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A SPATIO-TEMPORAL POINT PROCESS MODEL
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Abstract

A spatio-temporal model of particle or star growth is defined, whereby new unit masses
arrive sequentially in discrete time. These unit masses are referred to as candidate
stars, which tend to arrive in mass-dense regions and then either form a new star or
are absorbed by some neighbouring star of high mass. We analyse the system as time
increases, and derive the asymptotic growth rate of the number of stars as well as the
size of a randomly chosen star. We also prove that the size-biased mass distribution
converges to a Poisson–Dirichlet distribution. This is achieved by embedding our model
into a continuous-time Markov process, so that new stars arrive according to a marked
Poisson process, with locations as marks, whereas existing stars grow as independent
Yule processes. Our approach can be interpreted as a Hoppe-type urn scheme with a
spatial structure. We discuss its relevance for and connection to models of population
genetics, particle aggregation, image segmentation, epidemic spread, and random graphs
with preferential attachment.
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1. Introduction

In this paper we introduce a discrete-time Markov process for the positioning and growth of
a number of particles/objects, referred to as stars. It can be thought of as a generalization of a
Pólya-type urn scheme [10] due to Hoppe [16, 17], where each star corresponds to a colour and
the number of balls of the same colour is the mass of a star. Our model is obtained by adding a
spatial location to all the stars of Hoppe’s urn scheme. In more detail, at each consecutive time
point a new unit mass appears within a given region of space. This unit mass is either absorbed
by one of the existing stars, or it defines a new star that later on starts to grow. We refer to
each such unit mass as a candidate star, and devise a two-step procedure for its allocation into
the population. In the first step candidates will most likely arrive at mass dense parts of the
region, and in the second step they are more easily absorbed by nearby stars of high mass.
We may interpret this as a competition, whereby different stars try to recruit new mass in its
neighbourhood, but occasionally some candidates manage to avoid absorption and define a
new star.

Our main task is to investigate how the spatial distribution, mass distribution, and number
of objects evolve over time. In the spirit of [20] and [29], this is achieved by embedding the
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original process into a continuous-time Markov process. This implies that new stars (accepted
candidates) of the continuous-time model arrive according to a marked Poisson process with
locations as marks, and existing stars grow as independent Yule processes with location-
dependent intensities. From this, it follows that the number of stars increases at a logarithmic
rate, since fewer of them will avoid absorption over time, and that the largest objects will be
found in a region where the Yule processes grow at a maximal rate. We prove that the masses
of the stars within this region have an asymptotic Poisson–Dirichlet distribution ([3], [23]),
whereas the distribution of the size of a randomly chosen star is very thick tailed, with a
logarithmic decay rate.

The paper is organized as follows. In Section 2 we introduce the discrete-time model and
formulate the main results. Then we define the continuous-time model in Section 3, give a
number of examples in Section 4, and present proofs in Section 5. Finally, in Section 6 we
discuss possible extensions of our model, and in particular their relevance for and connections
to different types of urn schemes, population genetics, image segmentation, epidemic spread,
and random graphs with preferential attachment.

2. Discrete-time model

Consider a set �⊂R
q, in which points of unit mass appear at positions Yk, at discrete time

points k ∈Z
+. Each such unit mass either gives rise to a new star at Yk or is attracted to some

previously formed star in �, whose mass then increases by 1. Let 1 = K1 <K2 <K3 < · · ·
refer to the time points when new stars are formed at positions Xi = YKi for i = 1, 2, . . . . The
mass distribution over � at time k = 0, 1, . . . is conveniently summarized by the marked point
process [19]

Mk =
∞∑

i=1

NkiδXi ,

where δx is a point mass at x, and Nki, the mark attached to Xi, is the mass of the ith formed
star at time k. We introduce the sequence

Nk = (Nk1,Nk2, . . . )

for the mass size distribution at time k. We have Nki = 0 for i> Ik, where Ik is the number
of stars that have been formed up to and including time k. Since I0 = 0, we start with N0i ≡
0 at time 0. Then, since I1 = 1, and Ik ≥ Ik−1 for k ≥ 2, the number of nonzero masses is a
nondecreasing function of time. Moreover, since the total mass increases by 1 at each time
point, it follows that

Nk =
∞∑

i=1

Nki = k. (1)

In order to define a probabilistic rule according to which new stars are formed, or existing
stars increase their mass, we assume that the attractional force between two masses nx and ny

at positions x, y ∈� is nxnyL(x, y), where L(x, y) ≥ 0 is a kernel function that typically (but
not necessarily) is a nonincreasing function of some metric d(x, y) on R

q, for instance, the
Euclidean distance between x and y. Also, let ei = (0, . . . , 0, 1, 0, . . . ) refer to a sequence
with 1 in position i and 0s elsewhere. Then

