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The stability and dynamics of a falling liquid film over an anisotropic porous medium are
studied using a one-domain approach. Our stability analysis shows a significant departure
from the effective no-slip boundary condition in the isotropic case. Anisotropy does not
affect the threshold of linear instability. However, a non-trivial dual effect of anisotropy on
the film stability is observed depending on the permeability of the porous medium. This
dual effect results from the net balance of the enhancement of viscous diffusion at the
top Brinkman sublayer and the mitigation of viscous damping in the core Darcy sublayer.
Three-equation models have been derived from the lubrication theory approximation in
terms of the exact mass balance and averaged momentum balances in the porous and
liquid layers. In the nonlinear regime, anisotropy has a dual effect by damping capillary
waves at large permeabilities and enhancing them at low permeabilities. Anisotropy also
affects wave speeds and shapes, modifies travelling-wave branches of solutions, affects
the development of a time-periodic wavetrain by inlet forcing and alters the noise-driven
dynamics of the flow. These effects result from the mitigation of mass exchange at
the liquid—porous interface and the contribution of the cross-stream permeability in the
Brinkman top sublayer to the viscous diffusion.

Key words: thin films, lubrication theory

1. Introduction

Falling liquid film flows are commonly used in chemical engineering whenever pressure
drops or boiling may be avoided. Classic examples are evaporators in the food industry
for the concentration of heat-sensitive products (Silveira et al. 2015), packed-bed heat
exchangers (de Wasch & Froment 1972) and reactors (Duarte, Ferretti & Lemcoff 1984),
or distillation columns for the separation of components with close boiling points, in which
case large-scale separation towers are required. For the latter, the configuration of choice is
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a countercurrent contact between an upward gas and a downward liquid film distributed on
a structured packing. The ideal design of the structured packing should limit the pressure
drops and improve the mass transfer efficiency. The metal sheets constituting the packing
are generally perforated to promote the distribution of the liquid and further reduce the
pressure drop. For similar reasons, new wire gauze packing has been proposed by Amini
et al. (2019).

Instabilities of the liquid film are known to enhance heat or mass transfer by promoting
surface waves significantly (Frisk & Davis 1972; Yoshimura, Nosoko & Nagata 1996),
and this mechanism is generally believed to play a crucial role in the efficiency of
packed-bed exchangers. However, little is known about the influence of the permeability
of the wire gauze or perforated sheets on the liquid film instabilities. In an attempt to better
understand this effect on the film surface-wave hydrodynamics, we consider a falling liquid
film flow on an anisotropic porous medium in this study. The introduction of different
streamwise and cross-stream permeabilities of an otherwise homogeneous porous medium
is a simplified modelling of the orientation of the perforations of metal sheets and wire
orientations of gauze packings.

The onset of surface-wave instabilities in film flows on an inclined impermeable plate is
well documented (see, for instance, the reviews by Chang & Demekhin (2002), Craster &
Matar (2009) and Kalliadasis et al. (2012)). However, the hydrodynamics of a liquid film
flow over a porous substrate has attracted relatively less attention.

The crucial part of studying the flow of a thin film overlying a porous substrate is the
fluid—porous interface, which is heterogeneous irrespective of the homogeneity of the bulk
fluid or the bulk porous medium. Several attempts to understand the characteristics of
flow through this heterogeneous interface have resulted in different levels of descriptions
depending on the choice of scale, different models and different sets of appropriate
boundary conditions at the interface (Ochoa-Tapia & Whitaker 1995; Chandesris & Jamet
2006; Angot, Goyeau & Ochoa-Tapia 2017).

Among the various modelling approaches of the fluid—porous configuration, we chose
the modelling approach initially proposed by Arquis & Caltagirone (1984), termed
the one-domain approach. This methodology has been previously adopted by many
researchers (Beckermann, Viskanta & Ramadhyani 1988; Gobin, Goyeau & Songbe 1998;
Aguilar-Madera et al. 2011; Samanta, Goyeau & Ruyer-Quil 2013; Chen & Wang 2014;
Valdés-Parada & Lasseux 2021) to study heat transfer, instability, transport phenomena,
etc. In this approach, the entire system of the homogeneous bulk fluid and porous medium
and their heterogeneous transitional inter-region has been considered as a single composite
domain (continuum), where a single average momentum transport equation is valid in
the entire continuum. The characteristic properties, like porosity and permeability, are
taken to be continuous throughout the domain. In the interfacial region of the liquid and
porous layer, permeability and porosity show a rapid but continuous spatial variation. This
approach, being easy to handle numerically, is widely used for flow over a porous medium.

Beavers, Sparrow & Magnuson (1970) were the first to confirm the destabilising effect
of wall permeability experimentally in a parallel-plate channel with one bounding wall as
a porous medium. Keeping the flow configuration the same as in Beavers et al. (1970),
Sparrow et al. (1973) performed an experiment to determine the critical Reynolds number
and supported their findings numerically by analysing the two-dimensional flow using the
Darcy model with the Beavers—Joseph interfacial condition. They established that the wall
permeability decreased the critical Reynolds number (Chang, Chen & Straughan 2006;
Hill & Straughan 2008). Tilton & Cortelezzi (2006, 2008) confirmed this result using the
volume-averaged Navier—Stokes equations.
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Pascal (1999) considered the stability of a thin fluid layer flowing down a permeable
wall, proceeding with the formulation given by Yih (1963) for an impermeable wall. The
study used the Darcy law to describe the flow in a porous medium with Beavers—Joseph
slip boundary condition (Beavers & Joseph 1967) at the fluid—porous interface. The study
showed that, in the case of a low superficial velocity in the porous medium, the presence of
the porous medium could be modelled by an impermeable wall with a Navier slip boundary
condition. In this regards, a destabilising effect of the Navier slip condition was observed,
which was later confirmed by many researchers (Sadiq & Usha 2008; Samanta, Ruyer-Quil
& Goyeau 2011).

Liu & Liu (2009) solved the linear stability eigenvalue problem of the two-sided
coupled fluid—porous model using the Chebyshev collocation method. They considered
the Darcy law as a porous-medium momentum transport model and Beavers—Joseph slip
boundary condition at the interface. They claimed that, qualitatively, one- and two-sided
models display similar results for moderately low permeability and substrate thickness.
Camporeale, Mantelli & Manes (2013) demonstrated the interplay among the different
unstable modes of instability that exist due to the presence of a deformable interface in
a gravity-driven film flowing over a porous wall. The study reported the importance of
inertial effects on the stability of the film at higher values of mean permeability.

The above-mentioned investigations have considered the porous medium as isotropic.
However, there are several real-life scenarios, such as the ground structure of geothermal
systems composed of many layers of different permeabilities, where permeability is not
constant; in fact, the horizontal permeability may be 10 times as large as the vertical
component. This motivated earlier studies on convection in an anisotropic porous medium
(Castinel & Combarnous 1975; Epherre 1975).

Deepu et al. (2016) studied the hydrodynamic stability of a falling film over an almost
horizontal anisotropic and inhomogeneous porous medium. They considered a generalised
Darcy law to describe the flow in the porous medium coupled to the Beavers—Joseph
boundary condition at the interface. They concluded that anisotropy has no visible effect
on the linear stability of the surface mode. Our motivation for the present study is to
determine the effect of anisotropy in the hydrodynamics of film flow over a porous medium
with variable permeability sealed at its bottom by an impermeable condition.

The rest of the paper is organised as follows. Section 2 presents the governing equations
for the one-domain approach. Section 3 is devoted to the linear stability of the Nusselt
uniform-film solution. A new weighted-residual strategy is detailed in §4. Nonlinear
travelling-wave (TW) solutions and time-dependent simulations are discussed in §§ 5 and
6. Section 7 summarises our work and presents the conclusions.

2. Governing equations

We consider a two-dimensional viscous, incompressible thin liquid film flowing under
the action of gravity on a saturated inclined anisotropic porous plate of height d. The
porous medium is considered to be bounded on one side by a rigid wall (see figure 1).
Fundamental fluid properties, i.e. density (p), surface tension (o) and kinematic viscosity
(v), are supposed to remain constant. The thickness of the entire domain, comprising the
porous substrate and the liquid layer, is denoted by H. The origin of the vertical axis
is chosen at the solid boundary, x refers to the coordinate in the flow direction and y
to the cross-stream direction. The porous medium is uniform, with a constant porosity
¢, but anisotropic, with different permeabilities «,y and kyg in the streamwise x and
cross-stream y directions. The ‘one-domain’ approach considers a composite domain
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Figure 1. Schematic diagram of a falling film over an anisotropic saturated porous medium.

where the properties of the medium vary continuously from those of the porous medium to
those of the liquid medium in a thin transitional region which replaces the liquid—porous
interface. Material properties, such as porosity (¢) and permeability in the y direction (ky),
show significant and continuous variations in the transitional layer from constant values
ey and koy in the porous medium to the values 1 and oo in the liquid layer. Apart from
this zone, the porous medium is considered to be homogeneous.

