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Dynamic stabilisation of Rayleigh–Plateau
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We demonstrate dynamic stabilisation of axisymmetric Fourier modes susceptible to the
classical Rayleigh–Plateau (RP) instability on a liquid cylinder by subjecting it to a radial
oscillatory body force. Viscosity is found to play a crucial role in this stabilisation.
Linear stability predictions are obtained via Floquet analysis demonstrating that RP
unstable modes can be stabilised using radial forcing. We also solve the linearised, viscous
initial-value problem for free-surface deformation obtaining an equation governing the
amplitude of a three-dimensional Fourier mode. This equation generalizes the Mathieu
equation governing Faraday waves on a cylinder derived earlier in Patankar et al. (J. Fluid
Mech., vol. 857, 2018, pp. 80–110), is non-local in time and represents the cylindrical
analogue of its Cartesian counterpart (Beyer & Friedrich, Phys. Rev. E, vol. 51, issue 2,
1995, p. 1162). The memory term in this equation is physically interpreted and it is
shown that, for highly viscous fluids, its contribution can be sizeable. Predictions from the
numerical solution to this equation demonstrate the predicted RP mode stabilisation and
are in excellent agreement with simulations of the incompressible Navier–Stokes equations
(up to the simulation time of several hundred forcing cycles).

Key words: capillary waves, Faraday waves, instability control

1. Introduction

Liquid cylinders, jets or annular liquid films coating rods often deform or fragment into
a series of droplets of unequal sizes via the ubiquitous Rayleigh–Plateau (RP) capillary
mechanism (Plateau 1873b; Rayleigh 1892b). This may easily be seen, for example, in a
jet issuing out of a faucet (Rutland & Jameson 1971), in a capillary liquid bridge held
between two disks (Plateau 1873b) or in a film coating a rod (Goren 1962), to mention
but a few situations. Depending on the application, droplet formation may be desirable or
it might even be necessary to suppress it. When breakup is intended (e.g. in microfluidic
devices cf. Stone, Stroock & Ajdari (2004) or drop-on-demand inkjet printing cf. Driessen
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Stabilisation technique References Comments

Electric field Raco (1968) and Sankaran &
Saville (1993)

Active control of (2, 0)
mode

Thiessen et al. (2002) in Thiessen et al. (2002)
Magnetic field Nicolás (1992) Critical value of magnetic field
Flow induced Lowry & Steen (1994, 1995, 1997) Axial flow
Acoustic forcing Marr-Lyon et al. (1997, 2001) Radiation pressure
Axial oscillation Chen & Tsamopoulos (1993),

Mollot et al. (1993), Benilov
(2016) and Haynes et al. (2018)

Axial oscillation of one disk

Radial forcing Patankar et al. (2018) Parametric stabilisation
Electrochemical oxidation Song et al. (2020) Controlling surface-tension

Table 1. Literature on RP mode stabilisation.

2013), strategies are sought such that the size distribution of the resultant droplets and
their spacing are controllable, e.g. Driessen et al. (2014). Conversely, when breakup is
undesirable, stabilisation strategies are necessary and a number of techniques have been
proposed towards this. Table 1 provides a broad summary of known techniques of RP
stabilisation and it is apparent that this continues to be an active area of research.

The purpose of the present study is to demonstrate dynamic stabilisation of unstable
RP modes on a liquid cylinder by subjecting the cylinder to a radial, sinusoidal-in-time
body force. It is demonstrated analytically that this is possible and that viscosity plays a
crucial role in this stabilisation. The viscous analysis presented here significantly builds
upon the inviscid analysis presented earlier in Patankar, Farsoiya & Dasgupta (2018) where
dynamic (quasi-stabilisation) of RP modes was also predicted but the quasi-stabilisation
was found to be extremely short-lived in inviscid simulations. In contrast to our earlier
inviscid study (Patankar et al. 2018), we demonstrate here that, for a viscous liquid, by
carefully tuning the strength and frequency of (radial) forcing, RP modes accessible to the
system may be rendered stable, thus stabilising the cylinder. The theoretically predicted
stabilisation is verified using numerical simulations of the Navier–Stokes equations
demonstrating excellent agreement (up to the simulation time of several hundred forcing
cycles).

The study is organised as follows. In § 1.1 a brief literature survey discussing the gamut
of stabilisation strategies for finite and infinitely long liquid cylinders along with a brief
background of parametric instabilities and dynamic stabilisation strategies is presented.
In § 2 linear stability analysis of an infinite cylinder of viscous liquid subject to a radial,
oscillatory body force is reported via Floquet analysis. Section 3 reports the derivation of
a novel integro-differential equation governing the linearised amplitude of surface modes.
The theoretically predicted stabilisation in § 4 is verified using numerical simulations
of the incompressible Navier–Stokes equations (DNS) in § 5. The integro-differential
equation is physical interpreted and the significance of the memory term is discussed at
the end of § 5. Conclusions are discussed in § 6.

1.1. Literature review
Stabilisation of RP modes for liquid cylinders are typically investigated either in the
context of bridges of finite length or in the infinitely long cylinder approximation. We
recall that a cylindrical liquid bridge of length L and diameter d in neutrally buoyant
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Dynamic stabilisation of RP modes

surroundings is stable for slenderness ratio L/d ≤ π, also known as the Plateau limit; see
Plateau (1873a). An electric field has long been used to both generate stable cylindrical
jets (Taylor 1969) and to stabilise liquid bridges composed of dielectric fluids (Raco
1968; Sankaran & Saville 1993; Thiessen, Marr-Lyon & Marston 2002). Alternatively,
application of axial magnetic fields (Nicolás 1992) or flow induced stabilisation techniques
(Lowry & Steen 1994, 1995, 1997) have been utilised for surmounting the Plateau limit,
obtaining stabilisation up to L/R = 8.99 for a pinned liquid bridge. Another class of
techniques comprise acoustic forcing, which has been used to demonstrate stabilisation
of liquid bridges beyond the Plateau limit (Marr-Lyon, Thiessen & Marston 1997, 2001).
The nonlinear dynamics of liquid bridges and their stability subject to axial, oscillatory
forcing of the point of support have in fact been studied quite extensively (Chen &
Tsamopoulos 1993; Mollot et al. 1993; Benilov 2016; Haynes et al. 2018). Analogously,
the use of axial vibration for stabilising and preventing rupture of a thin film coating a
solid rod by subjecting one end of the rod to ultrasound forcing has been investigated in
detail (Moldavsky, Fichman & Oron 2007; Binz, Rohlfs & Kneer 2014; Rohlfs, Binz &
Kneer 2014). Parametric stabilisation, also known as dynamic stabilisation, via imposition
of vibration has been demonstrated (Wolf 1970) for the Rayleigh–Taylor instability of a
heavier fluid overlying a lighter one. Here viscosity was found to be crucial for stabilisation
of short wavelength modes. In this study we will find that an identical situation occurs
in the dynamic stabilisation of RP modes also. Here short wavelength modes (i.e. those
with wavelength smaller than the cylinder circumference) which are stable in the absence
of forcing can however become unstable in the presence of forcing. These modes, even
when absent in the initial conditions, can be produced due to nonlinearity (in numerical
simulations) and it will be seen that viscosity is crucial in preventing destabilisation of the
cylinder due to these modes.

Parametric stabilisation and destabilisation of otherwise unstable or stable mechanical
equilibria have a long and distinguished history of investigation. The first problems to be
investigated were mechanical systems, notably by Melde (1860) who studied transverse
oscillations of a taut string whose end was subjected to lengthwise vibrations (see Tyndall
1901, § 7, figures 45–49). In a series of studies Rayleigh (1883, 1887), Matthiessen (1868)
and Raman (1909, 1912) studied this problem in detail obtaining the damped Mathieu
equation already in their analyses. Closely related experimental observations for fluid
interfaces (using mercury, egg white, turpentine oil etc.) had been made nearly thirty
years earlier by Faraday (1837) culminating in the insightful study by Benjamin & Ursell
(1954) of the instability, which in modern parlance has come to be known as the Faraday
instability.

Benjamin & Ursell (1954) derived the Mathieu equation from the inviscid, irrotational
fluid equations opening the way to a rich body of literature on Faraday waves (Kumar
& Tuckerman 1994; Cerda & Tirapegui 1997; Fauve 1998; Kumar 2000; Adou &
Tuckerman 2016), spatio-temporal chaos (Kudrolli & Gollub 1996), wave turbulence
(Holt & Trinh 1996; Shats et al. 2014) and pattern formation (Edwards & Fauve 1994;
Arbell & Fineberg 2000). Viscosity constitutes a non-trivial modification to the Mathieu
equation. Unlike inviscid predictions on the forcing strength vs wavenumber plane, the
threshold acceleration for the instability becomes finite when viscosity is taken into
account, as the instability tongues do not touch the wavenumber axis anymore. This was
first systematically demonstrated by Kumar & Tuckerman (1994) using Floquet analysis,
further finding that the wavelength at the onset of the instability varies non-monotonically
with increasing viscosity. The predictions of Kumar & Tuckerman (1994) have been
validated in experiments by Bechhoefer et al. (1995) and, for Faraday waves, in a cylinder
by Batson, Zoueshtiagh & Narayanan (2013).
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The stability tongues of the Mathieu equation suggest the possibility of dynamic
stabilisation of a statically unstable configuration of heavier fluid on a top of a lighter one
via high-frequency oscillation normal to the unperturbed interface. Since the theoretical
and experimental demonstration of this by Wolf (1969, 1970), this has been studied
extensively not only for the Rayleigh–Taylor instability (Troyon & Gruber 1971; Piriz
et al. 2010; Boffetta, Magnani & Musacchio 2019) but also in the suppression of long
surface-gravity modes in inclined plane flow (Woods & Lin 1995), the Marangoni
instability (Thiele, Vega & Knobloch 2006) and for stabilising a thin film on the underside
of a substrate (Sterman-Cohen, Bestehorn & Oron 2017). In close analogy to the work
of Wolf (1970), our present study demonstrates usage of radial forcing (i.e. normal to
the unperturbed interface) for dynamic stabilisation of RP modes. In § 4.1 we present a
detailed discussion and comparison with the experiments of Maity, Kumar & Khastgir
(2020) for a liquid cylinder on a vertically vibrated substrate, where the radial, oscillatory
body force employed in our theory is approximately realized. To the best of our knowledge,
our study is the first theoretical and numerical demonstration of dynamic stabilisation
of a liquid cylinder (a condensed version was presented in Patankar, Basak & Dasgupta
(2019), Patankar et al. (2020) and an earlier version of this manuscript is available at
arxiv, Patankar, Basak & Dasgupta 2022). We closely follow the Floquet analysis approach
of Kumar & Tuckerman (1994) in order to obtain the threshold forcing where RP mode
stabilisation can be achieved. For viscous liquid cylinders, a recent study by Maity (2021)
has investigated via Floquet analysis the effect of viscosity on the stability tongues of
the inviscid Mathieu equation proposed in Patankar et al. (2018), and investigated further
experimentally and analytically in Maity et al. (2020). An interesting observation here is
that the m = 1 mode shows a threshold which decreases with increasing viscosity, in a
certain window of viscosity change (Maity 2021). The study by Maity (2021) however
did not investigate the possibility of stabilisation of RP unstable modes, as is the focus
of the current study. We note here that the theoretical analysis to follow assumes that the
liquid cylinder is axially unbounded, this assumption being made mainly for theoretical
simplication. As we will see in § 4.1, our theoretical results are also relevant to RP unstable
modes on cylindrical rivulets placed on substrates.

