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Abstract

When detecting the adventitious presence of trans-
genic plants (AP), it is important to use an appropriate
testing method in the laboratory. Dorfman’s group
testing method is effective for reducing the number of
laboratory analyses, but does not consider the case
where AP is diluted below the sensitivity of the
analyses, which causes the rate of false negatives to
increase. The objective of this study is to propose
binomial and negative binomial probabilistic models
for determining the required sample size (n), number
of pools (g), and size of the pool (k) for detecting
individuals possessing AP with a probability $ (1 2 a)
(for a small a) given: (1) pool size (k); (2) estimated
proportion of individuals with AP in the population (p);
(3) concentration of the trait of interest (AP) in
individual seeds (w); and (4) detection limit of the
test (c) (AP concentration in a pool below which it
cannot be detected). The proposed models consider
the different rates of false positives (d) and false
negatives (l), and the assessment of consumer and
producer risks. Results have shown that when using
the negative binomial, a required sample size n can be
determined that guarantees a high probability that
m individuals or g pools containing AP will be found.
The pools formed have an optimum size, such that
one element with AP will be detected at a low cost.
The negative binomial distribution should be used
when it is known that the proportion of individuals with
AP in the population is p , 0.1; thus, it is guaranteed
that m individuals or g pools of individuals with AP will
be detected with high probability.
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Introduction

The presence of genetically modified plants, hereafter
named the adventitious presence of unwanted
transgenic plants (AP), is becoming common in
modern crop production systems. This reality has
created concerns regarding possible gene flow
through outcrossing between AP crops and their
landraces and wild relatives. This is especially
important in a country such as Mexico, a centre of
diversity for maize, where the effects of AP maize
outcrossing with traditional maize landraces and wild
relatives, such as tripsacum and teosinte, are
unknown. Recently, different authors have reported
contrasting results in terms of detecting AP maize in
Mexico. Quist and Chapela (2001, 2002) were the first
to report AP landraces collected in the Sierra Juarez
region of the Mexican State of Oaxaca; they specifically
identified genes from Bacillus thuringiensis (Bt), a soil
bacterium gene used to create maize that is resistant to
some insects. In contrast, 4 years later, Ortiz-Garcı́a
et al. (2005a, b) sampled maize landraces in the same
region of Oaxaca State and failed to detect AP.

When testing for AP, two distinct activities should be
emphasized. The first is determining the optimal sample
size (n) and sampling strategy to be used when taking
seeds at random from a seed lot (Cleveland et al., 2005;
Ortiz-Garcı́a et al., 2005c); the second is determining the
sample preparation and testing method to be used in
the laboratory (Remund et al., 2001). The sensitivity of
the analyses and specificity of the tests are important
factors that may affect the rates of false-negative and
false-positive results (Remund et al., 2001). Usually, it
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will be necessary to collect a large number of seeds from
a reference population located in the region of interest,
since the frequency of AP is likely to be very low.

Because laboratory tests are expensive, it is not
feasible to analyse all n individual seeds collected
from a lot. There are several testing plans for reducing
the number of samples to be analysed (Montgomery,
1997). One plan consists of testing pooled seed
samples (Remund et al., 2001). Conditions listed by
Federer (1991) for pooled samples are that: (1) the trait
is discrete, i.e. it can be measured as presence or
absence, or some countable quantity; (2) the pro-
portion of positives (e.g. AP) is relatively small; and
(3) pooling the samples does not alter the characte-
ristics of individual samples.

The group testing method of Dorfman (1943) is
effective for reducing the number of laboratory analyses
and can result in up to 80% savings in the number of
laboratory analyses (Federer, 1991). This method
consists of dividing n individual samples (e.g. seeds)
into g groups (or pools), each of size k. If a group tests
positive, then at least one individual in the pool is
positive; the author gives an approximate solution for
the optimal value of k. A formula for determining the
sample size (n) required for detecting AP can be derived
from the Dorfman method. However, a major dis-
advantage of the Dorfman testing plan is that it is
insensitive to the dilution that arises when the group is
formed. This is particularly true for large group sizes
where the number of AP kernels in the pool can be
diluted below the sensitivity of the analyses, which
causes the rate of false negatives to increase.

All quality laboratory methods have false positives
(d ¼ probability of falsely detecting a seed with
impurity) and false negatives (l ¼ probability of failing
to detect seed with impurity). Furthermore, these
two types of errors, which commonly occur in any
testing plan, can be integrated in an overall consumer
and producer risk assessment. Remund et al. (2001)
proposed testing plans that integrate a given lower
quality limit (LQL) and acceptable quality limit (AQL)
for the consumer and producer risks, respectively.

For sampling seeds from a seed lot (USDA/GIPSA,
2000a, b) and testing seeds in the laboratory (Kay and
Van den Eede, 2001; Kay and Paoletti, 2002), a uniform
distribution of the number of individuals with AP in
the seed lot is assumed. Therefore, when the size of the
seed sample (n) is small in relation to the size of the
reference population (N), the acceptance sampling
method and testing plan generally use a binomial
probability distribution with parameter p (frequency
of AP in the population). However, when AP is rare,
i.e. p # 0.1, using a binomial distribution may not
provide an unbiased and precise estimate of p
(Haldane, 1945; Cochran, 1980); in this case, using a
negative binomial distribution is suggested (Gerrard
and Cook, 1972; Kalton and Anderson, 1986).

The main objective of this research is to propose
probabilistic models for determining the required
(1) sample size, n; (2) number of pools, g; and (3) size of
the pool, k, that will detect individuals containing AP
with a probability$ (1 2 a) (for smalla). The proposed
models were developed within the framework of the
Dorfman model, but considering: (1) the dilution effect
when forming groups (pools) of seeds to be tested;
(2) the detection limit of the laboratory test; (3) the
different rates of false positives and false negatives;
and (4) the assessment of consumer and producer risks.
The probability distributions used in this study were
binomial and negative binomial distributions for:
(1) pool size, k; (2) estimated proportion of individuals
with AP in the population, p; (3) known concentration
of the trait of interest (AP) in individual seeds, w; and
(4) the detection limit of the test, c (AP concentration in
a pool below which it cannot be detected). These
models can be used for detecting the presence/absence
of AP or any other trait of interest.

