section 3.4, by simply adding a

new parameter in the game, and derive a closed system of nonlinear recurrence equations

for R(d)
m and S (d)

m , generalizing (3.41). However, we find the combinatorial meaning of this

approach to be quite unclear.

A more transparent approach is to understand V
(d)
k,p as the generating functions of

d-irreducible k-slices of type p′/p′ + k + 1 with 0 � p′ � p (recall that the substitution

does not modify the length of the boundaries of a slice). As such, they satisfy new

recursive equations which provide an alternative route to determine them. Indeed, the

binary decomposition of Section 5.1 immediately yields

V
(d)
k,p = zδk,d−2 + (1 − δp,0)

k+1∑
m=1

V
(d)
m,p−1V

(d)
k−m,p+m + V

(d)
k+2,p−1, −1 � k � d − 2, p � 0, (8.22)

which is a refined version of (5.2). For instance, in the case of irreducible triangulations

(d = 3), these equations read

v
(3)
1,p = z + v

(3)
1,p−1v

(3)
0,p+1,

v
(3)
0,p = v

(3)
1,p−1v

(3)
−1,p+1, (8.23)

v
(3)
−1,p = v

(3)
1,p−1, p � 0,

with the convention v
(3)
1,−1 = 0. These equations precisely reproduce (8.14) upon identifying

v
(3)
0,p = r

(3)
p+1 − 1 and v

(3)
−1,p = s(3)

p .

Using the slice/tree bijection in the specialized case of irreducible d-angulations, the

v
(d)
k,p for 1 � k � d − 2 may as well be understood as generating functions of d-oriented

k-trees with depth at most p. We say that the tree has depth p (p � 0) if the minimal

height assigned to a corner in the closure procedure of Section 6.3 is −p − 1. As such,

they satisfy the recursive equations

v
(d)
k,p = zδk,d−2 + (1 − δp,0)

∑
q�1

∑
mi�1,i=1,...,q

m1+···+mq=k+2

q∏
i=1

v
(d)

mi,p−1+
∑ i−1

j=1 mj
, 1 � k � d − 2, p � 0 (8.24)

(recall that the height increases by mi when going around a subtree whose root vertex has

out-degree mi), while v
(d)
k,p = 0 for k � d − 1.

For instance, for d = 3, we get

v
(3)
1,p = z + (1 − δp,0) v

(3)
1,p−1v

(3)
1,pv

(3)
1,p+1, p � 0, (8.25)
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Figure 20. (Colour online) An example of a naturally embedded ternary (a) and binary (b) tree with corners

labelled according to the rules of Section 6.2 when d = 3 and d = 4 respectively (starting with label 0 at the first

encountered inner corner). We see that the first corner encountered at each vertex receives a label (in red) equal

to (minus) its horizontal position.

which matches (8.14) upon identifying v
(3)
1,p = s

(3)
p+1. The combinatorial meaning of this

identification is transparent, upon observing that the corner labelling of a 3-oriented, i.e.,

ternary, tree essentially coincides with the natural embedding of its vertices: see Figure 20.

In the bipartite case (d even), it is easily seen along the same lines as Section 6.3 that v(d)
k,p

vanishes for k odd. In the case d = 4, we find that v(4)
2,p satisfies

v
(4)
2,p = z + (1 − δp,0) v

(4)
2,p−1v

(4)
2,p+1, p � 0, (8.26)

which matches (8.8) upon identifying v2,p = zTp+1, consistent with the relations

r(4)
p − 1 = v

(4)
0,p−1 = v

(4)
2,p−2.

Again the combinatorial meaning of the identification is transparent: see again Figure 20.