For Faraday waves on flat interfaces, prior studies have demonstrated that the
viscous extension of the inviscid Mathieu equation (Benjamin & Ursell 1954) is an
integro-differential equation (Jacqmin & Duval 1988; Beyer & Friedrich 1995; Cerda
& Tirapegui 1997, 1998). In this study we also derive a novel cylindrical analogue of
this integro-differential equation governing small-amplitude Fourier modes on a liquid
cylinder and demonstrate its connection to the equation derived earlier by Beyer &
Friedrich (1995). Numerical solution to this integro-differential equation enables us to
estimate the contribution of viscosity from the potential part of the flow and from the
boundary layer at the free surface. Additionally, the solution to this equation demonstrates
the RP stabilisation that is sought is in excellent agreement with direct numerical
simulations (DNS).

2. Linear stability analysis

The base state comprises an infinitely long, quiescent liquid cylinder of density ρ, surface
tension T , kinematic viscosity ν and radius R0 being subject to a radial, oscillatory body
force F(r, t); see figure 1. This radial body force (per unit mass) has strength h and a
spatial dependence of the form r/R0 in order to ensure single valuedness of the force
at the origin (Adou & Tuckerman 2016; Patankar et al. 2018), and the negative sign in
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R0

z
η (θ, z, t)

r

Oθ

–h cos (Ωt)  rR0

Figure 1. A cartoon of a surface perturbation on a viscous liquid cylinder of radius R0 subject to a radial
body force F (r, t) = F(r, t)êr = −h(r/R0) cos(Ωt)êr. The variable η(θ, z, t) measures the displacement of
the free surface with respect to the unperturbed cylinder, being zero in the base state. Surface perturbations
η(θ, z, t) = am(t; k) cos(mθ) cos(kz) are imposed.

the expression for F(r, t) is for convenience (see below (2.1)). Thus, in the base state
(variables with subscript b) there is no flow, the interface is a uniform cylinder of radius
R0 and the momentum equation simplifies to a balance between the radial oscillatory body
force and the pressure gradient, viz.

ub = 0, − 1
ρ

∇pb + F(r, t)êr = 0, 0 ≤ r ≤ R0,

with F(r, t) ≡ −h
(

r
R0

)
cos (Ωt) , and pb(r, t) = ρh

2R0
(R2

0 − r2) cos(Ωt)+ T
R0
.

⎫⎪⎪⎬
⎪⎪⎭

(2.1)

Here êr is the standard unit vector in the radial direction in cylindrical coordinates. Note
that we have assumed stress in the fluid outside the cylinder to be zero, so that pb(R0, t) =
T/R0 satisfies the pressure jump condition at the interface due to surface tension. We
neglect the density and viscosity of the fluid outside in the present study implying that
the free surface of the cylinder satisfies stress free conditions. In the following subsection
we briefly discuss RP modes in the unforced system (h = 0), followed by an inviscid and
viscous description of RP stabilisation with radial forcing (h /= 0).

2.1. The inviscid and viscous RP modes (h = 0)
The classical RP modes are unstable axisymmetric Fourier modes satisfying 0 < kR0 < 1
for the unforced system (h = 0). These are governed by the following inviscid
((2.2a), Rayleigh 1878) and viscous dispersion relation (Rayleigh 1892a; Weber 1931;
Chandrasekhar 1981; Liu & Liu 2006) with growth rate σ0 (inviscid) and σ (viscous),
respectively:

σ 2
0 = T

ρR3
0

kR0(1 − k2R2
0)

I1(kR0)

I0(kR0)
, (2.2a)

σ 2 + 2vk2
[

I′1(kR0)

I0(kR0)
− 2kl

l2 + k2
I1(kR0)

I0(kR0)

I′1(lR0)

I1(lR0)

]
σ −

(
l2 − k2

l2 + k2

)
σ 2

0 = 0,

where l2 ≡ k2 + σ

ν
.

⎫⎪⎪⎬
⎪⎪⎭ (2.2b)
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Figure 2. Inviscid and viscous growth (and decay) rates of RP modes (0 < kR0 < 1) from numerically
solving (2.2a) and (2.2b) (Weber 1931; García & González 2008). At any Ohnesorge (Oh) and k in the range
0 < k < R−1

0 , there are two capillary modes, one unstable (σ > 0) and another stable (σ < 0). We stabilise the
exponentially growing mode by forcing at Ω � σmax, where σmax is the growth rate of the fastest growing RP

mode, it being highest for the inviscid case (Oh = 0) for (kR0)max ≈ 0.69 with σmax ≈ 0.34
√

T/ρR3
0.

Here Im(z) is the mth order modified Bessel function of the first kind and I
′
m(z) ≡ dIm/dz.

In figure 2, σ0 and σ are obtained by numerically solving (2.2a) and (2.2b) for the inviscid
and viscous cases, respectively. Unlike the inviscid relation (2.2a) which is quadratic in σ0,
the viscous dispersion relation given by (2.2b) is transcendental in σ . It admits in addition
to two capillary modes, a countably infinite set of hydrodynamic (or vorticity) modes as
its roots and the latter are purely damped modes (García & González 2008). In figure 2
we only depict the growth and decay rates corresponding to the two capillary modes in
the range 0 < kR0 < 1 for different values of Ohnesorge number Oh = μ/

√
TρR0. Our

aim in this study is to stabilise the capillary modes in the range 0 < kR0 < 1 using radial
forcing and this is discussed below.

2.2. Dynamic stabilisation of RP modes – linear inviscid theory
The inviscid results on RP stabilisation using radial forcing were presented earlier in
Patankar et al. (2018) and are summarised very briefly here, for self-containedness. In the
presence of radial forcing F(r, t) = −h(r/R0) cos(Ωt) and under the linearised, inviscid,
irrotational approximation, the equation governing the amplitude am(t; k) of standing
waves on the free surface of the form η(z, θ, t) = am(t; k) cos(mθ) cos(kz) is the Mathieu
equation (2.3)

d2am

dt2
+ I

′
m (kR0)

Im (kR0)

[
T

ρR3
0

kR0

(
k2R2

0 + m2 − 1
)

+ kh cos(Ωt)

]
am(t; k) = 0. (2.3)

The stability diagram for (2.3) may be obtained using Floquet analysis (Patankar
et al. 2018). For h /= 0, we have the interesting prediction that axisymmetric unstable
RP modes can be stabilised by choosing h to be sufficiently large. This is readily
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Figure 3. Grey and white indicate unstable and stable regions, respectively. Panel (a) shows the inviscid

stability chart for (2.3). The forcing frequency f = 300 Hz � σmax = 0.34
√

T/(ρR3
0) = 17.68 Hz. Parameters

are for case 1 in table 3 with μI = 0. Panel (b) shows the time signal (red curve) from the numerical solution
to the 3-D Euler equation (Popinet 2014) with an RP mode (k0 = 4.8 cm−1,m0 = 0) excited at t = 0. Black
curve: solution to (2.3). Left inset: zoomed out view of solution to (2.3). Right inset: stability chart for m = 4.
An unstable non-axisymmetric Fourier mode (k = 28.8 = 6k0,m = 4 in the grey region) at t̃ ≈ 14 s causes
destabilisation of the cylinder. (a) Stability plot. (b) Result shown for k = 4.8, h = 1.8 × 104 cm s−2.

seen in the stability chart in figure 3(a) where the solid curve in black indicates the
threshold value of forcing h above which, a RP mode is stable. The line in blue
indicates all unstable RP modes for h = 0. Two representative RP unstable modes are
chosen, viz. k0 = 4.8 cm−1 (wavelength λ ≈ 1.309 cm) and k0 = 3.48 cm−1 (λ ≈ 1.8 cm)
. The plot predicts the threshold values of forcing strength hcr = 1.21 × 104 cm s−2 and
hcr = 4.17 × 104 cm s−2, respectively, beyond which these modes can be stabilised. For
generating figure 3(a), we have chosen Ω = 600π rad s−1 (f = 300 Hz), R0 = 0.2 cm,
density ρ = 0.957 gm cm−3, surface tension T = 20.7 dyn cm−1. These fluid parameters
approximately correspond to silicone oil (Vega & Montanero 2009) with its viscosity
artificially set to zero. Note that at these forcing frequencies we may safely ignore
compressibility effects as may be inferred from the order of magnitude of the two typical
velocity scales, viz. maximum[hc/f , fR0] ≈ 139 cm s−1 for f = 300 Hz and hc = 4.17 ×
104 cm s−2. This is negligible compared with the typical acoustic speed O(105) cm s−1 in
the fluid at ambient conditions.

The results from the numerical simulations discussed below are obtained using the
open-source code Basilisk (Popinet 2014). The simulations are described in detail later
on in § 5 and are briefly discussed here for consistency. The domain consists of a liquid
cylinder of silicone oil surrounded by an ambient fluid of negligible density and viscosity
(see figure 7 in § 5). The cylinder is subjected to a radial harmonic (in time) forcing. The
simulation parameters for the case discussed below correspond to case 1 from table 3
with μI = μO = 0 to reflect the inviscid limit that we analyse first. Figure 3(b) presents
the time signal obtained from inviscid numerical simulations (Popinet 2014) for the
axisymmetric mode k0 = 4.8,m0 = 0 excited at t = 0. Note that this is a RP unstable
mode and as seen from figure 3(a), it is expected to be stabilised beyond a threshold
forcing of h = 1.21 × 104 cm s−2. In figure 3(b) we see agreement between the solution
to (2.3) and the numerical simulation for very brief time (approximately three forcing
time periods), after which the signal from the numerical simulation begins to deviate and
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grow rapidly (around t̃ ≈ 14) in contrast to the solution to (2.3) which stays bounded (see
left inset). A Fourier analysis of the interface at t̃ ≡ tΩ/2π ≈ 14, indicated by the arrow,
reveals the appearance of a non-axisymmetric mode (k = 28.8,m = 4) in the simulation.
This is a stable mode in the unforced system (h = 0) but is destabilised at the imposed
level of forcing, lying inside a tongue as seen in the right inset of figure 3(b). Thus, in
the inviscid case the stabilisation that is achieved is only a quasi-stabilisation in the sense
that while the RP modes can be rendered stable via forcing, concomitantly, other modes
become unstable at the chosen level of forcing. It thus becomes clear that for obtaining
dynamic stabilisation, we need to ensure that all Fourier modes either present initially in
the system or born via nonlinear effects, both axisymmetric and three dimensional, should
remain linearly stable at the imposed level of forcing. We will demonstrate in the next
section that by taking viscosity into account and using the forcing frequency as a tuning
parameter, this may be achieved.