The Dorfman model

The procedure proposed by Dorfman (1943) consists
of dividing n individuals into g groups or pools, each
of size k. Each group is tested; if a group has the AP,
then at least one individual has the AP. All k
individuals in that pool must then be examined to
identify individuals with AP or to estimate the
proportion of individuals with AP. This may not be
necessary if the objective is simply to know if any
individuals have AP. The probabilistic model in this
procedure is useful for determining sample size, n, in
order to detect individuals possessing AP with
acceptable probability, and for determining the
optimum pool size, k, and the number of pools, g
(note that the sample size n ¼ gk).

Assume a population of size N in which a fraction p
has AP [say type (þ )]. We consider the problem of
determining the optimum values of n and k such
that the probability of detecting at least one individual
with AP is greater than (1 2 a) (for a given a).
For sample size n and group size k, g ¼ n/k pools can
be formed. If X is the number of þ individuals in a
pool, then P(X ¼ j) ( j ¼ 1, 2,. . ., k) follows a binomial
distribution X , Bin(k,p). The probability that a group
is (þ) is one minus the probability that k randomly
selected individuals are negative

PðX . 0Þ ¼ 1 2 ð1 2 pÞk

The probability of a pool testing negative (2 ) is
PðX ¼ 0Þ ¼ ð1 2 pÞk. Because there are g ¼ n/k pools,
the probability of detecting only (2 ) groups, given
that the proportion of (þ ) individuals in the
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population is p, is

ð1 2 pÞk
� �n=k

¼ ð1 2 pÞn ð1Þ

If a small probability, a, of detecting only (2 )
individuals is required, given that there is a
proportion p of (þ) individuals in the population,
then equation (1) can be written as

ð1 2 pÞn , a ð2Þ

It should be pointed out that the Dorfman model was
not developed with the objective of determining the
sample size n, but rather for determining the required
number of pools, g, and the size of the pools, k, that will
minimize the number of laboratory tests, T. Under these
premises, the expected value of T, EðTÞ ¼ g þ kgp0, is a
function of the number of pools (g ¼ n/k), plus the
number of individuals in the positive pools that need to
be analysed, where p0 ¼ 1 2 ð1 2 pÞk is the probability of
a pool being detected positive. Therefore, the ratio
between the expected number of laboratory tests
required (T) and the required sample size for each lab
method is a measure of its expected relative cost
EðTÞ=n ¼ ðg þ kgp0Þ=n ¼ ð1=kÞ þ p0 (Dorfman, 1943).
Thus, minimizing the number of lab tests is equivalent
to finding the minimum relative cost. However,
Dorfman’s model assumes that when k individuals in
a pool are mixed, AP concentration would not diluted.
Therefore, under these assumptions, the value of n that
satisfies equation (2) can be obtained as

n ¼
log ðaÞ

log ð1 2 pÞ
ð3Þ

The expression given in equation (3) is used by the
United States Department of Agriculture (USDA/
GIPSA, 2000a, b) to determine sample sizes for
detecting AP seeds. It is mentioned that detecting AP
is not different from detecting seeds with other discrete
traits. This analysis would suggest a single group;
however, in practice AP cannot always be detected
when the proportion of AP seeds in the group is very
small because the analytical methods used may not be
sensitive enough. It has been suggested that for a pool
size of k ¼ 400 grains, standard analytical procedures
in the laboratory should be able to detect the presence
of one AP grain. Equation (3) does not give any
guidelines as to how the concentration of the trait of
interest (AP) (impurity) in individual seeds (w) could
affect the pool size k, or how the dilution effect
could make AP undetectable by standard analytical
procedures in the laboratory (c).

Binomial sampling with the dilution effect

When k individuals that form a pool are mixed or
homogenized, the AP will be diluted; this dilution

effect increases with the size of the pool, and
may decrease the AP concentration in the pool
below the test’s detection limit (c), thereby increa-
sing the number of false negatives [i.e. seed(s) with
AP not detected when, in fact, it is present in the
group].

We propose a model that considers the dilution
effect as well as the laboratory’s detection limit for a
pool sampling method based on the Dorfman model
(1943). We assume a reference population of size N,
with a proportion p of individuals with AP [or type
(þ)]. We also assume that the concentration of AP
per individual, w, is known (i.e. transgenic DNA as
% of the total DNA in the seed). When g pools are
formed from a total of n individuals, the AP
concentration in a single (þ) individual in a pool
is reduced to wg/n ¼ w/k. If c is the laboratory
detection limit, it is required that (w/k) $ c, in which
case the probability of detecting AP in a pool with at
least one (þ) individual is 1, and zero otherwise. If a
pool has X (þ) individuals, then we require [(wX)/
k ] $ c. Note that in this study, the units of AP
concentration, w, can be given in % DNA, whereas
the units of w for other traits of interest, such as
unwanted diseases in the grain, may be given in %
kernel (Laffont et al., 2005).

The question is: what is the required sample size n
and pool size k such that the probability of detecting
individuals of type (þ) in the population is equal to or
greater than (1 2 a)? Variable X ¼ number of (þ)
individuals in the pool of size k (X ¼ 0, 1, 2,. . ., k) is a
binomial variable with parameters k and p, that is,
X , Bin(k,p). Hence, the probability that a group will
be detected (þ) is

P X $
ck

w

� �
¼
Xk

j¼ck=w

PðX ¼ jÞ

¼
Xk

j¼ck=w

k

j

 !
p jð1 2 pÞk2j ð4Þ

To compute more precise probability values from
equation (4) and avoid rounding errors when
calculating ck/w, and because the binomial distri-
bution computes probability for discrete values
between 0 and n, we will use the relation-
ship between the binomial and beta distributions
given by

Xk

x¼a

k

x

0
@

1
Apxð1 2 pÞk2x ¼

1

Bða; bÞ

ðp
0

xa21ð1 2 xÞk2adx

¼
Gðk þ 1Þ

GðaÞGðk 2 a þ 1Þ

ðp
0

xa21ð1 2 xÞk2adx;
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where the beta function is related to the gamma
function by

