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The classical definitions of GARCH-type processes rely on strong assumptions
on the first two conditional moment¥he common practice in empirical studjes
however has been to test for GARCH by detecting serial correlations in the squared
regression errorsThis can be problematic because such autocorrelation struc-
tures are compatible with severe misspecifications of the standard GARGH
merous examples are provided in the paperconsequencestandard(quasi)
maximum likelihood procedures can be inconsistent if the conditional first two
moments are misspecifiedio alleviate these problems of possible misspecifica-
tion, we consider weak GARCH representations characterized by an ARMA struc-
ture for the squared error termBhe weak GARCH representation eliminates the
need for correct specification of the first two conditional momefitse param-
eters of the representation are estimated via two-stage least sqliagesstima-

tor is shown to be consistent and asymptotically norrrarecasting issues are
also addressed

1. INTRODUCTION

In the past 15 yearshere have been rapid developments in the field of model-
ing time-varying conditional variances in both applied and theoretical econo-
metrics Since the introduction of autoregressive conditional heteroskedasticity
by Engle(1982, and its generalization by Bollersl€t986, GARCH models
have been the most widely uségke the review by Bollersle#ngle and Nel-

son 1994. However a plethora of alternative models has emerged in recent
years First, a number of specifications of the conditional variance generalizing
the basic formulatiofibased on squared innovatigimave been proposethese
alternatives arein general motivated by the need to capture some empirical
stylized facts of financial time serigsuch as asymmetyySecond some re-
searchers have focused on new classes of processes that do not belong to the
GARCH family. These are mainly the so-called stochastic volatility processes
(see the review by Ghyselslarvey and Renau)t1996. In these modelsby
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contrast with GARCH modejghe scaling process is not measurable with re-
spect to past observablebe standard representation takes the form of an ARMA
whose innovations are scaled by an unobservable autoregreShmilose as-
sociation between stochastic volatility specifications and the time-varying vol-
atility diffusion processes commonly used in the finance theory has generated
great interest in these alternatives to the GARCH mod#e Anderse(i1994

for a connection between GARCH and stochastic volatility proce$seally,
following Hamilton (1989, some recent papers have introduced models where
the conditional variance changes according to an unobserved Markov chain

A common feature of models of conditional heteroskedasticity is the exis-
tence of a univariate process of the general fefm o Z;, whereoy is strictly
positive and measurable with respect to saméeld I,_4, (I;) being a filtra-
tion; the Z, process is mean zero and unit variance conditionally;on In the
GARCH contextl;_; = o(€_1,...), Whereasl;_; includes unobserved vari-
ables in the stochastic volatility framewoikherefore a strong assumption im-
posed by standard models of changing variances is(thais a martingale
difference sequendgvith respect tdl,)). A natural question is how restrictive
this requirement isThe fact thato, is not observable makes the answer very
difficult for stochastic volatility modeldn the GARCH contextthe notion that
some financial series might violate the martingale difference assumption can
be seriously entertaine€asual examination of plots of empirical correlations
betweene; and some(nonlineay functions of its past suggest the martingale
difference assumption is likely to be too stromdgoreover some important is-
sues such as modeling time-varying skewness and kuytoslitional only,
are ruled out by the classical assumptiéns

The martingale difference assumption in the GARCH framework involves
other important shortcomings in terms of temporal aggregatiomn impor-
tant paperDrost and Nijman(1993 have shown that “the classicégemj-
strong GARCH assumptiorige., the innovation is a martingale difference with
a specified conditional variangen the available data frequency are arbitrary
Generally a(semijstrong GARCH process aggregates to some weak GARCH
procesdi.e., in which only projections of the noise and its square are consid-
ered that is not semi-strong GARCHIn addition they have shown that the
class of weak GARCH processes is closed under temporal aggregatioa
precisely the low frequency model that is implied by an assumed high fre-
quency GARCH model can be derivelth the same spirjtDrost and Werker
(1996 derive explicit relations expressing the weak GARCH parameters at ar-
bitrary frequencies in terms of an underlying GARCH diffusiarnereas Nij-
man and Sentanél996 obtain results on contemporaneous aggregation and
marginalization of vector processe&ee also Meddahi and Rena(1996.

Finally, the martingale difference assumption has crucial importance for as-
ymptotic theory in statistical inferenc&he literature on the estimation of
GARCH-type processes is how quite substantald much theoretical analysis
assuming a time-varying conditional variance uses a quasi—maximum likeli-
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hood estimatofQMLE).? On the other hand/\Veiss(1984 1986 can be cred-
ited with first having analyzed the asymptotic properties of two-stage least-
squaregLS) estimationAgain, the standard proof for the asymptotic normality
of the LS estimato(based on a central limit theorem for martingale differ-
ence$ does not extend to the situation where only white noise assumptions can
be madeThe estimation of stochastic volatility models entails additional diffi-
culties becauseunlike GARCH the conditional likelihood cannot be com-
puted in closed formA variety of alternative procedures have been proposed
to fit these modelgsee the review by Shepharti996. For similar reasons
Markov-switching models are generally less tractable than GAR&IYmMp-
totic properties of ML estimation remain in large part to be uncovéred

This paper presents a unified statistical treatment of a wide class of condi-
tionally heteroskedastic process€ur approach is based on a general two-
stage representation including the weak GARCH proposed by Drost and Nijman
(1993. It consists of two ARMA equationghe first one on the observable
processX, the second one on the square of its linear innovat®urch a repre-
sentation is well known to hold for GARCH modelBo anticipate the results
that follow, the representation is remarkably robust to certain types of misspec-
ification in GARCH model¢

In this paperfirst of all, we show that in various situations where the GARCH
model is not the correct data-generating prod€sP), an underlying ARMA
representation for the squared innovations hdligarticular it offers the pos-
sibility of dealing with several types of misspecifications of the conditional vari-
ance in the GARCH frameworlVioreover a striking feature of the proposed
representation is that it nests not only the standard GARCH model but also
most of the popular specifications of the literatuegy., the standard GARCH
some asymmetric GARCHsome stochastic volatility and Markov-switching
models

Second although Drost and Nijmari1993 mention estimation issugso
theoretically sound procedure for estimation is available in the weak GARCH
context It is the purpose of this paper to derive a large sample theory of in-
ference for the two-stage representatidfe use a LS procedurarhich amounts
to minimizing the linear prediction errors in both equatioRstential alterna-
tive approaches are generalized method of mom@t4M ) proceduresquasi—
maximum likelihood(QML) methods and simulation-based methodss for
GMM, which can be seen as an extension of ti& idea would be to exploit
the infinite set of moment conditions implied by the innovations in each ARMA
equation along the lines of Hansen and Singlettt®96. However to our
knowledge the existing theory on the GMM cannot be straightforwardly ap-
plied to our settingAlthough a stochastic volatility structure could be used to
compute a QMLEthis would require a complete specification of the first two
conditional momentsin contrast our estimation procedure does not require
specification of any functional form other than the two ARMA equations
Clearly, our estimator will be strictly inefficient relative to full-information
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MLE, or even QMLE and GMMTwo references on these techniques applied
to volatility models are Ruiz1994) and Andersen and Sgrens€i®96. Ac-
tually, weak GARCH representations have little interest when a strong model
is available In practice this is rarely the caseand a misspecified model is
likely to be selectedin such situationsQML-based inference can lead to very
poor forecastsas we shall seeFinally, the simulation-based methodsee
e.g., Gouriéroux Monfort, and Renaujt1993 Gallant and Tauchenl996
Broze Scaillet and Zakoian1998 are inappropriate in our contex8ecause
we do not specify the distribution of the innovatioasd because they are not
independentwe are unable to simulate the mod&he examples presented
subsequently show that a given representation is compatible with many DGP’s
The paper proceeds as followSection 2 provides the relevant definitions
and some important illustrations of the concept of weak GARGElction 3
presents the estimation method and the asymptotic ref\pert from some
moment conditionsalong with some standard assumptions on the lag polynomi-
als strong mixing and strict stationarity of th@bservable procesare suffi-
cient to derive the resultSection 4 reports the results of various simulation
experiments Section 5 is devoted to forecasting issuSgction 6 concludes
the paper and summarizes its main resuMsderivations and proofs are col-
lected in the Appendix

2. WEAK GARCH REPRESENTATIONS: DEFINITION AND EXAMPLES

Consider any strictly stationgrpurely nondeterministic proce$¥;)ez, ad-
mitting moments up to order fouFrom the Wold theore(X;) admits an in-
finite moving-averagg MA) representatianLet us assume that this M&o)
can be inverted to obtain a finite order ARMA representation of the form

P Q
X + Zld)' Xii =&+ 2‘/& €t—i>» 1)

where(e;) is a sequence of centerathcorrelated random variables with com-
mon variances? > 0 and where the polynomial®(z) =1 + ¢,z + --- +

¢pz” andW¥(z) =1+ ¢4z + --- + hoz? have all their zeros outside the unit
disk and have no common zeMyithout loss of generalityassume thapp and

o are both not equal to zelby conventionp, = o = 1). With these assump-
tions procesqe;) can be interpreted as the linear innovation ¥f), i.e., €, =

Xi — E(X;|Hx(t — 1)), whereHx(t — 1) denotes the closed span(@fs; s < t).