2.3. Dynamic stabilisation of RP modes – linear viscous theory
Having demonstrated the inadequacy of dynamic stabilisation of RP modes in an inviscid
model, we proceed to the viscous case. The motivation for including viscosity is simple to
understand: it is known that inclusion of viscosity leads to displacement of the instability
tongues upwards on the h–k plane and these no longer touch the wavenumber axis (Kumar
& Tuckerman 1994). Our expectation is that by suitably choosing viscosity and the forcing
frequency, we will be able to shift the unstable tongues sufficiently above the wavenumber
(k) axis. This generates a sufficiently large stable region where not only the axisymmetric
RP unstable mode (k0) is stabilised (with forcing) but all higher modes accessible to the
system are also stable. Note that the upward movement of the tongues occur not only for
axisymmetric modes but also for non-axisymmetric ones. In particular, we will also see
that for fixed viscosity, we can move the minima of the tongue upwards by increasing the
forcing frequency. The algebra for the viscous analysis is somewhat lengthy and details are
provided in the supplementary material available at https://doi.org/10.1017/jfm.2022.533.
We outline the important steps that follow. Expressing all quantities as the sum of base
plus perturbation, i.e.

p̂ = pb + p, û = 0 + u and perturbed free surface at r = R0 + η. (2.4a–c)

Substituting (2.4a,b) into the incompressible Navier–Stokes equations and linearising
about the base state we obtain the equations governing the perturbations, viz.

(
∂

∂t
− ν	

)
u = − 1

ρ
∇p, ∇·u = 0, (2.5a,b)

where the vector Laplacian of the incompressible velocity field is 	u ≡ −∇ × ∇ × u.
The linearised boundary conditions are obtained by substituting (2.4a–c) into the boundary
conditions (supplementary material), employing Taylor expansion and retaining terms
linear in the perturbation variables, viz. u, p and η (the perturbation velocity u is written
in terms of its components (ur, uθ , uz)), we obtain

∂η

∂t
= ur(r = R0), (2.6a)
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μ

(
∂ur

∂z
+ ∂uz

∂r

)
r=R0

= 0, μ

(
r
∂

∂r

(uθ
r

)
+ 1

r
∂ur

∂θ

)
r=R0

= 0, (2.6b,c)

(
∂

∂r
+ 1

r

)[
∂ur

∂t
− ν

{
	ur − ur

r2 − 2
r2

(
∂uθ
∂θ

)}]
+ F(r, t)	Oη − 2ν	O

(
∂ur

∂r

)

= − T

ρR2
0
	O

[
η +

(
∂2η

∂θ2

)
+ R2

0

(
∂2η

∂z2

)]
atr = R0,

with 	O ≡ 1
r2
∂2

∂θ2 + ∂2

∂z2 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.6d)

u(r → 0, t) → finite, (2.6e)

where 	 is the scalar Laplacian in cylindrical coordinates. Equations (2.6a–e) are the
linearised versions of the kinematic boundary condition (2.6a), the zero shear stress
condition(s) at the free surface (2.6b,c), the normal stress condition at the free surface
due to surface tension (2.6d) and the finiteness condition at the axis of the cylinder (2.6e),
respectively. Equation (2.6d) has been obtained by eliminating pressure from the primitive
form of the pressure jump boundary condition (see supplementary material). Note the
presence of the forcing term F(r, t) in the normal stress boundary condition in (2.6d)
indicating the time periodicity of the base state.

We solve (2.5a,b) in the streamfunction-vorticity formulation and, for this, the curl and
double curl of (2.5a) leads to (ω ≡ ∇ × u)

∂ω

∂t
= ν�ω,

∂

∂t
�u = ν��u, (2.7a,b)

where � is the vector Laplacian. Employing the toroidal-poloidal decomposition (Marqués
1990; Boronski & Tuckerman 2007; Prosperetti 2011), the velocity and vorticity fields are
expressed in terms of two scalar fieldsψ(r, θ, z, t) and ξ(r, θ, z, t) using the decomposition

u = ∇ × (
ψ êz

)+ ∇ × ∇ × (
ξ êz
)
, ω ≡ ∇ × ∇ × (

ψ êz
)+ ∇ × ∇ × ∇ × (

ξ êz
)
,

(2.8a,b)

where êz is the unit vector along the axial direction of the cylinder (Boronski & Tuckerman
2007). By construction the velocity field in (2.8a) is divergence free and it can be shown
(see supplementary material) that the equations governing the toroidal and poloidal fields
ψ(r, z, θ, t) and ξ(r, z, θ, t), respectively, are the fourth- and sixth-order equations(

∂

∂t
− ν	

)
	Hψ = 0 and

(
∂

∂t
− ν	

)
		Hξ = 0, (2.9a,b)

where the scalar Laplacian

	 ≡ 1
r
∂

∂r
(r
∂

∂r
)+ 1

r2
∂2

∂θ2 + ∂2

∂z2 = 	H + ∂2

∂z2 . (2.10)

As we have raised the order of our governing equations by taking curl and double curl,
we need extra equations to determine the additional constants of integration. It was shown
in Marqués (1990) that this takes the form of an additional equation also known as the
compatibility condition (Boronski & Tuckerman 2007). For the present problem at linear
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order, this extra equation is simply the radial component of the vorticity equation (2.7a)
(Boronski & Tuckerman 2007), i.e.

∂ωr

∂t
= ν

{
	ωr − ωr

r2 − 2
r2

(
∂ωθ

∂θ

)}
,

with ωr = ∂2ψ

∂r∂z
− 1

r
∂

∂θ
(	ξ) and ωθ = 1

r
∂2ψ

∂z∂θ
+ ∂

∂r
(	ξ) .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.11)

In order to determine the scalar fields ψ(r, θ, z, t), ξ(r, θ, z, t), we need to solve (2.9a,b).
Analogous to the inviscid analysis in Patankar et al. (2018) we seek three-dimensional
standing wave solutions of the form

ψ(r, θ, z, t) = Ψm(r, t; k) sin(mθ) cos(kz), ξ(r, θ, z, t) = Ξm(r, t; k) cos(mθ) sin(kz),

η(θ, z, t) = am(t; k) cos(mθ) cos(kz), (2.12a–c)

where k ∈ R
+ and m ∈ Z

+. Substituting (2.12a,b) into (2.9a,b) we obtain the equations
governing Ψm(r, t; k) and Ξm(r, t; k), viz.(

∂

∂t
− νL

)
LHΨm = 0,

(
∂

∂t
− νL

)
LLHΞm = 0,

where LH ≡ ∂2

∂r2 + 1
r
∂

∂r
− m2

r2 and L ≡ LH − k2.

⎫⎪⎪⎬
⎪⎪⎭ (2.13a,b)

Our task now is to determine the linear stability of the (time-dependent) base state
by identifying unstable and stable regions via Floquet analysis. This is indicated on the
strength of forcing (h) vs wavenumber (k,m) plane for chosen fluid parameters ρ, ν, T and
forcing frequency Ω and is done in the next subsection.

2.3.1. Floquet analysis
Using the Floquet ansatz for time periodic base states, we assume the following forms for
Ψm(r, t; k),Ξm(r, t; k) and am(t; k) in (2.12a–c) (Kumar & Tuckerman 1994)

Ψm(r, t; k) = exp(λm(k)t)
∞∑

n=−∞
ψ̃(m)n (r; k) exp(i nΩt),

Ξm(r, t; k) = exp(λm(k)t)
∞∑

n=−∞
ξ̃ (m)n (r; k) exp(i nΩt),

am(t; k) = exp(λm(k)t)
∞∑

n=−∞
Mn exp(i nΩt),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.14a–c)

with λm(k) being the Floquet exponent and ψ̃
(m)
n (r; k) and ξ̃

(m)
n (r; k) the complex

eigenfunctions for each Fourier mode (k,m). The complex eigenfunctions satisfy the
reality condition ψ̃(m)−n = (ψ̃

(m)
n )∗ and ξ̃ (m)−n = (ξ̃

(m)
n )∗, the superscript ∗ indicating complex

conjugation.
We substitute (2.14a,b) into (2.13a,b) respectively yielding fourth- and sixth-order

differential equations (eigenvalue problems) governing ψ̃(m)n (r; k) and ξ̃ (m)n (r; k) for each
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n in the expansion (2.14a,b),

O(k,m)·
(

d2

dr2 + 1
r

d
dr

− m2

r2

)
ψ̃(m)n (r; k) = 0, (2.15a)

O(k,m)·
(

d2

dr2 + 1
r

d
dr

− m2

r2 − k2
)(

d2

dr2 + 1
r

d
dr

− m2

r2

)
ξ̃ (m)n (r; k) = 0, (2.15b)

where the linear operator

O(k,m) ≡
[
λm(k)+ i nΩ −

(
d2

dr2 + 1
r

d
dr

− m2

r2 − k2
)]
. (2.16)

Equations (2.15a,b) are solved with the finiteness condition at r → 0 in (2.6e) leading to

ψ̃(m)n (r; k) = AnIm(jnr)+ Bnrm, ξ̃ (m)n (r; k) = CnIm(jnr)+ DnIm(kr)+ Enrm,

(2.17a,b)

where An,Bn, Cn,Dn and En are constants of integration, Im(·) is the mth-order modified
Bessel function of first kind and j2n ≡ k2 + (λm(k)+ i nΩ)/ν with Re{jn} > 0. The
compatibility condition in (2.11) may be further simplified using (2.12a,b), the Floquet
ansatz (2.14a,b) and the expressions in (2.17). The algebra for this is lengthy but eventually
leads to a very simple relation, viz.

Bn + kEn = 0 ∀ n ∈ Z. (2.18)

The constants Bn and En appear only in the combination Bn + kEn in subsequent algebra
and, thus, (2.18) may be used to eliminate these constants. Consequently, the only
constants which survive in further analysis are An, Cn,Dn and Mn (see (2.14c). The
Floquet ansatz in (2.14a,b) implies that the velocity components may be written as

(ur, uθ , uz) =
∞∑

n=−∞

(
ũr,n(r) cos(mθ) cos(kz), ũθ,n(r) sin(mθ) cos(kz), ũz,n(r) cos(mθ) sin(kz)

)
× exp [(i nΩ + λm(k)) t] , (2.19)

where the (complex) eigenmodes ũr,n(r), ũθ,n(r) and ũz,n(r) are determined using
expressions (2.17a,b) in (2.8a). These are

ũr,n(r) = m
r

Im(jnr)An + kjnI
′
m(jnr)Cn + k2I

′
m(kr)Dn,

ũθ,n(r) = −
{

jnI
′
m(jnr)An + km

r
(Im(jnr)Cn + Im(kr)Dn)

}
,

ũz,n(r) = −{j2nIm(jnr)Cn + k2Im(kr)Dn},

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.20a–c)

where prime indicates differentiation with respect to the argument, e.g. I
′
m(z) ≡ dIm/dz

and so on. Note that despite the presence of terms of the form 1/r in expressions (2.20a,b),
the velocity components do not diverge at the axis of the cylinder. This may be easily
verified for the case m > 0 and the asymptotic form of Im(z) for small z.