1

Bða; bÞ
¼

1

GðaÞGðbÞ

Gða þ bÞ

¼
Gða þ bÞ

GðaÞGðbÞ
¼

Gðk þ 1Þ

GðaÞGðk 2 a þ 1Þ

for a . 0 and b ¼ ðk 2 a þ 1Þ . 0:

Thus, PðX $ aÞ ¼ PðY # pÞ, where X , Bin(k,p) and
Y , Beta(xja,b ¼ k 2 a þ 1). This has the advantage
that, for the beta distribution, a . 0 and b . 0, which
is not possible with the binomial distribution.
Therefore, equation (4) can be rewritten as

P X $
ck

w

� �
¼
Xk

j¼ck=w

PðX ¼ jÞ

¼
Gðk þ 1Þ

Gðck=wÞGðk 2 ck=w þ 1Þ

ðp
0

j ck=w21ð1 2 jÞk2ck=wdj

ð5Þ

For the detection of AP, two types of error rates
are important. One is the proportion of false positives,
d, which is the probability that one individual (or
group) is detected as (þ) even though it is (2 ) (1 2 d is
the test specificity); the other is the rate of false
negatives, l, which is the probability of an individual
or pool testing (2 ) even though it is (þ) (1 2 l

is the test sensitivity) (Remund et al., 2001).
Therefore, the adjusted probability of detecting AP in
a group is given by pa ¼ P½ðþÞjðþÞ�P½ðþÞ� þ P½ðþÞ

jð2Þ�P½ð2Þ� where P½ðþÞjðþÞ� ¼ 1 2 l, P½ðþÞ� ¼ pb,
P½ð2Þ� ¼ 1 2 pb, and P½ðþÞjð2Þ� ¼ d where

pb¼
Gðkþ1Þ

Gðck=wÞGðk2ck=wþ1Þ

ðp
0

j ck=w21ð12jÞk2ck=wdj ð6Þ

Therefore,

pa¼ð12lÞpbþdð12pbÞ ð7Þ

When the rate of false positives (d) and false
negatives (l) are introduced into these equations, and
since the pools are formed independently, then the
number of pools testing (þ) can be considered a
random variable (Y) with a binomial distribution
Y , Bin( g,pa). Therefore, the probability of finding at
least one (þ) pool is

PðY$1Þ¼12

g

0

0
@
1
Ap0

að12paÞ
g¼12ð12paÞ

g ð8Þ

We want this probability to be $ (1 2 a); alternatively,
we want the probability that none is detected (þ) to
be ,a

PðY¼0Þ¼
g

0

 !
p0

að12paÞ
g,a ð9Þ

Note that equation (9) determines the required
sample size n with k ¼ [w/c ] 2 1 and with
pa ¼ ð1 2 lÞpb þ dð1 2 pbÞ. We used k ¼ [w/c ] 2 1,
because it is the maximum possible value of the
pool size; however, with this value of n and k, the
minimum number of laboratory tests ½EðTÞ ¼ g þ kgp0�

and the minimum relative cost of the tests being
ðEðTÞ=n ¼ ðg þ kgp0Þ=n ¼ ð1=kÞ þ paÞ are not achieved
(Dorfman, 1943). The strategy for minimizing the
number of laboratory tests is to find, for a given n, a
value of k between 1 and min(n, k1 ¼ [w/c ] 2 1)
that satisfies equation (9) with the minimum
relative cost.

Negative binomial sampling with the dilution
effect considering false positives and false
negatives

Haldane (1945) proposed the inverse sampling
method (or negative binomial sampling or inverse
binomial sampling) for cases where p is small
(i.e. p # 0.1). In this method, sampling continues
until m individuals with AP are obtained. Assume a
finite population U of size N is divided into two
disjoint and complementary sets: Ci (i ¼ 1,2) of size Ni

(U ¼ C1 < C2, C1 > C2 ¼ Y) and N ¼
P2

i¼1Ni, where
class C1 contains individuals with AP and class C2

individuals without AP. Then, p ¼ N1/N and q ¼ N2/
N ¼ (1 2 p) such that N ¼ N1 þ N2 ¼ Np þ Nq.

To estimate p, individuals are sequentially sampled
until the mth individual of set C1 is obtained. The total
sample size, n, is a random variable with a probability
distribution given by

PðnÞ ¼ PðEÞPðFjEÞ

where E is the event that in a sample of size n 2 1,
exactly m 2 1 individuals belong to set C1, and F is the
event where the last individual belongs to set C1

(Guenther, 1969). This probability distribution is

PðnÞ¼

 
Np

m21

! 
Nq

n2m

!
 

N

n21

! Np2ðm21Þ

N2ðn21Þ

� �
ðn¼m;mþ1;...;mþNqÞ

0 otherwise

8>>>>>>>>>><
>>>>>>>>>>:

which is a negative hypergeometric distribution with
expectation EðnÞ¼ððNþ1ÞmÞ=ðNpþ1Þ and variance
VarðnÞ¼ððNþ1ÞðNp2mþ1ÞðN2NpÞÞ=ððNpþ1Þ2ðNpþ2ÞÞ.
However, when trying to detect AP plants, the size of
the reference population N is unknown, but very
large. In this case, it is reasonable to assume that
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N ! 1. For this case, it is well known (Kotz et al., 1988)
that the random variable n has a negative binomial
distribution

PðnÞ¼

n21

m21

 !
pmqn2m; n¼m;mþ1þ···

0 otherwise

8>><
>>: ð10Þ

with EðnÞ¼m=p and VarðnÞ¼mð12pÞ=p 2. An unbiased
estimate of p if m . 1 is p̂¼ðm21Þ=ðn21Þ and an
unbiased estimate of the variance of p̂ is
Varðp̂Þ¼p̂ð12p̂Þ=ðn22Þ. Furthermore, the required
probabilities from the negative binomial can be
computed directly from the binomial distribution
due to the following equality (Patil, 1960; Bartko, 1962;
Morris, 1963):