The (e?),c5, process is clearly second-order stationary and purely nondetermin-
istic. Therefore it admits a Wold decompositiogain, we assume that it can

be inverted to obtain an ARMA equation of the form

P q
e+ D el =+ U+ X B, 2
i=1 i=1
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where(u,) is a white noisgwith variance/? > 0). We make similar standard
regularity assumptions on the two polynomigiéz) =1 + a;z+ --- + a,zP
andy(z) =1+ B1z+ --- + B4z as we did ond(z) and¥(z). Therefore(u;)
is the linear innovation ofe?). Denote the lag operator ly Defining 7 (L) =

1 - 3% mL = ¢(L) "¢(L) we seth; = E(e?[Hz(t — 1)) = E(ef) +
2 (el — E(ed).

Remarks

(a) It is well known that any stationary strorigr semistrony GARCH(p’,q’) pro-
cess with a finite fourth-order moment admits a representation of the @rm
with p = max{p’,q'} andq = p'. In this strong GARCH setting is the condi-
tional variance ok;; moreoveythe constrainte > 0, 7; = 0 (0i), which guar-
antee the positivity ofy, are usually imposetsee Nelson and Cad992.

(b) Our definition is more general than that of weak GARCH proposed by Drost and
Nijman (1993. From both definitionsu, in (2) is the linear innovation oéZ. In
the Drost and Nijman approagcty, is also orthogonal to all past valuesef This
additional constraint ensures the stability of the class under temporal aggrega-
tion. Because temporal aggregation is not the focus of the present, papee-
rive our asymptotic results under weaker assumptidosavoid the introduction
of a new label in the GARCH literatuy@nd because it is consistent with the
concept of weak ARMAwe refer to the two-stage representati@i-(2) as weak
ARMA-GARCH or weak GARCH

We now consider some interesting particular cases of processes admitting
weak ARMA-GARCH representation$he first four have already been intro-
duced in the GARCH literature and provide nice interpretati@xamples 57
illustrate the possibility of getting weak GARCH representations of s@ineng
nonlinear processes tha priori, do not seem to be related to the GARCH
framework Throughout the sectigrwe assume that the unconditional mo-
ments are finiteas required in the definitioThe o-field generated byeg; s <
t) is denoted by, ;.

Example 1 (temporal aggregation of a strong GARCH)(Drost and Nijman
1993

Let (X;) be generated by an ARM#&’,Q’) model with semistrong GARCH
innovation i.e.,

q’ p'
E(eley) =0 and E(ef|ey) =0 =c+ X aeli+ 2 bod;.
— — i=1 i-1

We assume in addition that the marginal distributiorXpfs symmetric Thus
for any integem, the process Xm):ez follows an ARMA(P, Q) process with
weak GARCH p,q) errors whereP = P/, Q = P’ + [(Q' — P’)/m], andp =
g = max{p,q’} + 3Q(Q + 1). Obviously the linear innovation of X.,) is a
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martingale differencebut one can show in particular cases that the correspond-
ing representatiori2) is not strongin the sense that the white noise is not a
martingale differenceln particular this result is useful for statistical purposes
when only low frequency data from a high frequensgmijstrong GARCH

are available

Example 2 (quadratic GARCH)

We here consider a modification of the basic GARCH given by

q’ 2y
E(ele.1) =0 and E(efle_y) =0l = <C + E g 5t—i> + E b o,
— — i—1

i=1

where theb,’s are nonnegativerhis model is a particular case of the quadratic
ARCH model introduced by Sentaii#995. Putn, = € — o2 and observe that

the n's are uncorrelated and that they are uncorrelated with any variable be-
longing to the futurgby the martingale difference assumpti@nd the past of

€ (by the conditional variance assumptjoRewriting the equation determin-
ing o2, we end up with

max{p’,q'}
ef=c’+ > (af+b)ed;+u,
i=1

wherev, = 202?;1ai € + Zisj e T N — E!’;lbi N_i. It is now
easy to check the(v;) = 0 andE(viv;_y) = 0, Ok > max{p’,q'}. Hence(v,)
is a MA(max{p’,q'}) process from which we deduce thafe;) is a weak
GARCH(max{ p’,q'}, max{p’,q'}).

Example 3 (unobserved GARCH)

A number of recent papers have focused on GARCH models observed with
errors examples being Harveyuiz, and Sentand1992, Gouriéroux et al
(1993, and King Sentanaand Wadhwan{1994). These models take the form

’

q’ P
€& =6+ W, & = 0y Zy, of=c+ X a6l + > bod, (3
-1

i=1

where(Z;) and(W,) are mutually independent and are independent and identi-
cally distributed(i.i.d.) centered sequenceBheir variances are 1 and?, re-
spectively Unlike the other GARCH-type modelanobserved GARCH are not
easy to estimateor it is not possible to deduce analytically the density func-
tion of €, conditional on its past value®ther approaches for estimating model
(3) are the Kalman filter or simulation-based methdsise the references out-
lined earliey.
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Simple algebra shows that C@¢,e2 ,,) = Cov(e?,e? ), Oh > 0. Because
(&) is a strong GARCHIp’,q’) processthe autocovariance structure of its square
is determined by

max{p’,q’}
Cov(e?,e’) = 21 (a; + by)Cov(e?, e p. ), h>p'.
iz
The same relation holds fofe?) except that it requireh > max{p’,q’}
(because the last term in the sum is (D@%;ef,hmax{pgq,}), SO it cannot be
replaced by Co(/etz,ef,hmax{pgq,}) unlessh > max{p’,q’}). Finally, () is a
weak GARCH process of the form

max{p’,q'} max{p’,q'}
e¢— > (a+b)eZi=c+(1- > a+b|ai+uy
i=1 i=1
max{p’,q'}
+ 2 Bi utfia
i=1

where theg;’s are different from the-b;,’s (unlesso, = 0). Note that the AR
part in this representation is not affected by the presence of the disturdnce

Example 4 (asymmetric GARCH)
In El Babsiri and Zakoiaii2000, the following model is considered
=02 to_Z,

whereZ;” = max(Z,,0), Z; = min(Z;,0) with (Z;) a symmetrically distributed
i.i.d.(0,1) processandoy .. andoy _ are two positive processaseasurable with
respect tos,_4. The main interest of the model is to allow for different volatil-
ity processesone for the positive part af,, namely V(e |e, 1) = o2, V(Z;"),
and one for the negative pawt(e; |, ;) = o2 V(Z; ). In addition assume
that each volatility process reacts symmetrically to past innovations as

(1= A.(L)o? = w. +B. (L and (I-A_(L)oZ =w_+B_(L),

whereA, (L),B, (L),A_(L),B_(L) are some lag polynomial¢él — A, (L)) and
(I = A_(L)) are invertible andw, > 0,w_ > 0. The (¢;) process is not a
martingale difference in generdbecauseE(e|e—1) = (ov+ — oy - )E(Z{).
However for some appropriate parameterizationTvpi andoy _, (&) is shown
to be a white noiseThen we have

ClLef =+ (I =A (L) —A_(L)u,

where C(L) = [(I — A (L)(I — A_(L)) — 05((1 — A_(L))B (L) +
(I — A_(L)B_(L))] and u, = €? — E(€?|€,_,), w is a constantTherefore
if the regularity assumptions on the polynomials are satisfigg) is a
weak GARCH
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Example 5 (stochastic autoregressive volatility models)

The so-called stochastic volatility models have received increasing attention in
finance and econometrics literatuita particular the class of stochastic auto-
regressive volatilitf SARV) models provides a direct generalization of GARCH
models(see Andersenl994). The simplest model of this kind is

€ = 0. Z;, o2=c+do?,+[a+ bo? ], c,d,b> 0, a=0,

(4)
where(Z;) and(u) are ii.d.(0,1) processeswith Z; independent of;_;, j = 0.
Note that the GARCHL,1) is obtained by specifying, = Z2; — 1 anda = 0.
Then some computations not reported h&see Francq and Zakoiah997)
show that the covariance structure(ef) is characterized by Cq¥?,e2 ;) =

dCov(e?,e? ,,1), Oh > 1. Therefore a weak GARCH,1) structure is ob-
tained for(e;):

ef —del 1 =cC+ U + Uy,
where(u;) is a white noise an@ can be computed explicitly
Example 6 (bilinear processes)

Sete; = rivi_1, Where(r,) is a centered.i.d. sequence with unit variance and
E(v8) < co. Then it is easily seen thdt,) is centered and has zero autocorre-
lation but is not a martingale difference sequendereover computing the
autocovariance function of the proce&g) reveals that it is a MAL) of the
formef = 1 + u; — Ou,_4, where(u,) is a white noise and a parameter de-
pending on the fourth moment of, which can be assumed inside the unit
circle. Therefore(e,) is a weak ARMA0,0)-GARCH(0,1) process

We now aim to show thatX;) := (eZ — 1) is itself a weak ARMA-GARCH
it is much less straightforward because we have to prove that the pragess
has an ARMA representatiolVe have

u? — 02u? | = X2+ 2X, Z 0'X_i :=v,. (5)

i=1
Equation(5) determines the autoregressive part of the ARMA model(€g).