The boundary conditions in (2.6a–d) may now be simplified employing expressions
(2.19) and (2.20a–c) to obtain linear algebraic equations in An, Cn,Dn and Mn. The
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algebra is provided in supplementary material and we provide only the normal stress
boundary condition below,[

μ

{
kDn

[
(k2 − j2n)

kI′m(kR0)

R0
−
(

k2 + j2n + 2m2

R2
0

)
k2I′′m(kR0)

]
− 2

(
k2 + m2

R2
0

)
j2nI′′m(jnR0)kCn

− 2

(
k2 + m2

R2
0

)
m
R0

(
jnI′m(jnR0)− Im(jnR0)

R0

)
An

}

− T

R2
0

(
k2 + m2

R2
0

)(
k2R2

0 + m2 − 1
)
Mn

](
2R2

0

ρ
(
k2R2

0 + m2
)
)

= h
[Mn−1 + Mn+1

]
. (2.21)

Equation (2.21) is solved symbolically in Mathematica using expressions for An, Cn
and Dn in terms of Mn to obtain a single equation relating Mn−1, Mn and Mn+1 for
n = 0, 1, 2, 3, . . . ,N. Equation (2.21) is thus written as a generalized eigenvalue problem

A·M = h Q·M n = 0, 1, 2, . . . ,N, (2.22)

where A and Q are matrices and we have taken N = 30 terms in the Fourier series for this
study (see supplementary material). Expressing λm(k) = μ̃+ Iα, where I ≡ √−1, the
sub-harmonic case is α = Ω/2 and harmonic case is (α = 0) (Kumar & Tuckerman 1994).
With μ̃ = 0, the resultant equations are solved using the Matlab generalized eigenvalue
solver eig(,), MATLAB (2015) to obtain the stability boundaries on the wavenumber k vs
forcing h plane for a given choice of m, forcing frequency Ω and fluid parameters T, ρ, μ
and R0. The stability charts obtained from Floquet analysis will be discussed in § 4.

3. A non-local equation governing am(t; k)

In this section we present an analytical formulation which complements the Floquet
analysis presented in § 2. We obtain a self-contained equation for am(t; k), the linearised
amplitude of a Fourier mode (cos(kz), cos(mθ)) in (2.12c). This equation will allow us to
understand the physical role of viscosity. The starting point of the derivation are (2.13a,b).
We define Laplace transforms as

[Ψ̃ (m)(r, s; k), Ξ̃ (m)(r, s; k), ãm(s; k)]

=
∫ ∞

0
exp (−st) [Ψm(r, t; k),Ξm(r, t; k), am(t; k)] dt. (3.1)

In further algebra, the Laplace transform operator and its inverse are indicated as L̂(·) and

L̂
−1
(·), respectively, and variables in the Laplace domain are indicated with a tilde on top.

Laplace transforming (2.13a,b) with the initial conditions Ψm(r, 0; k) = Ξm(r, 0; k) = 0,.am(0; k) = 0 and am(0; k) = a(0)which correspond to deformation of the free surface and
zero perturbation velocity (the dot indicates time differentiation) initially, we obtain

(s − νL)LHΨ̃
(m)(r, s; k) = 0, (s − νL)LLHΞ̃

(m)(r, s; k) = 0. (3.2a,b)

The solution to (3.2a,b) which stay finite as r → 0 are the counterparts of expressions
(2.17a,b). These are

Ψ̃ (m)(r, s; k) = A(s)Im(lr)+ B(s)rm, Ξ̃ (m)(r, s) = C(s)Im(lr)+ D(s)Im(kr)+ E(s)rm,

where l2(s) ≡ k2 + s
ν
, Re(l) > 0,

⎫⎬
⎭

(3.3a,b)
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and A(s),B(s), C(s),D(s) and E(s) are unknown functions to be determined subsequently.
The algebra which follows is enormously simplified by recognising that the set of variables
[A(s),B(s), C(s),D(s), l2] in this section are the analogues of the corresponding set
[An,Bn, Cn,Dn, j2n] used in the previous section. The compatibility condition is thus

B(s)+ kE(s) = 0, (3.4)

and the normal stress boundary condition (2.6d) in the Laplace domain may be written as

T

ρR2
0

(
k2R2

0 + m2 − 1
)

ãm + 2νml
R0

I
′
m(lR0)Λ2(s)A(s)+ 2νkl2I

′′
m(lR0)C(s)

+{2νk3I
′′
m(kR0)+ ksIm(kR0)}D(s)− F̃(R0, s) ∗ ãm(s; k) = 0, (3.5)

where the convolution term indicated with ∗ arises from the Laplace transform of
the product of F(R0, t)am(t; k) (Prosperetti 2011). Analogous to the earlier section,
from the other boundary conditions (2.6a–c) written in the Laplace domain we may
obtain expressions for A(s), C(s) and D(s) in terms of ãm(s) and these are provided in
Appendix A. These are substituted in (3.5) and produces the equation

s (sãm(s)− a(0))+ 2νk2 I
′′
m(kR0)

Im(kR0)
(sãm − a(0))+ 4νk

I
′
m(kR0)

Im(kR0)
ζ̃ (s) (sãm − a(0))

+ I
′
m(kR0)

Im(kR0)
χ̃(s)

[
T

ρR3
0

kR0

(
k2R2

0 + m2 − 1
)

ãm − kF̃(R0, s) ∗ ãm(s; k)

]
= 0, (3.6)

where expressions for χ̃ (s) and ζ̃ (s) are provided below (3.7). Equation (3.6) can be
inverted into the time domain to obtain an integro-differential equation governing am(t; k)
(recall .am(0; k) = 0),

d2am

dt2 + 2νk2 I′′m(kR0)

Im(kR0)

dam

dt
+
∫ t

0
L̂

−1
(χ̃(s))

I′m(kR0)

Im(kR0)

[
T
ρR3

0
kR0

(
k2R2

0 + m2 − 1
)

+hk cos [Ω(t − τ)]
]

am(t − τ) dτ + 4νk
I′m(kR0)

Im(kR0)

∫ t

0
L̂

−1
[ζ(s)]

dam

dτ
(t − τ) dτ = 0,

whereχ̃ (s) ≡
(
k2 − l2

)
Λ1(s)− 2k2Λ2(s)+ 2l2Λ3

2k2Λ2(s)− (
l2 + k2

)
Λ1(s)

,

ζ̃ (s) ≡ l
I′m(lR0)

Im(lR0)

{
2k2Λ2(s)− (

l2 + k2
)
Λ3(

l2 + k2
)
Λ1(s)− 2k2Λ2(s)

}
Λ2(s)

− k2l
I′′m(lR0)

I′m(lR0)

{
Λ1(s)−Λ3(

l2 + k2
)
Λ1(s)− 2k2Λ2(s)

}
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.7)

while expressions for Λ1(s),Λ2(s),Λ3 are provided in Appendix A. Note that since
inversion of χ̃ (s) and ζ̃ (s) is not feasible analytically without further approximations,
these inversions are indicated formally as L̂−1(·) in (3.7). Equation (3.7) is one of the
central results of our study and to the best of our knowledge has not been presented in the
literature before.
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Equations (3.6) and (3.7) govern the amplitude of Fourier modes with indices (k,m)
in the Laplace and time domain, respectively. These represent the cylindrical counterpart
of the non-local equation governing viscous Faraday waves in Cartesian geometry; see
Beyer & Friedrich (1995) and Cerda & Tirapegui (1997). The advantage of having an
equation like (3.7) for am(t; k) is that it becomes possible to estimate separately the viscous
contributions to the time evolution of the free surface from damping in the irrotational part
of the flow and from the boundary layer at the free surface,and this is done at the end of
this study. Further, vortical initial conditions are easy to accommodate in the initial-value
problem (IVP) framework by setting Ψm(r, 0; k) and Ξm(r, 0; k) to desired functions of r
(see below (3.1)). This allows for being able to take into account vortical (recirculation)
initial conditions where the contribution from the hydrodynamic modes is expected to
be substantial (García & González 2008). In principle, due to the formal mathematical
equivalence between modal analysis and the IVP approach, when the former provides a
complete set of eigenfunctions (Monin & Yaglom 2007, p. 95) the modal analysis of the
previous section can also be used to obtain the expression for am(t; k) in (3.7). However,
this requires the evaluation of inner products (Prosperetti 1981) which are avoided in the
current approach. We treat the IVP approach as being complementary to the Floquet
analysis demonstrated earlier. We will demonstrate in § 5 that the numerical solution to
(3.7) shows the stabilisation of RP modes that is sought and agrees very well with DNS. A
number of consistency checks have been performed on (3.6) and (3.7), ensuring that these
equations are consistent in various limits. These limits are discussed below.

3.1. Inviscid limit of (3.6) and (3.7)
The first check on (3.7) is to demonstrate that it reduces to (2.3) (Matheiu equation on
an inviscid cylinder) in the inviscid limit. In the inviscid limit, l → ∞ (for fixed s) and
it may be shown that limν→0 ζ̃ (s) → 0 and limν→0 χ̃ (s) → 1 in (3.7). For this, we have
used the asymptotic expressions for Im(z) and I

′
m(z) as z → ∞ and fixed m (Olver 2021).

Consequently, the inversion of (3.6) into the time domain becomes trivial leading to the
Mathieu equation (Patankar et al. 2018) for potential flow,viz.

d2am

dt2
+ I′m(kR0)

Im(kR0)

[
T

ρR3
0

kR0

(
k2R2

0 + m2 − 1
)

+ kh cos (Ωt)

]
am(t) = 0, (3.8)

where we have used F(r, t) = −h(r/R0) cos(Ωt) in writing (3.8).

3.2. Unforced (h = 0) limit of (3.6)
The next test is to show that in the absence of forcing, expression (3.6) leads to the correct
dispersion relation for free, viscous modes. We demonstrate this for the axisymmetric case
where expressions for χ̃ (s) and ζ̃ (s) (see below (3.7)) are particularly very simple, viz. for
m = 0, we have

χ̃ (s) → l2 − k2

l2 + k2 = s
s + 2νk2 , ζ̃ (s) → − k2l

l2 + k2

I
′′
0(lR0)

I′
0(lR0)

= − νlk2

s + 2νk2

I
′′
0(lR0)

I′
0(lR0)

. (3.9)
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These may be obtained from the observation that, for m = 0, Λ1(s) diverges while Λ2(s)
and Λ3 remain finite. Using expressions 3.9 in (3.6) leads to

[
s2ã0 − sa(0)

]
+ 2νk2 I′′0(kR0)

I0(kR0)

[
sã0 − a(0)

]− 4νk
I′0(kR0)

I0(kR0)

νlk2

s + 2νk2

I
′′
0(lR0)

I′
0(lR0)

[
sã0 − a(0)

]

+ I′0(kR0)

I0(kR0)

s
(s + 2νk2)

[
T

ρR3
0

kR0

(
k2R2

0 − 1
)

ã0

]
= 0, (3.10)

implying that

ã0(s; k) =

[
s + 2νk2 I

′′
0(kR0)

I0(kR0)
− 4ν2 lk3

s + 2νk2

I
′
0(kR0)

I0(kR0)

I
′′
0(lR0)

I′
0(lR0)

]

s2 + 2νk2

{
I
′′
0(kR0)

I0(kR0)
− 2νlk

s + 2νk2

I
′
0(kR0)

I0(kR0)

I
′′
0(lR0)

I′
0(lR0)

}
s − s

s + 2νk2σ
2
0

a(0).

(3.11)

Comparing the denominator of (3.11) with expression (2.2b), and replacing s → σ , we
find that these are the same expressions. This is consistent as the viscous dispersion
relation for free perturbations is obtained from the homogenous solution to the linear set of
equations governing Ã(s), C̃(s), D̃(s) and ãm(s; k). The denominator of (3.11) represents
the determinant of the homogenous part of these equations (Prosperetti 1976; Farsoiya,
Roy & Dasgupta 2020) and, thus, leads us to the dispersion relation provided in (2.2b).
We have thus verified that (3.6) produces the correct dispersion relation in the unforced,
axisymmetric limit.