Xn*

i¼m

n*

i

 !
p iqn*2i¼

Xn*

n¼m

n21

m21

 !
pmqn2m

The inverse sampling method suggested by Haldane
(1945) is more precise than binomial sampling
because when m . 1, the coefficient of variation of
p decreases. Therefore, when the dilution effect is
considered, and g ¼ n/k independent pools are
formed from the sample of n individuals, it is
necessary to consider the number of pools with at
least one element carrying AP as a random variable
with a binomial distribution Y , Bin(g,pa), where
pa¼ð12lÞpbþdð12pbÞ [equation (7)] is the pro-
bability that at least one positive element is in a
pool adjusted by the rate of false positives and false
negatives. Therefore, the probability of finding at
least m positive pools out of g ( g ¼ n/k) is

PðY$mÞ¼
Xg

j¼m

g

j

0
@
1
Apj

að12paÞ
g2j

¼12
Xm21

j¼0

g

j

0
@
1
Apj

að12paÞ
g2j

ð11Þ

where g ¼ n/k and k ¼ [w/c ] 2 1.
We wish to find n such that PðY $ mÞ $ 1 2 a.

Using equation (11), this is equivalent to

Xm21

j¼0

n=k

j

 !
pj

að1 2 paÞ
n=k2j , a ð12Þ

Given m, pa, and a, equation (12) can be solved
numerically for n. Equation (12) is used to compute
the required n with k ¼ [w/c ] 2 1, g ¼ n/k, and
pa ¼ ð1 2 lÞpb þ dð1 2 pbÞ. Similar to the binomial
case, for this value of n, values of k between 1 and

min(n, k1 ¼ [w/c ] 2 1) that satisfy equation (12)
should be found that will have a minimum relative
cost ðEðTÞ=n ¼ ðg þ kgp0Þ=n ¼ ð1=kÞ þ paÞ (Dorfman,
1943). Note that for m ¼ 1, equation (12) reduces to

PðY $ 1Þ ¼ 1 2
g

0

 !
p0

að1 2 paÞ
g , a ð13Þ

Thus, the binomial sampling method with the dilution
effect proposed in equations (13) and (8) is a particular
case of the inverse sampling method shown in
equation (12). Also, it is interesting to show that for
d ¼ l . 0; pa will increase and thus n will decrease,
compared to the case where d ¼ l ¼ 0. However, pa

considers all individuals that will be detected as (þ),
even if they are not. However, for determining n, only
the true probability of the real (þ) positives should be
considered, as was the case with d ¼ 0, that is, when
pa ¼ ð1 2 lÞpb.

Testing seed plans with the dilution effect
considering false positives, false negatives, lower
quality limit (LQL), and a given acceptable quality
limit (AQL)

The AP testing plan previously outlined has the aim of
computing the required sample size (n), pool size (k),
and number of pools (g) to guarantee, with probability
$ (1 2 a), that at least one AP plant (or AP pool) will
be in the sample. These types of testing plans have
zero tolerance because they focus only on the limiting
quality level (LQL ¼ p), and do not consider the
acceptable quality level (AQL) (i.e. AQL ¼ 0), which
refers to different seed production levels under
normal conditions. Zero-tolerance testing plans gen-
erally have a high producer risk (Remund et al., 2001).
In practice, tolerance testing plans have two main
parameters: (1) the number of individual seeds
(or seed pools); and (2) the maximum number of
unacceptable seeds (or seed pools) that can be
tolerated in the sample before the seed lot is rejected.
Thus, in practice, testing plans should consider the
consumer’s and the producer’s interests and risks by
assessing the LQL and AQL. More details on the
definition and description of LQL and AQL for
consumer and producer risks can be found in Remund
et al. (2001).

When n individuals (or g seed pools) are chosen
from a seed lot, and it is decided to reject the lot if
more than m AP plants are observed, it is necessary
to construct an operating characteristic (OC) curve
that plots the true AP proportion ( p) versus the
probability of accepting the lot. OC curves are useful
for evaluating whether or not a given testing plan
satisfies the testing objectives. In this case, the
probability that the lot will be accepted, given its

Probability models for detecting transgenic plants 81

https://doi.org/10.1017/S0960258508975565 Published online by Cambridge University Press

https://doi.org/10.1017/S0960258508975565


true AP proportion ( p), l, d, and considering w and c
is given by

PðAccept Lotjp; n; k; c;wÞ ¼ PðY # mÞ

¼
Xm

j¼0

n=k

j

 !
pj

að1 2 paÞ
n=k2j ð14Þ

where pa ¼ ð1 2 lÞpb þ dð1 2 pbÞ. Equation (14) can
be used to estimate the consumer and producer risks
for a given lower quality limit (LQL) and a given
acceptable quality limit (AQL), such as

Consumer Risk ¼ PðY # mjp ¼ LQL; n; k; c;wÞ

¼
Xm

j¼0

n=k

j

0
@

1
Apj

að1 2 paÞ
n=k2j

ð15Þ

and

Producer Risk ¼ PðY . mjp ¼ AQL; n; k; c;wÞ

¼
Xn=k

j¼mþ1

n=k

j

0
@

1
Ap j

að1 2 paÞ
n=k2j

ð16Þ

Equations (15) and (16) are adapted from
Remund et al. (2001), including the dilution effect
and the testing limit c. If the value of k from
equations (14), (15) and (16) is .[w/c ] 2 1, the
program will search for a k between 1 and min
(n, k1 ¼ [w/c ] 2 1) that will guarantee that the AP
concentration (w) in the pool is larger than the
detection limit (c) and that the size of the pool has
the minimum relative cost.

Results

The binomial sampling method with the dilution
effect

For different values of p and w, Table 1 shows the
sample size, n, number of pools, g, and pool size, k,
required to achieve 95% and 99% probability of
detecting AP in the sample using the modified
Dorfman method with the dilution effect. Clearly, as
p increases and w increases, the required n decreases.
When w ¼ 0.0002, all individuals must be tested, g ¼ n
and k ¼ 1; as w increases, a smaller number of groups
(g) of larger sizes (k) must be tested.