To obtain the order of the moving average paré show that, is a MA pro-
cess We have

Cov(v,v_y) = COV(XtZ, X+ 2Ky > aixtki>

i=1

i=1

+ Cov<29xt Xoop, X+ 2% S aixt_k_i>

+ c:ov<2xt > 0 X X+ 2K X eixt_k_i>.

i=2 i=1
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BecauseX; is a function of(v, v,_1), the first covariance on the right-hand
side is equal to zero for alk > 1. Similarly X;X;_; is a function of
(v, v1—1, 71_2); hence the second term is null for &li= 2. Finally, from E(X;) =
0 and the independence betwe¢nand X, (k = 2), the last covariance is
equal to zeroHence we have proved th&? — 1) is a weak ARMAO,1)-
GARCH(1,2) process

Example 7 (Markov-switching process)

In an interesting generalization of ARM#A, q) models Hamilton (1989 pro-
posed a switching-regime Markov model that can accommodate complicated
dynamics such as occasional shifts or asymmetric cydlee parameters of

the model are specified as functions of the state of an unobseri@tiaden
Markov chain Pagan and Schwe(1990 considered a variant of it for model-

ing conditional variance in financial time seriés the following mode| previ-

ously analyzed by Cdil994 and Duekef1997) (see also Hamilton and Susmel
1994, the intercept in the conditional variance is subject to Markov switching
Let A, denote an unobserved random variable that can take on the values
0,1,...,K — 1. Suppose thatA;) can be described by a Markov chain with
strictly positive transition probabilitiep; = P[A; = j|A, = i], for i,] =
0,1,...,K — 1. We assume that the dynamics of a processtake the form

q’ p’
€ = 0 Zy, of = u(Ay) + 2 ajel; + 2 b o2 (6)
i=1 i=1
with
K
p(A) =2 wilpmiy, 0<pmy<pp< - < py, (7
i-1

where(Z;) is an ii.d.(0,1) process admitting a fourth mome#KZ;) being inde-
pendent of(A;). Calculations reported in Francq and Zakoid®97 show
that (&) is a weak GARCHmax{p’,q'} + K — 1,p’ + K — 1) process of the

form

K—1 max{p’,q'} _ prik-1
JIG—AMJI—- > (a+b)Ll =+ |1+ D L u,
=1 i=1 i=1

whereAy,...,A¢—; are the eigenvalues different from 1 Bf= (p;). To be

more specific supposep’ = q' = 0 (i.e., o> = n(4;)) and(4,) is a two-state
Markov chain with state spad®,1} and 0< py; < 1, 0 < pyp < 1. Within this

setup the two states can be interpreted as high= 1) and low (A, = 0) con-

ditional variance regime§ herefore(e?) admits a weak ARMAL,1) represen-
tation of the form

ef — (1= Por— Pro)ets = @ + Uy + BUp_q, (8)
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where (u;) is a white noise an@d and g can be determined in terms @f,
Pio, M1, M2, ANAE(Z). In the case whergy, + pio = 1, we haves = 0, and
(e2) is (up to its meaha white noise

Other examples such as tBeARCH procesgDiebolt and Guégarl991) or
a diffusion process can also be dealt witbr details see Francq and Zakoian
1997). To conclude the sectigiit may be worth noting that one can easily con-
struct examples of GARCH-type or stochastic volatility models that do not fit
into the weak ARMA-GARCH notion proposed herk first example is the
class of fractionally integrated GARCH introduced by Bajllgollersley and
Mikkelsen(1996. In these modelghe conditional variance implies a slow hy-
perbolic rate of decay for the influence of lagged squared innovatishigh
precludes the existence of a finite order ARMA representation for the squared
innovationsIn the exponential GARCHEGARCH) of Nelson(1991) the auto-
covariances of the squared innovations decay at an exponential rate but cannot
be expressed as linear combinations of exponentials as for ARMA mbddels
Therefore a weak GARCH representation is also precluded in this example

3. ASYMPTOTIC RESULTS

In this sectionwe will consider the problem of estimating the ARMA-GARCH
representatioril)—(2) via two-stage LSThe method involves two successive
minimizations of sums of squared deviations about condititinabr expecta-
tions It is worth noting that the standard asymptotic results existing in the time
series literaturde.g., based on the martingale theorgre not applicable be-
cause we are working with weak representatidtis follow the same approach
as Francq and Zakoiai1998 for weak ARMA representationghe symbols

—4 anda.s. signify convergence in distribution and almost surely

3.1. Consistency and Asymptotic Normality

Let 0<1) = (¢17---’¢P’l//17' Q) 0(2) = (aly---9ap’Bl’ ﬁq,ﬂ)) and 00 =
0, 082). For any6 = (9<1> 0?) = (61Y,...,080,01,...,054. 1), we set

Dy (z) =1+ 0Pz + - + 0P 2°, Wya(z2) = 1+ eé,lllz + o+ 0029
bo(2) =1+ 6(2) - 022 andyye(2) = 1+ %2+ --- + 67,2 For
any positive constanﬂi, we define the parameter spa®g := <1) X (9(2)

the compact set of al’s such that the roots of the polynom|aI§,u>, \I'(,m,
¢y, and P, have moduli= 1 + 6. We chooses small enough so thad,
belongs to®s. Now from invertibility of the lag polynomials and the station-
arity assumption oriX?), the equations

®,0 (L)X, = Y0 (L)€ (6D), Otez 9)
and
by (L)e2(00) = 07401 + Yy (LU (0), CtEZ (10)
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define two second-order stationary sequentg$d'?)) and(u,(8Y,6®@)), for
all & € 05 (see e.g., Brockwell and Davis1991).

Let X4, X, ..., X, be a realization of length of (X,). For 0<t = n, ¢(8")
andu,(8) are approximated bg (6) anda,(6) obtained by replacing the un-
known starting values by zer@ (0Y) =0, —Q+ 1=t =0, and,(8) = 0,
—q+1=t=0).

The random variableéd, = (8(Y,6?)" is called a LS estimator if it
satisfies a.s.,

QU(A) = min, QP(6Y), QPG = min, QP(AP,6?), (1)

(1) (2)

where

n

QM (eW) = 1 > %), Q@) = z E az(6).
n Ni=1

t=1

We have the following consistency theorem

THEOREM 1 Let (X;);ez be a strictIyA stationary and ergodic process-be
longing to L* and satisfying1)—(2). Let (6,) be a sequence dfS estimators
Then

6,— 6, as. asn— co.

To be more specific about the asymptotic behaviof@®j, we need some
additional assumptions on the observed process

THEOREM 2 Let (X)cz be a strictly stationary process satisfying
(1)—(2), endowed with the sequence of strong mixing coefficiemigk))yen.
Furthermore assume that for some » > 0, E(X®"*) < o and
S olax (k)] < . Then

il — ) g A((2), (1 V2 (12)
n 0 d 0 ) V21 V22 )

where

Vip = Jigt i i Vor = Vi = 355 (Iog + 30317t 114) I

Vay = 355 (Ipp + Jog 1t 119011 dip — 1213128 d1o — Jog it i) 3ot

and

Iy, = lim Var<r T Q<1>(0<1>)>
n—oo

https://doi.org/10.1017/50266466600165041 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466600165041

ESTIMATING WEAK GARCH 703

n—oo

ae<2>

. 0 ’
12= rlinoo E< PYYE Q(l) (0(()1)) 0(2), r(12)(00)>, Ly =11,

n—oo n—oo

92 02
In=Zlim | ———QW(6") |, I = lim | ——— QP (6,) |,
9 9i(1) 9 Gj(l) n 9(2) (2)

82
2 im | ——— Q@ -
12 lmol 6 a0 =" (00)]’ Jo1 = Jiz-

To make the asymptotic normality result operatigritais crucial to be able
to build a weakly consistent estimator of the asymptotic covariance matrix

3.2. Covariance Matrix Estimation

Recently several authors have proposed methods to estimate covariance matri-
ces in various situationésee e.g., Newey and West1987 Andrews 1991
Hansen 1992. In particular Francq and Zakoiaf2000 consider the case of
weak ARMA and model§ Using a similar approagiwe now consider the es-
timation of the covariance matri¥ := (Vj) in Theorem 2 Define

am%)

N 22 9 ) '
JZZ(G) . E P8 ut(0)<aa(2) ut(0)>

N 22 9
Ju0®) == wqw><

2

- d
3,2(0) = —Eammw<wwwﬂ+ me 0,(6).

n<io 900

An emApirigaI estimgto[ ofly; (resp o, resp J,p) is then given byJd;,(62)
(resp Jz2(6h), resp Jaa(6n)).
From the proof of Theorem,2ve havel,, = 3% _ A, (6,) where

9 9 '
An(0) = 4E <Ut(9) W Ut(9)><ut+h(9) W Ut+h(0))-

To estimatd,,, we consider a sequence of real numhbéxg going to zero and
a real-valued weight functior (-). The latter is a boundecdeven and non-
negative definite function with compact suppbtta, a] and continuous at the
origin with k(0) = 1. Let, forO=h=n,