3.3. Flat interface limit of (3.7)
We demonstrate that in the limit R0 → ∞ (flat interface limit), our (3.6) reduces to the
following equation (∂t ≡ d/dt) (Beyer & Friedrich 1995):

{
1
k

(
∂t + 2νk2

)2 +
(

Tk2

ρ
+ h cos (Ωt)

)}
a0(t)

−4ν3/2k2

π

∫ t

−∞

√
π

t − τ
exp(−νk2(t − τ))

(
∂τ + νk2

)
a0(τ ) dτ = 0. (3.12)

The algebra for this is lengthy and is provided in Appendix B. Equation (3.12) is an
analogue of (3.7) governing Faraday waves on a flat surface and was obtained by Beyer &
Friedrich (1995) (deep-water limit).

Having demonstrated the consistency of (3.6) and (3.7), we will return to analysing
these at the end of § 5. Equation (3.7) is solved numerically in Mathematica using built-in
numerical Laplace inversion subroutines (Wolfram Research, Inc. 2017) and results will be
compared with DNS in § 5 in the context of RP stabilisation. In the next section we discuss
the stability plots obtained from Floquet analysis which will suggest the RP stabilisation
strategy.
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4. Linear stability predictions

In this section we present linear stability predictions obtained from Floquet analysis
described earlier. Before discussing the RP stabilisation predictions, we validate our
mathematical model by comparing some of its predictions against recent experimental
results which attempt to realize this model.

4.1. Physical realisation of the radial, body force and comparison with experiments
The radial, oscillatory body force in (2.1) acts normal to the unperturbed surface of the
cylinder mimicking a time-dependent gravitational force in the classical Faraday wave
experiment (Benjamin & Ursell 1954). Such a harmonic body force of mechanical origin
has been realised in the recent experiments of Maity et al. (2020). These authors report
observations of sub-harmonic, standing waves on liquid half-cylinders subject to substrate
vibration. The experiments comprise a vertically vibrated, static, liquid half-cylinder
(length ≈ 10 cm, radius ≈ 0.3 cm) with a pinned contact line. The vibration manifests
as a body force on the cylinder in the oscillating frame of reference. Although this force
is not purely radial, at high vibration frequency the azimuthal velocity produced due to
the azimuthal force component is expected to be small. Consequently, the force may be
treated as being purely radial and acting on a quiescent cylinder in a first approximation
(see discussion in the first paragraph of page 7, columns 1 and 2 in Maity et al.
2020).

Comparing their experimental results to inviscid linear stability predictions for the
base state represented by (2.1), the authors report good agreement with the linear theory
reported in (Patankar et al. 2018; Maity et al. 2020). Notably they (Maity et al. 2020)
observe a sub-harmonic parametric instability also predicted by the theoretical model in
(2.1). We will demonstrate that predictions from our present viscous Floquet analysis for
the threshold acceleration of unstable, non-axisymmetric modes are in agreement with
the experimental observations in Maity et al. (2020). Despite this agreement, it should
be noted that this is at best a qualitative comparison only. This is so because our (and
Maity et al. 2020) theoretical model represented by (2.1) considers a full cylinder and
does not explicitly account for the substrate present in the experiments. Interestingly, the
choice of eigenmode in Patankar et al. (2018) and the current study implies that if our full
cylinder were to be treated as a half-cylinder on a hypothetical flat substrate at θ = (0,π),
the normal velocity by construction is zero at this substrate (see the expression for uθ in
(2.19)) and, thus, the non-penetration boundary condition at the substrate is automatically
satisfied. However, the pinned contact line condition or the no-slip condition at the
substrate cannot be respected. In contrast, the choice of the eigenmode in the inviscid study
of Maity et al. (2020) ensures that the pinned boundary condition at the (hypothetical)
substrate is observed at θ = 0,π (η(z, θ, t) ∝ sin(mθ)), but the no-penetration condition
is then violated (their equation (4) implies uθ ∝ cos(θ)). In the inviscid case, both choices
of eigenmodes lead to an identical conclusion, viz. the amplitude of the perturbation is
governed by the Mathieu equation. Note that equation (5) in Maity et al. (2020) can be
obtained from equation (3.7) in Patankar et al. (2018) by setting gravity g = 0 in the
former and the ambient fluid density ρO = 0 in the latter. Consequently, we conclude that
while the experimental template of Maity et al. (2020) seems like a good candidate for
realising an (approximately) radial oscillatory body force, appropriate modifications to it
are necessary to minimise contact line and other substrate effects not present in the theory.
These modifications are particularly important for realizing the theoretically predicted RP
stabilisation of liquid cylinders sans any substrate that forms the focus of the current study.
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We discuss these modifications next and also compare our theoretical predictions with
experimental results in Maity et al. (2020).

In the absence of vertical vibration, a quiescent liquid half-cylinder with pinned contact
line (Maity et al. 2020) is a static rivulet (Davis 1980). For rivulets with vertical extent
below the capillary length (as is the case for Maity et al. 2020), the effect of gravity is
negligible and capillary effects dominate their shape and dynamics (Bostwick & Steen
2018). It is useful to recall a few points concerning their stability as enumerated in Davis
(1980) and, more recently, by Bostwick & Steen (2018). Importantly, the no-penetration
and pinned boundary condition on the substrate are both explicitly accounted for in these
studies. Linear analysis predicts that the classical RP instability of a liquid cylinder (that
we seek to dynamically stabilise) persists for a static rivulet on a substrate, provided the
contact angle exceeds π/2 when the rivulet is unstable to pinned, varicose modes; see
figure 5 in Davis (1980) and figure 4(a) in Bostwick & Steen (2018). As the experiments
of Maity et al. (2020) employ a half-cylinder with a contact angle of π/2 (in the base
state), it is expected that the RP instability mechanism does not operate for them where
pinned varicose and sinuous modes are known to be stable (Bostwick & Steen 2018). The
instability that is expected in this case is parametric instability, when the amplitude of
forcing exceeds a threshold. This expectation tacitly assumes that the stability predictions
for the radially forced cylinder governed by (2.1) can (at least) qualitatively describe the
parametric instability seen in these experiments (Maity et al. 2020). As will be seen in the
following, this expectation receives support from experimental data.

As a first step it is verified that despite the length of the half-cylinder being more than its
circumference in all cases (Maity et al. 2020), the authors do not report the RP instability
in the absence of forcing, consistent with what is predicted theoretically (Bostwick & Steen
2018). Instead, the authors detect parametric instability of non-axisymmetric modes (m >

0) at half the forcing frequency (Maity et al. 2020). In figure 4 we compare experimental
data for the parametric instability in Maity et al. (2020) with predictions from our viscous
Floquet theory described earlier in § 2.3.1. We obtain acceleration thresholds h relevant
to non-axisymmetric modes (i.e. non-RP modes) on a radially forced, viscous liquid
cylinder from our Floquet analysis. The modes (i.e. values of (k,m)) are taken from the
experimental observations in Maity et al. (2020) and it has been checked that the unstable
modes manifested in their experiments are close to the minima of the first sub-harmonic
tongue(s) at various forcing frequencies. Figure 4(a) shows a comparison of the threshold
acceleration (hc) at different frequencies from theory and experiments. A reasonably
good agreement is apparent from the figure, despite significant differences between the
theoretical model and the experimental set-up discussed earlier. These conclusions also
concur with Maity et al. (2020) who compared the wavenumbers (k,m) of the most
unstable mode at the inception of instability with their inviscid theory and reported good
agreement.

Turning our attention to the RP mode stabilisation that is the focus of our study, it
is evident that if the aforementioned experimental template (Maity et al. 2020) is to be
used for testing the current RP stabilisation predictions (discussed in next section), the
effect of the substrate needs to be minimised, if not eliminated. This can be achieved
for a liquid cylinder on a substrate with contact angle approaching π. The effect of
increasing the contact angle far beyond π/2 serves two purposes. On the one hand, it
reduces liquid contact with the substrate, the configuration in the limit of the contact angle
→ π resembling a cylinder on a wire support; see figure 4(b). Equally important, with
increasing contact angle (above and beyond π/2) the cylinder becomes susceptible to an
increasingly wide range of RP unstable capillary modes and nearly approaches the free
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Figure 4. (a) Comparison of critical acceleration threshold obtained from Maity et al. (2020) (their
figure 7a,d) with present Floquet theory. We choose ρ = 1, μ = 0.01,R = 0.31,T = 72, g = 0 in
centimetre–gram–second (c.g.s.) units corresponding to water. In the data gap seen around 37 Hz and 80 Hz,
the authors (Maity et al. 2020) do not report observing a single unstable wavelength but chaotic, irregular
behaviour of the interface. The acceleration threshold on the vertical axis is expressed in units of gravity
g to aid intuition, although gravity is neglected in the model. The dimensions of the liquid half-cylinder in
Maity et al. (2020) are close to the air–water capillary length and, hence, gravity is expected to be negligible.
(b) Suggested configuration for testing RP stabilisation by vertical oscillations.

cylinder limit as the contact angle tends to π (the highest growth rates are observed at
≈ 135◦, see figure 6 in Bostwick & Steen 2018). Previous studies (Davis 1980; Bostwick
& Steen 2018) have examined the RP unstable range for this configuration, predicting
that the unstable wavenumber range gets somewhat diminished from 0 < kR0 < 1 in the
free cylinder case to 0 < kR0 <

√
3/4 (Davis 1980) for a cylinder on a wire support. We

thus anticipate that the dynamic stabilisation proposed here for the idealised case of a
free cylinder subject to a radial oscillatory body force could serve as a useful model to
stabilise RP unstable modes of a liquid cylinder on a support with large contact angles
in the range 135◦–180◦ and minimal substrate contact. This is achieved by subjecting
the latter to high-frequency vertical oscillations as depicted in figure 4(b). It should be
borne in mind that a number of assumptions have been employed leading to the proposed
set-up in figure 4(b). We assume that the oscillatory body force may be treated as being
approximately radial, analogous to the half-cylinder case, even when the contact support
is minimal. The inability to satisfy the no-slip condition at the substrate can be partially
offset, by suitably coating it to induce slip (Haefner et al. 2015). However, other substrate
boundary conditions cannot be satisfied, and due to the reduced substrate contact we
assume that the effect of these are minimal. The validity of these assumptions and the
resultant impact on the applicability of our present theoretical model to the proposed
experiments are not intuitively obvious, and require systematic further investigation. We
expect that the theoretical predictions made here will serve as a useful benchmark against
which observations from the proposed experiments can be compared.