The dimensionless governing equations for the liquid and porous medium are given by
(Hirata, Goyeau & Gobin 2009)

uy +v, =0, 2.1a)
Re 1 a (1 1 u Re
Ty) ut—f—g(uux—l—vuy)—i—uva—y g =—Repx+g(uxx+uyy)—m+ﬁ,
(2.1b)
Re +1( n )+28 1 R +1( +on) v t9Re
— v+ —(uvy + vv v — |- )| =—Repy+ —(v Vyy) — —— —cotf —.
sy | e Hox J ay \ & Py 2o T Uy Ky (y) Fr?
(2.1¢)
The boundary conditions are
at y=0, u=0, v=0. (2.1d)
At the free surface y = H we have the conditions
H,+uH, = v, (2.1e)
—4ucHy + (y + v) (1 — H) =0, 2.1)
We H
p (Hux — (uy + vo)Hy 4 vy) = - 2.1g)

~ Re(1+ H?) (L HY

The distributions of porosity, £(y), and permeabilities, k(y) and «y(y), are assumed to
follow hyperbolic tangent profiles, which allow one to control easily the thickness of the
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transition layer of typical thickness A:

1 - —s
e(y) = —°H 4 EHtanh[yA ] 2.1h)

2 2

1 1 /1 1 y—34§ 1 & .
= — (= — =tanh , = , (2.13)
kx(y)  Da\2 2 A ky(y) ke (Y)
where § refers to the dimensionless thickness of the porous medium. In the limit ¢ — 1,
Kx, ky — 00, equations (2.1b) and (2.1¢) reduce to the classical momentum balance for
flow of an incompressible fluid on a rigid wall.

System (2.1) involves five dimensionless parameters. Besides the Reynolds, Froude,
Weber and Darcy numbers, Re, Fr, We and Da,

_ HyUn Un o KxH

Re = , r=—, We=——, Da=—, 2.2a—d
v Jgsinb Hy ,oHNUIZV HI%, ( )

we define an anisotropy parameter £ as
&= KxH/Kst (2.3)

which compares the permeabilities in the bulk of the porous medium. The characteristic
scales for length and velocity, Hy and Uy, respectively, are chosen to correspond to the
total thickness of the entire porous and liquid layers, and to the free-surface velocity
of the uniform film which characterises the wavy motion of the free surface. The
governing equations have been made dimensionless with a pressure scale equal to pgHy,
as the flow is driven by gravity. It is useful to introduce the Kapitza number Ka =
o /[pv*3(gsin0)'/3] = We Fr*/3Re?/3, which compares surface tension, viscosity and
gravity. This parameter depends only on the fluid properties and the inclination of the wall.

2.1. Base flow

The base flow corresponds to a film of constant thickness whose stability characteristics
are investigated within the framework of linear stability analysis. Let (Up, Pg) represent
the solution for the base flow, then it satisfies

Uyy u Re
— — +—-—-5=0, (2.4a)

e(y)  «k(y)  Fr
R cotd Re 0 (2.4b)

—_— e _—— = N .
Py Fr?
with the boundary conditions

u=0 aty=0, u,=0 aty=H, and p=0 aty=H. (2.4c¢)

We introduce a linear differential operator L = d,, — (¢/ky)Id for our convenience
to account for the viscous diffusion and viscous drag at the solid phase in the porous
medium, where Id refers to the identity operator. By construction, Up(y = H) = 1, as the
free-surface velocity of the uniform film solution is the velocity scale. Therefore (2.4a)
can be written as

Re

—ﬁs, u0)=u'(H) =0, u(H) =1, (2.5a—c)

Lu =
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which is a boundary-value problem with an adjustable parameter Re/Fr” in the porous
medium depending upon the properties of the medium (porosity and permeability) and the
geometry of the flow such that u(H) = 1 is satisfied (Samanta et al. 2013). The anisotropy
of the porous medium does not affect the base flow, which is unidirectional.

We use the AUTOO7p software (Doedel et al. 2008) to solve (2.5a—c) numerically by
continuation. To start the continuation, we have considered the free-surface flow on a
rigid wall (¢ = 1, k! = 0). We then gradually adjust the porosity and permeability to
the desired values. AUTOOQ7p is allowed to adapt the mesh, as it is equipped with a mesh
refinement algorithm, so it can easily compute the changes of porosity and permeability
at the liquid—porous interface. We have checked for the presence of a sufficient number
of mesh points in the transition layer. We have also checked that the thickness of the
transitional layer A is sufficiently low to ensure that the solution is independent of this
parameter.

Figure 2 compares the base-flow solution for different values of the Darcy number and
for porous-layer thickness 6 = 0.5 (figure 2a) and § = 0.1 (figure 2b). For all the numerical
results presented in this work, the porous region is chosen to be relatively thick, with § set
to 0.5. As stated above, the transitional layer is thin enough with A = 0.001 (this value is
kept constant for the remainder of this work). Even at a low value of the Darcy number
(Da = 0.001), a significant flow is observable at the top of the porous layer, even though
the velocity profile in the bulk of the porous medium is flat and nearly negligible. Three
regions can be considered: two momentum boundary layers (Brinkman sublayers) at the
top and bottom of the porous medium, for which a significant shear is observed; and a
Darcy region in between, where the velocity is nearly uniform. For higher values of the
Darcy number (Da = 0.01 and Da = 0.1), the shear exerted by the liquid flow affects the
flow in the porous medium in its entirety and the Darcy sublayer is removed. The extension
of the Brinkman sublayers can be determined by balancing the viscous diffusion dyyu/ey
and the Darcy drag u/Da, which gives the estimate 6p = /Da/cy. When the Brinkman
sublayers do not invade the whole porous medium, i.e. §p < §/2, an approximate solution
to the base flow is a liquid film on a solid substrate for which the no-slip condition is
displaced at y = 1 — § + &p, which gives the approximate solution

~ 6 —686p—y)(y—2H+ 6 —dp)

Up = , 2.6
5 (H — 8 + 8p)2 (2.6)
and therefore
Re d2Ug 2
=5~ 5 2.7)
Fr dy (H—46+46p)

The base-flow velocity, Up, the solution to (2.5a—c), is compared to its approximation,

ﬁB, the solution to (2.6), in figure 2(a). An excellent agreement in the liquid region of the
flow is observed. Hence, the free-surface instability of a film on a porous substrate can be
reduced to the instability of a film on an effective impermeable boundary located at the
bottom y = § — §p of the top Brinkman layer (Samanta et al. 2013). In the next section,
we will consider the effect of the anisotropy of the porous substrate on the linear stability
of the film.
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Figure 2. Base-flow velocity profiles Ug(y) and approximated base-flow velocity profiles U( y) as functions
of the cross-stream coordinate y for different permeabilities, when ey = 0.78, A = 0.001, and (a) § = 0.5 and
(b)s =0.1.

3. Linear stability analysis

We consider a uniform layer of unit thickness H =1 and introduce a perturbation
expansion of the base-flow solution:

u(x,y, t) = Up(y) + ub(x,y, 1), v(x,y,t) =vbx,y,t), (3.1a,b)
px,y, 1) = Pp(x) + pb(x, y, 1). (3.1¢)

We further introduce a streamfunction for the perturbation quantities and a modal
decomposition with wavenumber k = k; + ik; and phase speed ¢ = ¢, + ic;,

Y (x, y, 1) = ¥ (y)explik(x — cnl, (3.2)

so that ub = 0¥ /dy and vb = —0W¥ /dx automatically satisfy the continuity equation for
the perturbed flow. The Orr—Sommerfeld boundary-value problem then reads

U// 8/ 8//
YV 3Ug—f + UBW—2
&€ & &

2 w ’ " 2
305" <%_0)85]+%(D3—HDW+ A2 1

Up

(D> — k*)?*y = ikRe [(? — c) (D> — i)y —

g3 B & kx(y) a kx(y)
9 1 8/ 8// 8/2 8/

r- N R/ 27 " _ k2_ /’ 33

+€w3y(/<x(y))+8w TV ey sV (3.3)
along with the boundary conditions
Ylo=0, V¥'o=0, (3.3b)
Y1
v h+ kY =Ugh——, (3.3¢)
B (Ul — o)

Y"1 = 3k2Y )1 = iRek[(Ugly — )¢’ |1 — Uyl ¥rl1]
¥
(c—Uglh)’

where ¢(1) = 1 and 1/x(1) = 0 have been used to simplify the continuity of the normal
stress (3.3d). The symbol D and primes refer to derivatives with respect to the cross-stream
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Figure 3. Marginal stability curves corresponding to the Orr—Sommerfeld eigenvalue problem for different
permeabilities and different anisotropy parameters, when eg = 0.78, § = 0.5, A =0.001, 6 =4.6° and
Ka = 769.8: (a) Da = 0.001 and (b) Da = 0.01.

coordinate y. The last four terms in (3.3a) can be referred to as the Brinkman second-order
correction terms. These terms arise only in the thin transitional region and are negligibly
small, so, in our calculation, we ignored these terms (Brinkman 1949). The above
boundary-value problem is actually an eigenvalue problem for the complex phase speed
c. This eigenvalue problem is solved with AUTOO7p for different inclination angles and
different anisotropies & of the porous plate. We only looked for the surface instability
modes, starting our continuation procedure at the trivial solution for £k = 0.