4 n- h

An(9) = —2@(9) e ut(e)<at+h(a) e aHh(a)) = A (0)
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and

+T,

[5(0) = X «(hb,)A(0),

h=—T,

whereT, is the integer part od/b,,. Theni,,(8,) can be used as an estimator of
I,,. The estimators of,, andl,, are constructed similarly

Finally, we estimateV by plugging the estimates of thg’s and J;’s into
the expressions for th;’s. Note that the derivatives in the preceding expres-
sions can be recovered recursively usifg-(10). It is worth noting thatwhen
the standard assumptions hdice., when (u;) is a martingale differengeall
the A, (6p)’s are equal to zero except for= 0. In the general cas@eglecting
those terms would entail inconsistency in the estimation of the mbriXAn-
other point to be noticed is the presence of second-order derivatives in the
matrix J;»(6). Indeed the last sum does not vanish whangoes to infinity
andéd = 6, because the derivatives cannot be written as linear functions of the
e2(6M)’s; thereforeu, and its second derivative are not orthogonal

As for all asymptotic resulighe validity of our theorems for approximating
the distribution of the estimator in small samples can be legitimately ques-
tioned In the next section we propose some Monte Carlo experiments illustrat-
ing the performance of the estimator in finite samples

4. NUMERICAL ILLUSTRATION

To gauge the proposed estimation proceditlris section presents a Monte Carlo
study of the finite sample properties of the two-stage LS estimator in several
situations There are two experiments conducted in the stifdy first consider

the Markov-switching process given by

X, = 02X, + (01 + 024,)Z,, (13)

where(Z,) is an ii.d. N(0,1) process(A,) is a Markov chain with state space
{0,1} and transition probabilitie®(A; = 1/A,_; = 0) = py; and P(A; = 0/
A1 =1) = pio, 0 < pip < 1, 0 < por < 1 In addition (Z;) and (A,) are
independentNote that the innovation of; admits moments up to any ordém
light of Section 2 we estimate the weak AR)-GARCH(1,1) representation

X, = X1 + €, €2+ ae? 1= w+ U + Bu,_ . (14)

In Table 1 we report the simulation results forGDO replicationsThe sample
size isn = 1,000, n= 2,000 or n = 5,000 Designs 1 and 2resp 1 and 3 are
concerned witho; = 0.5 ando, = 1 (resp pio = pPo1 = 0.1), designs 3 and 4
(resp 2 and 4 with o, = 0.5 ando, = 5 (resp p1g = po1 = 0.8). Based on the
correlation structure ofe?) (see(8)), the true values of the parameters(i)
are computed as a function of, o5, p1o, and py;. For each design we show
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the meanthe standard deviatigithe minimum) the maximumand the median
among the D00 estimator values

Although the estimation of parameter appears quite accuraté is seen
that for the sample size = 1,000, the estimators of the GARCH parameters
are biased with high variabilifHowever it should be noted thafor all de-
signs the true values o& andg in (14) are very closgwhich complicates the
estimation(because the identifiability assumption is that the lag polynomials in
the ARMA equations have no common rpdks expectedincreasing the sam-
ple size improves the results substantially in terms of bias reduction and accu-
racy. Forn = 2,000 the bias of the estimators is generally on the order of 5%
of the parameter valu@ he results obtained far = 5,000 confirm the consis-
tency theorem of Section 3 in this particular cabi&s on the order of 1 to 3%
in most cases A significant increase in the precision is also noticeale-
sides an increase in the difference between the two regithes o, = 5 in-
stead of 1 makes the estimation easidoreover the case of low transitions
between the regime®,o = po1 = 0.1), generally provides better performances
whatever the sample size and the valueref Finally, note that the median of
the estimators is typically closer to the true value than the magossible
explanation for this comes from the robustness of the median to ouflires
near nonidentification of the ARMA representations could cause such outliers

The second experiment consists in simulating the unobserved GARCH model

X = 02X, 1+ W, + 0, Z, of=1+a(o,_1Z_1)% + bod,, (15)

where(Z,) is i.i.d. N(0,1), (W) is i.i.d. N(0,0%), and the two processes are
independentEighteen experiments of,d00 replications each are conducted
fora= 0.1, b= 0.3 or 06, andoy = 0, 0.5, or 1, with the same sizes as in the
first example In this examplethe existence of moments implies constraints on
a andb. However for the values taken in the examplge haveE(X8) < «.”

Once againfrom the results of Section,2ve estimate the weak AR)-
GARCH(1,1) model(14). To save spageve only report(see Table Pthe out-
come concerning the coefficients of the GARCH equatidote first that the
case wherery = 0 corresponds to a strong GARCH1). The estimation re-
sults appear quite satisfactory although a large sample size may be needed to
achieve great accuracyhis is particularly true with design 5 when the vari-
ance of the.i.d. component is large with respect to that of the strong GARCH
processo; Z; (which increases with the sum+ b). Other experiments not re-
ported here reveal thatvhenoy, = 1, unbiasedness can be observed for larger
sample sizege.g., n = 10,000. Again the median is closer to the true values
than the mean

5. COMPARISON OF STRONG AND WEAK GARCH FORECASTS

Because GARCH models remain the most widely used by practitipaenses-
tion of great interest is whether they can actually provide valuable forecasts
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TABLE 1. Switching-regime Markov process

Size Parameter Value Mean Stibv Min. Max. Median
Design 2 po; = 0.1, p1p=0.1, 00 = 05,0, =1

n = 1,000 b 0.2 0.20140 003483 008288 031910 020142
o -0.8 —0.63894 030127 —0.97913 087407 —0.73446
B —0.71928 —0.55114 030414 —0.95592 091657 —0.64536
w 0.125 Q22480 018971 001091 119988 016628

n= 2,000 [ 0.2 0.19945 002525 012838 028280 019965
a -0.8 —0.75169 013415 —0.95309 055086 —0.78447
B —0.71928 —-0.66717 014571 —0.91582 063901 —0.69841
w 0.125 Q15528 008621 003050 110643 013356

n = 5,000 ¢ 0.2 0.20087 001565 014620 025137 020050
a -0.8 —0.78678 005840 —0.90336 —0.40598 —0.79576
B —0.71928 —0.70534 006747 —0.84331 —0.28257 —0.71330
13) 0.125 Q13314 003638 006281 037760 012773

Design 2 po; = 0.8, p1o= 0.8, 01 = 0.5, 0o = 1

n = 1,000 1) 0.2 0.20051 002693 010933 029884 020115
a 0.6 0.43226 034500 —0.97318 098026 052354
B 0.53353 036266 034532 —1.00018 097331 045214
w 1 0.89540 022394 001765 131857 094186

n= 2,000 [ 0.2 0.19949 001884 012661 025558 019918
a 0.6 0.49131 029158 —1.40789 206772 056295
B 0.53353 042083 029871 —1.52476 207826 049224
13) 1 0.93257 018175 —0.03187 206059 097036

n = 5,000 ¢ 0.2 0.20010 001255 015888 023864 020024
a 0.6 0.56800 016766 —1.39390 121072 059809
B 0.53353 050024 017335 —155701 120660 053003
® 1 0.97909 010842 -0.32117 122342 099721
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n=1,000

n= 2,000

n = 5,000

n=1,000

n = 2,000

n = 5,000

EWR S EWVRS 8®WR &

EWXR S TR E®WR S

0.2
-0.8
—0.67187

2.525

0.2
-0.8
—0.67187

2.525

0.2
-0.8
—0.67187

2.525

0.2

0.6

0.49089
202

0.2

0.6

0.49089
202

0.2

0.6

0.49089
20.2

Design 3 Po1 = 01, P10 = 01, g1 = 05, gy = 5

0.20107
—0.76594
—0.63474

296807

0.19900
—0.79019
—0.66077

264981

0.19939
—0.79498
—0.66594

258872

Design 4 po; = 0.8, p1o = 0.8,

0.19919

0.49779

038614
188066

0.19968

0.55075

044137
194588

0.20014

0.58638

047618
200003

004237 005434
012004 —0.95486
013751 —0.90483
165776 062611
002799 008591
006144 —0.91539
007739 —0.84420
079962 106834
001864 013950
003573 —0.87814
004584 —0.78017
046696 144402
0'1:0.5y 0'2:5

002045 013710
022753 —0.43232
022888 —0.55747
308961 765502
001520 014222
016228 —0.00848
016333 —0.10422
221605 118456

000917 017590
012344 —1.25683
013724 —1.89863
156992 —2.21781

032892

018970

039538
154942

030190
—0.43149
—0.23790

719805

027344
—0.56793
—0.40583

524673

026316

094742

090882
253745

025413

087571

083397
245062

022902

219215

216598
349662

020263
—0.79039
—0.66134

267123

019889
—0.79763
—0.66677

254588

019871
—0.79753
—0.66919

255710

019922

055678

043720
194038

019984

058355

047047
197856

019994

059787

048755
201046
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TABLE 2. Unobserved GARCH process