Sample sizes, n, for different values of p and
w, are very different for the standard Dorfman
model, as compared with those obtained from the

modified Dorfman model with the dilution effect. For
example, consider that the laboratory detection
limit is c ¼ 0.0001; then for p ¼ 0.01 and w ¼ 0.0002,
the required sample size to guarantee, with 0.95
probability, the detection of at least one (þ )
individual is 299 individuals using the standard
Dorfman method of equation (3). However, the
modified Dorfman method with the dilution effect
required testing 7036 individuals [equation (8)]
(Table 1). For p ¼ 0.01 and w ¼ 0.01, the required
sample size from equation (3) is 299 individuals,
while using the modified Dorfman method of
equation (8), the required sample size is 892
individuals (Table 1); however, while the modified
Dorfman method with the dilution effect reco-
mmends performing 60 laboratory tests with 15
grains each (g ¼ 60, k ¼ 15), the traditional Dorfman
method without the dilution effect does not say how
many groups (g) (i.e. g, laboratory tests) and group
sizes (k) are required.

Therefore, the two methods give rise to different
sample sizes, n, but the modified Dorfman method
with the dilution effect has the advantage that it
gives a precise value for g and k. The Dorfman
model, which emphasizes pool size, was proposed
with the objective of minimizing the number of
laboratory tests. However, it disregards the dilution
effect and the laboratory detection limit, thus
increasing the probability of false negatives (i.e.
detecting no AP grains in a sample when, in fact,
there are some present). The modified Dorfman
model adjusted for the dilution effect considers
pool size as well as the laboratory detection limit.
The problem is that when pool size increases, the
dilution of AP increases; that is, AP concentration,
w, decreases and may become smaller than the
laboratory detection limit, c (i.e. w , c). It is
important to point out that w is considered a fixed
quantity for a given grain, but this concentration
decreases when grains in the pool are mixed because
only a fraction, p, contain AP.

When p increases, n, k and g decrease, but for a
given value of p, when w increases, k may increase or
decrease (Table 1). For c ¼ 0.0001, p ¼ 0.01, and
w ¼ 0.0002, the sample size for alpha ¼ 0.05 was
n ¼ 7036, and the pool size was k ¼ 1. This result
indicates that each individual must be tested
separately, otherwise w , 0.0001 (below the detection
limit). For the same case, but assuming w ¼ 0.01 with
alpha ¼ 0.05, then n ¼ 892, k ¼ 15. The increase in AP
concentration should reduce the total cost of labora-
tory testing because now we have an optimum group
size that minimizes the number of laboratory tests
without diluting the AP below the laboratory
detection limit. Even if only one element of the 15
had AP, the AP concentration in the group would
be 0.000666, which is still detectable.
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Figure 1 plots the relative cost of laboratory tests
versus the group size (k) under different values of n
and p; it shows, under the binomial distribution with
dilution, that the optimum pool size is between 1 and
min(n, k1 ¼ [w/c ] 2 1). For example, for p ¼ 0.01,
n ¼ 892, the optimum group size that minimizes the
relative cost is k ¼ 15; for p ¼ 0.03, n ¼ 100, the
optimum pool size for minimizing the relative cost is
k ¼ 9; for p ¼ 0.05, n ¼ 90, the best pool size is k ¼ 6;
for p ¼ 0.07, n ¼ 56, the best size is k ¼ 5; and for
p ¼ 0.09 and 0.11, n ¼ 40 and 31, respectively, the best
size for both is k ¼ 4.

The negative binomial sampling method with
the dilution effect considering false positives
and false negatives

Table 2 shows, for different values of m and p, the
sample size, n, group size, k, and number of pools, g,
needed to be able to detect the AP with a 0.95
probability obtained using equation (11) or (12); this
assumes that the rate of false negatives is l ¼ 0.02, and

the proportion of false positives is d ¼ 0. Results show
that as p increases, sample size (n) decreases. When
more AP individuals must be detected (m), the sample
size increases for all levels of the other factors.
As already shown in the theoretical sections, an
increase in the number of individuals to be detected
increases the precision of the estimate of p. For
example, for p ¼ 0.01, w ¼ 0.0008, c ¼ 0.0001, and
m ¼ 1, the required n to detect an individual contain-
ing AP with a 95% probability is 6553, whereas for
p ¼ 0.01, w ¼ 0.0008, c ¼ 0.0001, and m ¼ 3 and
m ¼ 11, the required sample sizes are 13,777 and
37,143, respectively, and the pool size is 7. However,
for the same value of p, but w ¼ 0.01, the n required for
m ¼ 3 and m ¼ 11 are n ¼ 2179 and n ¼ 6139,
respectively, with a pool size of k ¼ 15. On the other
hand, assuming p ¼ 0.03, w ¼ 0.0008 in order to detect
m ¼ 1, 3, 5, 7, 9, and 11 AP individuals with a 95%
probability, the required sample sizes are n ¼ 883,
1863, 2717, 3515, 4285, and 5041, respectively, with
k ¼ 7 for each pool. However, if w ¼ 0.006, the
required sample sizes are n ¼ 237, 532, 827, 1122,
1358, and 1653, with a required pool size of k ¼ 8.

Table 1. Sample size (n), group size (k), and number of groups (g) for various values of p and w required for achieving a 95% and
99% probability of detecting at least one individual with AP using the binomial distribution with l ¼ 0 (rate of false negatives),
d ¼ 0 (rate of false positives) and the dilution effect (c ¼ 0.0001)