We first consider the spatial stability of a film on a slightly inclined porous plane for
a set of parameters corresponding to an experiment by Liu, Schneider & Gollub (1995),
=46 0c=69Nm™!, p=1130 kg m—3 and v = 5.02 x 1079 m? s~!, which gives
Ka = 769.8. We thus consider a real angular frequency w = kc, the instability of the
film being signalled by a positive spatial growth rate, i.e. —k; > 0. Figure 3 presents a
typical marginal stability curve (—k; = 0) in the Reynolds number Re versus wavenumber
k, plane. As expected, the threshold of the free-surface instability occurs at k = 0 for a
critical value of the Reynolds number, which depends on the inclination of the plane and
the properties of the porous medium. Note that anisotropy does not affect the base flow

and appears in (3.3a) only through the product k>£. As a consequence, the threshold of the
long-wave instability of the film is not affected by the anisotropy of the porous medium
and remains equal to its value for the isotropic case & = 1, where the instability threshold
closely corresponds to the case of an effective no-slip condition achieved at the bottom
of the top Brinkman momentum diffusion layer, i.e. at y =1 — § + §p. In this case, the
threshold of instability corresponds to a liquid film of thickness 1 — § 4 §p, which gives,
for our set of parameters,
5 coth

Re, ~ —

_— 34
41—-56+6p SR

The prediction (3.4) of the instability threshold is indicated by vertical lines on figure 3,
in striking agreement with our numerical findings.

Figure 4 presents the spatial growth rate —k; for Re = 50 as a function of k, (recall
that w; = 0) and shows the influence of the anisotropy parameter. In the isotropic case
& =1, raising the mean permeability (Da = 0.01) enhances the range of the unstable
wavenumber window and the spatial growth rate. Higher mean permeability corresponds
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Figure 4. Spatial growth rate for different permeabilities and different anisotropy parameters, when
eg =0.78,8§ = 0.5, A = 0.001, 6 = 4.6°, Ka = 769.8 and Re = 50: (a) Da = 0.001 and (b) Da = 0.01.

to larger Brinkman layers and thicker effective thickness 1 — § 4+ 5p. As a consequence,
in the vicinity of the porous—fluid interface, the liquid accelerates and the convective
transport in the liquid layer is enhanced, which has a clear destabilising effect.

A low cross-stream permeability (§ >> 1) affects the stability of the film differently
at low (Da = 0.001) and moderate (Da = 0.01) permeabilities, as can be observed from
figures 3 and 4. The isotropic case (§ = 1) is compared to high cross-stream permeability
(¢ =0.001) and low cross-stream permeability (§ = 1000) cases. Anisotropy affects the
growth rate and phase velocity only for the larger values of the wavenumber k,, again
owing to the fact that & is grouped with k? in a single term of (3.3a). This dual effect
is a consequence of the organisation of the flow in the porous layer into three distinct
sublayers: the top and bottom Brinkman layers, for which the shear of the base-flow
velocity is significant; and the Darcy sublayer, where a plug flow is observed (cf. figure 2).
Raising the anisotropy parameter & promotes the drag of the solid matrix (proportional to
& /Da), which prevents the exchange of mass between the liquid and porous regions. As a
consequence, the flow in the Darcy sublayer is almost a constant plug flow, irrespective of
the film-height fluctuations. Conversely, in the top Brinkman sublayer, raising & promotes
the viscous diffusion of film-height fluctuations as a consequence of the continuity of the
streamwise velocity at the liquid—porous interface. The result is a reduction of viscous
damping of the waves in the Darcy sublayer, whereas the opposite is true in the Brinkman
top sublayer. The net balance of these two adverse effects depends on the respective
extensions of the Darcy and Brinkman sublayers. At Da = 0.001, the Brinkman sublayers
are thin (6p =~ 0.04) and the destabilising contribution of mitigating streamwise viscous
diffusion in the Darcy sublayer dominates. Conversely, at Da = 0.01, the Darcy sublayer is
absent, as can be observed from figure 2 and the damping effect of an enhanced diffusion
in the Brinkman top sublayer dominates.

However, a film flowing on a porous substrate with high cross-stream permeability, i.e.
& < 1, presents stability that is equivalent to a flow on an isotropic porous medium, as
the marginal stability curves, growth rates and phase speeds are identical at £ = 1 and
& = 0.001. Indeed, lowering the anisotropy parameter £ below one has no effect on the
stability of the film, the viscous damping of the film-height fluctuations in the porous
medium then being governed by the streamwise permeability instead of the cross-stream
one.
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Figure 5. Marginal stability curves for different thicknesses of an anisotropic porous layer for different Darcy
values and different £ values: dimensional cut-off frequency f, versus dimensional flow rate gy, for eg =
0.78, A =0.001,0 =4.6° and (a) 6 = 0.5, £ =1,(b) § = 0.5, & = 1000, (¢) § = 0.1, £ =1 and (d) § = 0.1,
& = 1000. ‘OS solid’ refers to an impermeable no-slip boundary.

Samanta et al. (2013) stated that the stability of a film on a porous media is equivalent to
the stability of a liquid film on an impermeable effective boundary located at y = § — §p,
where the Brinkman layer thickness is defined by 85 = /Da/ep; hereinafter we refer to
this model as the ‘no-slip model’.

Figure 5 presents the marginal stability curves when recast in the plane of dimensional
flow rate gy versus dimensional frequency. For a thin porous layer (6§ = 0.1), we recover
the results obtained by Samanta et al. (2013) for the isotropic case (§ = 1). All the curves
collapse onto a single curve irrespective of the value of the Darcy number. This curve
corresponds to the stability of a liquid film on a solid plate. We conclude that, for thin
porous layers, a film flowing on a porous substrate follows the same dynamics as a film
on a solid impermeable substrate. However, for a thicker porous region (6 = 0.5), the
marginal stability curves present noticeable differences, the permeability of the porous
medium significantly promoting the stability of the flow, except close to the instability
threshold. Mass exchange at the liquid—porous boundary plays a role in mitigating the
instability far from its threshold, as the viscous diffusion in the porous medium can then
contribute to the attenuation of velocity fluctuations.

At a large permeability (Da = 0.1), the instability occurs at a lower flow rate than for the
solid-wall situation. This slight discrepancy in the instability threshold is a consequence
of the large difference observed for the velocity profiles (see figure 2). We observe
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again that lowering the cross-stream permeability Da/& has a dual influence: augmenting
the range of unstable frequencies for Da below 0.001, and reducing it above 0.01. At
Da = 0.1, however, the observed reduction of unstable frequencies is very moderate.
A low cross-stream permeability inhibits mass exchange between the porous and liquid
layers, decouples the flows in these two layers and prevents the damping of film-height
fluctuations by viscous diffusion in the Darcy sublayer. However, due to the continuity
of velocity at the porous—liquid interface, the Brinkman top sublayer contributes more
efficiently to the damping of the film-height fluctuations. The net balance of these two
contributions depends on the relative extensions of the Darcy and Brinkman sublayers.
We note that, at Da = 0.1 and & = 1000, the cross-stream permeability is not low enough
to efficiently contribute to the damping of short waves, which is then controlled principally
by surface tension and the viscous diffusion in the liquid layer.

4. Weighted residual modelling

In this section, a semi-analytic model is derived to capture the long-wave wavy regime of
the film flow. The procedure relies on choosing a set of variables whose evolution mimics
the complete dynamics of the flow. The total height (porous medium + film) H = h +§

and the local flow rate g = f(fl u dy are chosen to characterise the flow evolution. We show
in §§ 4.4 and 5 that this strategy is inadequate when a low cross-stream permeability of the
porous medium (high values of &) is considered. As we underline below, this deficiency
results from a decoupling between the flow in the porous and liquid regions.