Size Parameter Value Mean Stikv Min. Max. Median
Design t 03, =0,a=0.1,b=03
n = 1,000 —a 0.4 0.29823 030831 —0.82380 097424 033915
-B 0.3 0.20059 031172 —0.86275 095736 022940
® 1 116535 051245 004507 312467 109320
n = 2,000 —a 0.4 0.36023 023030 —0.72932 123820 038182
-B 0.3 026212 023489 —0.79561 113403 028285
® 1 106369 038074 —0.30585 279366 102521
n = 5,000 —a 0.4 0.37931 013107 —0.09891 077063 039011
B 0.3 0.28029 013671 —0.18893 070836 028474
- 1 103383 021793 037901 179815 101642
Design 2 03 =0,a=0.1, b= 0.6
n = 1,000 —a 0.7 058350 025720 —0.64892 097403 065134
-B 0.6 048383 026640 —0.69887 094476 054408
® 1 1.38063 084472 008846 531795 115729
n = 2,000 —a 0.7 064211 017471 —0.89081 097791 067760
-B 0.6 054356 018126 —0.79294 096005 0581564
® 1 118766 057168 007760 597737 106450
n = 5,000 —a 0.7 0.68257 008268 001680 089930 069587
-B 0.6 058253 009200 —0.03021 081264 059501
® 1 105673 027575 —0.37969 294330 101655
Design 303 =05,a=0.1,b=03
n = 1,000 —a 0.4 022126 040761 —1.00338 098778 026878
-B 0.34061 016338 040471 —0.99814 100261 019917
® 1.3 168033 087136 002546 427782 157302
n = 2,000 —a 0.4 0.27334 033074 —0.96289 099412 030965
-B 0.34061 021324 033078 —0.980411 099150 024178
® 1.3 157187 071003 001321 424562 148998
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n = 5,000

n = 1,000

n = 2,000

n = 5,000

n = 1,000

n= 2,000

n = 5,000

n=1,000

n = 2,000

n = 5,000

0.4
0.34061
13

0.7
0.62494
115

0.7
0.62494
115

0.7
0.62494
115

0.4
0.36066
16

0.4
0.36066
16

0.4
0.36066
1.6

0.7
0.64143
13

0.7
0.64143
13

0.7
0.64143
13

0.36322 021197
030313 021509
137804 045795
Design 4 03 = 0.5,a= 0.1, b= 0.6
0.48222 034517
040325 034269
197426 130439
0.60748 022965
052896 023410
150274 087125
0.67487 012422
059656 013059
124454 047133
Design 503 =1,a=0.1,b=0.3
0.15011 041069
010955 040932
225747 108690
0.19028 034755
014967 034501
215347 092492
0.24965 026827
020880 026669
200143 071485
Design 6 02 =1,a= 0.1, b= 0.6
0.40740 036954
034322 036259
254335 157383
053421 028828
046892 028615
201531 123452
0.62312 020407
055822 020638
163357 088070

—0.74862
—0.78349
002107

—0.95114
—0.94758
006629

—0.46322
—0.56885
—0.33612

—0.62096
—0.69260
037894

—0.94447
—0.95626
002929

—0.92548
—0.94998
—0.51249

—0.72320
—0.77159
023908

—0.97243
—0.97168
003315

—0.85637
—0.73379
—0.95381

—0.23986
—0.23503
038799

098524
090865
366004

098148
097175
738536

108944
102812
586556

089940
086537
617465

098951
098473
544834

118878
108105
551787

091170
088827
459234

099310
100208
809213

124764
119732
753990

091198
087724
509043

038921
032943
132416

059537
049728
155361

067231
058945
125644

069607
061573
115961

006928
005990
238113

006831
006340
238144

018316
013137
221131

051196
043046
211881

063935
056459
157493

067974
061164
139956
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under possible misspecificatigne., when the strong assumptions do not Hold
Most empirical studies based on GARCH-type models work with estimators
computed from the following conditionalon initial conditiong Gaussian
quasi-loglikelihood

n 2

12 1 €f
L=-2->logo?— - —,
221 ! 22103

where thee,’s are obtained frongl) ando? is computed recursively from

’

q p’

of =c+ X aeli+ X bod (16)
i=1 i=1

under the positivity constraints> 0, a; = 0, by = 0. Lettingv, = ¢ — o2 and

r = max(p’,q’'), we can write

r p’
eZ2=c+ > (a +b)eZ; +v — > b (17)
i=1 i=1

In the case of correct specification of the conditional variamée(17) can be
used to derive the optimal forecasts «f that enjoy the property of being
linear functions of past value aof?. Now, if the DGP only admits a weak
ARMA-GARCH representatiotti.e., if the conditional variance given b{16)
is misspecified the QML procedure can serve as a device for its estimation
the parameters of16) are estimated and then plugged infi7). An equiva-
lent approach has been followed by Drost and Nijnia893.

To achieve insight into the asymptotic properties of this QML-based proce-
dure let us consider the expectation of the quasi scexaluated at the true
parameter valué, of the weak GARCH representation

1 oL _ 1 do? € 0€;
S| 1 2g@ 00)| = Eoo| 55300y a0 0% | T Bl Tagy 36 |

1 9L B 1 d0f
Eso HW(%) =Ey, mm(%)ut :
(18)

Becausay, is only thelinear innovation ofe?, and because the term in brackets
in the last equality is obviously a nonlinear function of past values?othe
expectation in the second equality will not vanish in genéraé same conclu-
sion holds for the first equalityTherefore the estimators computed from the
QML equations will unfortunately be inconsistent in general

Of course if in (18), (u;) is a martingale difference sequendken under
some regularity conditionghe parameters can be estimated consistently by
QML. In addition the two-stage estimator proposed in this paper is likely to
be inefficient relative to the QML estimatoHowever it should be empha-
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sized thateven in the case of a martingale difference (foy), equation(2) is
not necessarily compatible with a strong GARGHRdeed the parameter space
must be constrained to ensure thgt is positive (e.g., by imposing the clas-
sical nonnegativity constraint on tteg's andb;’s).

To illustrate these issugwe have performed four numerical experiments de-
signed to compare the? forecast errorsin each experimentwe consider a
DGP compatible with the weak GARGH,1) structure

€2+ ae? ;= w+ U + Bu._, (19)

where for ease of notation throughout the section= («, 8, w)’ denotes the
generic parameter vector afigl= (ay, By, wg)’ denotes the true valu&he lin-
ear prediction ok? is given by

étz 1"‘,3 +(B—a) E( ,B)Ifml,

from which we can compute the mean-squared prediction,error
MSE(6) = Ey(e? — é2)?

[wpl+a) 0l +ap]? (B-a)?
| @+Btag) ]+(l 1-p2 )7(0)

2(B—a)(1—ap)
(1_%3)(1 ,3)

wherey(0) andy(1) arg respectivelythe variance and first autocovariance of
the (e?) processOf course this function is minimal fo# = 6, and is equal to
E(u?) at this point

For different sample sizgs = 100, 200, ..., 1,000), we simulate 100 trajec-
tories of the DGPThen for each trajectorywe estimate the weak GARGH,1)
model (19) by the following (i) the method proposed in the papér) QML.
In the latter casewe estimate a strong GARClthen we derive the correspond-
ing weak GARCH model17). For each estimated modehe mean-squared
error(MSE) is computed and averaged across the 100 replicatiasise it to
compare the prediction errors resulting from both methods

In the first experimenthe data were simulated from the strong GARCH)
given by

y(D),

€ = 01 Z;, 02=1+0.4e2,+ 0402, (20)

whereZ, is an ii.d. N(0,1) sequenceFrom (19), the true parameter value of
the weak GARCH representationfig = (—0.8,—0.4,1), and we have/(u;) =
450, The estimation results are displayed in Figurét shows thatunsurpris-
ingly, for this strong GARCHthe QML method is more efficient than our two-
stage estimation methpdhatever the sample size
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525
500
475 “

------------------

450-

LN L B L N N N T D N O N N L N N

100 200 300 400 500 600 700 800 900 1000

n

FiGURE 1. Comparison between the mean-squared error of prediction obtained with a
strong GARCH mode{dashed lingand a weak GARCH modétotted ling, as a func-

tion of the sizen of a simulated trajectory of the strong GARCEH{L) model (20). The

full line corresponds to the minimal mean-squared error of prediction

The second experiment deals with temporal aggregalibe DGP(20) has
been maintained but we only use the low frequency observatign3he cor-
responding weak GARCH representation is given by

€3 + 0.64e3,_, = 1.8+ u, — 0.466u,_,,  V(u,) = 61824, (21)

The results presented in Figure 2 confirm the observation of Drost and Nijman
(1993 p. 922 that for this weak GARCH model derived from a strong GARCH
“the asymptotic bias of the QMLEf there is anyis very small’ The next two
examples will reveal that other weak GARCH models are not adequately esti-
mated by QML