P(Nk = Nk−1 + ei | Yk = y, Mk−1) = γ 1{i=Ik−1+1} + Nk−1,iL(Xi, y)

γ + ∑∞
j=1 Nk−1,jL(Xj, y)

(2)
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for i = 1, 2, . . . specify whether a new candidate star at y and time k − 1 is either absorbed by
existing stars with probabilities proportional to their attractional forces (Ik = Ik−1), or turned
into a new star at y (Ik = Ik−1 + 1, Yk = XIk ) with a probability proportional to a candidate
appearance rate γ . We also need to specify where new candidate stars appear in�. To this end,
let π be a probability distribution over �, and let B(�) refer to the Borel sigma algebra of �.
The proposal distribution

P(Yk ∈ A | Mk−1) =
∫

A [γ + ∑∞
j=1 Nk−1,jL(Xj, y)]π (y) dy∫

�
[γ + ∑∞

j=1 Nk−1,jL(Xj, y)]π (y) dy
, A ∈B(�), (3)

is a tilted version of π , such that candidates are proposed more often in densely populated
regions of�. On the other hand, we know from (2) that candidate stars are more easily formed
in sparse regions of �. It turns out that the amount of tilting in (3) is just strong enough to
balance the latter effect, so that the positions of all formed stars have the same distribution, as
specified in the following theorem.

Theorem 1. If the proposal distribution for the location of candidate stars satisfies (3), and if
candidates are absorbed by existing stars or form new ones according to (2), then X1, X2, . . .

are independent and identically distributed (i.i.d.) random variables with Xi ∼ π .

The asymptotic mass distribution as k → ∞ depends crucially on the function λ : �→
[0,∞), where

λ(x) =
∫
�

L(x, y)π (y) dy (4)

is the growth intensity or growth rate of a star located at x. Let

0<λ= sup
x∈�

λ(x)<∞ (5)

be the maximal growth intensity, and let

�0 = {x ∈�; λ(x) = λ}
be the set of points in � for which stars grow at this maximal rate. We will assume that newly
formed stars grow at the maximal rate with a positive probability, i.e.

π (�0)> 0. (6)

The important parameter of the asymptotic mass size distribution is

θ = γπ (�0)

λ
, (7)

the ratio between the appearance rate of new candidate stars within�0, and the growth intensity
of stars within �0. This is detailed in the following theorem.

Theorem 2. Suppose that (6) and the conditions of Theorem 1 hold. Then

Nki

Nk

L−→
{

0 if Xi /∈�0,

UJi if Xi ∈�0,
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as k → ∞, where ‘
L−→’ refers to joint weak convergence for all components i = 1, 2, . . . , Ji =

|{l; 1 ≤ l ≤ i, Xl ∈�0}| is the number of stars among the first i that have a maximal growth
rate, and

Uj = Zj

j−1∏
l=1

(1 − Zl),

where the Zl ∼ B(1, θ ) are i.i.d. and beta distributed random variables with density function
fZl (u) = θ (1 − u)θ−1 for 0< u< 1.

It follows from Theorem 2 that the ordered relative asymptotic mass sizes U(1) ≥ U(2) ≥ · · ·
have a Poisson–Dirichlet distribution with parameters 0 and θ ; see, for instance, [23], [27], and
the references therein.

In order to formulate how often new stars are formed, the parameter

ψ = γ

λ
(8)

is important. It is related to (7), but the numerator of (8) refers to the appearance rate of all
candidate stars, rather than those from the maximal region only. The following result reveals
that the number of stars grows at a logarithmic rate.

Theorem 3. Suppose that the conditions of Theorem 1 hold. The number of stars among the
first k candidates then satisfies

Ik =ψ log(k)[1 + op(1)]

asymptotically as k → ∞, where ψ is as defined in (8) and op(1) is a remainder term that
converges to 0 in probability.

It is also of interest to analyse the size

N1:k = Nk,I1:k (9)

of a randomly chosen star at time k, so that

P(I1: k = j | Ik = i) = 1

i
, j = 1, . . . , i.

We know from Theorem 3 that new stars arrive more seldom over time. As a consequence of
this, there has been plenty of time for a typical star at time k to grow when k is large. The
following result specifies how this affects the size distribution.