Let us conclude by giving a few more integrable equations as obtained from this

framework. If we consider irreducible hexangulations (d = 6), we find the system

v
(6)
4,p = z + v

(6)
2,p−1v

(6)
2,p+2 + v

(6)
4,p−1v

(6)
0,p+4,

v
(6)
2,p = v

(6)
2,p−1v

(6)
0,p+2 + v

(6)
4,p−1, (8.27)

v
(6)
0,p = v

(6)
2,p−1, p � 0,

with the convention v
(6)
2,−1 = v

(6)
4,−1 = 0. This triangular system yields an equation for v

(6)
0,p

which, upon setting

v
(6)
0,p = r

(6)
p+1 − 1, (8.28)

reads

z − r(6)
p r

(6)
p+2r

(6)
p+4 + r(6)

p r
(6)
p+2 + r(6)

p r
(6)
p+3 + r(6)

p r
(6)
p+4 + r

(6)
p+1r

(6)
p+3 + r

(6)
p+1r

(6)
p+4 (8.29)

+r
(6)
p+2r

(6)
p+4 − 2(r(6)

p + r
(6)
p+1 + r

(6)
p+2 + r

(6)
p+3 + r

(6)
p+4) + 5 = 0, p � 1,
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with r
(6)
1 = r

(6)
2 = 1, a refined version of (3.30) which, upon setting

r(6)
p = 1 + zTp−2, (8.30)

may itself be rewritten as

Tp = 1 + z(Tp−2Tp+1 + Tp−1Tp+1 + Tp−1Tp+2) − z2Tp−2TpTp+2, p � 1, (8.31)

with initial condition T−1 = T0 = 0. This equation is integrable and an explicit determin-

antal formula for Tp may easily be obtained from the results of [12].

For d = 8, a similar calculation leads to the integrable equation

Tp = 1 + z(Tp−3Tp+1 + Tp−2Tp+1 + Tp−1Tp+1 + Tp−2Tp+2 + Tp−1Tp+2 + Tp−1Tp+3)

− z2(Tp−2TpTp+2 + Tp−3Tp−1Tp+2 + Tp−3TpTp+2 + Tp−3TpTp+3 + Tp−2TpTp+3

+ Tp−2Tp+1Tp+3) + z3Tp−3Tp−1Tp+1Tp+3, p � 1, (8.32)

with initial condition T−2 = T−1 = T0 = 0 by setting v
(8)
0,p = r

(8)
p+1 − 1 and r(8)

p = 1 + zTp−3.

9. Discussion

Let us end this paper by discussing some extensions of our work. The first one concerns

d-irreducible maps with outer degree d, which are made non-trivial by slightly relaxing

the notion of irreducibility. The second extension concerns d-irreducible maps with two

marked faces of degree strictly larger than d. The third extension, suggested by one of the

referees, concerns maps with two marked faces, subject to a control on two distinct girth

parameters.

9.1. d-irreducible maps with outer degree d

In this section, we deal with d-irreducible maps with outer degree d, and with at least

one inner face (i.e., maps not reduced to a tree). In the way in which we have defined

d-irreducibility so far, we have a unique such map, made of a single inner face of degree

d glued to the external face: we shall call it the trivial map of outer degree d. Indeed, the

boundary of the external face (called external boundary in the following) forms a cycle

of length d and, as such, has to be the boundary of an inner face of degree d. A weaker

and somewhat more natural definition of d-irreducibility among maps with outer degree

d consists in simply picking those maps of girth d such that all cycles of length d in the

map are the boundary of an arbitrary (i.e., inner or external) face of degree d. With this

definition, the external boundary need not surround a single inner face any longer, as it

is already the boundary of the external face of degree d.

We shall call Hd(z; xd+1, . . .) the generating function of such (weakly) d-irreducible maps

with outer degree d counted, as before, with a weight z per inner face of degree d and

weights xj per face of degree j � d + 1. We claim that we have the relation

Hd(z; xd+1, . . .) = 2z − Xd(z; xd+1, . . .), d odd,

Hd(z; xd+1, . . .) = 2z +
d

2
× z3

1 + z
− Xd(z; xd+1 . . .), d even,

(9.1)

https://doi.org/10.1017/S0963548314000340 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000340


On Irreducible Maps and Slices 965

where Xd(z; xd+1, . . .) is defined via the inversion (3.3). In practice, Xd may be obtained,

for instance, from the knowledge of V (d)
d−2 via the relation

Xd =
1

(R(d))d−1

(
V

(d)
d−2 −

∑
j�d+1

xjP−d+1(j − 1;R(d), S (d))

)
, (9.2)

obtained by taking (3.34) at k = d − 2 and substituting the renormalized weight xd →
Xd = X

(d)
d (z; xd+1, . . .).