In the third experimentthe DGP is given by

€t = VtVt-1, (22)
675 X,
] el
- e,
- ~‘§‘~
6501 e
625 —

LI N N N N N N R N I O

100 200 300 400 500 600 700 800 900 1000

n

FiGURE 2. Comparison between the mean-squared error of prediction obtained with a
strong GARCH mode{dashed lingand a weak GARCH modétiotted ling, as a func-

tion of the sizen of a simulated trajectory ofes;), where(e;) is the solution to model
(20). The full line corresponds to the minimal mean-squared error of prediction
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where(v;) is an ii.d. AV(0,1) sequenceWe know from Example 6 that?) is
the MA():

e2=1+u+ 2-V3)u,_4, (23)

where(u;) is a white noise with variance equal tg(2 — V3) = 7.464 Fig-
ure 3 shows that the MSE’s obtained by QML are very highen for large
samplesAs a consequenc@é this contextstrong GARCH predictions are very
poor. On the contrarythe MSE’s deduced from the two-stage procedure appear
satisfactory and seem to converge to the optimal value

In the previous exampléhe best strong GARCH predictions were obtained
for a model with a strictly negative coefficiemamely b = +3 — 2). In this
sensethe weak GARCH equation was not compatible with a standard strong
GARCH mode] which may explain the failure of the QML procedule the
next examplesuch a problem does not occur because the weak ARCH model
is compatible with a standard strong ARCH mad&bnsider the stationary pro-
cess(£2) defined by

2=1+u + 072, (24)

where(u,) is the white noise defined b§23) and(22).2 It is worth noting that
the predictions of? based on equatiof24) coincide with those obtained from
the strong ARCH) defined byo® = ¢ + a2 ;, with c = 1, a= 0.7. However
becaus€u;) is not a martingale difference sequentee QMLE fails to con-
verge to these optimal parametefggures 4 and 5 show that the strong ARCH
predictions are much less accurate than those based on the weak ARCH repre-
sentation even for very large sample§or n = 10,000,...,n = 100000 the
estimates ot anda are always close t0.0 and 08, respectively

Apart from considering the averaged MSHtfsis also of interest to compare
the distributions of the 100 MSE’s for the two estimation methddsTable 3

......
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Ficure 3. Comparison between the mean-squared error of prediction obtained with a
strong GARCH mode{dashed lingand a weak GARCH modétiotted ling, as a func-

tion of the sizen of a simulated trajectory of the weak GAR@B{1) model(23). The

full line corresponds to the minimal mean-squared error of prediction
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FiGURE 4. Comparison between the mean-squared error of prediction obtained with a
strong GARCH mode{dashed lingand a weak GARCH modétotted ling, as a func-

tion of the sizen of a simulated trajectory of the weak ARCH model (24). The full

line corresponds to the minimal mean-squared error of prediction

we have reportedor each modelthe percentage of cases in which the MSE’s
obtained by QML are less than the MSE’s obtained by our metkiéa have

also tested the hypothesis that the median of the difference between the two
MSE's is equal to zero against the alternative hypothesis that the median of the
MSE obtained by QML is less than that obtained by the two-stage method
Wilcoxon one-samplématched painssigned ranks test was performed using
the NAG routine GOBAGFThe asymptotig-values are given in parentheses
The results reported in Table 3 show that for the strong GARCH m(&i®)

the superiority of the QML over the two-stage method is signific&un-
versely in the experiments where the DGP is not a strong GARtDE hypoth-

esis that the QML is not inferior to the two-stage method is rejected at any
reasonable significance levépart from the cases = 100 andn = 400 in
model (24)). It is worth noting that even in the second experimé&eamporal

——
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500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

FiGUrRE 5. Comparison between the mean-squared error of prediction obtained with a
strong GARCH mode{dashed lingand a weak GARCH modétotted ling, as a func-

tion of the sizen of a simulated trajectory of the weak ARCH model(24), for sample
sizesn = 1,000Q...,n = 5,000. The full line corresponds to the minimal mean-squared
error of prediction
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TaBLE 3. Percentage of cases in which the MSE’s obtained by QML are less
than the MSE’s obtained by the two-stage metlipevalues of the Wilcoxon
rank test for the equality of the medians in parentheses

n

Model 100 200 300 400 500
(20) 82(1.000 78(1.000 84(1.000) 82 (1.000 87(1.000
(21) 40(.005) 35(.000 37(.000 32(.000 38(.001)
(23 22(.000 9(.000 3(.000) 2 (.000) 3(.000
(24) 46 (.041) 44(.015) 42(.018 47 (.157) 36(.000
n
Model 600 700 800 900 ,000
(20) 83(1.000 86 (1.000) 87(1.000) 95(1.000) 88 (1.000)
(21) 37(.002 30(.000) 26 (.000 25(.000 32(.000
(23 0(.000 1 (.000) 2 (.000) 0(.000 0 (.000)
(24) 31(.000 31(.000 26(.000 22(.000 15(.000)

aggregation the differences between the two estimation methods are substan-
tial, whatever the sample size

Another view of the performance of the two estimation methods may be ob-
tained through an out-of-sample forecasting experimeén¢ Monte Carlo ex-
periment involves 1000 replications of mode(22)—(23). The sample sizes
vary from 100 to 1000 For each replicationwe have estimated the weak
GARCH representation by the two method$ien we computed two one-step-
ahead predictions based on the two methddese two predictions were com-
pared to one out-of-sample valuveraging the squared prediction errors over
the 1Q000 replications leads to the results reported in Figuréh&y confirm
that there can be notable gains in precision from using the two-stage estimation
method instead of QML estimatiorsimilar out-of-sample experiments con-
ducted with the other models led to the same findings as in the in-sample ex-
periments Therefore they are not reported here

In summary several conclusions can be drawn from the experiments pre-
sented in this sectiorFirst, as we know from the very beginninthe QML is
certainly more efficient than the two-stage method when the DGP is a strong
GARCH, and consequentlythe predictions of the squares are more accurate
Secondweak GARCH representations can be incompatible with strong GARCH
subject to positivity constraint$mposing these constraints in QML estimation
can therefore lead to very poor approximations of the Di@Rally, even if no
positivity problems occuyi.e., when the weak GARCH representation could be
derived from a strong GARCH modehe QML may fail to estimate this opti-
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Ficure 6. Out-of-sample one-step-ahead MSEsmparison between a strong GARCH
model(dashed lingand a weak GARCH modeHotted ling, as function of the size
of a simulated trajectory of modé22)—(23).

mal (although misspecifiedstrong GARCH because the martingale difference
assumptions do not halds a consequencéhe predictive accuracy of the es-
timated strong GARCH can be very poor

6. CONCLUSION

Of course as are all statistical modeleRCH models are merely an approxi-
mation of the true DGRn applied work finding autocorrelation in the squared
ordinary LS residuals is generally interpreted as evidence for the presence of
ARCH. A misspecified modelhowever will typically be selected becausas
we have seen in this papesuch autocorrelation structure is compatible with
severe misspecifications of strong GARCH

This paper has proposed an asymptotic theory for weak ARMA-GARCH rep-
resentationsusing the principle of two-stage L$he method is very simple to
implement and it is already used by practitionetéowever using confidence
intervals based on strong assumptions can be mislealdimpgrticular standard
identification routines based on strong hypothesis on the innovation of the
squared ordinary LS residuals can result in serious misspecificalos sig-
nificantly, our approach can potentially serve as a basis for selecting and esti-
mating some more specific classes of stochastic conditional variance models
We hope to report results on this topic in the near future

NOTES

1. El Babsiri and Zakoiari2000 have documented some asymmetry features of stock returns
that are different from the so-called leverage effddtey typically found significant correlations
between the current innovation and its past positive/andegative partdn addition they showed
that conditional skewness and kurtosis can have huge fluctuations overjtishe@s conditional
variances

2. Recent papers that study asymptotic properties of a QMLE with different requirements on
the finiteness of the unconditional variance or the assumed innovation density include Bollerslev
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and Wooldridge(1992, Lee and Hanseli1994), Lumsdaine(1996, and Newey and Steigerwald
(1997).

3. See however Leroux1992, Rydén (1994, and Francq and Roussign997) for condi-
tions ensuring consistency of the maximum likelihood and the asymptotic normality of a sequence
of pseudo-likelihood estimatars

4. It seems that our approach can be connected with that of Nék&®? and Nelson and
Foster(1995. They have shown thagven when misspecified sequence of GARCH models can
consistently estimate the underlying conditional variance o¢fearjdiffusion (for increasingly
higher sampling frequencigsThe present paper also addresses misspecification of GARCH mod-
els but with a quite different perspective

5. To see this consider the EGARCH,1) model defined bye; = 01Z;, logo? = ¢ +
blogo? . + az,_1, where|b| < 1 and(Z,) is an ii.d. N(0,1) processTedious computations show
thatOh >0

2

2 2ph
Cov(e?, eZ ) = exp[ 1ch + (1f 57 ] {[l " azbz(“fl)]exp[ (1a——b)2] _ 1}.