4.2. Linear stability predictions of RP mode stabilisation
Having demonstrated the feasibility of our theoretical model, we now shift attention to
discussing the RP stabilisation strategy as suggested by the Floquet analysis described
earlier. Referring to figure 5(a) (case 1 in table 3 provides the parameters), we wish
to stabilise the axisymmetric RP unstable mode (k0 = 4.8,m0 = 0) by subjecting the
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Figure 5. Stability plots for (a) axisymmetric (m = 0) and (b) non-axisymmetric (m = 1, 2, 3, 4) modes
with case 1 parameters, table 3 (Ω = 600π). For h > 0, grey and white regions are unstable and stable,
respectively. For panel (a), bold black lines → viscous tongue, black dashed line → inviscid tongue; inset
shows the de-magnified view. The mode (k0 = 4.8,m0 = 0) is stabilised for h > hcr1 = 1.23 × 104 cm s−2.
The optimum forcing satisfies hcr1 < h < hcr2 with hcr2 = 2.05 × 104 cm s−2 for m = 4 (see panel b). The
chosen h = 1.8 × 104 (indicated by a red symbol and solid red line in panels (a,b), respectively) keeps the

cylinder stable. The hcr1 scales as ∼ (Ω/k)
√

T/ρR3
0 ≈ 2 × 104 cm s−2 in comparison to capillary acceleration

of an RP unstable mode, viz. (T/ρR2
0) ≈ 500 cm s−2, i.e. approximately 40 times the latter. Results are shown

for (a) m = 0; (b) m = 1, 2, 3, 4.

cylinder to an optimum forcing h. This cylinder is chosen to be of length L = 1.31 cm
or 2π/k0. Thus, our stabilisation strategy ensures that the cylinder is as long as the longest
RP unstable mode that we seek to stabilise. This ensures that shorter wavelength modes
(both axisymmetric and three dimensional) are also simultaneously stable at the optimim
level of forcing (see below). As shown in figure 5(a), the viscous stability tongues are
moved upwards due to viscosity (Kumar & Tuckerman 1994), compared with the inviscid
tongues which touch the wavenumber axis (black dashed line in left panel). The figure
shows that the critical threshold of forcing (we will call it hcr1 hereafter) for stabilising
(k0 = 4.8,m0 = 0) is hcr1 = 1.23 × 104 cm s−2, and the applied forcing (h) needs to
satisfy h > hcr1 for stabilisation of this mode. Simultaneously, we also need to ensure that
h is below a second threshold hcr2. This second threshold (hcr2) is chosen to be the ordinate
corresponding to the lowest minima among all the stability tongues in figure 5(a,b). For
stabilisation, we require hcr1 < hcr2 and this is ensured by using the frequency of forcing
Ω as a control parameter for a given set of fluid parameters. Once we have chosen an Ω
which satisfies the ordering hcr1 < hcr2, any choice of h satisfying hcr1 < h < hcr2 not
only stabilises the primary mode (k0,m0) but also keeps moderately high modes (k > k0
for m = 0, 1, 2, 3, 4 . . .) stable.

Note that viscosity plays a very important role in this stabilisation as by displacing the
(in)stability tongues upward, it allows for the possibility of choosing the forcing such that
hcr1 < h < hcr2. In the inviscid case, this is impossible to arrange as hcr2 = 0 because
in the inviscid case all (instability) tongues touch the wavenumber axis. Consequently, in
an inviscid system if we force the cylinder at h > hcr1, while the RP mode (k0,m0 = 0)
is definitely stabilised, at long time (Patankar et al. 2018) higher modes (axisymmetric
and non-axisymmetric) are produced due to nonlinearity and some of these are inevitably
linearly unstable at the chosen level of forcing h. As a consequence, only a short-lived
quasi-stabilisation is achieved in inviscid systems, thus rendering the stabilisation strategy
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unsuitable (this was shown in figure 3b). The situation is rectified by including viscosity
into our analysis. Refer to figure 5 where the red dot in the left panel and the solid red
line in the right panel indicates a suggested optimal value of h satisfying hcr1 < h < hcr2
for the RP mode k0 = 4.8,m0 = 0. Note that the high modes (i.e. those with k � k0
and m � m0) which can be generated due to nolinearity are also associated with high
rates of dissipation. Consequently, we need not take into account the stability of very
high modes in our stabilisation strategy. For the present purpose, we found it adequate to
ensure that at the chosen value of Ω and h, the primary mode (k0,m0) as well as modes
up to (7k0, m = 0, 1, 2, 3, 4) are stable. This is found to be adequate for stabilisation
of the liquid cylinder (at least up to the simulation time of several hundred forcing
cycles).

An important point to note here is that although our theory has been developed
assuming that a continuous range of RP modes with arbitrary long wavelengths (k → 0)
are accessible to our system, in practice there is a finite upper limit on the maximum
wavelength that the system can access (due to axial confinement). In validating the present
stability predictions via DNS (see § 5), we chose the length L of the unperturbed cylinder
to be L = 2π/k0, k0 being the wavenumber of the axisymmetric RP unstable mode we
intend to stabilise. Boundary conditions (periodic) in the axial (z) direction imply that
only integral multiples of wavenumber k0 are allowed to appear in our simulations. This
ensures that wavenumbers verifying k < k0 are not accessible to our system, although it
is clear from figure 5(a) that such axisymmetric modes can continue to be unstable at
the optimal level of forcing (h = 1.8 × 104). We shall return to this point at the end of
this study. For stabilising the mode (k0 = 4.8,m0 = 0), we have chosen h = 1.8 × 104

(satisfying hcr1 < h < hcr2) as indicated by the red dot in figure 5(a). It will be shown in
§ 5 through DNS that exciting the perturbation k0 = 4.8,m0 = 0 on the cylinder at t = 0
with the forcing strength h = 1.23 × 104 (atΩ = 600π) allows it to remain stable (at least
up to the simulation time of several hundred forcing time periods). It will also be seen that
the imposed perturbation decays to zero at long time, in excellent agreement with the
solution to (3.7).

We next provide the optimal forcing strength for a slightly longer wavelength RP mode
compared with the previous case. We choose to stabilise the axisymmetric RP unstable
mode (k0 = 3.48,m0 = 0). As described earlier, the cylinder length is now chosen to
be L = 2π/k0 = 1.81 cm such that k0 = 3.48 corresponds to the longest wave which can
appear on this cylinder. This mode is indicated with a pink star in figure 5(a). It is seen
that hcr1 for this mode is ≈ 4.1 × 104 cm s−2 and, thus, we do not satisfy hcr1 < hcr2 (the
minima of all the axisymmetric and non-axisymmetric stability tongues are much lower
than hcr1). Choosing simply h > hcr1 allows the possibility of higher unstable modes to
appear in simulations, as discussed in the last paragraph. In order to prevent this we
now use the forcing frequency Ω as a tuning parameter. In figure 6 we have increased
Ω = 2200π (from 600π earlier), holding all fluid parameters at the same value as earlier
(this is case 2 in table 3). The advantage of doing so is visible in figure 6(a,b) where
it is seen that by increasing Ω , we have the desired ordering. For our chosen mode
(k0 = 3.48,m0 = 0), we can see that hcr1 ≈ 1.52 × 105 and hcr2 ≈ 1.74 × 105 (obtained
from the minima of the m = 4 tongue shown in the right pane) and the desired ordering
hcr1 < hcr2 exists at this forcing frequency. The optimal level of forcing is chosen to be
h = 1.65 × 105 cm s−2 (indicated by the red dot and the solid red line in the left and right
panel, respectively). It will be shown in the next section through DNS that this mode is
also stabilised at this optimal forcing, at least up to the simulation time exceeding two
thousand forcing time periods.
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Figure 6. Stability plots for (a) axisymmetric m = 0 and (b) non-axisymmetric (m = 1, 2, 3, 4) modes with
case 2 parameters, table 3 (Ω = 2200π). The figures are to be read in the same way as figure 5. The mode (k0 =
3.48,m0 = 0) is stabilised for h > hcr1 = 1.52 × 105 cm s−2. The optimum forcing satisfies hcr1 < h < hcr2.
Here hcr2 = 1.74 × 105 cm s−2 for m = 4 (panel b). The chosen h = 1.65 × 105 (indicated by a red symbol

and solid red line in panel (a,b), respectively) keeps the cylinder stable. The hcr1 scales as ∼ (Ω/k)
√

T/ρR3
0 ≈

1 × 105 cm s−2 in comparison to capillary acceleration of an RP unstable mode, viz. (T/ρR2
0) ≈ 500 cm s−2,

i.e. approximately 200 times the latter. Results are shown for (a) m = 0; (b) m = 1, 2, 3, 4.

Sl. Face Pressure ( p) Velocity (u, v,w) Volume fraction (c)

1 1854, 2763 Periodic Periodic Periodic
2 1234, 5678, 3456, 1278 Dirichlet Neumann Neumann

Table 2. Boundary conditions for 3-D DNS.

5. Numerical simulations

We compare the predictions made in the previous section(s) with DNS. The simulations
are executed using Basilisk (Popinet 2014) which solves the incompressible, Navier–Stokes
equations for two fluids with outer fluid density and viscosity ρO, μO and inner fluid
parameters ρI, μI . As our theory neglects the outer fluid, the ratios ρO/ρI and μO/μI
have both been chosen to be quite small to minimise the dynamics of the outer fluid.
Basilisk is based on the volume-of-fluid algorithm and the solver has been extensively
benchmarked for unsteady two-phase flows (Farsoiya, Mayya & Dasgupta 2017; Singh,
Farsoiya & Dasgupta 2019; Mostert & Deike 2020; Basak, Farsoiya & Dasgupta
2021; Farsoiya, Popinet & Deike 2021; Ramadugu, Perlekar & Govindarajan 2022). A
comprehensive list of publications based on the Basilisk solver is provided in Popinet
(2014).

The computational geometry and the boundary conditions are shown in figure 7 and
table 2, respectively. For numerical reasons, we have applied the radial forcing term
F(r, t) = −h(r/R0) cos(Ωt)êr to the entire computational domain in figure 7. As the
density of the outer fluid is very small, (viz. ρI/ρO ≈ 103), the effect of forcing on the
outer fluid remains small and results from the DNS will be seen to agree very well with
theory which ignores the effect of the outer fluid.

A base level refinement of 6 (in powers of two) with adaptive higher grid levels
of 9 are employed at the interface and for fluid inside the cylinder. Table 2 lists the
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Figure 7. Direct numerical simulation geometry. A radial body force F (r, t) = −h(r/R0) cos(Ωt)êr is applied
at every grid point in the domain. Boundary conditions are listed in table 2. The length of the domain
L = 2π/k0, k0 being the wavenumber of the axisymmetric RP unstable mode that is excited at t = 0.

boundary conditions used on the various faces of the domain. Note that, for axisymmetric
simulations, we use symmetry conditions on the axis of the cylinder. The length of
the computational domain is L = 2π/k0, where k0 is the RP unstable mode we wish
to stabilise. The interface is deformed initially as η(z, θ, 0) = am(0) cos(k0z) with zero
velocity everywhere in the domain, and we track the evolution of the interface with
time at the centre of the domain (see figure 7). Baslisk (Popinet 2014) solves the
equations

Du
Dt

= ρ−1 {−∇p + ∇·(2μD)+ Tκδsn} − h cos(Ωt)
r

R0
er, (5.1)

∇·u = 0 and
∂c
∂t

+ ∇·(cu) = 0, (5.2)

where ρ ≡ cρI + (1 − c)ρO, μ ≡ cμI + (1 − c)μO, u, p, D = [∇u + (∇u)Tr]/2, c are
density, velocity, pressure, stress tensor and volume fraction, respectively. The volume
fraction field c is unity for fluid inside the filament and 0 for the fluid outside. Here
T is the surface tension coefficient, δs is a surface delta function, κ ≡ 1/R is the local
curvature, n is a local unit normal to the interface and R0 is the radius of the unperturbed
filament.