To prove (9.1), we use the same substitution approach as in Section 3.1, i.e., we start

from an arbitrary map with outer degree d and girth d, and obtain a d-irreducible one by

replacing each outermost cycle of length d by a single d-valent face. As we shall now see,

this transformation leads to a functional relation between Hd and the generating function

Gd(xd, xd+1, . . .) (as defined in Section 3) of maps with outer degree d and girth d, counted

with weights xj per inner face of degree j � d. It is important to note that with our weaker

notion of d-irreducibility we now have to take the convention that, in the determination

of the outermost cycles, the external boundary itself should not be considered as a cycle

of length d. This leads to two caveats: (i) the trivial map of outer degree d (which is

d-irreducible and contributes z to Hd) has a single antecedent, which is the trivial map

of outer degree d itself (contributing xd to Gd), and (ii) some outermost cycles may now

overlap, so that some extra prescriptions are required for a well-defined replacement.

Let us analyse this overlapping issue more precisely. When repeating the arguments of

Section 3, the only problem that we face is, with the notation of Figure 3, that the cycle

C12 may coincide with the external boundary, so it creates no contradiction with the fact

that C1 and C2 were considered as outermost in the first place. Still, since C12 has length

d, this implies that, necessarily, n1 = n2 = d/2 (recall that n1 and n2 are at least d/2) so

that v and v′ are antipodal around the external boundary while the two internal paths

connecting them form mutually avoiding diagonal paths of length d/2. Since no paths of

length d/2 exist for d odd, we conclude that outermost paths cannot overlap for d odd

and the caveat (ii) never occurs. For odd d, we deduce the relation

Gd(xd, xd+1, . . .) − xd = Hd(Gd(xd, xd+1, . . .); xd+1, . . .) − Gd(xd, xd+1, . . .) d odd (9.3)

for the enumeration of non-trivial maps with outer degree d and girth d (the right-hand

side is obtained by substituting z → Gd in Hd − z, the generating function of non-trivial

d-irreducible maps of outer degree d). Now, from (3.3), we may perform the substitution

Gd → z by setting xd = Xd(z; xd+1, . . .) in (9.3). This yields the stated result (9.1) for odd d.

For even d, we note that, in a map of girth d, there cannot be more than one pair

of antipodal vertices connected by a diagonal path of length d/2, as otherwise diagonals

would have to cross and a cycle of length < d would be created. Overlapping therefore

appears only in situations where exactly one pair of antipodal vertices v and v′ are

connected by an arbitrary number p � 2 of mutually avoiding diagonal paths of length

d/2 (see Figure 21). We therefore decide to treat separately and remove from our original

set of maps with girth d the configurations having two antipodal vertices connected by at

least one diagonal path of length d/2 (we found it simpler to include within the removed

set situations having a single diagonal, even though they do not give rise to overlapping).

The set of these removed configurations clearly displays a d/2-fold symmetry by rotation
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v

v

d/2
d/2

d/2
d/2d/2

Figure 21. (Colour online) Schematic picture of a configuration of map with outer degree d and girth d having

overlapping outermost cycles of length d (by convention, the external boundary – in magenta – is not considered

here as a cycle of length d). Two antipodal vertices v and v′ along the external boundary are linked by p � 2

diagonal paths of length d/2.

around the external face. Once these configurations are removed, the d/2 d-irreducible

maps with outer degree d made of two inner faces of degree d sharing a diagonal of

length d/2 can no longer be recovered. Each of these configurations contributes z2 to Hd,

so we deduce

Gd(xd, xd+1, . . .) − xd − d

2
Gd,D(xd, xd+1, . . .) (9.4)

= Hd(Gd(xd, xd+1, . . .); xd+1, . . .) − Gd(xd, xd+1, . . .) − d

2
(Gd(xd, xd+1, . . .))

2

for d even, for the enumeration of non-trivial maps with outer degree d and girth d

without a diagonal of length d/2 (the right-hand side is obtained by substituting z → Gd

in Hd − z − (d/2)z2). In the left-hand side, Gd,D enumerates maps with outer degree d and

girth d with p � 1 diagonal paths of length d/2 connecting, say, the origin of the root edge

to its antipodal vertex. Cutting along all the diagonal paths of length d/2, any such map

forms a sequence of p + 1 � 2 rooted maps (see Figure 21 for an example with p = 3).