w ¼ 0.0002 w ¼ 0.0008 w ¼ 0.002 w ¼ 0.006 w ¼ 0.010 w ¼ 0.014

p n k g n k g n k g n k g n k g n k g

(1 2 a) ¼ 95%
0.005 19934 1 19934 23192 7 3314 11876 19 626 4662 59 80 3070 34 91 2364 22 108
0.010 7036 1 7036 6420 7 918 3231 19 171 1358 26 53 892 15 60 696 13 54
0.020 2480 1 2480 1800 7 258 913 19 49 414 11 38 298 9 34 279 9 31
0.030 1345 1 1345 862 7 124 438 19 24 178 8 23 100 9 12 140 7 20
0.040 871 1 871 519 7 75 267 19 15 119 7 17 100 6 17 108 6 18
0.050 621 1 621 344 7 50 172 11 16 60 5 12 90 6 15 79 5 16
0.060 471 1 471 253 7 37 134 8 17 60 5 12 69 5 14 62 5 13
0.070 372 1 372 190 7 28 96 7 14 60 5 12 56 5 12 51 5 11
0.080 303 1 303 155 7 23 77 6 13 57 5 12 47 4 12 43 4 11
0.090 253 1 253 127 7 19 58 6 10 47 4 12 40 4 10 38 4 10
0.100 215 1 215 106 7 16 58 5 12 41 4 11 35 4 9 33 4 9
0.110 186 1 186 85 7 13 39 5 8 36 4 9 31 4 8 30 4 8
0.120 163 1 163 78 7 12 39 5 8 32 4 8 28 4 7 27 4 7

(1 2 a) ¼ 99%
0.005 30642 1 30642 35652 7 5094 18260 19 962 7199 59 123 4753 34 140 3754 22 171
0.010 10816 1 10816 9871 7 1411 4960 19 262 2066 26 80 1486 15 100 1113 13 86
0.020 3811 1 3811 2766 7 396 1407 19 75 650 11 60 496 9 56 418 9 47
0.030 2067 1 2067 1331 7 191 685 19 37 296 8 37 199 7 29 140 6 24
0.040 1338 1 1338 792 7 114 419 19 23 178 7 26 100 6 17 140 6 24
0.050 954 1 954 533 7 77 286 11 26 119 6 20 100 6 17 127 5 26
0.060 723 1 723 386 7 56 210 8 27 119 5 24 100 5 20 99 5 20
0.070 572 1 572 295 7 43 153 7 22 60 4 15 90 5 18 81 5 17
0.080 466 1 466 232 7 34 134 6 23 60 4 15 75 4 19 68 4 17
0.090 389 1 389 190 7 28 96 6 16 60 4 15 64 4 16 59 4 15
0.100 331 1 331 162 7 24 96 5 20 60 4 15 56 4 14 52 4 13
0.110 286 1 286 134 7 20 77 5 16 57 4 15 49 4 13 46 4 12
0.120 250 1 250 120 7 18 58 5 12 50 4 13 44 4 11 42 4 11
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When p is modelled by the negative binomial, its
coefficient of variation does not change much with
different values of p (Fig. 2). However, it decreases
considerably when more individuals with AP must be
detected. With m $ 20, the coefficient of variation of p
decreases at least 30% compared to the case where
m ¼ 1; however, this will significantly increase the
sample size and, therefore, the total cost of sampling
and testing.

Results using the negative binomial distribution
indicate that an important increase in detection
precision (decrease in the coefficient of variation of p)
can be achieved in the testing plan by increasing the
number of individuals with the AP that need to be
detected, m. However, this implies an important
increase in the total cost of sampling and testing.
When l . 0 and d ¼ 0, the sample sizes tended to
increase, whereas when both error rates (l and d)
increase, sample size tends to decrease, but group size
remains constant (data not shown).

Testing seed plans with the dilution effect
considering false positives, false negatives, lower
quality limit (LQL), and a given acceptable quality
limit (AQL)

Figure 3 depicts the operating characteristics (OC)
curves for four different laboratory testing plans with

different values of g and k (g ¼ 80, k ¼ 40; g ¼ 54,
k ¼ 60; g ¼ 40, k ¼ 80 and g ¼ 32, k ¼ 100 with
n ¼ 3200, m ¼ 8, c ¼ 0.0001 and w ¼ 0.014) for an
LQL of 1.0% and an AQL ¼ 0.5% using equations (14),
(15) and (16). The consumer risks for the four plans are
0.0060, 0.0248, 0.0759 and 0.1526, whereas the
producer risks are 0.3787, 0.1863, 0.0764 and 0.0317.
Results show that the best testing plan is when g ¼ 40
and k ¼ 80, because it represents the lowest consumer
(7.59%) and producer (7.64%) risks; that is, when
g ¼ 40 and k ¼ 80, seed lots with 1.0% of AP plants
will be accepted 7.59% of the time, and seed lots with
0.5% AP plants will be accepted 7.64% of the time.
Figure 3 shows the influence of m, c, and w on
producer and consumer risks. Specific testing plans
guarantee that if there is at least one pool with AP, this
will be detected. However, these specific testing plans
do not guarantee that it will have low consumer and
producer risks.

Figure 4 shows the effect of the detection limit (c)
on the OC curves. The first three OC curves (from
right to left) have detecting limit values of c ¼ 0.00 014,
c ¼ 0.00 012 and c ¼ 0.00 010, with n ¼ 1820, k ¼ 15,
m ¼ 6, and w ¼ 0.0088. The OC farthest to the left
shows the standard testing plan (for details, see
Remund et al., 2001), which does not include the
dilution effect; no values of c and w are used. If the
LQL and AQL are set at 1.1% and 0.4% and
c ¼ 0.00 014, 0.00 012, 0.0001 and without considering
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Figure 1. The relative costs of laboratory tests as a function of optimum group size (k) and sample size (n) for different values of p
[proportion of the adventitious presence of transgenic plants (AP) in the population] under the binomial distribution with the
dilution effect for c ¼ 0.0001, l ¼ 0, d ¼ 0, w ¼ 0.01 and (1 2 a) ¼ 0.95.

C.M. Hernández-Suárez et al.84
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c (standard testing plan), consumer risks are 0.0868,
0.0514, 0.0281 and 0.0003, whereas producer risks are
0.0419, 0.0692, 0.1102 and 0.5727. The best testing plan
is when c ¼ 0.00 012, because it gives the lowest
consumer (5.14%) and producer (6.92%) risks. It is
interesting to note that, in the standard testing plan,

the consumer risk is 0.03%, and producer risk is
57.27%. Results show the differences among the four
testing plans and the important role that the detection
limit (c) plays for designing balanced testing plans,
because different values of c and w greatly affect the
laboratory testing plans.