5.1. Stabilisation of RP modes: DNS results and comparison with theory
Figure 8 shows stabilisation of the RP mode k0 = 4.8,m = 0 in DNS, both axisymmetric
as well as three dimensional (refer to figure 5 for stability chart for this case). This is
case 1 in table 3 and shows stabilisation of the mode k0 = 4.8,m0 = 0 (subscripts 0
are used for primary modes, viz. the modes excited initially in DNS). The dotted lines
in red and blue are from DNS and nearly overlap. These indicate the amplitude of the
interface as a function of time (the interface is tracked at the centre of the domain
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Figure 8. Case 1 in table 3: DNS time signal (red and blue dots) for (k0 = 4.8,m0 = 0) excited at t = 0
and hcr1 < h < hcr2; refer to stability plot in figure 5. Solution to (3.7) (black line); destabilisation seen in
axisymmetric DNS when h < hcr1 (pink line) and when h > hcr2 (green line). Note the excellent agreement
between solution to (3.7) and DNS at least up to the simulation time of 600 forcing cycles (t̃ ≡ tΩ/2π). This
is in contrast to inviscid simulations in figure 3(b) where for the same k0, stabilisation is seen for only three
forcing cycles.

at θ = 0, see figure 7). The signals show stable, underdamped behaviour, decaying to
zero after a few hundred forcing cycles (≈ 400 cycles). Note the excellent agreement
between the DNS signals and the numerical solution to (3.7) indicated by the solid black
line. We mention here that (3.7) in the axisymmetric limit reduces to (5.3) as discussed
later in § 5. In all our comparison of DNS with analytical predictions that follow, we
have solved (5.3) numerically in Mathematica (Wolfram Research, Inc. 2017) (this is
referred to as analytical solution in all figure legends) and the script file for the same is
provided as additional supplementary material. The inset to figure 8 shows that superposed
on the long time underdamped oscillations are fine-scale oscillations arising from the
high-frequency (compared with the growth rate of the RP mode) forcing imposed on the
cylinder. Also shown in figure 8 are two more DNS signals, one with forcing h > hcr1
and another with h < hcr2. Both forcing levels are outside the optimum window hcr1 <
h < hcr2 and, thus, stabilisation is not achieved (see figure 5 for the optimum forcing
window).

In figure 9(a) we further validate the stabilisation obtained in figure 8 by turning off
forcing at t̃ = 485 in DNS. It is seen that the interface destabilises in the absence of forcing
indicating that forcing is crucial to the observed stabilisation.

In figure 9(b) we show stabilisation of the RP unstable mode k0 = 3.48,m0 = 0 (case 2
in table 3). Recall from our discussion in the previous section that the frequency of forcing
Ω was increased to 2200π for this case in order to satisfy the ordering hcr1 < h < hcr2
(refer to figure 6 for stability chart for this case). The figure shows that stabilisation is
achieved and sustained at least for a simulation time exceeding 3000 forcing cycles when
the perturbation decays to zero in an underdamped manner.
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Figure 9. (a) Effect of turning-off forcing on RP mode stabilisation. This is the same mode as figure 8 with
forcing turned off at t̃ = 485 ≈ for DNS. Subsequently the RP unstable mode displays unbounded growth.
(b) Case 2 in table 3: DNS time signal for the mode (k0 = 3.48,m = 0). Stabilisation is seen at least up to the
simulation time of 3000 forcing cycles with excellent agreement between DNS (axisymmetric) and the solution
to (3.7). Refer to stability chart in figure 6 for this case with frequency increased to Ω = 2200 compared with
case 1. (a) Case 1 in table 3, (b) time signal.

5.2. Damping and the memory term
We return in this section to a discussion of terms in (3.7) that appear due to viscosity,
viz. the damping and the memory terms. These terms are physically easiest to interpret in
the axisymmetric limit. It is shown in the supplementary material that in this limit, (3.7)
reduces to

d2a0

dt2
+ 2νk2

(
1 + I′′0(kR0)

I0(kR0)

)
da0

dt
+ I′0(kR0)

I0(kR0)

[
T

ρR3
0

kR0(k2R2
0 − 1)+ kh cos(Ωt)

]
a0(t)

+ 4ν2k4

I0(kR0)

∫ t

0
L̂−1 [K(s)] da0

dτ
(t − τ) dτ = 0,

where K(s) =
(

I′′0(kR0)

s
− l

k
I′0(kR0)I

′′
0(lR0)

sI′
0(lR0)

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.3)

If we temporarily disregard the memory term in (5.3), then it is clear that the rest of the
equation constitutes a damped Mathieu equation, i.e. the damped version of (2.3) for m = 0
(axisymmetric). This is

d2a0

dt2
+ 2νk2

(
1 + I′′0(kR0)

I0(kR0)

)
da0

dt
+ I′0(kR0)

I0(kR0)

[
T

ρR3
0

kR0(k2R2
0 − 1)+ kh cos(Ωt)

]
a0(t) = 0.

(5.4)

Equation (5.4) is the cylindrical analogue of its Cartesian counterpart which has been
discussed in Kumar & Tuckerman (1994); Cerda & Tirapegui (1998) for viscous Faraday
waves over a flat interface (see equation (4.21) in Kumar & Tuckerman (1994) or
equation (3.4) in Cerda & Tirapegui 1998). In order to put this analogy on a sound
footing, we take the limit R0 → ∞ (for fixed k) on (5.4) expecting to recover results
relevant to a flat interface (as R0 → ∞, the cylinder locally becomes flat). Using the
identity limz→∞ I

′′
0(z)/I0(z) = 1, it is seen that the coefficient of the second term in 5.4
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in this limit reduces to the damping coefficient of viscous capillary waves (deep water)
on a flat interface, viz. 4νk2, which is the same as estimated in Kumar & Tuckerman
(1994); Cerda & Tirapegui (1998). Note that the damping factor 4νk2 for a flat interface
is obtained by estimating dissipation for potential flow (Kumar & Tuckerman 1994). By
analogy it may similarly be expected that the pre-factor 2νk2(1 + I′′0(kR0)/I0(kR0)) in (5.4)
arises from the damping of potential flow (Patankar et al. 2018) in the liquid cylinder.
It has been verified that this is correct and the factor 2νk2(1 + I′′0(kR0)/I0(kR0)) indeed
agrees with the damping predicted by the coefficient of σ in the dispersion relation in
equation (5.10) of Wang, Joseph & Funada (2005), which was obtained through a viscous
potential flow calculation (VCVPF in their terminology with a crucial viscous pressure
correction)

Turning now to the memory term in (5.3), we note that it does not depend on the
forcing strength h. Thus, it persists even in the unforced limit (h → 0), in which case (5.3)
becomes one governing free perturbations. This equation was derived earlier by Berger
(1988) by solving the corresponding IVP with h = 0 and we have verified that the unforced
limit of (5.3) agrees with the equation of Berger (1988) (see supplementary material).
The Laplace inversion of K(s) in (5.3) is analytically feasible and may be expressed as
an infinite summation over integrals from residue theory (see expression 79 in Berger
1988). For convenience, we reproduce this here as the term on the right-hand side of (5.5)
(the damping term in (5.5) has been slightly modified from Berger (1988) but is exactly
equivalent to his expression),

d2a0

dt2
+ 2νk2

(
1 + I′′0(kR0)

I0(kR0)

)
da0

dt
(t)+

[
T

ρR3
0

kR0

(
k2R2

0 − 1
) I1(kR0)

I0(kR0)

]
a0(t)

= 8ν2k3

R0

I0(kR0)

I1(kR0)

∫ t

0
dt

′ da0(t′)
dt′

exp
(
−νk2(t − t

′
)
)∑

jn

exp

[
−
(
ν

R2
0

)
j2n(t − t

′
)

]

1 +
(

R0k
jn

)2 ,

(5.5)

where jn represents the nth (non-zero) zero of J1(jn) = 0 (Berger 1988). The origin of the
infinite summation in (5.5) may be rationalised as follows: the initial condition of zero
vorticity and surface deformation (i.e. η(z, θ, 0) = a0 cos(k0z)) excites all modes in the
spectrum, (viz. two capillary modes and a countable infinite set of hydrodynamic modes
García & González 2008). The excitation of the countably infinite set of hydrodynamic
modes (which are all purely damped modes) produces the infinite summation in the
analytical expression for a0(t; k), also manifesting as the memory term(s) in (5.5).
These conclusions for free perturbations on a cylinder have analogues on a flat surface
(e.g. see equation (2.30) in Cerda & Tirapegui (1998) which expresses the amplitude
as a sum over two capillary modes and an infinite sum over the hydrodynamic
modes).

Physically, the presence of the memory term implies that the damping seen in DNS
contains contributions not only from the potential part of the flow (as is modelled correctly
by the damped Mathieu equation (5.4)) but also from the memory term(s) which arise due
to the boundary layer at the free surface. We find that the contribution of the memory term
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Figure 10. (a) Stability diagram for case 3 in table 3. The viscosity has been doubled for this case compared
with case 1 in table 3. The RP mode k0 = 4.8,m0 = 0 and moderately higher modes are stabilised if
hcr1 < h < hcr2. Here hcr1 = 1.24 × 104, and hcr2 = 3.74 × 104 is determined from the non-axisymmetric
stability plot for m = 4 (not shown here). We choose h = 1.8 × 104 for stabilisation as indicated by the red dot.
(b) Time signal from axisymmetric DNS showing stabilisation for the RP unstable mode indicated by a red
dot in (a), viz. k = 4.8,m = 0. Note the overdamped response and the excellent agreement with the solution to
(3.7). Blue line: solution to the damped Mathieu equation (5.4). The analytical response is the solution to (5.3).
(a) Result shown for m = 0. (b) Time signal.

in (5.4) increases as the kinematic viscosity of the fluid is increased, and is the largest
(in the axisymmetric limit being studied here) when viscosity is sufficiently large for the
stabilised response of the liquid cylinder to be overdamped. Figure 10(b) depicts this for
the RP mode k0 = 4.8,m0 = 0 (case 3 in table 3), highlighting the difference between the
solution to the damped Mathieu equation (5.4) and the integro-differential equation (5.3).
It is seen that at intermediate time (80 < t̃ < 100), the damped Mathieu equation (5.4)
underpredicts the damping that is seen in the DNS and in (5.3). The corresponding stability
chart with the optimal level of forcing for stabilisation is indicated in the upper panel of
figure 10(a).
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We conclude this study with a discussion on the limitation of the present stabilisation
technique, viz. that it does not stabilise the entire RP unstable spectrum at any finite level
of forcing, but it does stabilise all modes accessible to the cylinder (both axisymmetric
and three dimensional) with k > k0 on a cylinder of length L = 2π/k0. This arises
from the infinitely long cylinder assumption that we have made allowing all modes
from 0 < k0 < ∞ to be present. In practice we expect to encounter liquid cylinders
of finite length typically confined between supports. The boundary conditions at the
end points (e.g. pinned, see Sanz 1985) can substantially modify the nature of the
eigenmodes in the z direction compared with the Fourier modes that we have assumed
here.