4.1. Three-equation model

We introduce two different flow rates to allow for the velocity distribution in the porous
medium to be decoupled from that in the liquid. We define

H H
qi =/ Idjudy and g, =/ Id,udy, 4.1a)
0 0

with
Id; = 0.5+ 0.5tanh[(y — 8)/A] and 1Id, = 0.5 —0.5tanh[(y —§)/A], (4.1b)

so that Id; =1 and Id, = 0 in the liquid region and conversely Id; =0 and Id, = 1
in the porous medium. Thus, g; &~ fSHudy is the local discharge of liquid above the

porous—liquid interface y = §, and g, ~ fg u dy is the rate of liquid flowing in the porous
medium. Since Id; +1d, = 1, the total flow rate g is equal to the sum of ¢; and gp.
Integrating the continuity equation (2.1a) across the fluid and the porous layer, we get
the exact mass balance

0H + 0x(q; + qp) = 0. 4.2)

Two evolution equations can be obtained for g; and g, using the weighted residual
technique once a velocity profile is assumed (closure assumption). We consider slow
space and time evolutions d,; ~ y, where y is a formal small parameter that counts the
order of derivation with respect to time and space of the different variables. The velocity
distribution across the porous and fluid layers is assumed to remain close to the Nusselt
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flat-film distribution, deviations from the Nusselt profile being O(y) corrections induced
by the free-surface deformations. We thus decompose u into

u=q(x,0fi(y: Hx, 1) + gp(x, 1) f(y; H(x, 1)) + yu. 4.3)

We use the linearity of the equations (2.5a—c) satisfied by the base flow to write the
velocity profile as the superposition of two solutions to

Lf; = —Cyld;, (4.4a)

where L refers again to the operator dy, — (¢/k,)Id. For convenience, we have written
the above equation in a condensed format using Einstein notation, where i, j = [ or p and
repetition of indices indicates summation. The associated boundary conditions are

f1(0) =f,(0) =0 and 9,f;(H) = 0,f,(H) =0. (4.4b)

The constants C;; are adjusted to satisfy the integral constraints

H
/ Id; f; dy = &, (4.4¢)
0

implied by the definition (4.1) of the variables g; and g,,. Here §;; refers to the Kronecker
delta function. Constants Cj; are therefore dependent on the geometry of the porous
medium and therefore are functions of the film height H. The decomposition (4.3) is made
unique with the two gauge conditions

H
/ Idjudy =0, (4.4d)
0

which guarantee that the decomposition (4.3) satisfies the definitions (4.1) of the flow rates
q; and gp, in the liquid and porous layers.

The momentum balances (2.15) and (2.1¢) are next simplified within the framework of
the long-wave expansion to yield a Prandtl-like equation after elimination of the pressure
field. From the continuity equation (2.1a) we get v = — fo) oyudy = O(y), so that inertial

terms in the cross-stream momentum balance equation (2.1¢) are 0(]/2) and can be
omitted. Integration of (2.1¢) thus gives

Yo y
Rep =20yv|y —ReWeaxxH+/ —Lvdy+ (1 — é)/ Edy
u €(y) H K
Re 5
——zcote(y—H)—I—O(y ), 4.5)
Fr
where the leading-order contribution from surface tension, —We Re d,H, has been

retained, although it is formally O(y?), since surface tension prevents the breaking
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of waves. Substituting (4.5) into (2.1b), we get the boundary-layer equation

1 0 (1
Re [u, + — (uuy + vuy) + uv— (—)}
e ay \ &

Re a (V1
=¢| =5 —cotd Hy) + ReWeHyy, | —e(y)— —Lvdy
Fr? ox Jy ¢
o [V d
—e(1—&)— —dy + uyy + Lu 4+ 26 — (uxlg), 4.6)
ox Jg « dx

with the associated boundary conditions

ulp =vlp =0, 4.7a)
dyulg = 40xulgdcH — v|g, vlg = 0H + u|gdcH. (4.7b)

Following the weighted residual method, we insert (4.3) into the truncated momentum
balance (4.6) and average it with weights that satisfy

R
——eId,-, wi(0) = dyw;(H) = 0. (4.8a,b)

Lwi = Fr?

This choice of weights enables us to make use of the gauge conditions (4.4d) to get rid of
the O(y) corrections arising from the evaluation of the viscous terms:

H H Re
/ wiLudy = wi(H)dyulss + / Loviady = wiH) (el Hl — vlig] = 5gi. (4.9
0 0

We finally obtain two averaged momentum balances of the form

(k) 09 (k) 9j4i Lo qk
SV ougi = —F| Hax i+ G 0H 4 — [1< Vb(H)H — H2]
O H
R H
— P+ SL(")) dH + M®P + £ ), ql:| , (4.10)

where b(H) = 1 — cotf 0,H + We Fr?d..«H combines the gravitational acceleration and
the pressure gradient that drive the flow. Equations (4.2) and (4.10) form a three-equation
system of evolution equations for the three variables H, g; and g,.

All 54 coefficients involved in (4.10) depend on the geometry and therefore on H. The
expressions of the coefficients are given in Appendix A. We used the software AUTOO07p
to compute (4.4), (4.8a,b) and (A1) and tabulated the coefficients (A2) as a function of the
film height H.

The derived system of equations is consistent up to order y for convective terms and up
to O(y?) for diffusion terms. We underline that consistency up to O(y) is a requisite to
ensure that the instability threshold is captured adequately. Inclusion of viscous diffusion
terms enables one to recover correctly the amplitude of the capillary ripples, which precede
hump waves and solitary waves and govern their dynamics.
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4.2. Two-equation models

The three-equation model (4.2) and (4.10) will be contrasted with the two-equation
approach adopted in Samanta et al. (2013). Choosing the film elevation H and the total
flow rate ¢ = q; + g, as the set of variables, a set of evolution equations can be obtained
with the above weighted residual method with the ansatz

u=gqf(y;H)+ yu, (4.11)

where f corresponds to the base-flow profile Up and satisfies

H
Lf=-C, f(0)=0, 9,f(H)=0, / fdy=1. (4.12a—d)
0
The same procedure as that outlined in § 4.1 is then followed with a weight defined by
Re
Lw = —g oyw(H) = 0. (4.13a,b)
Integrating (4.6) with the weight w then leads to

2 1
S(H)dig = —F(H)I%axq + GUH)50.H + — [1bH - 15|

0xqoH
|:(J(H)+§J(H)) (0:H)* — (K(H) + EK(H)) i

— (L(H) + SL(H)) T 5 H + (M(H) + SM(H))aqu] (4.14)

The expressions of the coefficients from S(H) to M (H) correspond to (Al) and (A2)
once indices have been dropped out. For an isotropic porous medium & = 1, the averaged
momentum balance (4.14) is fully identical to the corresponding one obtained by Samanta
et al. (2013), as the differences in the expressions of the coefficients arise from a different
choice of writing the ansatz (4.11) which does not affect the result.

4.3. Approximation

In order to get a more easily handled model, we propose here a drastic simplification of
our modelling attempt. This simplification relies on a polynomial approximation of the
velocity profiles f; and weights w; (i referring to either / or p). To proceed, we separate the
flow into three regions: a Brinkman sublayer of thickness §p = +/Da/¢ep at the bottom of
the porous layer; a uniform-flow Darcy region in the bulk of the porous layer from y = §p
to y =& — &p; and an effective liquid layer from y = § — §p to the top of the film flow
y = H. We thus approximate f; and w; as

fi=ay, wi=ayy, for0<y<és,
fi = aidg, w;=a,dp, fordg<y<és—24g, (4.15)
fi = aiép + bif]B, Wi = ayidp + bWiUBa fory = 8 — dp,

where Up is given by (2.6). This approximation implies that the operator L reduces to
dyy in the Brinkman sublayers § — §p <y < § and to —(ey/Da)ld in the Darcy layer, or
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bulk, of the porous layer. This approximation also assumes that the transitional layer has a
negligible thickness and that the thickness of the Brinkman sublayer ép is small.

Approximation (4.15) yields explicit expressions for the coefficients (A2), of which we
retain only the leading-order contributions or up to O(§g). Additionally, the flow rate in
the porous layer g, can be inferred to be proportional to the Darcy number, so that g, =
0(8123) is small and the corresponding coefficients are truncated to their leading order with
respect to dp. Since the velocity distribution in the liquid layer and the top Brinkman
sublayer § <y < § — dp is close to the velocity distribution of a liquid film on a solid
interface at y = § — §p, we introduce the effective film thickness 4 = H — § + §p and the
effective thickness of the porous medium § = § — §3. We obtain explicit expressions for
the coefficients, which are listed in Appendix B.