These latter maps cannot have any more diagonal paths of length d/2 connecting the origin

of the root edge to its antipodal vertex but are otherwise arbitrary maps of outer degree

d and girth d (in particular they may have diagonal paths of length d/2 connecting other

pairs of antipodal vertices). Their generating function is therefore Gd − Gd,D , and we have

Gd,D =
(Gd − Gd,D)2

1 − (Gd − Gd,D)
, (9.5)

or equivalently

Gd,D =
(Gd)

2

1 + Gd

, (9.6)

so (9.4) may eventually be written as

Gd = xd − d

2
× G3

d

1 + Gd

+ Hd(Gd; xd+1, . . .) − Gd d even. (9.7)

Setting xd = Xd(z; xd+1, . . .) in (9.7) yields the stated result (9.1) for even d.
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Let us end this section by listing expressions for the generating function hd(z) =

Hd(z; 0, . . .) of (weakly) irreducible d-angular dissections of the d-gon at d = 3, 4, 5, 6, as

obtained by a specialization at xj = 0, j � d + 1. Equation (9.2) reduces to the simpler

relation

Xd(z; 0, . . .) =
v
(d)
d−2

(r(d))d−1
. (9.8)

For d = 3, using v
(3)
1 = s(3), we obtain

h3(z) = 2z − s(3)

(r(3))2
(9.9)

= z + z3 + z7 + 3z9 + 12z11 + 52z13 + 241z15 + 1173z17 + 5929z19 + 30880z21

+ 164796z23 + 897380z25 + 4970296z27 + 27930828z29 + O(z31)

in agreement with [30].

For d = 4, using v
(4)
2 = u

(4)
1 = r(4) − 1, we obtain

h4(z) = 2z + 2
z3

1 + z
− r(4) − 1

(r(4))3
(9.10)

= z + 2z2 + z5 + 4z7 + 6z8 + 24z9 + 66z10 + 214z11 + 676z12 + 2209z13 + 7296z14

+ 24460z15 + 82926z16 + 284068z17 + 981882z18 + 3421318z19 + O(z20)

in agreement with [28].

For d = 5, using v
(5)
3 = 3s(5) + (s(5))3 − 2s(5)r(5), we obtain

h5(z) = 2z − 3s(5) + (s(5))3 − 2s(5)r(5)

(r(5))4
(9.11)

= z + 5z3 + 46z5 + 1350z7 + 52360z9 + 2382508z11 + 119914425z13

+ 6470326059z15 + 367369835490z17 + 21686295649075z19 + O(z21).

For d = 6, using v
(6)
4 = u

(6)
2 = −2 + 3r(6) − (r(6))2, we obtain

h6(z) = 2z + 3
z3

1 + z
− −2 + 3r(6) − (r(6))2

(r(6))5
(9.12)

= z + 3z2 + 2z3 + 5z4 + 42z5 + 266z6 + 1986z7 + 15552z8 + 127738z9 + 1086998z10

+ 9517362z11 + 85291440z12 + 779292490z13 + 7237661226z14 + O(z15).

9.2. d-irreducible maps with two marked faces of degree strictly larger than d

This section deals with bipartite maps for simplicity. So far we have considered maps with

a single marked face (the external face) of degree 2m, say, and a marked oriented edge

(the root edge) incident to the external face and oriented so that the external face lies

on its right (in practice we marked the root edge first). We may instead consider maps

with two marked distinct (and distinguished) faces of respective degrees 2m and 2m′, and

a marked oriented edge incident to each of these marked face (and having the marked

face on its right). Again we may demand that these maps be d-irreducible, i.e., have girth
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at least d and be such that all cycles of length d are the boundary of an inner face (i.e.,

a face different from the marked faces) of degree d. Assuming d = 2b and m,m′ > b, we

may simply obtain the generating function F
(d)
2m,2m′ (z; xd+1, . . .) of d-irreducible maps with

two marked faces of respective degree 2m and 2m′ via

F
(d)
2m,2m′ = 2m′ ∂F

(d)
2m

∂x2m′
, (9.13)

since the desired maps are obtained from d-irreducible maps with a single marked face

of degree 2m (as enumerated by F
(d)
2m) by marking a face of degree 2m′ (via the action of