6. These results cannot be straightforwardly extended to the current cortexever we con-
jecture that a proof of consistency can be obtained along the same lines and leave it for future
research

7. The necessary and sufficient condition for existenc&6X®8) is 105a* + b* + 18a%b? +
4ab® + 60a%b < 1.

8. Easy computations show that

1 3-27Z .
ft_&+mh§0|:(ﬁ_2) -

O.7h+l
V3-2

](ef,h —1) > 0.7044
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APPENDIX: PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1. The theorem relies on a set of intermediate results that we
now presentlt will be convenient to consider the functiori§ld € 0): O (#WV) =
(1/n)Zi1€2(0W) and O (0) = (1/n) Z{_1 uZ(6), where (e (™), ui(0)) is given by
(9)—(10). We use] -| to signify the Euclidean norfpA| = {tr(A'A)}*2 and|- |, to sig-
nify the L,-norm [|Al, = (E|A|P)YP. The first lemma was established by Francq and
Zakoian(1998 Theorem 1.

LEMMA 1. 8 - 6 as as n— co.

LEMMA 2. For anyf € 0; and any te Z,
€(0®)=¢, as.
' ' = 0 = 6,. (A1)
U (6) = u, as.

Proof. The proof thate (6Y) = ¢ (as) = 6% = 65" was given in Francq and
Zakoian(1998. The rest of the proof is similarly based on the innovation property of
along with the fact that representati@) is the canonical one u

LEMMA 3. For any6® € 0, let 0\2(65",6?) = E, u2(65”,6@). Then for any
0@ =02, 0?2 € 02, we hae

¢? = 02(65".05") < 02 (65", 6®).

Proof. The lemma is a straightforward consequence of the innovation propetty of
and of Lemma 2 u
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LEMMA 4. For any# € 0, there exist two sequences of absolutely summable con
stants(c;(#)) and (d;(#?)) and a constant W#?)) such that as. (Ot € 7Z):

(69) = X + 3 ¢ (69)X,, (A2)
-1

and

0(0) = W(O@) + 2(0D) + S 6, (022 (0. (A3)

In addition & (-) and (06 € ©5)u,(6Y,.) are continuously differentiable func
tions and for anyd € 05, anym € {1,...,P+ Q},andanym € {1,...,p + q + 1},
there exist a constant,y(6‘®) and two absolutely summable sequen@gs, (6));-,
and (d; ,(0®))=o such that

a [ee]
76@ &(0®) = X ¢ (0P)X,; and
-1

my

8 oo
7 U(6) = Wi (62) + 3 0 1, (62)eZ4(0V). (A.4)
my =1

Moreaver there exisfp € [0,1[ and K € [0,00[ such thatfor all i = 1,

sup _|c(67)] = Kp, sup_|d;(6@)| = Kp', (A.5)
oVeoyy 1?cof?
SUp |G m, (0M)] = Kp', sup | di m,(69)] = Kp'. (A.6)
Ve 0Peo?

Proof. Again, this is a straightforward consequence of the invertibility assumptions
on the MA polynomials in(1)—(2). Similar results have been established in Francq and
Zakoian(1998); therefore we do not detail the proof

Now we show the following almost sure uniform convergence result

LEMMA 5. We hae as.

lim sup [0 (65",6?) — O(6,”,6®)| = 0.

n—o g ey

Proof. From(A.3) we have

|uB(B5,6®) — uZ(65”,6@))|

2(6) — 2+ 3 A (02)[e2,(00) — e2,1||u (B, 62) + u (65,69
i=1

= |:|€t(ér(11)) — &l |Et(ér(11)) el + 2 [d (0<2>)| ‘Et—i(ér(\l)) —€ille (érgl)) t o€ |]
i=1

X [u(6,0?) + u (65", 6?)]. (A7)
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Now using a Taylor expansion we can write

(e8| x 16 — 65", (A.8)

N d
e (0") — el = H 90

whered, " is betweerd(" and6g". We deduce from(A.7) and(A.8) that

sup_ |o(2)(9(1) @) — Og2>(9é1)’9(2))|

0?co?

2N
= |:_ E (1»(‘ FYIEY (61(6(1))) ‘) SUp |E (0(1))|\M

Ni=1 9<1’eo
2 i > sup_[6,02)] sup (|~ (a6 ) sup. e, (00w
NiZ1i-10?@co0? I oVeol’ g 0Veol o '

X 6 — 65|, (A.9)
whereW, = sup,mce® SUR@ce@ U (0F,0@) + u (65", 6@)]. Using (A.2)—(A.6) and
the Holder inequalityit can be shown that
E sup 0 (e,(61)) sup e (0M)|W, } < oo (A.10)

to pDcoP 9@ Pibigus t t .

and

EgOZ Sup, \d(0<2>)\ Sup

(l)

J
— (&_. (6D a®
(” Py (€ (0D)) H)grﬁg&vk“(a )W, < oo,

(A.11)

Finally, the sums in brackets on the right-hand side(Af9) involve ergodic positive

processegas measurable functions of and its past valugs Therefore the ergodic

theorem can be appliednd in light of (A.10) and(A.11), the limit is finite as.
Becausd|6Y — 65" | converges to zero.®, Lemma 5 is proved u

LEMMA 6. We hae as.

lim supvn|QP(#) — OP ()| =0 (A.12)

n—oo €0,

and for i € {1,2},

lim sup |vii —= (Q{’(#) — O(9))| = 0. (A.13)
N—w0 geo; 0“)

Proof. In view of Lemma 4 we havé,(6@) = X, + S'_1¢,(6P)X,_;. Then from
(A.5)

S Sup, le(6®) —&(0™) = X Kp'[Xi], as (A.14)

i=t
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Using (A.3), (A.5), and(A.14) we have

t—1

sup|a,(0) — u ()| = Z Kp' 2 Kp! [ Xe—i] suple_i(0P) + &_;(67)]
o0, = 00,

i=0 j=t—i

+ K sup X p'eZ i (69).

0EB; i=t
Because there exists a constd, independent of, such thatEsupc,E@Je[(e(l)) +
&(6M)| = My, the Markov inequality and the Borel-Cantelli lemma show that

t—1
K2p1 >, suple_i(0P) +¢&_;(6W) =K,ps, as.

i=0 0E0;

for Ky > 0 andp; < p, < 1. Similarly we show thaK 32, p} SUpce, €2(6'Y) =
K, ps, as. for some constank, > 0. Therefore we obtain

supn|QP(6) — OP(9) = 3, sup|a,(6) — u(6)| <9su@p|ut<o>\ + 5u@p|nt<a>|>

(SGH t=1 €06,
=X p;( sup|u,(6)] + supmt(o)\)(m > pHIX il + Kz),
t=1 €6, €O, k=0
which is finite as. (because it is positive and its expectation is fipit¥e deduceA.12).
By the same argumentsising (A.6) instead of(A.5)) we obtain(A.13). u
LEMMA 7. For any6® € 02, 02 # 62, there exists a neighborhood(8?) of
6% such that \(6!?) C 62 and

liminf _inf  Q®(4P,0?)> 72 as.
N g@ecy(p?)

Proof. We have

inf  QR(W,0?@)= inf  OR(8",0?)

0?ev(6?) 0@ev(6?)

— sup |OP(6,0?) — QP (6,0

sOcof,
— sup [OP(0,0?) — O (65”,0?)|. (A.15)
0?0,

Let V,,(6?) be the open sphere with cen#f and radius im. Let

Sn(t) = inf u2(65”,6@).

02ev,(62)ne?

The ergodic theorem shows thas.a

1 n
O (65",6®) = = 3 SinlV) = By, Su0),
t=1

0@ eV,,0?

yney

as n tends to infinity Becauseu?(#) is a smooth function of), S,(t) increases to
u2(65”,6) asm goes to infinity Therefore limy, .., Ey, Sn(t) = E, u2(65”,6:%). But
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Ey U2(65”,67) > E, u(65”,65) = ¢2 becausay (65”,65”) is the linear innovation
of &. Hence |Imlnfn_>oo|lm inf,,_..inf,ecy (H@')O(z)(e(l’ 6?@) > 2 Becausefrom
Lemmas 5 and 6the two suprema ifA.15) converge to zero as goes to infinity the
stated result follows |

The proof of Theorem 1 follows from Lemma 7 and a standard compactness argument
|

Proof of Theorem 2. Again, the proof of the theorem consists of a sequence of
lemmas

LEMMA 8. The randonvector

Nl o (65")

0(1)
Z,=

vn O (6o)

ae<2>

has a limiting normal distribution with zero mean andvadance matrix

| = Ill |12
o1 la2)
Proof. Using the fact tha¢, andu;(6y) are respectivelythe linear innovations oX;

ande?, it is straightforward to show tha, is centeredInstead ofZ,, we can equiva-
lently prove asymptotic normality af Z,, wherev = (X, u')’, DA € RP*Q, u € RPHA*L,

We have
’ QD@D 2 S v (D v (2
/\raomo (65Y) + p'vm 0(2) 02(6,) = rt21()\\( + uw' Y,
where
Y= e 9(1) Q05) = 3 3 6051 0% X, (A.16)
i=0j=1
Jd
Y = u(60) S Ui (0)
=3 > di(0)[d (07 )e? €2
i=0j=1
+w(65) 2 [0 m(057)]e?; + [Win(B)] > 0 (657) el s, (A.17)
i=0

with c,(65Y) = dy(6$?) = 1. To use the strong mixing property 6X;) we truncate all
the sums involved in the expansions " and Y,?. For any positive integer, let
Yor =AY + wY?, where
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r r
Y =3 S 605" e, mB6)IX i X s
i=0j=1

r 2 r 2
Y2 = 2 Z g, <e<2>>[dj,m<eéz>)]<k2 cklwé”)xfikl) (kE ckzwé”)xukz)
1=0 >=0

i=0j=

+ W(902>) 2 [d] m(a(z))]< i Ckl(gél))xtjh)
k=0

r 2
+ [wmwé”)]zodi(e(”)( 2 G0 Xeci- ) (A.18)
i= k=0
BecauseY, , is a function of a finite number of values of the procéXs), it is strongly
mixing. Therefore the central limit theorem for strongly mixing processésragimoy

1962 can be appliedt implies that(2/vi) 2, (Y., — B Y,,) has a limiting\/(0, I;)

distribution We will show (in point (ii), which follows) that matrix| exists Standard
calculations show that — (A, )l (A, w)’ asr — oo.