Theorem 4. Let N1:k be the size (9) of a randomly chosen star at time k. Then

N1:k = kVλ(X)/λ[1+op(1)] (10)

as k → ∞, where V ∼ U(0, 1) is a uniformly distributed random variable that is independent
of X ∼ π , whereas λ is defined in (5). Equivalently, if Vλ(X)/λ∼ F, it follows that

P(N1: k ≤ x) → F(c) (11)

if x → ∞ and k → ∞ jointly in such a way that log(x)/ log(k) → c for some constant 0 ≤
c< 1.
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For a fixed time point k, we may use Theorem 4 in order to approximate the tail probability
of N1: k as

P(N1: k ≥ x) ≈ 1 − F
( log x

log k

)

for 0 ≤ x ≤ k. This implies that the distribution of N1: k is very thick tailed. It decays to 0 at a
logarithmic rate, until the upper limit k of its support is reached.

3. Continuous-time model

In order to prove Theorems 1–4, we will embed the discrete time model of Section 2 into
a continuous-time Markov model with time index t> 0. The mass size distribution at time t is
denoted as

N(t) = (N1(t),N2(t), . . . ),

with Ni(t) the mass of the ith formed star, and N(t) = ∑∞
i=1 Ni(t) the total mass of all stars. We

will assume that

N(t) = Nk, τk ≤ t< τk+1, (12)

is right continuous and piecewise constant, with jumps occurring at an increasing sequence 0 =
τ0 < τ1 < · · ·< τk < · · · of time points. The mass configuration over� at time t is represented
as a marked point process

M(t) =
∞∑

i=1

Ni(t)δXi, (13)

and we let

Ti = τKi (14)

be the time point when the ith star is formed, so that Ni(t) = 0 for 0< t< Ti, and Ni(Ti) = 1.
It is assumed that {Ti} is a Poisson process with intensity γ , and that the positions Xi ∈� of
new stars form an i.i.d. sequence of random variables with distribution π . Then we postulate
that the Ni(t) are independent Yule processes with different starting points Ti and growth rates
λ(Xi), conditionally on the arrival times and positions of all stars. By this we mean that

P(Ni(t + h) = Ni(t) + 1|Ni(t), Xi) = Ni(t)λ(Xi)h + o(h) (15)

as h → 0 for all t ≥ Ti. Whenever Ni(·) increases by one unit, it is due to attraction of a
candidate star at some position Y ∈� with distribution

πx(A) = P(Y ∈ A | Xi = x) =
∫

A L(x, y)π (y) dy∫
�

L(x, y)π (y) dy
(16)

for all A ∈B(�).
Alternatively, we may specify M directly in terms of the conditional intensity by which it

grows [28]. It either acquires new mass due to the arrival of new stars or the growth of existing
stars, according to

E[M(t + h) − M(t) | M(t)] = [γπ + λ(·)M(t)]h + o(h)

as h → 0. Processes of this kind were referred to as Pólya sum processes in [25] for the special
case when λ(·) is constant.
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In order to study the growth rate of Ni(t), we first make use of the well-known property of
Yule processes that

Ni(t) | Ti, Xi ∼ Ge(e−λ(Xi)(t−Ti)) (17)

has a geometric distribution (starting at 1) for all t ≥ Ti; see, e.g. [21] or [4, p. 109]. Moreover,
if λ(Xi)> 0, it follows that {Ni(t) | Ti, Xi; t ≥ Ti} is a continuous-time, supercritical branching
process with Malthusian parameter λ(Xi) and expected value eλ(Xi)(t−Ti). We therefore have
almost-sure convergence

e−λ(Xi)(t−Ti)Ni(t) | Ti, Xi
a.s.−→ Ei (18)

of the rescaled mass of star i as t → ∞ (see, e.g. [13, Theorem 6.3]), towards a limiting random
variable Ei ∼ Exp(1) whose distribution is exponential with rate 1.

The following result is the key to the proofs of Theorems 1–4.

Proposition 1. Consider the continuous-time marked point process (13), where new stars
appear as a marked Poisson process with intensity γ and i.i.d. locations (marks) Xi ∼ π .
Moreover, assume that all stars give rise to independent Yule processes (15) that grow due
to attraction of candidate masses, whose random locations are distributed as in (16). The
embedded discrete-time Markov process Mk = M(τk) then has the same distribution as for the
model of Section 2. In particular, (2)–(3) hold.

4. Examples

In this section we describe a number of examples that aim to illustrate the model of
Section 2. They differ in the way the mass attractional force kernel L(x, y) is defined.

