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The classical definitions of GARCH-type processes rely on strong assumptions
on the first two conditional moments+ The common practice in empirical studies,
however, has been to test for GARCH by detecting serial correlations in the squared
regression errors+ This can be problematic because such autocorrelation struc-
tures are compatible with severe misspecifications of the standard GARCH+ Nu-
merous examples are provided in the paper+ In consequence, standard~quasi-!
maximum likelihood procedures can be inconsistent if the conditional first two
moments are misspecified+ To alleviate these problems of possible misspecifica-
tion, we consider weak GARCH representations characterized by an ARMA struc-
ture for the squared error terms+ The weak GARCH representation eliminates the
need for correct specification of the first two conditional moments+ The param-
eters of the representation are estimated via two-stage least squares+ The estima-
tor is shown to be consistent and asymptotically normal+ Forecasting issues are
also addressed+

1. INTRODUCTION

In the past 15 years, there have been rapid developments in the field of model-
ing time-varying conditional variances in both applied and theoretical econo-
metrics+ Since the introduction of autoregressive conditional heteroskedasticity
by Engle~1982!, and its generalization by Bollerslev~1986!, GARCH models
have been the most widely used~see the review by Bollerslev, Engle, and Nel-
son, 1994!+ However, a plethora of alternative models has emerged in recent
years+ First, a number of specifications of the conditional variance generalizing
the basic formulation~based on squared innovations! have been proposed+ These
alternatives are, in general, motivated by the need to capture some empirical
stylized facts of financial time series~such as asymmetry!+ Second, some re-
searchers have focused on new classes of processes that do not belong to the
GARCH family+ These are mainly the so-called stochastic volatility processes
~see the review by Ghysels, Harvey, and Renault, 1996!+ In these models, by
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contrast with GARCH models, the scaling process is not measurable with re-
spect to past observables: the standard representation takes the form of an ARMA
whose innovations are scaled by an unobservable autoregression+ The close as-
sociation between stochastic volatility specifications and the time-varying vol-
atility diffusion processes commonly used in the finance theory has generated
great interest in these alternatives to the GARCH models+ See Andersen~1994!
for a connection between GARCH and stochastic volatility processes+ Finally,
following Hamilton ~1989!, some recent papers have introduced models where
the conditional variance changes according to an unobserved Markov chain+

A common feature of models of conditional heteroskedasticity is the exis-
tence of a univariate process of the general formet 5 st Zt , wherest is strictly
positive and measurable with respect to somes-field It21, ~It ! being a filtra-
tion; theZt process is mean zero and unit variance conditionally onIt21+ In the
GARCH contextIt21 5 s~et21, + + + !, whereasIt21 includes unobserved vari-
ables in the stochastic volatility framework+ Therefore, a strong assumption im-
posed by standard models of changing variances is that~et ! is a martingale
difference sequence~with respect to~It !!+ A natural question is how restrictive
this requirement is+ The fact thatst is not observable makes the answer very
difficult for stochastic volatility models+ In the GARCH context, the notion that
some financial series might violate the martingale difference assumption can
be seriously entertained+ Casual examination of plots of empirical correlations
betweenet and some~nonlinear! functions of its past suggest the martingale
difference assumption is likely to be too strong+ Moreover, some important is-
sues such as modeling time-varying skewness and kurtosis, conditional onIt ,
are ruled out by the classical assumptions+1

The martingale difference assumption in the GARCH framework involves
other important shortcomings in terms of temporal aggregation+ In an impor-
tant paper, Drost and Nijman~1993! have shown that “the classical~semi!-
strong GARCH assumptions@i+e+, the innovation is a martingale difference with
a specified conditional variance# on the available data frequency are arbitrary+
Generally a~semi-!strong GARCH process aggregates to some weak GARCH
process@i+e+, in which only projections of the noise and its square are consid-
ered# that is not semi-strong GARCH+” In addition they have shown that the
class of weak GARCH processes is closed under temporal aggregation: more
precisely, the low frequency model that is implied by an assumed high fre-
quency GARCH model can be derived+ In the same spirit, Drost and Werker
~1996! derive explicit relations expressing the weak GARCH parameters at ar-
bitrary frequencies in terms of an underlying GARCH diffusion, whereas Nij-
man and Sentana~1996! obtain results on contemporaneous aggregation and
marginalization of vector processes+ See also Meddahi and Renault~1996!+

Finally, the martingale difference assumption has crucial importance for as-
ymptotic theory in statistical inference+ The literature on the estimation of
GARCH-type processes is now quite substantial, and much theoretical analysis
assuming a time-varying conditional variance uses a quasi–maximum likeli-
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hood estimator~QMLE!+2 On the other hand, Weiss~1984, 1986! can be cred-
ited with first having analyzed the asymptotic properties of two-stage least-
squares~LS! estimation+ Again, the standard proof for the asymptotic normality
of the LS estimator~based on a central limit theorem for martingale differ-
ences! does not extend to the situation where only white noise assumptions can
be made+ The estimation of stochastic volatility models entails additional diffi-
culties because, unlike GARCH, the conditional likelihood cannot be com-
puted in closed form+ A variety of alternative procedures have been proposed
to fit these models~see the review by Shephard, 1996!+ For similar reasons,
Markov-switching models are generally less tractable than GARCH+ Asymp-
totic properties of ML estimation remain in large part to be uncovered+3

This paper presents a unified statistical treatment of a wide class of condi-
tionally heteroskedastic processes+ Our approach is based on a general two-
stage representation including the weak GARCH proposed by Drost and Nijman
~1993!+ It consists of two ARMA equations, the first one on the observable
processX, the second one on the square of its linear innovation+ Such a repre-
sentation is well known to hold for GARCH models+ To anticipate the results
that follow, the representation is remarkably robust to certain types of misspec-
ification in GARCH models+4

In this paper, first of all, we show that in various situations where the GARCH
model is not the correct data-generating process~DGP!, an underlying ARMA
representation for the squared innovations holds+ In particular, it offers the pos-
sibility of dealing with several types of misspecifications of the conditional vari-
ance in the GARCH framework+ Moreover, a striking feature of the proposed
representation is that it nests not only the standard GARCH model but also
most of the popular specifications of the literature, e+g+, the standard GARCH,
some asymmetric GARCH, some stochastic volatility and Markov-switching
models+

Second, although Drost and Nijman~1993! mention estimation issues, no
theoretically sound procedure for estimation is available in the weak GARCH
context+ It is the purpose of this paper to derive a large sample theory of in-
ference for the two-stage representation+We use a LS procedure, which amounts
to minimizing the linear prediction errors in both equations+ Potential alterna-
tive approaches are generalized method of moments~GMM ! procedures, quasi–
maximum likelihood~QML! methods, and simulation-based methods+ As for
GMM, which can be seen as an extension of LS, the idea would be to exploit
the infinite set of moment conditions implied by the innovations in each ARMA
equation, along the lines of Hansen and Singleton~1996!+ However, to our
knowledge, the existing theory on the GMM cannot be straightforwardly ap-
plied to our setting+ Although a stochastic volatility structure could be used to
compute a QMLE, this would require a complete specification of the first two
conditional moments+ In contrast, our estimation procedure does not require
specification of any functional form other than the two ARMA equations+
Clearly, our estimator will be strictly inefficient relative to full-information
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MLE, or even QMLE and GMM+ Two references on these techniques applied
to volatility models are Ruiz~1994! and Andersen and Sørensen~1996!+ Ac-
tually, weak GARCH representations have little interest when a strong model
is available+ In practice, this is rarely the case, and a misspecified model is
likely to be selected+ In such situations, QML-based inference can lead to very
poor forecasts, as we shall see+ Finally, the simulation-based methods~see,
e+g+, Gouriéroux, Monfort, and Renault, 1993; Gallant and Tauchen, 1996;
Broze, Scaillet, and Zakoïan, 1998! are inappropriate in our context+ Because
we do not specify the distribution of the innovations, and because they are not
independent, we are unable to simulate the model+ The examples presented
subsequently show that a given representation is compatible with many DGP’s+