Table 2. Sample size (n), group size (k), and number of groups (g) for various values of p and w required for
achieving a probability of (1 2 a) ¼ 95% of detecting different numbers of individuals (m) with the trait of interest using
the negative binomial distribution with the dilution effect and a probability of l ¼ 0.002 of false negatives and d ¼ 0.00 of
false positives

w ¼ 0.0002 w ¼ 0.0008 w ¼ 0.002 w ¼ 0.006 w ¼ 0.01

m n k g n k g n k g n k g n k g

p ¼ 0.01
1 7180 1 7180 6553 7 937 3288 19 174 1358 27 51 991 15 67
3 15090 1 15090 13777 7 1969 6936 19 366 2951 27 110 2179 15 146
5 21939 1 21939 20035 7 2863 10109 19 533 4367 27 162 3169 15 212
7 28384 1 28384 25929 7 3705 13092 19 690 5665 27 210 4159 15 278
9 34598 1 34598 31606 7 4516 15961 19 841 6963 27 258 5149 15 344
11 40656 1 40656 37143 7 5307 18773 19 989 8202 27 304 6139 15 410
13 46602 1 46602 42575 7 6083 21528 19 1134 9441 27 350 7030 15 469
15 52460 1 52460 47930 7 6848 24226 19 1276 10621 27 394 7921 15 529
17 58248 1 58248 53215 7 7603 26905 19 1417 11801 27 438 8812 15 588
19 63978 1 63978 58458 7 8352 29565 19 1557 12981 27 481 9703 15 647
21 69659 1 69659 63645 7 9093 32187 19 1695 14161 27 525 10594 15 707
23 75299 1 75299 68804 7 9830 34790 19 1832 15341 27 569 11485 15 766
25 80902 1 80902 73921 7 10561 37393 19 1969 16462 27 610 12376 15 826
27 86473 1 86473 79017 7 11289 39977 19 2105 17642 27 654 13267 15 885

p ¼ 0.02
1 2530 1 2530 1835 7 263 932 19 50 414 11 38 298 9 34
3 5318 1 5318 3872 7 554 1977 19 105 945 11 86 793 9 89
5 7732 1 7732 5636 7 806 2889 19 153 1476 11 135 1189 9 133
7 10003 1 10003 7295 7 1043 3744 19 198 1889 11 172 1585 9 177
9 12193 1 12193 8891 7 1271 4561 19 241 2361 11 215 2080 9 232
11 14329 1 14329 10452 7 1494 5378 19 284 2774 11 253 2476 9 276
13 16424 1 16424 11985 7 1713 6176 19 326 3246 11 296 2872 9 320
15 18489 1 18489 13490 7 1928 6955 19 367 3659 11 333 3169 9 353
17 20529 1 20529 14981 7 2141 7715 19 407 4072 11 371 3565 9 397
19 22548 1 22548 16458 7 2352 8494 19 448 4485 11 408 3961 9 441
21 24551 1 24551 17921 7 2561 9235 19 487 4898 11 446 4357 9 485
23 26539 1 26539 19370 7 2768 9995 19 527 5311 11 483 4753 9 529
25 28514 1 28514 20812 7 2974 10736 19 566 5724 11 521 5149 9 573
27 30477 1 30477 22247 7 3179 11496 19 606 6137 11 558 5446 9 606

p ¼ 0.03
1 1373 1 1373 883 7 127 457 19 25 237 8 30 100 95 2
3 2885 1 2885 1863 7 267 970 19 52 532 8 67 496 7 71
5 4195 1 4195 2717 7 389 1426 19 76 827 8 104 793 7 114
7 5427 1 5427 3515 7 503 1863 19 99 1122 8 141 1090 7 156
9 6616 1 6616 4285 7 613 2281 19 121 1358 8 170 1387 7 199
11 7774 1 7774 5041 7 721 2680 19 142 1653 8 207 1684 7 241
13 8911 1 8911 5776 7 826 3079 19 163 1889 8 237 1882 7 269
15 10032 1 10032 6511 7 931 3478 19 184 2184 8 273 2179 7 312
17 11139 1 11139 7225 7 1033 3858 19 204 2420 8 303 2476 7 354
19 12235 1 12235 7939 7 1135 4257 19 225 2656 8 332 2773 7 397
21 13321 1 13321 8646 7 1236 4637 19 245 2892 8 362 2971 7 425
23 14400 1 14400 9346 7 1336 5017 19 265 3187 8 399 3268 7 467
25 15471 1 15471 10046 7 1436 5397 19 285 3423 8 428 3565 7 510
27 16537 1 16537 10739 7 1535 5758 19 304 3659 8 458 3862 7 552
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Conclusions

A sample size that guarantees a high probability
(1 2 a) that at least one individual with AP will be

detected can be obtained by applying the modified
Dorfman method using the binomial distribution and
considering the dilution effect and the laboratory
detection limit. When using the negative binomial and
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Figure 3. Operating characteristic curves for four different seed lot testing plans (with n ¼ 3200, m ¼ 8, l ¼ 0, d ¼ 0, c ¼ 0.0001
and w ¼ 0.014) with consumer risk (lower quality limit, LQL) ¼ 1.0% and producer risk (acceptable quality limit, AQL) ¼ 0.5%.
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Figure 2. Coefficient of variation (CV%) of p under the negative binomial distribution with the dilution effect for different values
of m and p for obtaining sample sizes with c ¼ 0.0001, l ¼ 0, d ¼ 0, w ¼ 0.0008 with 95% probability of detecting individuals with
the adventitious presence of transgenic plants (AP).
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performing inverse sampling, a required sample size n
can be determined that guarantees a high probability
(1 2 a) that m individuals or groups containing AP
will be found. The method offers a strategy for
forming groups (pools) from the sample that will be
subjected to laboratory tests, and for determining an
optimal number of pools that guarantees that if there
is at least one group with AP, there is a high
probability that it will be detected. The groups formed
have an optimum size, such that one element with AP
will be detected at a low cost.