The averaged momentum balances can be further simplified by considering g, = O(Da)
and keeping leading-order terms for Da < 1. We thus retain terms involving the

anisotropy parameter & up to O(& Da>/?):

h 17 q; 947 1 5h 5(1 —§)2
dqr — —d — “Loch —bh) - ——~—
141 5 idp = T q1 + = 772 % + 6 (h) a2 qi

1 a@m? |9 88\ | Beqidch
+EH "5( )} 2 [5—5(7”—;1
q 9 1_/(8\°
|:6__$( ) :| haxxh+|:§_zé (?) :|axx‘H

5 4B
+ =& 0uqp (> (4.16a)
12
and
12 ¢ 647 1 (1—8)%en
a gy, = ——-—90 oyh h+ Se)b(h) — ————=
1q1 + 3rqp 5t 50t o (h+ Sen)b(h) — Do Ir
L1 [[3ens Ser) 52 41(3:h)2
Re h h? h?
52 < 2
(Zh + 581{) 0xq10xh 3(4h + Sep) 8 | q
28— — — | —0xch
2
1 358]-1 %‘3 53 EH
-19 —|a —0 . 4.16b
5 |: + h 2 :| gl + = 3 Da xep} ( )
These are completed by the mass balance rewritten in terms of 4, g and g, i.e.
dth + 9x(q1 + qp) = 0. (4.17)

The influence of anisotropy on the momentum balance in the liquid layer (4.16a) is weak,
as all terms involving & in this equation are functions of the ratio of the extensions of the
Brinkman sublayer and liquid layer 85 /h. These terms originate from the solid-matrix drag

947 A26-15


https://doi.org/10.1017/jfm.2022.634

https://doi.org/10.1017/jfm.2022.634 Published online by Cambridge University Press

S. Mukhopadhyay, N. Cellier, Usha R, M. Chhay and C. Ruyer-Quil

occurring in the Brinkman top sublayer. More precisely, these terms arise from the integral

H Yo 1) Yo
f WieE Oy ( / - dy) dy ~ f Wiek Oy ( / - dy) dy, (4.18)
0 H K 5—3p H K

since 1/ = 0 in the liquid region and the weight function w;, defined by (4.13a,b), is
nearly zero in the Darcy sublayer, and set to zero in the approximation (4.15). Considering
that all terms involving & in (4.16a) are at most O(& 513?), since g = 0(8%;), provides a
criterion at which viscous diffusion in the Brinkman sublayer becomes significant, i.e.
EDa’'? = O(1).

From (4.16b), we can expect an efficient diffusion of the flow rate in the porous medium
in the case of a weak cross-stream dimensionless permeability Da/&. One limit is then
worthy of interest, i.e. g, — const., which may be achieved when & /Da > 1.

Considering simultaneously & Da*/? « 1 and £ /Da > 1 yields

o _1a +9q123h+1 Shb(h) 5(1 — 8)2
N R =l S anz 1
1 132 9 3,qidch ! 9
5{4" LU L N (4.19)

which corresponds to a liquid film flow on an impermeable solid wall at y = § = § — 8p
with a no-slip boundary condition. In this case, the wavy motion of the liquid is unaffected
by the porous medium. This is a consequence of neglecting the solid-matrix drag occurring
in the Brinkman top sublayer and also neglecting the mass exchange at the liquid—porous
interface.

The approximate momentum balance (4.19) can also be derived from (4.16a) for
isotropic or moderately anisotropic porous media (§ = O(1)) in the limit ¢, < 1, which is
achieved at very low permeabilities (Da — 0) or for thin porous layers (small values of §).

In the remainder of this paper, we discuss and compare the solutions to the
three-equation models (4.2), (4.10), and (4.17), (4.16), and to the two-equation models
4.2), (4.14), and (4.17), (4.19). For convenience, these models are referred to as
three-equation full and approximate models, and two-equation full and no-slip models,
respectively.

4.4. Linear stability analysis

We next turn to the stability analysis of the flat-film solution based on the three-equation
full and approximate models (4.2), (4.10) and (4.17), (4.16), and the two-equation
model (4.2), (4.14). We compare our results to the solutions of the Orr—Sommerfeld
equations (3.3a) in an attempt to validate our modelling approach.

Figure 6 compares the marginal stability curves of the three- and two-equation models
to the Orr—Sommerfeld analysis in the limit of high and low cross-stream permeability (i.e.
& =1 and & = 1000, respectively). If the three-equation model satisfactorily reproduces
the Orr—Sommerfeld analysis, the two-equation full model does not. This inadequacy is
a consequence of the ansatz (4.11), which yields an overestimation of the contribution

of the cross-stream permeability on the viscous diffusion of the waves (coefficients Z(l)
and M(1)). We conclude that the three-equation models offer reliable alternatives to the
Orr—Sommerfeld analysis and are quite accurate. In the isotropic case (§ = 1) and for
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Figure 6. Comparisons of the marginal stability curves for the two-equation full (4.2), (4.14), three-equation
full (4.2), (4.10), and approximate model (4.17), (4.16), with the Orr—Sommerfeld analysis. All the curves
are plotted with the parameter set ey = 0.78, § = 0.5, A = 0.001, Ka = 769.8 and 6§ = 4.6°: (a) Da = 0.01,
& = 1000; and (b) Da = 0.001, & = 1000.

relatively large permeability (Da = 0.01), the three-equation approximate model is slightly
less accurate than the full model, predicting reduced intervals of unstable wavenumbers
than the full model and Orr—Sommerfeld analysis. However, this is expected, as the
polynomial approximation leading to the approximate model assumes that the base-flow
velocity profile presents a constant velocity distribution in the bulk of the porous layer
(Darcy sublayer). Such a Darcy sublayer is already not observed at Da = 0.01 (cf. figure 2).

5. Nonlinear travelling-wave solutions

We next turn to the construction of the nonlinear TW solutions to the models. These
solutions correspond to waves propagating at a constant speed and with a constant shape.
The variables are then functions of the coordinate £ = x — ¢t in the moving frame at speed
¢ of the wave. The system of equations then reduces to a set of ordinary differential
equations, which are recast into an autonomous dynamical system. The first step is
the integration of the mass balance (4.2) with respect to ¢, which gives g = g, + g, =

cH + qo, where gp = f(f{ (u — c) dy is the constant flow rate in the moving frame of the
wave. Substitution of cH + ¢ for g then leads to
dU

—~ = F(U,o0),

ac (5.1)

where U is a three-dimensional vector (H,H’, H”)' for the two-equation models
(4.2), (4.14), and (4.17), (4.19), and a four-dimensional vector (H,H', H", gq,)" for the
three-equation models (4.2), (4.10), and (4.17), (4.16), the primes denoting derivatives with
respect to ¢. The locations of the fixed-point solutions to (5.1) satisfy

=D H) + 1P (H)} — cH — g0 = 0, (5.2)

where 1D and I are defined in (A2m), (Bla) and (B1b). Equation (5.2) admits three
solutions, of which only two may be positive. Consequently, a maximum of two fixed
points is observed in the phase space for any value of the phase speed c.

The moving-frame flow rate gg is determined by imposing an integral constraint (g) =
I1D(1) + 1P (1), which corresponds to the conservation of mass in a time-dependent
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simulation with open-domain boundary conditions at the outlet and a periodic forcing
at the inlet (Scheid ez al. 2005).

The autonomous dynamical system (5.1) constitutes an integral boundary-value
problem. Branches of solutions are constructed by varying ¢, which is the principal
continuation parameter of the computations. In the context of falling-film flows on an
impermeable substrate, several studies (Chang, Demekhin & Kopelevitch 1993; Sisoev
& Shkadov 1999; Shkadov & Sisoev 2004) have been devoted to obtaining a detailed
picture of the different TW branches of solutions to the famous Shkadov model (Shkadov
1967). The first family of y; waves bifurcates from the marginal stability curve through a
Hopf bifurcation. These ‘slow’ waves have a speed smaller than that of spatially amplified
infinitesimal waves at the same frequency. The corresponding solution branch terminates
at small frequency as negative pulses with a deep trough followed by capillary waves.
However, the waves experimentally observed at low frequency are ‘fast” waves, i.e. having
speed larger than that of infinitesimal waves, and have a large hump preceded by capillary
ripples. This second family of waves (y») bifurcates from a period-doubling bifurcation of
the y; branch. By considering the symmetry breaking of a wave made of n identical y;
waves, many more branches of solutions, denoted here as y;,,, have been found. Sisoev &
Shkadov (1999) showed that the y,, waves, n > 3, bifurcate at a low value of Re in pairs of
slow and fast waves that terminate at low wavenumber as solitary waves having different
numbers of troughs and bumps. On increasing Re, Chang et al. (1993) observed a series
of pinching of the y, branch of solutions with the y;,, waves.

Different branches of TWs obtained in the conditions of Liu and Gollub’s experiments
(Liu, Schneider & Gollub 1995) are displayed in figure 7 at increasing values of the
Reynolds number for a fixed inclination § = 4° and Kapitza number I” = 2340. Among a
wide variety of solution branches, we choose to show only those that relate to the branch
of fast y» waves. In particular, only the one-humped y» fast waves are displayed, whereas
n-humped fast waves can be found. However, one-humped y, waves are always the fastest
at a given frequency, and therefore dominate the wave dynamics.