(i) We will show that the asymptotic distribution of the untruncated random variable
n"Y230 Y, (whereY; = XY™ + w'Y,?) is equal to the limit@asr — oo) of
the asymptotic distributionas n — oo0) of the truncated random variable
nY23L Y, Let Z = XYY = YD) + 0/ (v @ = Y ?). 1t suffices to
prove thatE((1/vm) S, (Z,, — Eeozt,r))(l/r)z‘zpzl(zt,r - E(Juzt,r))’ con-
verges to zero uniformly im asr — co. A straightforward adaptation of a result
given by Andersor{1971, Corollary 7.7.1, p. 426) will provide the advanced re-
sult Because the computations are very similar for all the sums involved in the
definition of Z ,, we will only detail one of themFor instancelet

S > di(0)[d; m(057)]e? €2

i=r+1j=1

and let us show that for athe {1,...,p + q + 1}

supV( 2 U, r(m)) =50 (A.19)

By a classical argumenit is sufficient to show that

o

> [Cov(U, (M), Uy, (M) =3 0.

h=-o0

Using Lemma 4 and the assumption tHaXg** < oo we show thatM :=
EeZ™* < 0. By the Cauchy—Schwarz inequalitye deduce that

|Cov(eZel,elel)| =M < oo (A.20)
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and that there exist a positive consté@hand a constang € [0,1] such that

|Cov(U, , (M),Uyp, , (M))]

Il
I8

> di(652)d (652) 0 () (65
1j,j'=1

ii +
X Cov(e? i€l j,elin i€l h-j")
=M 3 (667 2 1d.m(66™)] X 1di (0] 3 |dh m(657)] = Cp™.
i=r+1 i=1 i'=r+1 j'=1
To deal with |Cov(e? e ;,€lin i7€n-j/)l, we introduce the following
truncations
r e}
[edn = 2 &5 ) X [6]V= 3 06" X
k=0

k=r+1

and

[EtEt’](r): 2 Ck(ac()l))ck'(H(Sl))xt—kxt’—k',

kOk'=r+1

wherer is a positive integerUsing a Taylor expansion we havir positive
integersi, j, i’, j’, andh.

2 2 — 2 2
€trh—i’ €t+h—j’ = [ft+h—i’]<[h/4)])[6t+h—1’]([h/4])

+2C(t+hi"j ) [€ni €y ]V (A.21)

for some C(t + h,i%j"), |C(t + hi%j)| = 37 -0l (65")c,(65") X
Xishei’—ky Xtshj'—k, |- HENCE WE have

|Cov(e? i€ j,lin ir€lin-i)
= |C0V(6t2—i Etz—j,[et+h4’](Z[h/4])[6t+hfj'](z[h/4]))‘

+ 2|Cov(e? €2, C(t+ hi",j ) erni€rnj 1)

By the Davydov inequalityDavydoy 1968, the first term on the right is bounded
by

Czuftz—i Etz—j lo, Il €esni '](Z[h/4])[Et+h—j’:|2([h/4]) [P

X (ax(min{h+i—i' - [E],hﬂ —i'= [b],hﬂ—j’— [D]
4 4 4
) y h v/(2+v)
ne-r=[3]})
h 0(2+0)
=C,MVE™ (ax<[z]>> (A.22)
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fori’ O’ = h/2, whereC,; is a positive constanioreover by the Holder in-
equality we have
‘Eftz—iftz—j C(t+h,ij /)[fwh—i’€t+h—j’]([h/4])|

= e ielllos ICH+ N i i Mar2m/arn

X ” [€t+ h—i’ €t+h—j’ ] (/) ||(4+2V)/(1+V) . (A-23)

The third term in this product is dominated by

@ 1
> e85 (651X la+20/40) = C3pt™4)
KK >[h/4]

whereC; is a positive constanSimilarly we show that the second term(ih.23)

is finite, whereas the first one is bounded b2+, Therefore the left-hand
side in(A.23) is bounded by a term of the ordgF4l. Therefore we have shown
that

h v/(2+v)
‘COV(Etzfi€t27j36t2+h7i’612+h7j’)| = C4<ax<[z]>> + Cspl™4],

fori’ 0j' = and h=0, (A.24)

NIz

for some positive constant, andCs.
Using this inequalitywe show thatfor h = 0 andr < [h/2],

|Cov(U, , (M), Upsp, (M)

= X S X1 (65)d m(657) 0 (657)

r<i’<[h/2] 0<j’<[h/2] i,]
2 2
X Cov(e? e, efin i €fin_i)l
@ 2 2 2
+ 2 2 1d(057)d (0570 m(66”)d m(657)
i'=[h/2]i,5,j’
X Cov(el i€f j,€ln—ir€tin—i)
0 @) @ ¢
+ 2 X 40670 (057)d (067 ) d (067
j'=[h/2]11,4,i"
X COV(EtZ—iEtz—j,ft2+h—i’€t2+h—j')|

v/(2+v)
B s

where Cg, Cgy, and Cy are positive constant§he same inequality holds for
h < 0. Therefore there exists a constaqsuch that

o

> 1COV(Uy (M), Upp,  (m)| = Krp" + Kp" + Kp" 3 (ay ()2 =3 0,
h

h=—c
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(ii) It remains to prove the existence of the components of matii¥e have

1 l n n
V(5 20) -3 3 covne
VI ¢ Ni=1s=1

For(I,m) € {0,...,p + g}? andh € Z, let

c(h) = COV(Ed (9(2))d (9(2))5124&271',2 di(9c()2))dj,m(0é2))512+h—i512+h—j .
i=o

j=1 i=1

First suppose that = 0. We have
lc(h =8+, (A.25)

where

Si= > 1d(68)d(65)d (67 m(857)]
i0oi’g’'>h/2

X |Cov(el i€?j,eln_i €ln i),

S= > 1d68)d,(6)d (657)d (5]

i0o’G'=h/2

X |Cov(e? el |, €lin_i €lin_y)|-
From (A.5), (A.6), and(A.20) there exists a consta@}; such that
S, =C,p"2 (A.26)

Thus forh = 0, in view of (A.25), (A.26), and(A.24) we have

h v/(2+v)
le(h)| = Cp"2 + Ce(“x([Z])) +C,ptal

for some positive constantSg and C;. A similar inequality holds forh = 0.
Therefore from the strong mixing assumption of Theorenttg sequencgc(h)|)

is summableAll other terms involved in Co@Y,?,Y.?) may be treated in the
same wayFinally, by a classical application of the dominated convergence theorem

1
V( - > Y(2)> 2 Cov(Y,?, Y2, asn— oo
t=1

h=—c0
We similarly prove the existence of the other components of matrix u

LEMMA 9. Almost surely the matricesi) J;», and }, exist and are strictly posite
definite

Proof. The proof is very similar to the one given in Francq and Zakdi&®98. It is
mainly based on the ergodic theoreapplied to sequences involving second derivatives
of thee’s and theu, (65", 65?)'s. The fact that these sequences belongds deduced
from expansions similar teA.4). n
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To complete the proof of Theorem /e make Taylor expansions around the true
parameter values-irst, we have

a . d R .
— _ _ (1) (1)* (1)
0=+n Py QP (HP) = vn 50@ QM (6g”) + i 36796 QM (6r1; ]V“(Gr(\l) —65"),

where thes\""’s are betwee” and6g". Doing again a Taylor expansion we obtain

J J
—— QW oLy - — QW oV
60i(l)60j(l) n ( ni,j aei(l)aej(l) n ( 0 )

‘ 2 2

= sup
oVeo

d 92
— | —m—1 QP (#W) HHGQ{* —oY| >0
90D <ao§“ao{” " n

a.s. asn — oo. Similarly, two successive Taylor expansions lead to

2

ad d ok A
QP (0", 06™) + [—a @550 Q001 ,eé”)] VA — 65")
i j

96

0=+n

92 ) . )
+ [W Qﬁz)(@ﬁl),@r(\,zi),-)} V(6P — 657,

where thed\}"’s (resp 6\77's) are betweerd(" and 65" (resp 62 and 65”). The
second-order derivatives @§{?(-) can then be handled in the same way asQg? (-).

Therefore using Lemmas 68, and 9 the proof of Theorem 2 is routinely completed
|
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