Example 1. (Homogeneous model.) Suppose that L(x, y) ≡ 1, so that the attractional force
between masses is not influenced by their positions. Then (2) reduces to a Hoppe urn scheme
or Chinese restaurant process

P(Nk = Nk−1 + ei | Yk = y,Nk−1) = γ 1{i=Ik−1+1} + Nk−1,i

γ + ∑∞
j=1 Nk−1,j

.

The total mass N(t) at time t for the continuous-time model is a Yule process with immigration
rate γ and growth rate 1 ([20]).

Equation (4) implies that λ(x) = 1 for all x ∈�, so that λ= 1 and �0 =�. It then follows
immediately from (7) and (8) that

θ =ψ = γ .

From Theorem 4 we also deduce that F ∼ U(0, 1) has a uniform distribution in (11), the
formula for the asymptotic mass size distribution of a randomly chosen star.

Example 2. (Household model.) Let �=�1 ∪ · · · ∪�H be a partition of � into H disjoint
regions that represent H different households. Assume that

L(x, y) =
{

1, x, y ∈�h for some h = 1, . . . ,H,
m, otherwise,
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where 0 ≤ m< 1 is a number that quantifies the amount of interaction between households.
It follows that λ(·) is piecewise constant over �1, . . . , �H , with

λ(x) = π (�h) + m[1 − π (�h)] = (1 − m)π (�h) + m (19)

for x ∈�h. Also, let

H0 = |{h; π (�h) = max
l=1,...,H

π (�l)}|
refer to the number of maximally sized households. It then follows from (7), (8), and (19) that

θ = γH0 maxh π (�h)

(1 − m) maxh π (�h) + m
= γH0 for m = 0

and

ψ = γ

(1 − m) maxh π (�h) + m
= γ

maxh π (�h)
for m = 0.

From the definition of F in Theorem 4 and (19), we then deduce that

F =
H∑

h=1

π (�h)U(0, vh)

is a finite mixture of uniform distributions with right-hand end points

vh = (1 − m)π (�h) + m

(1 − m) maxl=1,...,H π (�l) + m
.

Example 3. (Neighbourhood model.) Let d(x, y) refer to the Euclidean distance in R
q, and

define the kernel

L(x, y) = 1{d(x,y)≤r},
so that a star at x attracts other masses within a radius r, by a force that is the same everywhere
within this neighbourhood. Assume that � is a convex and bounded subset of Rq such that
B(x, r′) ⊂� for some x ∈� and r′ > r. If π is the uniform distribution on � then the growth
rate for a star at x is

λ(x) = |B(x, r) ∩�|
|�| ,

where | · | refers to the Lebesgue measure. From this, it follows that the maximal growth rate

λ= |B(0, r)|
|�|

is attained for all stars within the interior

�0 = {x ∈�; d(x,Rq \�) ≥ r}
of �, i.e. those points x in � whose distance to the complement of � is at least r. It follows
from (7) and (8) that

θ = γ
|�0|

|B(0, r)| and ψ = γ
|�|

|B(0, r)| ,
respectively. The formula for F in Theorem 4 is more complicated; a mixture

F = |�0|
|�| U(0, 1) + 1

|�|
∫
�\�0

U(0, v(x)) dx
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of uniform distributions, whose right-hand end points are v(x) = |B(x, r) ∩�|/|B(0, r)| for
points x outside the interior set �0.

Example 4. (Gravitational law model.) Assume that� is a p-dimensional and bounded subset
of Rq for some 0< p ≤ q, and that π is the uniform distribution on �. The kernel

L(x, y) = d(x, y)−β

represents a gravitational force that decreases by distance between masses according to a power
law with exponent 0<β < p, for some metric d(x, y). If �= B(0, 1) is the unit ball of Rq then
p = q. If d(x, y) refers to Euclidean distance between x and y, it can be seen that �0 = {0}
consists of one single point, the origin. Since π (�0) = 0, it follows that (6) is violated.

On the other hand, if � is the unit sphere in Rq then p = q − 1. It is then appropriate to
choose d(x, y) as the length of the geodesic along � that connects x and y. Moreover, by
symmetry we note that

λ(x) = 1

|�|
∫
�

dy

d(x, y)β
= λ,

independently of x, so that �0 =�. It therefore follows from (7) and (8) that

θ =ψ = γ |�|∫
�

dy/d(x, y)β
,

whereas F ∼ U(0, 1) in Theorem 4.