Close to criticality (Re, =~ 29.1) and for the isotropic case (§ = 1), the y» family
emerges from a Hopf bifurcation whereas the y; waves appear through a period-doubling
bifurcation of the y» waves. This situation is reversed at higher values of Re (compare
figure 7a and 7b). The y; and y, families form an imperfect bifurcation with a permutation
of branch connections for 33.8 < Re < 36. As the Reynolds number is increased, the
fast-wave y» branch experiences several collisions with other branches. Figure 7(c,d)
displays one such pinching, for 42.7 < Re < 45.5. Each of these pinching events is
reminiscent of the imperfect bifurcation affecting the y; and y, wave branches. They give
rise to the secondary slow-wave solution branches, denoted by y; and |’ branches in
figure 7. The profiles of the waves corresponding to the different branches are illustrated
in figure 8 for the frequency f = 1 Hz. Figures 8(b,d) correspond to slow waves made of
one or several troughs followed by capillary oscillations before returning to the level of the
flat film. The shape of the high-speed end of the y» branch (figure 8a) is different, with
a main hump preceded by capillary ripples. The y; waves correspond to a unique trough
whereas y| and y|’ present several troughs.

Anisotropy significantly affects the sequence of bifurcations and the emergence of TWs.
Notably, close to criticality, the slow y; wave branch was not found. At higher values
of Re, the sequence of pinching events giving rise to multiple trough-like yl(n) waves
is modified. Raising & lowers the wave speed as a result of a more efficient viscous
diffusion in the porous medium. It also affects the shape of the waves, as can be observed
from figure 8. Large values of & correspond to a more efficient viscous diffusion in the

947 A26-18


https://doi.org/10.1017/jfm.2022.634

https://doi.org/10.1017/jfm.2022.634 Published online by Cambridge University Press

Falling film on an anisotropic porous medium

(@) 33 e (OES
3.0 — £=1000 304
2.5 1 2.5
< 2.0 2.0 4
=
S~ 1.5 1.5 A
1.0 1 1.0 1
0.5 0.5 1
0 . . . . . 0
1.8 1.9 2.0 2.1 2.2 2.3 2.4 1.8 2.0 2.2 2.4
(o) (d)
51 5
141
4 4
N 3 3
jan
N
~
2 2
Y1/ v/
11 11 Y2
0 T T T T T 0 T T T
1.8 1.9 2.0 2.1 2.2 2.3 24 1.8 2.0 2.2 2.4
c c

Figure 7. Bifurcation diagrams of the TW solutions to the three-equation full model (4.2), (4.10) in the plane
of velocity ¢ versus dimensional frequency f. The Reynolds number R = gy /v based on the flow rate at the
inletis: (a) Re = 33.8 (R = 15), (b) Re = 36 (R = 16), (c) Re = 42.8 (R = 19) and (d) Re = 45.5 (R = 20.2).
Parameters are Da = 0.01, e = 0.78, 8 = 0.5, A = 0.001, 0 = 4°, Ka = 2340 and v = 2.3 x 1076 m? s~!.

Brinkman sublayer, which impacts the amplitude of short capillary waves. The effect of
anisotropy on TWs strongly depends on the value of the Darcy number. At Da = 0.001,
the effect is weak, as can be observed from figure 9. This is expected, as low permeabilities
imply weak flows in the porous medium.

The approximate model (4.17), (4.16) captures remarkably well the complex bifurcation
diagram of TW solutions and predicts correctly the lowering of the wave speed as the
anisotropy parameter is raised from & =1 to & = 1000. In particular, the agreement
with the full three-equation model (4.2), (4.10) is convincing even at Da = 0.01, which
is unexpected, as the derivation of the approximate model requires Da < 1 (compare
figure 10 to figures 7 and 9). However, the obtained bifurcation diagrams show some
small discrepancies with the result from the full three-equation model. For instance, the
multiple-trough y|” branch connects to a two-hump fast wave branch at Da = 0.01 and
& = 1. Note that multiple-hump fast waves can be obtained with the full three-equation
model (4.2), (4.10), but have not been displayed for simplification.

Finally, we conclude this section by discussing y» limit cycles of large extensions,
which we refer to as ‘solitary waves’, as these waves tend to organise and dominate the
time evolution of noise-driven falling films (Chang et al. 1993). Figure 11 presents limit
cycles of large extensions (4 = 200) which approach homoclinicity. We compared the
solutions to the three-equation full model (4.2), (4.10), and approximate model (4.17),
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Figure 8. Wave profiles of the TW solutions to the three-equation full model (4.2), (4.10) corresponding to
the different wave families indicated in figure 7(d): the (a) y2, (b) y1, (¢) y{ and (d) y;" wave families. Here
A corresponds to the period. Parameters are Da = 0.01, ey = 0.78, § = 0.5, A = 0.001, 6 = 4°, Ka = 2340,
Re = 45.5 (R =20.2), frequency f = 1 Hzand v = 2.3 x 107® m?> s~!.
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Figure 9. The same as figure 7 except for Da = 0.001: (a) Re = 42.8 (R = 19) and
(b) Re = 45.5 (R = 20.2).

(4.16), and to the two-equation full model (4.2), (4.14), and no-slip model (4.17), (4.19).
For a small value of the Darcy number (Da = 0.001), a remarkable agreement (not shown)
is achieved between the solutions of the full and approximate three-equation models, as
the polynomial approximations for the velocity profiles employed in § 4.3 hold in the limit
Da < 1. As the Darcy number is raised to Da = 0.01, some departures of the solutions
from the approximate model to the full model are noticeable. However, the approximate
model remains a convincing substitute for the full model.
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Figure 10. Bifurcation diagrams of the TW solutions to the three-equation approximate model (4.17), (4.16)
at Re = 42.8: (a) Da = 0.01 and (b) Da = 0.001. The other parameters are identical to those in figure 7.
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Figure 11. Nonlinear TWs for the two-equation full (4.2), (4.14), and three-equation full (4.2), (4.10), and
approximate (4.17), (4.16) models, and for the no-slip model (4.17), (4.19) (impermeable wall at y = § — §p),
when ey = 0.78,5§ = 0.5, A = 0.01, Ka = 769.8, 6 = 4.6° and A = 200. Here H indicates the thickness of the
entire layer (porous and liquid). (@) Da = 0.01, £ = 1; (b) Da = 0.01, & = 1; (¢) Da = 0.01, & = 1000; and
(d) Da = 0.01, & = 1000.

In the case of an isotropic porous medium (¢ = 1), the wave profiles obtained with
the two-equation full model and the no-slip model nearly collapse onto single curves.
This agreement can be comprehended by computing the flow rate in the porous medium

4, =q f(f{ Id, f(y; H) dy corresponding to the single velocity profile ansatz (4.11). As can
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be observed from figure 11(b), g, presents moderate fluctuations so that g, can be assumed
somewhat constant. Since g, = const. or g, < 1 are the conditions yielding the no-slip
model, this explains the observed concordance of results from the no-slip and two-equation
full model at £ = 1. At & = 1000, solitary-wave solutions to the two-equation full model
present capillary ripples whose number and amplitude are significantly lower than with the
other models, to the point that, for Da = 0.01, only one capillary ripple is observable at
the front of the wave (see figure 11c¢). This discrepancy results from the overestimation of
the contributions of the porous medium to the viscous diffusion terms in the momentum
balance (4.14) implied by the one-velocity ansatz (4.11).

A comparison of the solutions of the three-equation models at £ = 1 and & = 1000
shows that the fluctuations of the flow rate g, in the porous medium are efficiently
attenuated by lowering the cross-stream permeability (thus raising &). This explains the
convergence of the solutions to the three-equation and no-slip models at £ = 1000. Finally,
let us note that the intensity of the mass exchange between the porous and liquid regions, as
reflected by the fluctuations of g, is predicted to be much higher with the three-equation
models than with the two-equation full model in the isotropic case (§ = 1). We conclude
that the assumption of a complete slaving of the velocity distribution in the porous medium
to that in the liquid medium, i.e. ansatz (4.11), as employed by Samanta et al. (2013), is
too restrictive.