6. Conclusions

In this study we have proposed dynamic stabilisation of RP unstable modes on a
viscous liquid cylinder subject to radial, harmonic forcing. We use linearised, viscous
stability analysis employing the toroidal-poloidal decomposition (Marqués 1990; Boronski
& Tuckerman 2007). It is demonstrated that for a viscous fluid, by suitably tuning
the frequency of forcing and optimally choosing its strength, not only can a chosen
axisymmetric RP mode (k0) be stabilised but also all moderately large integral multiples
of k0, both axisymmetric and three dimensional, can be prevented from destabilising the
cylinder. Direct numerical simulations have been used to validate theoretical predictions
demonstrating stabilisation (at least up to the simulation time of several hundred forcing
cycles), in marked contrast to our earlier inviscid study (Patankar et al. 2018) where only
quasi-stabilisation was achieved. We have shown that viscosity plays a crucial role in this
as it enables the upper critical threshold of forcing to be greater than zero hcr2 > 0, unlike
the inviscid case. It is demonstrated that one can tune the forcing frequency Ω such that
the optimal strength of forcing satisfies hcr1 < h < hcr2.

Additionally, we have also solved the IVP corresponding to surface deformation and
zero vorticity initial conditions, leading to a novel integro-differential equation governing
the (linearised) amplitude of three-dimensional Fourier modes on the cylinder. This
equation is non-local in time and represents the cylindrical analogue of the one governing
Faraday waves on a flat interface (Beyer & Friedrich 1995; Cerda & Tirapegui 1997).
Our equation generalizes to the viscous case the Mathieu equation that was derived in
Patankar et al. (2018). In the axisymmetric limit we have proven that the memory term
in the equation is inherited from the unforced problem and represents the excitation of
damped hydrodynamic modes. We find that the contribution from this term is the highest
when fluid viscosity is taken to be sufficiently large such that the stabilised response
of the RP mode is overdamped. The stabilisation strategy that has been proposed here
can in principle be used to stabilise any axisymmetric RP mode of wavenumber k0. In
practice, as k0 gets smaller (longer modes), the threshold frequency increases sharply and
compressibility effects can become important. We have also seen that modes which satisfy
k < k0 are still unstable although they are inaccessible to our numerical simulations due to
the periodic nature of the boundary conditions. An interesting analogy of the present study
exists with Woods & Lin (1995). In our study, there is a range of long waves (k < R−1

0 )
which are linearly unstable when there is no forcing (h = 0). For fixed viscosity of the
liquid and through optimal choice of the strength (h) and frequency of forcing (Ω), we
have demonstrated stabilisation of these hitherto unstable RP modes. A nearly analogous
situation arises in flow over an infinitely long inclined plane where the base flow is linearly
unstable to long gravity waves (Benjamin & Ursell 1954; Yih 1967) and may be stabilised
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by subjecting the plane to vertical oscillation. Figure 4 of the study by Woods & Lin
(1995) bears a strong qualitative resemblance to our axisymmetric stability charts (inset of
figure 5a).

We note in conclusion that the curvilinear analogues of the Faraday instability on
interfaces with spherical (Adou & Tuckerman 2016; Ebo-Adou et al. 2019) or cylindrical
symmetry (Patankar et al. 2018; Maity et al. 2020) arise due to imposition of radial,
time-periodic body forces. Analogous to the cylindrical case (Maity et al. 2020), in
the spherical case experiments carried out by placing a sessile drop on a vibrating
substrate (Vukasinovic, Smith & Glezer 2007) report azimuthal, sub-harmonic parametric
instability when the forcing acceleration exceeds a threshold. These studies naturally
lead us to ask: can these observations (Vukasinovic et al. 2007; Maity et al. 2020) of
sub-harmonic parametric instability on vibrated liquid drops and cylinders on a substrate
be quantitatively explained using theoretical models which do not explicitly account for
the substrate, viz. Adou & Tuckerman (2016) for a sphere and Patankar et al. (2018),
Maity et al. (2020) for a cylinder? A recent experimental study by Liu et al. (2019) of
a sessile spherical cap on a vertically vibrated substrate obtains conclusions analogous
to those in Maity et al. (2020). Liu et al. (2019) compare predictions from the theory
of Adou & Tuckerman (2016) to their experiments. They measure the index l of an
axisymmetric spherical harmonic observed on a vibrated liquid droplet (10 mm diameter)
in their experiments, comparing it to predictions from the inviscid Mathieu equation
derived earlier in Adou & Tuckerman (2016) and report qualitative agreement with their
experiments (Liu et al. 2019). The aforementioned analysis thus clearly indicates the
need to further probe these interesting experimental observations in proximity with the
theoretical models of parametric instability (Adou & Tuckerman 2016; Patankar et al.
2018), to understand how accurately and to what extent these models can describe
the experiments. Also needed are studies aimed at developing these theoretical models
further so as to be able to better describe such experiments, in particular taking substrate
effects explicitly into account. Such investigations will have significant utility in improved
understanding of parametric instabilities of curved interfaces on a flat substrate along
with interesting applications for vibration induced droplet atomisation and parametric
stabilisation of rivulets among others.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.533.
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Appendix A. Expressions for coefficients

Expressions for A(s), C(s) and D(s) used in solution to the IVP are provided below:

A(s) = 2k2lI′m(lR0)I′m(kR0)

{(
l2 + k2)Λ3 − 2k2Λ2(s)

β(s)

} [
sãm − a0

]
, (A1)

C(s) = 2mk3

R0
Im(lR0)I′m(kR0)

(
Λ1(s)−Λ3

β(s)

) [
sãm − a0

]
, (A2)

D(s) = ml
R0

Im(lR0)I′m(lR0)

{
2k2Λ2(s)− (

l2 + k2)Λ1(s)
β(s)

} [
sãm(s; k)− a0

]
, (A3)

where β(s) ≡ Det

⎡
⎢⎢⎢⎢⎣

m
R0

Im(lR0) klI′m(lR0) k2I′m(kR0)

mk
R0

Im(lR0)
(
l2 + k2) lI′m(lR0) 2k3I′m(kR0)

m
R0

Im(lR0)Λ1(s) 2klI′m(lR0)Λ2(s) 2k2I′m(kR0)Λ3

⎤
⎥⎥⎥⎥⎦

= mlk2

R0
Im(lR0)I′m(lR0)I′m(kR0)Λ(s), (A4)

l2 ≡ k2 + s
ν
, Λ(s) ≡

(
k2 − l2

)
Λ1(s)− 2k2Λ2(s)+ 2l2Λ3, (A5)

Λ1(s) ≡ 1 − lR0

m2
I′m(lR0)

Im(lR0)
+ R2

0l2

m2
I′′m(lR0)

Im(lR0)
, (A6)

Λ2(s) ≡ 1 − 1
lR0

Im(lR0)

I′m(lR0)
and Λ3 = 1 − 1

kR0

Im(kR0)

I′m(kR0)
. (A7)

Appendix B

For axisymmetric perturbation m = 0, the equation governing a0(t; k) may be written in
the time domain as (see supplementary material)

d2a0

dt2
+ 2νk2

(
1 + I′′0(kR0)

I0(kR0)

)
da0

dt
+ I′0(kR0)

I0(kR0)

[
T

ρR3
0

kR0

(
k2R2

0 − 1
)

+ kh cos(Ωt)

]
a0(t)

+ 4ν2k4

I0(kR0)

∫ t

0
L̂−1 [K(s)] da0

dτ
(t − τ) dτ = 0,

where K(s) =
(

I′′0(kR0)

s
− l

k
I′0(kR0)I

′′
0(lR0)

sI′
0(lR0)

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B1)
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Using the identity I
′
0(kR0) = I1(kR0) and I

′
1(kR0) = (I0(kR0)− (1/kR0)I1(kR0)), we

obtain

d2a0

dt2
+ 4νk2

{
1 − 1

2kR0
· I1(kR0)

I0(kR0)

}
da0

dt

+ I1(kR0)

I0(kR0)

[
T

ρR3
0

kR0

(
k2R2

0 − 1
)

+ hk cos (Ωt)

]
a0(t)

+ 4ν2k4
∫ t

0
K(τ )da0

dτ
(t − τ) dτ = 0,

where K̃(s) = L̂ [K(τ )] = 1
s

{
1 − l

k
· I1(kR0)

I0(kR0)
· I0(lR0)

I1(lR0)

}
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B2)

In the limit, R0 → ∞, (B2) becomes (we have used .a(→ −∞) → 0 to extend the lower
limit of the integral to make it formally similar to that of Beyer & Friedrich (1995), noting
that they use the Fourier transform instead of Laplace transform in time)

d2a0

dt2
+ 4νk2 da0

dt
+
[

Tk3

ρ
+ hk cos (Ωt)

]
a(t)+ 4ν2k4

∫ t

−∞
K(∞)(t − τ)

da0

dτ
(τ ) dτ = 0,

where K̃(∞)(s) = L̂
[
K(∞)(t)

]
= 1

s

{
1 − l

k

}
= 1

s
− 1

k
√
ν
·
√

s + νk2

s
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B3)

From Erdelyi et al. (1954), we can analytically invert K̃(∞)(s) to write

K(∞)(t) = 1 − 1
k
√
ν

[
1√
πt

e−νk2t + k
√
ν· 1√

π

∫ νk2t

0

e−t′

√
t′

dt′
]
,

or K(∞)(t) = 1 − 1
k
√
νπ

·e
−νk2t
√

t
− 1√

π

∫ νk2t

0

e−t′

√
t′

dt′,

or K(∞)(t − τ) = 1 − 1
k
√
νπ

·e
−νk2(t−τ)
√

t − τ
− 1√

π

∫ νk2(t−τ)

0

e−t′

√
t′

dt′.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B4)

Substituting expression (B4) in (B3),

d2a0

dt2
+ 4νk2 da0

dt
+ 4ν2k4a0(t)+

[
Tk3

ρ
+ hk cos (Ωt)

]
a0(t)

− 4ν3/2k3
√

π

∫ t

−∞
e−νk2(t−τ)
√

t − τ

da0

dτ
(τ ) dτ

− 4ν2k4
√

π

∫ t

−∞
Φ(t − τ)

da0

dτ
(τ ) dτ = 0,

where Φ(t − τ) =
∫ νk2(t−τ)

0

e−t′

√
t′

dt′.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B5)
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Integrating by parts the last integral term of the above equation and using the shorthand
notation d/dt ≡ ∂t,

1
k

(
∂t + 2νk2)2

a0(t)+
[

Tk2

ρ
+ h cos (Ωt)

]
a(t)− 4ν3/2k2

√
π

∫ t

−∞

e−νk2(t−τ)
√

t − τ
∂τa0(τ ) dτ

− 4ν2k3

√
π

[
Φ(t − τ)a0(τ )

∣∣∣∣
τ=t

τ=−∞
+ k

√
ν

∫ t

−∞

e−νk2(t−τ)
√

t − τ
a0(τ ) dτ

]
= 0,

or
1
k

(
∂t + 2νk2)2

a0(t)+
[

Tk2

ρ
+ h cos (Ωt)

]
a0(t)− 4ν3/2k2

√
π

∫ t

−∞

e−νk2(t−τ)
√

t − τ
∂τa0(τ ) dτ

− 4ν5/2k4

√
π

∫ t

−∞

e−νk2(t−τ)
√

t − τ
a0(τ ) dτ = 0,

or
1
k

(
∂t + 2νk2)2

a0(t)+
[

Tk2

ρ
+ h cos (Ωt)

]
a0(t)

− 2νk2 2
√
ν

π

∫ t

−∞
G(t − τ)e−νk2(t−τ) (∂τ + νk2) a0(τ ) dτ = 0,

where G(t − τ) ≡
√

π

t − τ
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(B6)

Equation (B6) matches with equation (44) in Beyer & Friedrich (1995) in the deep water
limit.
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