5. Proofs

Proof of Proposition 1. Let M(t) be the continuous-time, dynamic model (13) for the mass
distribution over � of all stars. By definition,

λ(x, A) := λ(x)πx(A) =
∫

A
L(x, y)π (y) dy =:

∫
A
λ(x, y) dy

is the rate at which a unit mass star at x increases its mass by one unit, due to attraction of a
candidate from A ∈B(�). Consider a time interval τk−1 < t ≤ τk. Then the rate at which a star
i ≤ Ik−1 increases its mass by one unit, due to attraction of a candidate from A, is Ni(t)λ(Xi, A),
whereas a new star appears in A at rate γπ (A). Let

Mk = M(τk) =
∞∑

i=1

Ni(τk)δXi =
∞∑

i=1

NkiδXi (20)

be the embedded discrete-time process for the star mass distribution. We need to show that
(20) satisfies (2)–(3). But this follows easily from the fact that the transition distributions of
the embedded Markov chain are proportional to the jump intensities of the corresponding
continuous-time Markov process. First, since M(·) is constant on [τk−1, τk), the probability
distribution of the next candidate Yk is

P(Yk ∈ A | Mk−1) = γπ (A) + ∑∞
i=1 Nk−1,iλ(Xi, A)

γπ (�) + ∑∞
i=1 Nk−1,iλ(Xi, �)

,
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in agreement with (3). Second, given that a candidate at Yk = y has appeared at time t = τk, it
is allocated to an existing star or forms a new star with probabilities

P(Nk = Nk−1 + ei | Yk = y,Mk−1) = γπ (y)1{i=Ik−1+1} + Nk−1,iλ(Xi, y)

γπ (y) + ∑∞
j=1 Nk−1,jλ(Xj, y)

that simplify to (2), since π (y) cancels out in the numerator and denominator. �

Proof of Theorem 1. The result follows immediately from Proposition 1, since, by defi-
nition, new stars of the continuous-time model in Section 3 are located at i.i.d. positions
Xi ∼ π . �

Proof of Theorem 2. In view of Proposition 1, it suffices to analyse the continuous-time
model of Section 3, and prove that

Ni(t)

N(t)
L−→

{0 if Xi /∈�0,

UJi if Xi ∈�0,
(21)

jointly for i = 1, 2, . . . as t → ∞, with Uj and Ji as defined in Theorem 2. To this end, we first
write

Ni(t) = 1{t≥Ti}eλ(Xi)(t−Ti)Ei(t). (22)

When t ≥ Ti we put Ei(t) ≡ 1 when λ(Xi) = 0, whereas Ei(t) is a rescaling of the geometric
random variable in (17) with expected value 1 when λ(Xi)> 0. For definiteness, we also put
Ei(t) = 0 when t< Ti. It follows from (18) that Ei(t)

a.s.−→ Ei ∼ Exp(1) as t → ∞ for any star i
such that λ(Xi)> 0. Since (22) are independent processes for all i, we can analyse the mass
growth within �0 and �1 =� \�0 separately. To this end, let

N(t; 0) =
∑

i; Xi∈�0

Ni(t), N(t; 1) =
∑

i; Xi∈�1

Ni(t) (23)

be the total mass of stars within �0 and �1, respectively, at time t. We will establish that the
mass fraction within the maximal region �0 tends to 1 asymptotically as t → ∞, i.e.

N(t; 0)

N(t)
= N(t; 0)

N(t; 0) + N(t; 1)
P−→ 1. (24)

The upper part of (21) will then follow from

Ni(t)

N(t)
≤ N(t; 1)

N(t)
P−→ 0 if Xi /∈�0.

In order to prove the lower part of (21), we also need to derive the asymptotic mass distribution
within the maximal region, i.e.

Uj(t) := NHj (t)

N(t; 0)
L−→ Uj (25)

jointly for j = 1, 2, . . . , where Hj = min{i; Ji = j} is the order number of the jth star from �0
among all stars in �.
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We thus need to show that (24)–(25) hold; let us start with (25). Since λ(Xi) = λ for all
Xi ∈�0, it follows from (22), (23), and the definition of Uj(t) in (25) that

Uj(t) =
1{t≥THj }e

λ(t−THj )EHj (t)∑∞
m=1 1{t≥THm }eλ(t−THm )EHm(t)

=
1{t≥THj }e

−λT0jEHj (t)∑∞
m=1 1{t≥THm }e−λTHmEHm (t)

L−→ e−λTHj Ej∑∞
m=1 e−λTHm Em

=: Uj

= Zj

j−1∏
l=1

(1 − Zl) (26)

as t → ∞, where EHj (t)
a.s.−→ Ej, Ej ∼ Exp(1) are i.i.d. random variables,

Zj = e−λTHj Ej∑∞
m=j e−λTHm Em

= Ej

Ej + E′
j

(27)

and

E′
j =

∞∑
m=j+1

e−λ(THm−THj )Em. (28)

Since {THj}∞j=1 is obtained by thinning a Poisson process {Ti} with intensity γ , with a thinning
probability π (�0), it follows that {λTHj}∞j=1 is a Poisson process with intensity γπ (�0)/λ=
θ . Together with (26)–(27), it can be shown that this implies that E′

j ∼ �(θ, 1) has a gamma
distribution, and hence that Zj ∼ B(1, θ ). It can also be verified that the Zj are independent,
thereby proving the joint convergence in (25). See [29] and [9, p. 28] for details.