6. Time-dependent simulations

In this section, we present some time-dependent numerical simulations of the
three-equation full and approximate models (4.2), (4.10), and (4.17), (4.16) and the no-slip
model (4.17), (4.19) with outlet open boundary conditions and forcing at the inlet (open
flow). Computations have been performed using finite differences and the method of lines,
which can be easily employed in the case of evolution equations (Cellier & Ruyer-Quil
2019), for which the system of partial differential equations can be written as

Ul = F(Ua U)Cv Uxm .. ')’ (61)

where the indices refer to temporal or spatial derivatives; and U is the vector that contains
the unknowns (in this particular case h, g and g,). The spatial derivatives of our system
(6.1) are first discretised and replaced by algebraic approximations using second-order
central finite differences. As a consequence, (6.1) is transformed into an initial-value

problem for the vector U of discrete unknowns on the chosen numerical grid:

AU ~ ~
- =F@. 6.2)

An in-house solver has been developed in Julia language in order to integrate (6.2).
This solver uses the libraries ForwardDiff (Revels, Lubin & Papamarkou 2016) and
DifferentialEquations (Rackauckas & Nie 2017). The ForwardDiff library implements
forward-mode automatic differentiation algorithms and thus enables one to automatically
and efficiently compute the Jacobian of the function F. As a result, changes of the model
are easily implemented in the code. DifferentialEquations offers a wide range of schemes
and algorithms for integration in time. We used a Crank—Nicolson scheme with adaptive
time-stepping. This scheme is recommended for highly stiff problems and limits the
numerical cost.
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We present some simulations of a time-periodic wavy evolution generated by a regular
forcing at the inlet:

gi = 17(D)[1 + A sin(w?)]. (6.3)

Outlet open boundary conditions are selected in order to reproduce experimental
conditions. They consist of simple no-flux conditions at the domain outlet. Owing to
the intrinsic convective nature of the studied phenomena, induced oscillations only
affect a few nodes of the numerical domain at the outlet. Parameters are chosen to
correspond to an experiment by Liu & Gollub (1994) with a dimensionless flow rate R =
gn/v = 19.33, a forcing frequency f = 4.5 Hz, angle § = 6.4°, v = 6.27 x 107 m? 5!
and Ka = 526. We chose 6 = 0.5 and a moderate Darcy number Da = 0.01. The
Reynolds number has been adjusted to Re = 3R/[2(1 — §)] = 47.3, which corresponds

to a film on an impermeable substrate at y = § (no-slip model). The no-slip model (4.17),
(4.19) reproduces accurately the nonlinear multi-peaked wave evolution reported in the
experiment (Ruyer-Quil & Manneville 2002). As it develops downstream, the flow remains
periodic in time at the inlet forcing frequency. The initial exponential growth gives way
to a multi-peaked wave with the growth of a secondary peak. A phase locking occurs
and a modulated wave-train emerges. Our simulations with the full and approximate
three-equation models (4.2), (4.10), and (4.17), (4.16) in the isotropic case & = 1 underline
the effect of a thick porous layer on the wave evolution. In contrast to the remarkable
agreement reported by Samanta et al. (2013) for a thin porous medium at § = 0.1, our
simulations show that the flow in the porous medium significantly affects the wave
evolution, mitigating the growth of a secondary peak, delaying the phase locking and the
emergence of the modulated wave-train. The approximate and full models give results in
close agreement.

In contrast to the no-slip model, the simulations performed with the full and approximate
models at & = 1000 show the emergence of waves with a lower amplitude than for the
isotropic case (§ = 1). A quicker onset of the final modulated wave-train is observed.
Spatial modulations of this wave-train are also weaker and quickly attenuated. This is
clearly an effect of the viscous diffusion of the liquid momentum in the top Brinkman
sublayer of the porous medium, which is promoted at low cross-stream permeabilities. In
fact, we have checked that setting coefficients 7} , I?il, Zil and ]\N/If to zero in the averaged
momentum balance (4.10) for the liquid layer yields results in close agreement with the
no-slip model at & = 1000. Similar results are obtained for the approximate model by
dropping all terms proportional to £ in (4.16a).

We next turn to a simulation of a solitary-like wave-train generated at a lower frequency
f = 1.5 Hz, for which we discuss the effect of varying the Darcy number (see figure 13). At
a moderate value of the Darcy number (Da = 0.01), raising anisotropy leads to a damping
of the capillary ripples, which is consistent with the above observations for f = 4.5 Hz.
However, lowering Da to Da = 0.001, anisotropy has an opposite effect, the amplitude
of capillary ripples being raised as £ is increased. These observations are consistent with
our linear stability analysis (§ 3). Raising the cross-stream permeability affects the short
capillary waves differently depending on the relative extension of the Darcy and Brinkman
sublayer in the porous region. Results from the approximate models (not shown) are in
close agreement with the full model. We note that £ Da>/? equals 0.05 for & = 1000 and
Da = 0.001, and 1.5 for & = 1000 and Da = 0.01, so that the contribution of cross-stream
permeability to the viscous diffusion in the Brinkman top sublayer is weak in the former
case and significant in the latter one. As expected, a close agreement is found between
the solution to the no-slip model and the full three-equation model for Da = 0.001 and
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Figure 12. Simulations of a wave-train generated by a periodic inlet forcing using the no-slip model (4.17),
(4.19), and the three-equation full and approximate models (4.2), (4.10), and (4.17), (4.16). Parameters
correspond to an experiment conducted by Liu & Gollub (1994): Re = 47.3,f =4.5Hz,60 = 6.4°,v = 6.27 x

107 m? s~ ! and Ka = 526.

& = 1000. This agreement results again from the efficient damping of the mass exchange
between the liquid and porous layer, so that g, is nearly constant at large values of &.
Finally, we present time-dependent simulations of the three-equation full model and the
no-slip model in an extended domain. In order to simulate the natural evolution of the film
as a response to ambient noise, we superimpose to a constant inlet flow rate a white-noise
signal of weak amplitude, such that the inlet film flow rates ¢;(x =0,t=0) =1 (i)g(t),
where g(¢) fluctuates in the interval [0.9, 1.1]. Figure 14 presents a snapshot of the film
evolution at the end of the simulation. The typical coarsening dynamics of falling-film
flows is clearly observable, as large-amplitude waves travel faster and capture the waves
that precede them. The downstream dynamics of the flow is then organised by solitary
waves in interaction (Chang & Demekhin 2002). In the isotropic case (§ = 1), the flow rate
gp in the porous medium may rise to quite large values under the large-amplitude solitary
waves, corresponding to roughly three times its value for the Nusselt uniform-film solution.
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Figure 13. Simulations of a wave-train generated by a periodic inlet forcing using the three-equation full model
(4.2), (4.10) and the no-slip model (4.17), (4.19) for different Darcy numbers. Parameters correspond to an

experiment conducted by Liu & Gollub (1994): Re = 47.3, f = 1.5Hz, 0 = 6.4°, v = 6.27 x 107% m? s~!
and Ka = 526. (a) Da = 0.001 and (b) Da = 0.01.

We thus conclude that the wavy dynamics of the film triggers an efficient exchange of mass
between the porous and liquid media. Raising the cross-stream permeability (§ = 1000)
has a strong influence on the wave dynamics. Close to the inlet, nonlinear waves emerge
more quickly out of the growth of random perturbations. Solitary waves observed at the
outlet of the numerical domain have a lower amplitude.

A mitigation of the capillary ripples preceding the solitary waves is also evident, as
well as the onset of bound states made of several linked waves and multi-peaked waves.
All these phenomena arise from the influence of viscous diffusion on the velocity of
the waves, an effect sometimes referred to as ‘viscous dispersion’ (Pradas, Tseluiko &
Kalliadasis 2011). In contrast, the no-slip model (4.17), (4.19) presents interacting solitary
waves whose shapes are similar to the isotropic case (§ = 1), whereas the simulated wave
evolution at the inlet is closer to the anisotropic one (§ = 1000). This can be comprehended
by considering that raising & attenuates the fluctuations of g, and the no-slip model
corresponds to g, = const. Raising & also increases the viscous dispersion of the waves
prompted by the Brinkman sublayer, an effect that is not accounted for by the no-slip
model.

7. Summary and conclusions

The effects of anisotropy on the stability and nonlinear evolution of a falling film on
an inclined plane have been investigated in the framework of a one-domain composite
description of the entire liquid and porous domains introduced by Beckermann et al.
(1988).

Extending the weighted residual modelling approach, a three-equation semi-analytical
model (4.2), (4.10) has been derived by decoupling the flows in the porous and liquid
regions. Two separate unknowns have thus been introduced to characterise the flow in these
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Figure 14. Simulations of the response of the film to noise at the inlet based on the three-equation full
model (4.2), (4.10) and the no-slip model (4.17), (4.19). Panels (@) and (b) are snapshots of the free-surface
elevation and flow rates in the liquid and porous region at the end of the simulation. Parameters are Da = 0.01,
ey =0.78,8 = 0.5, A = 0.001, Ka = 769.8 and 6 = 4.6°.

two regions, i.e. the flow rates, g; and g,,. The coefficients in the three-equation model have
been numerically computed and tabulated. In the limit Da < 1, we have shown that this
model can be simplified to (4.17), (4.16) using polynomial approximations of the velocity
profile.