The paper proceeds as follows+ Section 2 provides the relevant definitions
and some important illustrations of the concept of weak GARCH+ Section 3
presents the estimation method and the asymptotic results+ Apart from some
moment conditions, along with some standard assumptions on the lag polynomi-
als, strong mixing and strict stationarity of theobservable processare suffi-
cient to derive the results+ Section 4 reports the results of various simulation
experiments+ Section 5 is devoted to forecasting issues+ Section 6 concludes
the paper and summarizes its main results+ All derivations and proofs are col-
lected in the Appendix+

2. WEAK GARCH REPRESENTATIONS: DEFINITION AND EXAMPLES

Consider any strictly stationary, purely nondeterministic process~Xt !t[Z, ad-
mitting moments up to order four+ From the Wold theorem, ~Xt ! admits an in-
finite moving-average~MA ! representation+ Let us assume that this MA~`!
can be inverted to obtain a finite order ARMA representation of the form

Xt 1 (
i51

P

fi Xt2i 5 et 1 (
i51

Q

ci et2i , (1)

where~et ! is a sequence of centered, uncorrelated random variables with com-
mon variances2 . 0 and where the polynomialsF~z! 5 1 1 f1z 1 {{{ 1
fPzP andC~z! 5 1 1 c1z 1 {{{ 1 cQzQ have all their zeros outside the unit
disk and have no common zero+Without loss of generality, assume thatfP and
cQ are both not equal to zero~by conventionf0 5 c0 5 1!+With these assump-
tions, process~et ! can be interpreted as the linear innovation of~Xt !, i+e+, et 5
Xt 2 E~Xt 6HX~t 2 1!!, whereHX~t 2 1! denotes the closed span of~Xs; s , t!+
The ~et

2!t[Z process is clearly second-order stationary and purely nondetermin-
istic+ Therefore, it admits a Wold decomposition+ Again, we assume that it can
be inverted to obtain an ARMA equation of the form

et
2 1 (

i51

p

ai et2i
2 5 v 1 ut 1 (

i51

q

bi ut2i , (2)
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where~ut ! is a white noise~with variancez2 . 0!+ We make similar standard
regularity assumptions on the two polynomialsf~z! 5 1 1 a1z 1 {{{ 1 apzp

andc~z! 5 1 1 b1z1 {{{ 1 bqzq as we did onF~z! andC~z!+ Therefore~ut !
is the linear innovation of~et

2!+ Denote the lag operator byL+ Defining p~L! 5
1 2 (i51

` pi L
i 5 c~L!21f~L! we set ht 5 E~et

26He2~t 2 1!! 5 E~et
2! 1

(i51
` pi ~et2i

2 2 E~et
2!!+

Remarks+

~a! It is well known that any stationary strong~or semistrong! GARCH~ p',q'! pro-
cess with a finite fourth-order moment admits a representation of the form~2!
with p 5 max$ p',q'% andq 5 p'+ In this strong GARCH setting, ht is the condi-
tional variance ofet ; moreover, the constraintsv . 0, pi $ 0 ~∀i !, which guar-
antee the positivity ofht , are usually imposed~see Nelson and Cao, 1992!+

~b! Our definition is more general than that of weak GARCH proposed by Drost and
Nijman ~1993!+ From both definitions, ut in ~2! is the linear innovation ofet

2+ In
the Drost and Nijman approach, ut is also orthogonal to all past values ofet + This
additional constraint ensures the stability of the class under temporal aggrega-
tion+ Because temporal aggregation is not the focus of the present paper, we de-
rive our asymptotic results under weaker assumptions+ To avoid the introduction
of a new label in the GARCH literature, and because it is consistent with the
concept of weak ARMA, we refer to the two-stage representation~1!–~2! as weak
ARMA-GARCH or weak GARCH+

We now consider some interesting particular cases of processes admitting
weak ARMA-GARCH representations+ The first four have already been intro-
duced in the GARCH literature and provide nice interpretations+ Examples 5–7
illustrate the possibility of getting weak GARCH representations of some~strong!
nonlinear processes that, a priori, do not seem to be related to the GARCH
framework+ Throughout the section, we assume that the unconditional mo-
ments are finite, as required in the definition+ Thes-field generated by~es; s ,
t! is denoted byet21+

Example 1 (temporal aggregation of a strong GARCH)~Drost and Nijman,
1993!

Let ~Xt ! be generated by an ARMA~P',Q'! model with semistrong GARCH
innovation, i+e+,

E~et 6et21! 5 0 and E~et
26et21! 5 st

2 5 c 1 (
i51

q'

ai et2i
2 1 (

i51

p'

bi st2i
2 +

We assume in addition that the marginal distribution ofXt is symmetric+ Thus,
for any integerm, the process~Xmt!t[Z follows an ARMA~P,Q! process with
weak GARCH~ p,q! errors, whereP 5 P', Q 5 P' 1 @~Q' 2 P'!0m# , andp 5
q 5 max$ p',q'% 1 1

2
_Q~Q 1 1!+ Obviously, the linear innovation of~Xmt! is a
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martingale difference, but one can show in particular cases that the correspond-
ing representation~2! is not strong, in the sense that the white noise is not a
martingale difference+ In particular, this result is useful for statistical purposes
when only low frequency data from a high frequency~semi-!strong GARCH
are available+

Example 2 (quadratic GARCH)

We here consider a modification of the basic GARCH given by

E~et 6et21! 5 0 and E~et
26et21! 5 st

2 5Sc 1 (
i51

q'

ai et2iD2

1 (
i51

p'

bi st2i
2 ,

where thebi ’s are nonnegative+ This model is a particular case of the quadratic
ARCH model introduced by Sentana~1995!+ Putht 5 et

2 2 st
2 and observe that

the ht’s are uncorrelated and that they are uncorrelated with any variable be-
longing to the future~by the martingale difference assumption! and the past of
et ~by the conditional variance assumption!+ Rewriting the equation determin-
ing st

2, we end up with

et
2 5 c2 1 (

i51

max$ p',q' %

~ai
2 1 bi !et2i

2 1 vt ,

wherevt 5 2c(i51
q' ai et2i 1 (iÞj ai aj et2i et2j 1 ht 2 (i51

p' bi ht2i + It is now
easy to check thatE~vt ! 5 0 andE~vt vt2k! 5 0, ∀k . max$ p',q'%+ Hence~vt !
is a MA~max$ p',q' %! process, from which we deduce that~et ! is a weak
GARCH~max$ p',q'%,max$ p',q'%!+