It remains to prove (24). To this end, we will compare the asymptotic sizes of N(t; 0) and
N(t; 1) as t → ∞. We first compute an asymptotic approximation

E[N(t; 0)] =E

[ ∞∑
j=1

1{t≥THj }e
λ(t−THj )EHj (t)

]

= eλt
E

[ ∞∑
j=1

1{t≥THj }e
−λTHj

]

∼ eλt
E

[ ∞∑
j=1

e−λTHj

]

= eλt
∞∑

j=1

[
θ

1 + θ

]j

= θeλt (29)
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of the expected value of N(t; 0) as t → ∞, where in the third step we used the notation f (t) ∼
g(t) for f (t)/g(t) → 1, and in the fourth step we evaluated the moment generating function of
λTHj ∼ �(j, θ ), the jth arrival time of a Poisson process with intensity θ . Then, by a similar
argument as in (26)–(28), we find that

N(t; 0)

θeλt
L−→ e−λTH1 (E1 + E′

1)

θ
=: W (30)

as t → ∞, where W has expected value E(W) = [θ/(1 + θ )](1 + θ )/θ = 1. In order to study
N(t; 1) we split �1 =�11 ∪�12 into two subregions, where the growth rate of the points in
�11 is close to the maximal growth rate λ, whereas the mass of stars in �12 grow at a slower
rate. More specifically, let ε > 0 be a small number, and choose η= η(ε)> 0 so that π (�11) ≤
επ (�0), where

�11 = {x ∈�; λ− η < λ(x)<λ}, �12 =� \ (�0 ∪�11) = {x; λ(x) ≤ λ− η}.
Let H′

j and H′′
j refer to the order numbers of the jth star from �11 and �12 respectively, among

all stars in �. Since the growth rate of stars is at most λ in �11, and at most λ− η in �12, we
may repeat the argument in (29), and find that

E[N(t; 1)] ≤E

[ ∞∑
j=1

1{t≥TH′
j
}e
λ(t−TH′

j
)EH′

j
(t)

]
+E

[ ∞∑
j=1

1{t≥TH′′
j
}e

(λ−η)(t−TH′′
j

)EH′′
j
(t)

]

= eλt
E

[ ∞∑
j=1

1{t≥TH′
j
}e

−λTH′
j

]
+ e(λ−η)t

E

[ ∞∑
j=1

1{t≥TH′′
j
}e

−(λ−η)TH′′
j

]

∼ eλt
E

[ ∞∑
j=1

e
−λTH′

j

]
+ e(λ−η)t

E

[ ∞∑
j=1

e
−(λ−η)TH′′

j

]

= γπ (�11)

λ
eλt + γπ (�12)

λ
e(λ−η)t

≤ εθeλt + γ

λ
e(λ−η)t,

where in the second last step we used the fact that {λTH′
j
} and {λTH′′

j
} are Poisson processes

with intensities γπ (�11)/λ and γπ (�12)/λ, respectively, and in the last step the facts
that π (�11) ≤ επ (�0) and π (�12) ≤ 1. Since ε > 0 was arbitrarily chosen, we conclude that

lim
t→∞

E[N(t; 1)]

θeλt
= 0. (31)

Putting things together, we find that

N(t; 1)

N(t; 0)
= N(t; 1)

θeλt

θeλt

N(t; 0)
P−→ 0 (32)

as t → ∞, where in the last step of (32) we used (31) and Markov’s inequality to deduce
that N(t; 1)/(θeλt)

P−→ 0, then we used equation (30) to conclude that θeλt/N(t; 0)
L−→ W−1,

and finally we invoked Slutsky’s lemma to verify that the product of these two terms converges
to 0 in probability as t → ∞. But, since (24) follows from (32), the proof of the theorem is
complete. �
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Proof of Theorem 3. Since Ki = min{k; Ik ≥ i}, it suffices to prove that

Ki = e[1+op(1)]i/ψ (33)

as i → ∞. Again, we will utilize the embedding of the discrete-time model of Section 2 into
the continuous-time model of Section 3. It follows from (1), (12), (14), and (24) that