Orr—Sommerfeld stability analysis of the base flow has revealed a non-trivial dual effect
of anisotropy on the film stability depending on the permeability of the porous medium.
Raising & lowers the exchange of mass between the liquid and porous regions and therefore
reduces the viscous damping of the film-height fluctuations in the Darcy sublayer at the
core of the porous region. However, viscous diffusion of the film-height fluctuations is
enhanced at the top Brinkman sublayer. The net balance of these two mechanisms depends
on the relative size of the Brinkman and Darcy sublayers, therefore on the Darcy number.

In the isotropic case, when the thickness of the porous medium is relatively small (cf.
figure 5), we observed the linear stability of the film on the porous substrate to be nearly
equivalent to the stability of a film on an impermeable no-slip effective boundary located
at y = 6 — dp (no-slip model). For a thicker porous layer, our computations show a weak
amplification of the instability at the threshold at large permeabilities and an attenuation
otherwise. This slight discrepancy on the instability threshold probably results from the
significant differences observed for the velocity profiles in the porous region at large
permeabilities (see figure 2). The attenuation of the instability further from threshold
as compared to the no-slip model results from the viscous damping of the velocity
fluctuations in the porous medium, which is allowed by the exchange of mass at the
porous-liquid interface.

Our study of nonlinear waves has been based on the weighted residual three-equation
models that we derived to account for the decoupling of the flows in the porous and
liquid regions. This approach has been validated in the linear regime by comparison with
the Orr—Sommerfeld analysis. The approximate model (4.17), (4.16) offers a welcome
simplification of the full model (4.2), (4.10), which remains valid even at moderate values
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of the Darcy number. It also enables us to propose a criterion, i.e. £ Da’/?> = O(1), above
which the viscous diffusion in the Brinkman top sublayer becomes significant.

We have constructed nonlinear TW solutions by a continuation method and performed
time-dependent simulations with open boundary conditions at the outlet (open flow).
Raising & affects the wave shape and speed, modifying the connections of TW branches.
TW solutions are close to the corresponding ones for the no-slip model (effective
impermeable boundary at y = § — dp) at low permeabilities. However, for the isotropic
case § = 1, the intensity of the fluctuations of the flow rate g, in the porous medium, and
therefore the exchange of mass at the liquid—porous interface, is significant and impacts
the amplitude of the capillary ripples.

Time-dependent simulations of the film response to a periodic forcing at the inlet have
revealed a sharp effect of anisotropy on the time-periodic wave-trains. Raising £ attenuates
the fluctuations of g,, thus limiting the mass exchange at the liquid—porous interface and
mitigating the damping of film-height fluctuations in the Darcy sublayer. This mechanism
amplifies the capillary ripples at low values of Da (cf. figure 13). However, damping of
the capillary ripples is instead observed at larger values of Da when £ is raised. This is
explained by the increased efficiency of the viscous diffusion of the waves, as the intensity
of the flow in the Brinkman sublayer is raised along with the permeability. Raising the
anisotropy parameter £ at moderate and large permeabilities also has a regularising effect
on the inception of primary wave-trains generated by an inlet forcing (cf. figure 12),
lowering the wave amplitude and damping the spatial modulations of the wave-trains.
However, these effects on the stability and nonlinear dynamics of the liquid film are

observed for fairly large values of the anisotropy parameter (£ = 10°). If very anisotropic
porous media can be found in Nature, for instance, for faulty rocks where & can be as high

as 10% (Evans, Forster & Goddard 1997; Farrell, Healy & Taylor 2014), it is difficult to
think of a porous medium at the scale of a liquid film exhibiting such large anisotropy.
Finally, our time-dependent simulations of a noise-driven wavy film show that the
fluctuations of the flow rate in the porous medium can be large due to the onset of
large-amplitude solitary waves that dominate the dynamics of the film. Raising & at Da =
0.01 has a complex effect on the wave dynamics, modifying wave-to-wave interactions
as a result of an enhanced dispersion of the waves prompted by the viscous diffusion in
the Brinkman sublayer. We conclude that the influence of the flow in the porous layer on
the film dynamics is much stronger than admitted in previous studies. The approximate
three-equation model (4.17), (4.16) offers a reliable alternative to the more complex
semi-analytical model (4.2), (4.10) and thus constitutes an interesting tool for later work.
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Appendix A. Coefficients of the weighted residual model

The coefficients of the three-equation full model (4.2), (4.10) involve f;(y; H) and their
derivatives with respect to H, g; = 0 f;, a; = 0nn fi, which satisfy

H
Loi==Cjldi giho=0. dglon=Cu and [ 1dgi = ~8ufiH: i)
0
(Ala)
and

H
La; = —C;J/‘Idj, aily=0 =0,  dya;ily—p = 2C;, and / Idja; = —288:(H; H),
0

(A1b)
where Cl’.j = dCjj/dH and Cl’.]f = d’C;j/dH?. The computation also involves the following

functions:
y y y
li:/ fidy, m,-=/ gidy, bi=/ a;dy, (Ale)

n,:/ D, 0,_/ D8 gy = / Bai 4 (Ald)

rp = —dy, s = —dy, a = —dy (Ale)
H Kx H Kx H Kx

The expressions for the 54 coefficients are then as given below:

w 1"
S = 1_7/(; fiwr dy, (A2a)
w_ L7, 2
R == / e 206 fili + (fif; — By fili)e — gie*Twy dy, (A2b)
0
) f
Gy = /0 e 2 [—dye fim; — e(figj — dy fim)) Ik dy, (A2¢)
) "

O = 2gilwils + Qaili + Ci) e + / (ai + Bieywi dy, (A2d)

0
Jl.( ) — / —ajewy dy, (A2e)

0

0 1 "

K = _2ITI {filHWle + 28ilu Tk +/ (gi + 0i&)wi dy} , (A2f)
0
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~ 2 rH
7® _ .
L= —/ siewy dy, (A2g)
H Jo
o _ 1 "
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0
~ 1 [H
A —— / siewy dy, (A2i)
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M =5 {2fi|HTk + wila +/ (fi + nie)wk dy} ) (AZ))
0
~ ® 1 H
M = i {/0 riEW dy} , (A2k)
H
Tk=/ ewy dy, (A2])
0
10 =1 /H. (A2m)

These expressions must be contrasted with the corresponding ones for the two-equation
model obtained by Samanta et al. (2013), who chose the one-function ansatz (4.11). We
have carefully checked that, setting £ to one and dropping the indices and suffices in (A2)
yields the correct expressions for Samanta’s model. However, they are written differently
than in Samanta et al. (2013) due to a different — yet equivalent — choice (4.12a—d) for the
definition of the test function f. We note that the base flow Up satisfies

Up = H IV (H) fi(y; H) + 1P (H) £, (y; H)]. (A2n)

Since the reference scale for the velocity is the free-surface velocity of the base flow for
the reference thickness H = 1, we have the relation

1=10) fi(1; D+ 1P ) £,(15 1). (A20)

The linear stability analysis of the stationary solutions to the system (4.2) and (4.10)
requires one to compute the variations with respect to H of the weights, which satisfy

Re
Logw; =0, 9dpwily=0 =0, and dypgwily=p = 5ilﬁ, (A2p)
so that dgw, = 0. We thus have
d(H3 D) H d(H31P)
D A ogw dy, d —~- = . A2
i wilH +/O edgwidy, an i WplH (A2q)
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Appendix B. Approximation of the coefficients of the weighted residual model

We provide below the approximate expressions for the coefficients (A2) corresponding to

the polynomial estimate of the velocity profile:

0 . AH =8> 2 ) 2(H — §)°
SO~ 220 40k, SOax——2" 0 4 0@S),
L7550 =5 B op 50 sz 00
68(H — §) 12(H — §)?
0) 2 (0
FO~ 22" % 1062, FO~ -2 22 1 0@6p),
" 3501 — §)2H B lp 35(1 — 8)28H b
2(H — 8)(135 — 6H) (H — §)%(2275 + 88H)
Fy) ~ ——— +00p), F)~ —
35(1 — §)26H 420(1 — §)26°H
36 4(H — §)?
G;ll) ~ rs 2 + 0(5§)’ G](Dl; N = - ~2 + 0(83)7
35(1 — ) 35(1 — 8)%8
1| 4H-9) 16
o _ 0 2
GV=G'~ - | ———_ | +06p), J"~—"— +0(),
P =TT [35(1 - 3)25} BT T sa =g T
2H—§ ~ 653
T ~ (—~)~ +06p), IV ~-— B
5(1 —8)2% 5(1 —8)2(H —§)3
~ 2683 18(H—§
Jp(l) _ s Kl(l) ~ (—~) + 0@,
5(1 — 8)2(H — §)2 5(1 — 8)2H
2 3
()~ 2H =) 483

+06p), K"~

P (1 —3)25H C5(1—8)2(H —3)2H
- 283 24(H — §
Kp(l) ~ — B —, L(l) ~ (—~2) + 0(5123)’
S(1—8)*(H — 8)*6H 5(1-68)H
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