Example 3 (unobserved GARCH)

A number of recent papers have focused on GARCH models observed with
errors, examples being Harvey, Ruiz, and Sentana~1992!, Gouriéroux et al+
~1993!, and King, Sentana, and Wadhwani~1994!+ These models take the form

et 5 et 1 Wt , et 5 st Zt , st
2 5 c 1 (

i51

q'

ai et2i
2 1 (

i51

p'

bi st2i
2 , (3)

where~Zt ! and~Wt ! are mutually independent and are independent and identi-
cally distributed~i+i+d+! centered sequences+ Their variances are 1 andsW

2 , re-
spectively+ Unlike the other GARCH-type models, unobserved GARCH are not
easy to estimate, for it is not possible to deduce analytically the density func-
tion of et conditional on its past values+ Other approaches for estimating model
~3! are the Kalman filter or simulation-based methods~see the references out-
lined earlier!+
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Simple algebra shows that Cov~et
2, et2h

2 ! 5 Cov~et
2,et2h

2 !, ∀h . 0+ Because
~et ! is a strong GARCH~ p',q'! process, the autocovariance structure of its square
is determined by

Cov~et
2,et2h

2 ! 5 (
i51

max$ p',q' %

~ai 1 bi !Cov~et
2,et2h1i

2 !, h . p'+

The same relation holds for~et
2! except that it requiresh . max$ p',q'%

~because the last term in the sum is Cov~et
2,et2h1max$ p',q' %

2 !, so it cannot be
replaced by Cov~et

2, et2h1max$ p',q' %
2 ! unlessh . max$ p',q'%!+ Finally, ~et ! is a

weak GARCH process of the form

et
2 2 (

i51

max$ p',q' %

~ai 1 bi !et2i
2 5 c 1S12 (

i51

max$ p',q' %

ai 1 biDsW
2 1 ut

1 (
i51

max$ p',q' %

bi ut2i ,

where thebi ’s are different from the2bi ’s ~unlesssW 5 0!+ Note that the AR
part in this representation is not affected by the presence of the disturbanceWt +

Example 4 (asymmetric GARCH)

In El Babsiri and Zakoïan~2000!, the following model is considered:

et 5 st,1 Zt
1 1 st,2 Zt

2 ,

whereZt
1 5 max~Zt ,0!, Zt

2 5 min~Zt ,0! with ~Zt ! a symmetrically distributed
i+i+d+~0,1! process, andst,1 andst,2 are two positive processes, measurable with
respect toet21+ The main interest of the model is to allow for different volatil-
ity processes: one for the positive part ofet , namely, V~et

1 6et21! 5 st,1
2 V~Zt

1!,
and one for the negative partV~et

2 6et21! 5 st,2
2 V~Zt

2!+ In addition, assume
that each volatility process reacts symmetrically to past innovations as

~I 2 A1~L!!st,1
2 5 v1 1 B1~L!et

2 and ~I 2 A2~L!!st,2
2 5 v2 1 B2~L!et

2,

whereA1~L!,B1~L!,A2~L!,B2~L! are some lag polynomials, ~I 2 A1~L!! and
~I 2 A2~L!! are invertible, and v1 . 0,v2 . 0+ The ~et ! process is not a
martingale difference in general, becauseE~et 6et21! 5 ~st,1 2 st,2 !E~Zt

1!+
However, for some appropriate parameterizations ofst,1 andst,2, ~et ! is shown
to be a white noise+ Then we have

C~L!et
2 5 v 1 ~I 2 A1~L!!~I 2 A2~L!!ut ,

where C~L! 5 @~I 2 A1~L!!~I 2 A2~L!! 2 0+5~~I 2 A2~L!!B1~L! 1
~I 2 A2~L!!B2~L!!# and ut 5 et

2 2 E~et
26et21!, v is a constant+ Therefore,

if the regularity assumptions on the polynomials are satisfied, ~et ! is a
weak GARCH+
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Example 5 (stochastic autoregressive volatility models)

The so-called stochastic volatility models have received increasing attention in
finance and econometrics literature+ In particular, the class of stochastic auto-
regressive volatility~SARV! models provides a direct generalization of GARCH
models~see Andersen, 1994!+ The simplest model of this kind is

et 5 st Zt , st
2 5 c 1 dst21

2 1 @a 1 bst21
2 #vt , c,d,b . 0, a $ 0,

(4)

where~Zt ! and~vt ! are i+i+d+~0,1! processes, with Zt independent ofvt2j , j $ 0+
Note that the GARCH~1,1! is obtained by specifyingvt 5 Zt21

2 2 1 anda 5 0+
Then some computations not reported here~see Francq and Zakoïan, 1997!
show that the covariance structure of~et

2! is characterized by Cov~et
2, et2h

2 ! 5
d Cov~et

2, et2h11
2 !, ∀h . 1+ Therefore a weak GARCH~1,1! structure is ob-

tained for~et !:

et
2 2 det21

2 5 c 1 ut 1 but21,

where~ut ! is a white noise andb can be computed explicitly+

Example 6 (bilinear processes)

Setet 5 nt nt21, where~nt ! is a centered i+i+d+ sequence with unit variance and
E~nt

8! , `+ Then it is easily seen that~et ! is centered and has zero autocorre-
lation but is not a martingale difference sequence+ Moreover, computing the
autocovariance function of the process~et

2! reveals that it is a MA~1! of the
form et

2 5 1 1 ut 2 uut21, where~ut ! is a white noise andu a parameter de-
pending on the fourth moment ofnt , which can be assumed inside the unit
circle+ Therefore~et ! is a weak ARMA~0,0!-GARCH~0,1! process+

We now aim to show that~Xt ! :5 ~et
2 2 1! is itself a weak ARMA-GARCH:

it is much less straightforward because we have to prove that the process~ut
2!

has an ARMA representation+ We have

ut
2 2 u2ut21

2 5 Xt
2 1 2Xt (

i51

`

u iXt2i :5 vt + (5)

Equation~5! determines the autoregressive part of the ARMA model for~ut
2!+

To obtain the order of the moving average part, we show thatvt is a MA pro-
cess+ We have

Cov~vt , vt2k! 5 CovSXt
2,Xt2k

2 1 2Xt2k (
i51

`

u iXt2k2iD
1 CovS2uXt Xt21,Xt2k

2 1 2Xt2k (
i51

`

u iXt2k2iD
1 CovS2Xt (

i52

`

u iXt2i ,Xt2k
2 1 2Xt2k (

i51

`

u iXt2k2iD+
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BecauseXt is a function of~nt ,nt21!, the first covariance on the right-hand
side is equal to zero for allk . 1+ Similarly Xt Xt21 is a function of
~nt ,nt21,nt22!; hence the second term is null for allk $ 2+ Finally, from E~Xt ! 5
0 and the independence betweenXt and Xt2k~∀k $ 2!, the last covariance is
equal to zero+ Hence we have proved that~et

2 2 1! is a weak ARMA~0,1!-
GARCH~1,2! process+

Example 7 (Markov-switching process)