∂ · /∂x2m′ ) and then marking an incident oriented edge (among 2m′ choices). Now we may

use (3.21) to compute

∂F
(d)
2m

∂x2m′
=

(
2m

m − b

)
(R(d))m−b

(
K(m′) − b + m′

m + m′

(
2m′ − 1

m′ + b

)
(R(d))b+m′

)
, (9.14)

where the quantity

K(m′) =

(b−1∑
�=0

(−1)b−�−1(b − �)

(
b + �

2�

)
Cat(�)(R(d))b−�−1

−
∑

k�b+1

(b + k)

(
2k − 1

k + b

)
x2k(R

(d))b+k−1

)
∂R(d)

∂x2m′
(9.15)

is independent of m. Equation (9.14) is also valid for m = b, which allows us to determine

K(m′) from the identity ∂F
(d)
d /∂x2m′ = 0 (since F

(d)
d = z + Cat(d/2)), namely

K(m′) =

(
2m′ − 1

m′ + b

)
(R(d))b+m′

. (9.16)

Plugging this value in (9.14), we arrive at

F
(d)
2m,2m′ = (m − b)(m′ − b)

(
2m

m − b

)(
2m′

m′ − b

)
(R(d))m+m′

m + m′ , m, m′ > b. (9.17)

This formula may be viewed as a generalization of a similar formula [15] for general (not

necessarily irreducible) maps with two marked faces, corresponding to d = b = 0 here.

The more general formulas of [15] for maps with more than two marked faces can also

be extended to the case of d-irreducible maps [13].

9.3. (d, d ′)-irreducible annular maps

We are indebted to the anonymous referee for pointing out this extension of our work.

Maps with two marked faces are naturally endowed with two distinct girth parameters:

the separating girth and the non-separating girth, defined respectively as the minimum

length of cycles separating and not separating the marked faces from one another. Maps

subject to an independent control on both girth parameters were enumerated in [7], and

a natural question is whether these results can be extended to the context of irreducible

maps.
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We are led to slightly generalize the notion of annular map, introduced in Section 7, as

follows. For d, d′ non-negative integers, we define a (d, d′)-quasi-irreducible annular map as

a rooted map with a marked inner face of degree d′ called the central face, subject to the

following constraints.

• Any non-separating cycle (i.e., a cycle which does not separate the outer face and the

central face) has length at least d, and if its length is equal to d then it is necessarily

the boundary of an inner face of degree d.

• Any separating cycle (i.e., a cycle which separates the outer face and the central face)

has length at least d′.

If, furthermore, the only separating cycle of length d′ is the boundary of the central face,

then the map is called a (d, d′)-irreducible annular map. In other words, a (d, d′)-irreducible

annular map has non-separating girth d, separating girth d′, and all its minimal non-

separating or separating cycles are ‘trivial’ (in the case of (d, d′)-quasi-irreducible annular

map, the triviality condition for minimal separating cycles is relaxed). Let

I (d,d′)
n ≡ I (d,d′)

n (z; xd+1, xd+2, . . .) and Ĩ (d,d′)
n ≡ Ĩ (d,d′)

n (z; xd+1, xd+2, . . .),

respectively, denote the generating function of (d, d′)-irreducible and (d, d′)-quasi-

irreducible annular maps whose root face has degree n, counted with a weight z per

inner non-central face of degree d and, for all i � d + 1, a weight xi per inner non-central

i-valent face (by convention, the central face receives no weight). Note that, for d = d′,

(d, d′)-irreducible annular maps are precisely the annular maps considered in Section 7,

and thus

I (d,d)
n =

∂F (d)
n

∂z
= Pd(n;R

(d), S (d))

by virtue of (3.42). Note also that, for z = 0,

d′I (d,d′)
n (0; xd+1, xd+2, . . .) and d′Ĩ (d,d′)

n (0; xd+1, xd+2, . . .),

respectively, coincide with the quantities denoted Ĝ
(d′ ,n)
d+1 and G

(d′ ,n)
d+1,d′ in [7] (where the

annular maps are doubly rooted, thus the extra factor d′).