The binomial distribution should be used (modi-
fied Dorfman method) when it is known that the
proportion of AP in the population is large, p . 0.1;
otherwise, the inverse sampling method is rec-
ommended, because it guarantees that m individuals
or pools of individuals with AP will be detected with
high probability. It is important to point out that the
precision with which p is estimated for detecting the
AP is related to the value of m. This research shows
that good precision is achieved for estimates of p with
m . 11, since this leads to a coefficient of variation
,25% for any value of p # 0.1. However, the increase
in precision is accompanied by a significant increase in
the cost of laboratory testing. Larger values of
concentration of the AP in the seeds, w, will require
fewer laboratory tests and, therefore, the overall cost
of testing will decrease. Performing laboratory tests
pool by pool is recommended until AP is detected in

the gth pool, and the probability of false positives is
equal to zero. This is sufficient to conclude that there
are individuals with AP in the lot.

The approach used in this study considers the
proportion of false negatives, which is never zero
in practice. Assuming a low proportion of false
negatives, the models proposed in this study facilitate
computing a more precise sample size for detecting
AP that is larger than that obtained when it is assumed
that the proportion of false negatives is zero.
Furthermore, for designing sampling testing plans,
the authors propose incorporating the dilution effect
and considering the rates of false positives, false
negatives, the lower quality limit (LQL), and a given
acceptable quality limit (AQL). The LQL and AQL
give the OC curves and the producer and consumer
risks, which facilitate making decisions on important
practical matters.

Possible disadvantages of the method are that (1) it
does not provide a closed solution for sample size,
pool size, and total cost (however, a computer
program in MatLab is available); and (2) the value of
w may be difficult to obtain (but an average value
given by the % DNA per grain may be used). In
the case of genetically modified plants, the weight of
the enzyme or other protein formed by that specific
DNA sequence may be estimated as a proportion
of the total weight of the grain or as a percentage
of DNA.
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Figure 4. Operating characteristic curves for four different seed lot testing plans with detection limits of c ¼ 0.00 010, 0.00 012,
0.00 014, m ¼ 6, l ¼ 0, d ¼ 0 and w ¼ 0.0088 (with n ¼ 1820, k ¼ 15) and for the standard testing plan with consumer risk (lower
quality limit, LQL) ¼ 1.1% and producer risk (acceptable quality limit, AQL) ¼ 0.4%.
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Program in MatLab

The second author of this paper has developed a
program in MatLab for computing the optimal sample
size, n, number of pools, g, and pool size, k, for
different cases, and for calculating the consumer and
producer risks. The software can be downloaded from
http://docente.ucol.mx/oamontes1 and has two
windows, sample size (window 1) and OC curves
(window 2).

The sample size window computes the optimal
sample size (n), number of groups (g), and size of the
groups (k), for different cases. The following infor-
mation must be given: an estimate of the proportion of
individuals with AP in the population ( p); an estimate
of AP concentration in the seed (w); the laboratory
detection limit (c); number of pools or individuals
with AP that should be detected (m); rate of false
negatives (l); and the value of alpha (a). The program
will then provide n, k, and g. Note that when m ¼ 1,
sampling is based on the binomial distribution (since
this is a particular case of the inverse sampling
method); when m . 1, sampling is based on the
negative binomial. When the rate of false negatives, l,
is unknown, a value of 0 should be given.

Window 2 draws the OC curves and calculates
the producer and the consumer risks. The computer
software that generates the proposed testing plans
requires the following information: the value of the
sample size (n), the pool size (k), the limit of AP
seeds (m) that will accepted, the value of LQL
(proportion of individuals with AP in the popu-
lation), the value of AQL; an estimate of AP
concentration in the seed (w); the laboratory
detection limit (c); the rate of false negatives (l);
the rate of false positives (d); and the value of alpha
(a). The values of l and d could be $0. The program
will then generate the OC curves with consumer and
producer risks that are useful for evaluating whether
or not a given testing plan satisfies the testing
objectives. If the value of k proposed by the
consumer and producer is #min(n, [w/c ] 2 1), the
program automatically draws the curves and
calculates the consumer and producer risks; other-
wise, the values used will be between one and min
(n, k1 ¼ [w/c ] 2 1) with the aim of guaranteeing
that AP concentration (w) in the pool is larger than
the detection limit (c), and that the size of the pool
represents a minimum relative cost.
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and Grégoire, S. (2005) Testing for adventitious presence
of transgenic material in conventional seed or grain lots
using quantitative laboratory methods: statistical pro-
cedures and their implementation. Seed Science Research
15, 197–204.

Montgomery, D.C. (1997) Introduction to statistical quality
control (3rd edition). New York, Wiley.

Morris, K.W. (1963) A note on direct and inverse binomial
sampling. Biometrika 50, 544–545.

Ortiz-Garcı́a, S., Ezcurra, E., Schoel, B., Acevedo, F.,
Soberón, J. and Snow, A.A. (2005a) Absence of
detectable transgenes in local landraces of maize in
Oaxaca, Mexico (2003–2004). Proceedings of the National
Academy of Sciences, USA 102, 12338–12343.

Ortiz-Garcı́a, S., Ezcurra, E., Schoel, B., Acevedo, F.,
Soberón, J. and Snow, A.A. (2005b) Correction. Procee-
dings of the National Academy of Sciences, USA 102, 18242.

Ortiz-Garcı́a, S., Ezcurra, E., Schoel, B., Acevedo, F.,
Soberón, J. and Snow, A.A. (2005c) Reply to
Cleveland et al.’s ‘Detecting (trans)gene flow to landraces
in centers of crop origin: lessons from the case of maize in
Mexico’. Environmental Biosafety Research 4, 209–215.

Patil, G.P. (1960c) On the evaluation of the negative binomial
distribution with examples. Technometrics 2, 501–505.

Quist, D. and Chapela, I.H. (2001) Transgenic DNA
introgressed into traditional maize landraces in Oaxaca,
Mexico. Nature 414, 541–543.

Quist, D. and Chapela, I.H. (2002) Biodiversity (Communi-
cations arising (reply)): suspect evidence of transgenic
contamination. Maize transgene results in Mexico are
artefacts. Nature 416, 602.

C.M. Hernández-Suárez et al.88
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