In an interesting generalization of ARMA~ p,q! models, Hamilton ~1989! pro-
posed a switching-regime Markov model that can accommodate complicated
dynamics such as occasional shifts or asymmetric cycles+ The parameters of
the model are specified as functions of the state of an unobservable~or hidden!
Markov chain+ Pagan and Schwert~1990! considered a variant of it for model-
ing conditional variance in financial time series+ In the following model, previ-
ously analyzed by Cai~1994! and Dueker~1997! ~see also Hamilton and Susmel,
1994!, the intercept in the conditional variance is subject to Markov switching+
Let Dt denote an unobserved random variable that can take on the values
0,1, + + + ,K 2 1+ Suppose that~Dt ! can be described by a Markov chain with
strictly positive transition probabilitiespij 5 P@Dt 5 j 6Dt21 5 i # , for i, j 5
0,1, + + + ,K 2 1+ We assume that the dynamics of a process~et ! take the form

et 5 st Zt , st
2 5 m~Dt ! 1 (

i51

q'

ai et2i
2 1 (

i51

p'

bi st2i
2 (6)

with

m~Dt ! 5 (
i51

K

m i 1l $Dt5i21% , 0 , m1 , m2 , {{{ , mK , (7)

where~Zt ! is an i+i+d+~0,1! process admitting a fourth moment, ~Zt ! being inde-
pendent of~Dt !+ Calculations reported in Francq and Zakoïan~1997! show
that ~et ! is a weak GARCH~max$ p',q'% 1 K 2 1, p' 1 K 2 1! process of the
form

)
k51

K21

~12 lkL!SI 2 (
i51

max$ p',q' %

~ai 1 bi !L
iDet

2 5 v 1SI 1 (
i51

p'1K21

bi L
iDut ,

where l1, + + + ,lK21 are the eigenvalues different from 1 ofP 5 ~ pji !+ To be
more specific, supposep' 5 q' 5 0 ~ i+e+, st

2 5 m~Dt !! and ~Dt ! is a two-state
Markov chain with state space$0,1% and 0, p01 , 1, 0 , p10 , 1+ Within this
setup, the two states can be interpreted as high~Dt 5 1! and low~Dt 5 0! con-
ditional variance regimes+ Therefore~et

2! admits a weak ARMA~1,1! represen-
tation of the form

et
2 2 ~12 p01 2 p10!et21

2 5 v 1 ut 1 but21, (8)
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where ~ut ! is a white noise andv and b can be determined in terms ofp01,
p10, m1, m2, andE~Zt

4!+ In the case wherep01 1 p10 5 1, we haveb 5 0, and
~et

2! is ~up to its mean! a white noise+

Other examples such as theb-ARCH process~Diebolt and Guégan, 1991! or
a diffusion process can also be dealt with~for details, see Francq and Zakoïan,
1997!+ To conclude the section, it may be worth noting that one can easily con-
struct examples of GARCH-type or stochastic volatility models that do not fit
into the weak ARMA-GARCH notion proposed here+ A first example is the
class of fractionally integrated GARCH introduced by Baillie, Bollerslev, and
Mikkelsen~1996!+ In these models, the conditional variance implies a slow hy-
perbolic rate of decay for the influence of lagged squared innovations, which
precludes the existence of a finite order ARMA representation for the squared
innovations+ In the exponential GARCH~EGARCH! of Nelson~1991! the auto-
covariances of the squared innovations decay at an exponential rate but cannot
be expressed as linear combinations of exponentials as for ARMA models+5

Therefore, a weak GARCH representation is also precluded in this example+

3. ASYMPTOTIC RESULTS

In this section, we will consider the problem of estimating the ARMA-GARCH
representation~1!–~2! via two-stage LS+ The method involves two successive
minimizations of sums of squared deviations about conditionallinear expecta-
tions+ It is worth noting that the standard asymptotic results existing in the time
series literature~e+g+, based on the martingale theory! are not applicable be-
cause we are working with weak representations+We follow the same approach
as Francq and Zakoïan~1998! for weak ARMA representations+ The symbols
rd anda+s+ signify convergence in distribution and almost surely+

3.1. Consistency and Asymptotic Normality

Let u0
~1! 5 ~f1, + + + ,fP,c1, + + + ,cQ!', u0

~2! 5 ~a1, + + + ,ap,b1, + + + ,bq,v!', and u0 5
~u0

~1! ,u0
~2! !'+ For anyu 5 ~u~1!,u~2! !' 5 ~u1

~1! , + + + ,uP1Q
~1! ,u1

~2! , + + + ,up1q11
~2! !, we set

Fu~1! ~z! 5 1 1 u1
~1! z 1 {{{ 1 uP

~1! zP, Cu~1! ~z! 5 1 1 uP11
~1! z 1 {{{ 1 uP1Q

~1! zQ,
fu~2! ~z! 5 1 1 u1

~2! z1 {{{ up
~2! zp, andcu~2! ~z! 5 1 1 up11

~2! z1 {{{ 1 up1q
~2! zq+ For

any positive constantd, we define the parameter spaceQd :5 Qd
~1! 3 Qd

~2! as
the compact set of allu’s such that the roots of the polynomialsFu~1! , Cu~1! ,
fu ~2! , and cu~2! have moduli$ 1 1 d+ We choosed small enough so thatu0

belongs toQd+ Now from invertibility of the lag polynomials and the station-
arity assumption on~Xt

2!, the equations

Fu~1! ~L!Xt 5 Cu~1! ~L!et ~u
~1! !, ∀t [ Z (9)

and

fu~2! ~L!et
2~u~1! ! 5 up1q11

~2! 1 cu~2! ~L!ut ~u!, ∀t [ Z (10)
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define two second-order stationary sequences, ~et~u
~1! !! and~ut~u

~1!,u~2! !!, for
all u [ Qd ~see, e+g+, Brockwell and Davis, 1991!+

Let X1,X2, + + + ,Xn be a realization of lengthn of ~Xt !+ For 0, t # n, et~u
~1! !

andut~u! are approximated byIet~u
~1! ! and Iut~u! obtained by replacing the un-

known starting values by zero~ Iet~u
~1! ! 5 0, 2Q 1 1 # t # 0, and Iut~u! 5 0,

2q 1 1 # t # 0!+
The random variable Zun :5 ~ Zun

~1! , Zun
~2! !' is called a LS estimator if it

satisfies, a+s+,

Qn
~1!~ Zun

~1! ! 5 min
u~1![Qd

~1!
Qn

~1!~u~1! !, Qn
~2!~ Zun! 5 min

u~2![Qd
~2!