Ki = N(τKi ) = N(Ti) = N(Ti; 0)(1 + op(1)) (34)

as i → ∞. An expression for N(Ti; 0) appears in the denominator of (26). By a similar
calculation, we can rewrite this expression asymptotically as

N(Ti; 0) =
∞∑

j=1

1{Ti≥THj }e
λ(Ti−THj )EHj (Ti)

= [1 + op(1)]
∞∑

j=1

eλ(Ti−THj )Ej

= [1 + op(1)]eλ(Ti−TH1 )
∞∑

j=1

e−λ(THj−TH1 )Ej

= [1 + op(1)]eλ(Ti−TH1 ) E1

Z1

= [1 + op(1)]e(1+op(1))·iλ/γ E1

Z1

= e[1+op(1)]i/ψ (35)

when i → ∞, where E1 ∼ Exp(1) and Z1 ∼ B(1, θ ) were introduced in (26) and (27). In the
fifth step of (35) we used the fact that λTi ∼ �(i, γ /λ) is the ith event of a Poisson process
with intensity γ /λ, and, hence, by the definition of ψ in (8), λ(Ti − TH1 ) = [1 + op(1)]i/ψ as
i → ∞. Since (34) and (35) imply (33), the theorem is proved. �

Proof of Theorem 4. Let I(t) = |{i; Ti ≤ t}| refer to the number of new stars of the
continuous-time model of Section 3 that have arrived up to time t, without getting absorbed by
other stars. Also, let N(1:t) = NI(1 : t) denote the size of a randomly chosen star among those
that exist at time t, with

P(I(1 : t) = j | I(t) = i) = 1

i
, j = 1, . . . , i.

We recall from the paragraph below (14) that new unabsorbed stars arrive according to a
marked Poisson process (T1, X1), (T2, X2), . . .with intensity γ and independent marks Xi ∼ π .
It therefore follows that the number of stars at time t is Poisson distributed (I(t) ∼ Po(γ t)), and,
moreover, a randomly chosen star among these I(t) stars satisfies

(TI(1:t), XI(1:t))
L= (tV, X), (36)

where V ∼ U(0, 1) and X ∼ π are independent. From (22) and (36) we deduce that

N(1 : t) = eλ(XI(1:t))(t−TI(1:t))EI(1:t)(t)
L= eλ(X)tVEI(1:t)(t) = eλ(X)tV[1+op(1)] (37)
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as t → ∞. On the other hand, it follows from (9) and (12) that

N1:k = NI1:k (τk) = N(1 : τk),

and by similar reasoning and notation to (35), we find that

k = N(τk) = [1 + op(1)]eλ(τk−TH1 ) E1

Z1
= eλτk[1+op(1)] (38)

as k → ∞. Putting things together, we note that (37)–(38) imply that

N1: k = N(1 : τk) = eλ(X)τkV[1+op(1)] = eλτkλ(X)V/λ[1+op(1)] = kλ(X)V/λ[1+op(1)],

in accordance with (10). Since (11) is simply a restatement of (10) in terms of distribution
functions, the theorem is proved. �

6. Discussion

In this paper we introduced a spatio-temporal and discrete-time marked point process
for the appearance and growth of objects (for instance stars), with a mutual attraction that
is proportional to their masses and dependent on their locations. Asymptotic results were
obtained for the location of these objects, their mass distribution, and the speed at which new
objects arrive. The key step in the proofs of these results was to embed the discrete-time model
into a continuous-time marked point process, where existing objects grow as independent Yule
processes, at different rates, whereas new objects arrive according to a marked Poisson process,
with locations as marks.

A number of extensions are possible. First, we assumed that with positive probability,
new objects will grow at the maximal rate. This condition is violated, for instance, by the
gravitational law model of Example 4, when the maximal growth rate occurs at one single point
within a unit ball. For such models, the asymptotic mass distribution will be more complicated
than in Theorem 2.

Second, it is possible to add a number of parameters to the model. One may for instance
consider a more general type of attractional force nαx MαL(x, y) between an object at x with
mass nx, and a candidate with random mass M at y, for some α ≥ 0 and attraction kernel L.
It is also possible that an object at x with mass nx loses mass at rate μnα

′
x for some constants

μ> 0 and α′ ≥ 0. With these extensions it is of interest to investigate whether α, L, α′, μ, and
the distribution of M can be chosen in such a way that a nondegenerate limit distribution of
masses is obtained.