We then have the beautiful identities

I (d,d′)
n = Pd′ (n;R(d), S (d)), (9.18)

Ĩ (d,d′)
n = P−d′ (n;R(d), S (d)) (9.19)

where we recall that Pk(n; ·, ·) is a three-step path generating function, given by (3.32).

These identities generalize results from [7, Section 6.2]; in particular, equation (7) of that

paper coincides up to notations with our second identity at z = 0. We may establish them

bijectively along the same lines as in the proof of the pointing formula (3.42) in Section 7.

Let us simply mention which modifications have to be made, and leave the reader to

check the details.

The first identity (9.18) is obtained quite straightforwardly. Starting from a slice-

decorated three-step path counted by Pd′ (n;R(d), S (d)), we define the partial gluing as in

Section 7.1, but the gluing of the right and left boundaries now leaves d′ unmatched edges,

https://doi.org/10.1017/S0963548314000340 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000340


970 J. Bouttier and E. Guitter

which form the central face. The slice decomposition of annular maps is still performed

by passing to the lift and cutting along leftmost shortest paths to −∞.

For (9.19), given a slice-decorated three-step path counted by P−d′ (n;R(d), S (d)), its partial

gluing now has a left boundary longer by d′ edges than the right boundary, and thus the

central face is formed by ‘wrapping’ on the other side. The fact that the left boundary is

a not necessarily unique shortest path between its endpoints explains why the resulting

annular map is (d, d′)-quasi-irreducible but not necessarily (d, d′)-irreducible. Conversely,

the slice decomposition must be adapted. Informally speaking, we have to cut the lift

along leftmost shortest paths to +∞ instead of −∞. Because there might be several

minimal separating cycles in the annular map, it is no longer true that, in the lift, all

shortest paths to +∞ coalesce with the upper boundary, but still the leftmost ones do.

As a corollary of (9.18), (9.19) and the path definition of Pk(n; ·, ·), we have the relation

Ĩ (d,d′)
n = I (d,d′)

n

(
R(d)

)d′
(9.20)

which may alternatively be obtained by decomposing a (d, d′)-quasi-annular map of outer

degree n along its outermost minimal separating cycle. Using a similar decomposition, we

may easily obtain an extension of Theorem 32 in [7], i.e., an expression for the generating

function of (d, d′)-quasi-irreducible annular maps where we no longer impose that the

central face has degree d′ (in other words, the theorem is still valid with the ‘extra variable

z’).

Finally, let us observe that Ĩ (d,d)
d =

(
R(d)

)d
is closely related to the generating function Hd

discussed in Section 9.1. Indeed, a (d, d)-quasi-irreducible annular map with outer degree

d is ‘almost’ a weakly d-irreducible map with a marked inner face of degree d, except for

the fact that there might exist non-trivial minimal separating cycles. More precisely, we

have the relation(
R(d)

)d
=

1

1 −
(
∂Hd

∂z
− 1

) , d odd,

(
R(d)

)d
=

1

1 −
(
∂Hd

∂z
− 1 − dz

)
− d

2

2z + z2

1 + 2z + z2

, d even,

(9.21)

which may be obtained by differentiating (9.1) with respect to z, and noting that, by (3.3),

∂Xd

∂z
=

(
R(d)

)−d

since

∂Gd

∂xd
= Ĩ

(d−1,d)
d (0; xd, xd+1, . . .) =

(
R(d−1)(0; xd, xd+1, . . .)

)d
and

R(d−1)(0;Xd(z, xd+1, . . .), xd+1, . . .) = R(d)(z; xd+1, . . .).

Alternatively, a combinatorial proof is obtained by decomposing a (d, d)-quasi-irreducible

annular map along its minimal separating cycles. This decomposition works
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straightforwardly for d odd, but for d even there are some pathologies related to the

possible existence of diagonal paths, already observed in Section 9.1. Working out the

details is left as a pleasant exercise for the reader.
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