Qn
~2!~ Zun

~1! ,u~2! !, (11)

where

Qn
~1!~u~1! ! 5

1

n (
t51

n

Iet
2~u~1! !, Qn

~2!~u! 5
1

n (
t51

n

Iut
2~u!+

We have the following consistency theorem+

THEOREM 1+ Let ~Xt !t[Z be a strictly stationary and ergodic process be-
longing to L4 and satisfying~1!–~2!+ Let ~ Zun! be a sequence ofLS estimators+
Then

Zun r u0 a+s+ as nr `+

To be more specific about the asymptotic behavior of~ Zun!, we need some
additional assumptions on the observed process+

THEOREM 2+ Let ~Xt !t[Z be a strictly stationary process satisfying
~1!–~2!, endowed with the sequence of strong mixing coefficients~aX~k!!k[N+
Furthermore, assume that, for some n . 0, E~Xt

814n! , ` and

(k50
` @aX~k!# n0~21n! , `+ Then,

!n~ Zun 2 u0! rd NSS0

0D,SV11 V12

V21 V22
DD, (12)

where

V11 5 J11
21 I11J11

21, V21 5 V12
' 5 J22

21~I21 1 J21J11
21 I11!J11

21,

V22 5 J22
21~I22 1 J21J11

21 I11J11
21J12 2 I21J11

21J12 2 J21J11
21 I12!J22

21

and

I11 5 lim
nr`

VarS!n
]

]u~1! Qn
~1!~u0

~1! !D ,
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I22 5 lim
nr`

VarS!n
]

]u~2! Qn
~2!~u0!D,

I12 5 lim
nr`

ESn
]

]u~1! Qn
~1! ~u0

~1! !
]

]u~2!' Qn
~2!~u0!D, I21 5 I12

' ,

J11 5
a+s+

lim
nr`F ]2

]ui
~1!]uj

~1!
Qn

~1!~u0
~1! !G, J22 5

a+s+
lim
nr`F ]2

]ui
~2!]uj

~2!
Qn

~2!~u0!G,
J12 5

a+s+
lim
nr`F ]2

]ui
~1!]uj

~2!
Qn

~2!~u0!G, J21 5 J12
' +

To make the asymptotic normality result operational, it is crucial to be able
to build a weakly consistent estimator of the asymptotic covariance matrix+

3.2. Covariance Matrix Estimation

Recently, several authors have proposed methods to estimate covariance matri-
ces in various situations~see, e+g+, Newey and West, 1987; Andrews, 1991;
Hansen, 1992!+ In particular, Francq and Zakoïan~2000! consider the case of
weak ARMA and models+6 Using a similar approach, we now consider the es-
timation of the covariance matrixV :5 ~Vij ! in Theorem 2+ Define

ZJ11~u
~1! ! 5

2

n (
t51

n ]

]u~1! Iet ~u
~1! !S ]

]u~1! Iet ~u
~1! !D',

ZJ22~u! 5
2

n (
t51

n ]

]u~2! Iut ~u!S ]

]u~2! Iut ~u!D',
ZJ12~u! 5

2

n (
t51

n ]

]u~1! Iut ~u!S ]

]u~2! Iut ~u!D' 1 2

n (
t51

n

Iut ~u!
]2

]u~1!]u~2!' Iut ~u!+

An empirical estimator ofJ11 ~resp+ J22, resp+ J21! is then given by ZJ11~ Zun
~1! !

~resp+ ZJ22~ Zun!, resp+ ZJ21~ Zun!!+
From the proof of Theorem 2, we haveI22 5 (h52`

1` Dh~u0! where

Dh~u! 5 4ESut ~u!
]

]u~2! ut ~u!DSut1h~u!
]

]u~2! ut1h~u!D'+
To estimateI22, we consider a sequence of real numbers~bn! going to zero and
a real-valued weight functionk~{!+ The latter is a bounded, even, and non-
negative definite function with compact support@2a,a# and continuous at the
origin with k~0! 5 1+ Let, for 0 # h # n,

ZDh~u! 5
4

n (
t51

n2h

Iut ~u!
]

]u~2! Iut ~u!S Iut1h~u!
]

]u~2! Iut1h~u!D' :5 ZD2h~u!'
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and

ZI22~u! 5 (
h52Tn

1Tn

k~hbn! ZDh~u!,

whereTn is the integer part ofa0bn+ Then ZI22~ Zun! can be used as an estimator of
I22+ The estimators ofI11 and I12 are constructed similarly+

Finally, we estimateV by plugging the estimates of theIij ’s and Jij ’s into
the expressions for theVij ’s+ Note that the derivatives in the preceding expres-
sions can be recovered recursively using~9!–~10!+ It is worth noting that, when
the standard assumptions hold~i+e+, when ~ut ! is a martingale difference!, all
the Dh~u0!’s are equal to zero except forh 5 0+ In the general case, neglecting
those terms would entail inconsistency in the estimation of the matrixI22+ An-
other point to be noticed is the presence of second-order derivatives in the
matrix ZJ12~u!+ Indeed, the last sum does not vanish whenn goes to infinity
andu 5 u0 because the derivatives cannot be written as linear functions of the
et2i

2 ~u~1! !’s; thereforeut and its second derivative are not orthogonal+
As for all asymptotic results, the validity of our theorems for approximating

the distribution of the estimator in small samples can be legitimately ques-
tioned+ In the next section we propose some Monte Carlo experiments illustrat-
ing the performance of the estimator in finite samples+

4. NUMERICAL ILLUSTRATION

To gauge the proposed estimation procedure, this section presents a Monte Carlo
study of the finite sample properties of the two-stage LS estimator in several
situations+ There are two experiments conducted in the study+We first consider
the Markov-switching process given by

Xt 5 0+2Xt21 1 ~s1 1 s2 Dt !Zt , (13)

where~Zt ! is an i+i+d+ N ~0,1! process; ~Dt ! is a Markov chain with state space
$0,1% and transition probabilitiesP~Dt 5 10Dt21 5 0! 5 p01 and P~Dt 5 00
Dt21 5 1! 5 p10, 0 , p10 , 1, 0 , p01 , 1+ In addition ~Zt ! and ~Dt ! are
independent+ Note that the innovation ofXt admits moments up to any order+ In
light of Section 2, we estimate the weak AR~1!-GARCH~1,1! representation

Xt 5 fXt21 1 et , et
2 1 aet21

2 5 v 1 ut 1 but21+ (14)

In Table 1, we report the simulation results for 1,000 replications+ The sample
size isn 5 1,000, n5 2,000, or n 5 5,000+ Designs 1 and 2~resp+ 1 and 3! are
concerned withs1 5 0+5 ands2 5 1 ~resp+ p10 5 p01 5 0+1!, designs 3 and 4
~resp+ 2 and 4! with s1 5 0+5 ands2 5 5 ~resp+ p10 5 p01 5 0+8!+ Based on the
correlation structure of~et

2! ~see~8!!, the true values of the parameters in~14!
are computed as a function ofs1, s2, p10, andp01+ For each design we show
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the mean, the standard deviation, the minimum, the maximum, and the median
among the 1,000 estimator values+

Although the estimation of parameterf appears quite accurate, it is seen
that for the sample sizen 5 1,000, the estimators of the GARCH parameters
are biased with high variability+ However, it should be noted that, for all de-
signs, the true values ofa andb in ~14! are very close, which complicates the
estimation~because the identifiability assumption is that the lag polynomials in
the ARMA equations have no common root!+ As expected, increasing the sam-
ple size improves the results substantially in terms of bias reduction and accu-
racy+ For n 5 2,000 the bias of the estimators is generally on the order of 5%
of the parameter value+ The results obtained forn 5 5,000 confirm the consis-
tency theorem of Section 3 in this particular case~bias on the order of 1 to 3%
in most cases!+ A significant increase in the precision is also noticeable+ Be-
sides, an increase in the difference between the two regimes~i+e+, s2 5 5 in-
stead of 1! makes the estimation easier+ Moreover, the case of low transitions
between the regimes~ p10 5 p01 5 0+1!, generally provides better performances
whatever the sample size and the value ofs2+ Finally, note that the median of
the estimators is typically closer to the true value than the mean+ A possible
explanation for this comes from the robustness of the median to outliers+ The
near nonidentification of the ARMA representations could cause such outliers+