Third, we assumed that the dynamics of the model is solely due to new candidate objects,
which are either absorbed by existing objects or become new objects themselves. A key
assumption was that new candidates appear more often in high-density regions, in such a way
that the discrete-time model could be embedded into a continuous-time model in a simple way.
It is of interest to consider other proposal distributions for new candidates, for instance, their
locations are independent and identically distributed with some distribution π . It is challenging,
though, to analyse these types of models, since the particles of the continuous-time process will
no longer grow independently.

Fourth, it is of interest to allow for pairs of existing objects to coalesce. As in the previous
paragraph, this makes it harder to find the asymptotic mass distribution, since particles of
the continuous-time marked point process will no longer grow independently. However,
measure-valued Markov processes have been used to model particle aggregation; see [2], [11],
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and the references therein. It is possible that the results of these papers can be used in our
setting as well.

Fifth, as mentioned in Section 1, the discrete-time model of Section 2 can be viewed as
a Hoppe-type urn scheme with a spatial component. The original nonspatial urn model [16]
corresponds to the homogeneous model of Example 1. It contains balls of various colours,
and a new ball is added to the urn at each time point. An object corresponds to balls of the
same colour, and its mass is the number of these balls. Such urns are frequently used for
infinite allele models of population genetics ([9], [12], [22]), with colours representing genetic
variants (alleles), and balls with new colours representing mutations. In particular, the time-
reversed version of the urn model is a coalescent, i.e. an ancestral tree for a sample of genes,
where each mutation gives rise to a separate tree ([24], [30]). This was used by [8] in order
to find the age-ordered asymptotic distribution of the frequencies of different alleles for a
large population. It would be of interest to investigate whether the model of Section 2 can be
extended to find the age-ordered asymptotic allele frequency distribution for populations with
a spatial structure. For instance, the households of Example 2 could represent subpopulations,
where some fractions of objects are allowed to migrate between these subpopulations at each
time step. The resulting marked point process is then the time reversal of a certain type of
structured coalescent with migration between subpopulations and mutations ([15], [26]).

Sixth, another generalization of the discrete-time model of Section 2 is to have a time-
dependent parameter γk that controls how often new stars are formed. In Section 2 we assumed
γk ≡ γ > 0. However, if γk = 0 for all k ≥ K, from time K and onwards we get a multivariate
Pólya-type urn scheme [7] with a spatial component. It corresponds to a model where new
candidate stars are always absorbed by some of the present stars, so that no new stars are
formed. In particular, a more general version Example 2 can be defined where households
and colours represent pixels and greyscales of an image. This has been used for image
segmentation, where new candidates appear at one pixel at a time [5] in order to update the
reconstructed image for the purpose of image segmentation. The difference from our model is
that candidates are always absorbed into their own household (pixel), but the allocation rule
of updating its colour is defined by a Pólya urn that contains the balls within the pixel where
the candidate arrives and the balls of all its neighbours. A similar model has been used by [14]
for the spread of an epidemic along a network of nodes (households). It has two colours that
represent infectious and healthy units in terms of bacteria and white blood cells for instance.

Seventh, our framework has connections to preferential attachment (PA) models of random
graphs. Such graphs are generated dynamically when new nodes (objects/stars) and edges are
added one at a time, and the mass of each node corresponds to its number of edges. The major
difference from our model is firstly that all candidate nodes are accepted, and secondly that the
total mass increases by two rather than one at each time point, whenever an edge is generated
between a new node and an existing one. Since all candidate nodes are accepted, the number of
nodes increases linearly with time rather than logarithmically, as in Theorem 3. Moreover, the
degree distribution for the nodes of a PA model typically has a power law distribution—much
less heavy tailed compared with Theorem 4. In order to illustrate this, consider the original
PA model without any spatial component, which corresponds to Example 1. For this model,
each new node connects to an existing node with probabilities proportional to their number of
edges, regardless of spatial position. It has been shown that P(N1: k = x) is of order x−3 for the
number of edges N1: k of a randomly chosen node at time k [6]. Spatial preferential attachment
(SPA) models add a spatial component to the PA models, when new nodes appear randomly in
space in such a way that they more easily connect to existing nodes in their neighbourhood
with many edges. These SPA models are more flexible, since they allow for a power law
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degree distribution with a whole range of exponents [1] and their local clustering shows more
resemblance to that of real networks [18]. Our model is similar to a two-step SPA model, where
nodes with many edges tend to influence the location of new nodes at first, so that these new
nodes are more likely to arrive in an edge-rich region. The second step is analogous to the SPA
model, whereby the new nodes tend to connect to the nodes in their neighbourhood with many
edges. It is of interest to study the degree distributions and type of local clustering of such
two-step SPA models.
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