The second experiment consists in simulating the unobserved GARCH model

Xt 5 0+2Xt21 1 Wt 1 st Zt , st
2 5 1 1 a~st21 Zt21!2 1 bst21

2 , (15)

where~Zt ! is i+i+d+ N ~0,1!, ~Wt ! is i+i+d+ N ~0,sW
2 !, and the two processes are

independent+ Eighteen experiments of 1,000 replications each are conducted
for a 5 0+1, b 5 0+3 or 0+6, andsW

2 5 0, 0+5, or 1, with the same sizes as in the
first example+ In this example, the existence of moments implies constraints on
a andb+ However, for the values taken in the example, we haveE~Xt

8! , `+7

Once again, from the results of Section 2, we estimate the weak AR~1!-
GARCH~1,1! model~14!+ To save space, we only report~see Table 2! the out-
come concerning the coefficients of the GARCH equation+ Note first that the
case wheresW

2 5 0 corresponds to a strong GARCH~1,1!+ The estimation re-
sults appear quite satisfactory although a large sample size may be needed to
achieve great accuracy+ This is particularly true with design 5 when the vari-
ance of the i+i+d+ component is large with respect to that of the strong GARCH
processst Zt ~which increases with the suma 1 b!+ Other experiments not re-
ported here reveal that, whensW 5 1, unbiasedness can be observed for larger
sample sizes~e+g+, n 5 10,000!+ Again the median is closer to the true values
than the mean+

5. COMPARISON OF STRONG AND WEAK GARCH FORECASTS

Because GARCH models remain the most widely used by practitioners, a ques-
tion of great interest is whether they can actually provide valuable forecasts
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Table 1. Switching-regime Markov process

Size Parameter Value Mean Std+ dev+ Min+ Max+ Median

Design 1: p01 5 0+1, p10 5 0+1, s1 5 0+5, s2 5 1
n 5 1,000 f 0+2 0+20140 0+03483 0+08288 0+31910 0+20142

a 20+8 20+63894 0+30127 20+97913 0+87407 20+73446
b 20+71928 20+55114 0+30414 20+95592 0+91657 20+64536
v 0+125 0+22480 0+18971 0+01091 1+19988 0+16628

n 5 2,000 f 0+2 0+19945 0+02525 0+12838 0+28280 0+19965
a 20+8 20+75169 0+13415 20+95309 0+55086 20+78447
b 20+71928 20+66717 0+14571 20+91582 0+63901 20+69841
v 0+125 0+15528 0+08621 0+03050 1+10643 0+13356

n 5 5,000 f 0+2 0+20087 0+01565 0+14620 0+25137 0+20050
a 20+8 20+78678 0+05840 20+90336 20+40598 20+79576
b 20+71928 20+70534 0+06747 20+84331 20+28257 20+71330
v 0+125 0+13314 0+03638 0+06281 0+37760 0+12773

Design 2: p01 5 0+8, p10 5 0+8, s1 5 0+5, s2 5 1
n 5 1,000 f 0+2 0+20051 0+02693 0+10933 0+29884 0+20115

a 0+6 0+43226 0+34500 20+97318 0+98026 0+52354
b 0+53353 0+36266 0+34532 21+00018 0+97331 0+45214
v 1 0+89540 0+22394 0+01765 1+31857 0+94186

n 5 2,000 f 0+2 0+19949 0+01884 0+12661 0+25558 0+19918
a 0+6 0+49131 0+29158 21+40789 2+06772 0+56295
b 0+53353 0+42083 0+29871 21+52476 2+07826 0+49224
v 1 0+93257 0+18175 20+03187 2+06059 0+97036

n 5 5,000 f 0+2 0+20010 0+01255 0+15888 0+23864 0+20024
a 0+6 0+56800 0+16766 21+39390 1+21072 0+59809
b 0+53353 0+50024 0+17335 21+55701 1+20660 0+53003
v 1 0+97909 0+10842 20+32117 1+22342 0+99721
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Design 3: p01 5 0+1, p10 5 0+1, s1 5 0+5, s2 5 5
n 5 1,000 f 0+2 0+20107 0+04237 0+05434 0+32892 0+20263

a 20+8 20+76594 0+12004 20+95486 0+18970 20+79039
b 20+67187 20+63474 0+13751 20+90483 0+39538 20+66134
v 2+525 2+96807 1+65776 0+62611 15+4942 2+67123

n 5 2,000 f 0+2 0+19900 0+02799 0+08591 0+30190 0+19889
a 20+8 20+79019 0+06144 20+91539 20+43149 20+79763
b 20+67187 20+66077 0+07739 20+84420 20+23790 20+66677
v 2+525 2+64981 0+79962 1+06834 7+19805 2+54588

n 5 5,000 f 0+2 0+19939 0+01864 0+13950 0+27344 0+19871
a 20+8 20+79498 0+03573 20+87814 20+56793 20+79753
b 20+67187 20+66594 0+04584 20+78017 20+40583 20+66919
v 2+525 2+58872 0+46696 1+44402 5+24673 2+55710

Design 4: p01 5 0+8, p10 5 0+8, s1 5 0+5, s2 5 5
n 5 1,000 f 0+2 0+19919 0+02045 0+13710 0+26316 0+19922

a 0+6 0+49779 0+22753 20+43232 0+94742 0+55678
b 0+49089 0+38614 0+22888 20+55747 0+90882 0+43720
v 20+2 18+8066 3+08961 7+65502 25+3745 19+4038

n 5 2,000 f 0+2 0+19968 0+01520 0+14222 0+25413 0+19984
a 0+6 0+55075 0+16228 20+00848 0+87571 0+58355
b 0+49089 0+44137 0+16333 20+10422 0+83397 0+47047
v 20+2 19+4588 2+21605 11+8456 24+5062 19+7856

n 5 5,000 f 0+2 0+20014 0+00917 0+17590 0+22902 0+19994
a 0+6 0+58638 0+12344 21+25683 2+19215 0+59787
b 0+49089 0+47618 0+13724 21+89863 2+16598 0+48755
v 20+2 20+0003 1+56992 22+21781 34+9662 20+1046
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Table 2. Unobserved GARCH process

Size Parameter Value Mean Std+ dev+ Min+ Max+ Median

Design 1: sW
2 5 0, a 5 0+1, b 5 0+3

n 5 1,000 2a 0+4 0+29823 0+30831 20+82380 0+97424 0+33915
2b 0+3 0+20059 0+31172 20+86275 0+95736 0+22940

v 1 1+16535 0+51245 0+04507 3+12467 1+09320

n 5 2,000 2a 0+4 0+36023 0+23030 20+72932 1+23820 0+38182
2b 0+3 0+26212 0+23489 20+79561 1+13403 0+28285

v 1 1+06369 0+38074 20+30585 2+79366 1+02521

n 5 5,000 2a 0+4 0+37931 0+13107 20+09891 0+77063 0+39011
b 0+3 0+28029 0+13671 20+18893 0+70836 0+28474

2v 1 1+03383 0+21793 0+37901 1+79815 1+01642

Design 2: sW
2 5 0, a 5 0+1, b 5 0+6

n 5 1,000 2a 0+7 0+58350 0+25720 20+64892 0+97403 0+65134
2b 0+6 0+48383 0+26640 20+69887 0+94476 0+54408

v 1 1+38063 0+84472 0+08846 5+31795 1+15729

n 5 2,000 2a 0+7 0+64211 0+17471 20+89081 0+97791 0+67760
2b 0+6 0+54356 0+18126 20+79294 0+96005 0+581564

v 1 1+18766 0+57168 0+07760 5+97737 1+06450

n 5 5,000 2a 0+7 0+68257 0+08268 0+01680 0+89930 0+69587
2b 0+6 0+58253 0+09200 20+03021 0+81264 0+59501

v 1 1+05673 0+27575 20+37969 2+94330 1+01655

Design 3: sW
2 5 0+5, a 5 0+1, b 5 0+3

n 5 1,000 2a 0+4 0+22126 0+40761 21+00338 0+98778 0+26878
2b 0+34061 0+16338 0+40471 20+99814 1+00261 0+19917

v 1+3 1+68033 0+87136 0+02546 4+27782 1+57302

n 5 2,000 2a 0+4 0+27334 0+33074 20+96289 0+99412 0+30965
2b 0+34061 0+21324 0+33078 20+980411 0+99150 0+24178

v 1+3 1+57187 0+71003 0+01321 4+24562 1+48998
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n 5 5,000 2a 0+4 0+36322 0+21197 20+74862 0+98524 0+38921
2b 0+34061 0+30313 0+21509 20+78349 0+90865 0+32943

v 1+3 1+37804 0+45795 0+02107 3+66004 1+32416

Design 4: sW
2 5 0+5, a 5 0+1, b 5 0+6

n 5 1,000 2a 0+7 0+48222 0+34517 20+95114 0+98148 0+59537
2b 0+62494 0+40325 0+34269 20+94758 0+97175 0+49728

v 1+15 1+97426 1+30439 0+06629 7+38536 1+55361

n 5 2,000 2a 0+7 0+60748 0+22965 20+46322 1+08944 0+67231
2b 0+62494 0+52896 0+23410 20+56885 1+02812 0+58945

v 1+15 1+50274 0+87125 20+33612 5+86556 1+25644

n 5 5,000 2a 0+7 0+67487 0+12422 20+62096 0+89940 0+69607
2b 0+62494 0+59656 0+13059 20+69260 0+86537 0+61573

v 1+15 1+24454 0+47133 0+37894 6+17465 1+15961

Design 5: sW
2 5 1, a 5 0+1, b 5 0+3

n 5 1,000 2a 0+4 0+15011 0+41069 20+94447 0+98951 0+06928
2b 0+36066 0+10955 0+40932 20+95626 0+98473 0+05990

v 1+6 2+25747 1+08690 0+02929 5+44834 2+38113

n 5 2,000 2a 0+4 0+19028 0+34755 20+92548 1+18878 0+06831
2b 0+36066 0+14967 0+34501 20+94998 1+08105 0+06340

v 1+6 2+15347 0+92492 20+51249 5+51787 2+38144

n 5 5,000 2a 0+4 0+24965 0+26827 20+72320 0+91170 0+18316
2b 0+36066 0+20880 0+26669 20+77159 0+88827 0+13137

v 1+6 2+00143 0+71485 0+23908 4+59234 2+21131

Design 6: sW
2 5 1, a 5 0+1, b 5 0+6

n 5 1,000 2a 0+7 0+40740 0+36954 20+97243 0+99310 0+51196
2b 0+64143 0+34322 0+36259 20+97168 1+00208 0+43046

v 1+3 2+54335 1+57383 0+03315 8+09213 2+11881

n 5 2,000 2a 0+7 0+53421 0+28828 20+85637 1+24764 0+63935
2b 0+64143 0+46892 0+28615 20+73379 1+19732 0+56459

v 1+3 2+01531 1+23452 20+95381 7+53990 1+57493

n 5 5,000 2a 0+7 0+62312 0+20407 20+23986 0+91198 0+67974
2b 0+64143 0+55822 0+20638 20+23503 0+87724 0+61164

v 1+3 1+63357 0+88070 0+38799 5+09043 1+39956
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under possible misspecification~i+e+, when the strong assumptions do not hold!+
Most empirical studies based on GARCH-type models work with estimators
computed from the following conditional~on initial conditions! Gaussian
quasi-loglikelihood:

L 5 2
1

2 (
t51

n

log st
2 2

1

2 (
t51

n et
2

st
2 ,

where theet’s are obtained from~1! andst
2 is computed recursively from

st
2 5 c 1 (

i51

q'

ai et2i
2 1 (

i51

p'

bi st2i
2 (16)

under the positivity constraintsc . 0, ai $ 0, bi $ 0+ Letting vt 5 et
2 2 st

2 and
r 5 max~ p',q'!, we can write

et
2 5 c 1 (

i51

r

~ai 1 bi !et2i
2 1 vt 2 (

i51

p'

bi vt2i + (17)

In the case of correct specification of the conditional variancest
2, ~17! can be

used to derive the optimal forecasts ofet
2 that enjoy the property of being

linear functions of past value ofet
2+ Now, if the DGP only admits a weak

ARMA-GARCH representation~i+e+, if the conditional variance given by~16!
is misspecified! the QML procedure can serve as a device for its estimation:
the parameters of~16! are estimated and then plugged into~17!+ An equiva-
lent approach has been followed by Drost and Nijman~1993!+

To achieve insight into the asymptotic properties of this QML-based proce-
dure, let us consider the expectation of the quasi score, evaluated at the true
parameter valueu0 of the weak GARCH representation

5Eu0F 1

n

]L
]u~1! ~u0!G 5 Eu0F 1

2st
4~u0!

]st
2

]u~1! ~u0!utG2 Eu0F et

st
2~u0!

]et

]u~1! G,
Eu0F 1

n

]L
]u~2! ~u0!G5 Eu0F 1

2st
4~u0!

]st
2

]u~2! ~u0!utG+
(18)

Becauseut is only thelinear innovation ofet
2, and because the term in brackets

in the last equality is obviously a nonlinear function of past values ofet
2, the

expectation in the second equality will not vanish in general+ The same conclu-
sion holds for the first equality+ Therefore, the estimators computed from the
QML equations will unfortunately be inconsistent in general+

Of course if, in ~18!, ~ut ! is a martingale difference sequence, then under
some regularity conditions, the parameters can be estimated consistently by
QML+ In addition, the two-stage estimator proposed in this paper is likely to
be inefficient relative to the QML estimator+ However it should be empha-
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sized that, even in the case of a martingale difference for~ut !, equation~2! is
not necessarily compatible with a strong GARCH+ Indeed, the parameter space
must be constrained to ensure thatst

2 is positive~e+g+, by imposing the clas-
sical nonnegativity constraint on theai ’s andbi ’s!+

To illustrate these issues, we have performed four numerical experiments de-
signed to compare theet

2 forecast errors+ In each experiment, we consider a
DGP compatible with the weak GARCH~1,1! structure

et
2 1 aet21

2 5 v 1 ut 1 but21, (19)

where, for ease of notation throughout the section, u 5 ~a,b,v!' denotes the
generic parameter vector andu0 5 ~a0,b0,v0!' denotes the true value+ The lin-
ear prediction ofet

2 is given by

[et
2 5

v

11 b
1 ~b 2 a! (

i50

`

~2b! iet2i21
2 ,

from which we can compute the mean-squared prediction error,

MSE~u! :5 Eu0
~et

2 2 [et
2!2

5 Fv0~11 a! 2 v~11 a0!

~11 b!~11 a0! G2

1 S11
~b 2 a!2

12 b2 Dg~0!

2
2~b 2 a!~12 ab!

~12 a0 b!~12 b2!
g~1!,

whereg~0! andg~1! are, respectively, the variance and first autocovariance of
the ~et

2! process+ Of course this function is minimal foru 5 u0 and is equal to
E~ut

2! at this point+
For different sample sizes~n 5 100, 200, + + + , 1,000!, we simulate 100 trajec-

tories of the DGP+ Then, for each trajectory, we estimate the weak GARCH~1,1!
model ~19! by the following: ~i! the method proposed in the paper; ~ii ! QML+
In the latter case, we estimate a strong GARCH; then we derive the correspond-
ing weak GARCH model~17!+ For each estimated model, the mean-squared
error~MSE! is computed and averaged across the 100 replications+We use it to
compare the prediction errors resulting from both methods+

In the first experiment, the data were simulated from the strong GARCH~1,1!
given by

et 5 st Zt , st
2 5 1 1 0+4et21

2 1 0+4st21
2 , (20)

whereZt is an i+i+d+ N ~0,1! sequence+ From ~19!, the true parameter value of
the weak GARCH representation isu0 5 ~20+8,20+4,1!, and we haveV~ut ! 5
450+ The estimation results are displayed in Figure 1+ It shows that, unsurpris-
ingly, for this strong GARCH, the QML method is more efficient than our two-
stage estimation method, whatever the sample size+
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The second experiment deals with temporal aggregation+ The DGP~20! has
been maintained but we only use the low frequency observationse2t + The cor-
responding weak GARCH representation is given by

e2t
2 1 0+64e2~t21!

2 5 1+8 1 ut 2 0+466ut21, V~ut ! . 618+24+ (21)

The results presented in Figure 2 confirm the observation of Drost and Nijman
~1993, p+ 922! that, for this weak GARCH model derived from a strong GARCH,
“the asymptotic bias of the QMLE, if there is any, is very small+” The next two
examples will reveal that other weak GARCH models are not adequately esti-
mated by QML+

In the third experiment, the DGP is given by

et 5 nt nt21, (22)

Figure 1. Comparison between the mean-squared error of prediction obtained with a
strong GARCH model~dashed line! and a weak GARCH model~dotted line!, as a func-
tion of the sizen of a simulated trajectory of the strong GARCH~1,1! model ~20!+ The
full line corresponds to the minimal mean-squared error of prediction+

Figure 2. Comparison between the mean-squared error of prediction obtained with a
strong GARCH model~dashed line! and a weak GARCH model~dotted line!, as a func-
tion of the sizen of a simulated trajectory of~e2t!, where~et! is the solution to model
~20!+ The full line corresponds to the minimal mean-squared error of prediction+
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where~nt ! is an i+i+d+ N ~0,1! sequence+ We know from Example 6 that~et
2! is

the MA~1!:

et
2 5 11 ut 1 ~2 2 #3!ut21, (23)

where~ut ! is a white noise with variance equal to 20~2 2 #3! . 7+464+ Fig-
ure 3 shows that the MSE’s obtained by QML are very high, even for large
samples+ As a consequence, in this context, strong GARCH predictions are very
poor+ On the contrary, the MSE’s deduced from the two-stage procedure appear
satisfactory and seem to converge to the optimal value+

In the previous example, the best strong GARCH predictions were obtained
for a model with a strictly negative coefficient~namely, b 5 #3 2 2!+ In this
sense, the weak GARCH equation was not compatible with a standard strong
GARCH model, which may explain the failure of the QML procedure+ In the
next example, such a problem does not occur because the weak ARCH model
is compatible with a standard strong ARCH model+ Consider the stationary pro-
cess~jt

2! defined by

jt
2 5 11 ut 1 0+7jt21

2 , (24)

where~ut ! is the white noise defined by~23! and~22!+8 It is worth noting that
the predictions ofjt

2 based on equation~24! coincide with those obtained from
the strong ARCH~1! defined byst

2 5 c 1 ajt21
2 , with c 5 1, a 5 0+7+ However,

because~ut ! is not a martingale difference sequence, the QMLE fails to con-
verge to these optimal parameters+ Figures 4 and 5 show that the strong ARCH
predictions are much less accurate than those based on the weak ARCH repre-
sentation, even for very large samples+ For n 5 10,000, + + + , n 5 100,000, the
estimates ofc anda are always close to 0+7 and 0+8, respectively+

Apart from considering the averaged MSE’s, it is also of interest to compare
the distributions of the 100 MSE’s for the two estimation methods+ In Table 3

Figure 3. Comparison between the mean-squared error of prediction obtained with a
strong GARCH model~dashed line! and a weak GARCH model~dotted line!, as a func-
tion of the sizen of a simulated trajectory of the weak GARCH~0,1! model ~23!+ The
full line corresponds to the minimal mean-squared error of prediction+
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we have reported, for each model, the percentage of cases in which the MSE’s
obtained by QML are less than the MSE’s obtained by our method+ We have
also tested the hypothesis that the median of the difference between the two
MSE’s is equal to zero against the alternative hypothesis that the median of the
MSE obtained by QML is less than that obtained by the two-stage method+ A
Wilcoxon one-sample~matched pairs! signed ranks test was performed using
the NAG routine G08AGF+ The asymptoticp-values are given in parentheses+
The results reported in Table 3 show that for the strong GARCH model~20!,
the superiority of the QML over the two-stage method is significant+ Con-
versely, in the experiments where the DGP is not a strong GARCH, the hypoth-
esis that the QML is not inferior to the two-stage method is rejected at any
reasonable significance level~apart from the casesn 5 100 andn 5 400 in
model ~24!!+ It is worth noting that even in the second experiment~temporal

Figure 4. Comparison between the mean-squared error of prediction obtained with a
strong GARCH model~dashed line! and a weak GARCH model~dotted line!, as a func-
tion of the sizen of a simulated trajectory of the weak ARCH~1! model ~24!+ The full
line corresponds to the minimal mean-squared error of prediction+

Figure 5. Comparison between the mean-squared error of prediction obtained with a
strong GARCH model~dashed line! and a weak GARCH model~dotted line!, as a func-
tion of the sizen of a simulated trajectory of the weak ARCH~1! model~24!, for sample
sizesn 5 1,000, + + + , n 5 5,000+ The full line corresponds to the minimal mean-squared
error of prediction+
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aggregation!, the differences between the two estimation methods are substan-
tial, whatever the sample size+

Another view of the performance of the two estimation methods may be ob-
tained through an out-of-sample forecasting experiment+ The Monte Carlo ex-
periment involves 10,000 replications of model~22!–~23!+ The sample sizes
vary from 100 to 1,000+ For each replication, we have estimated the weak
GARCH representation by the two methods+ Then we computed two one-step-
ahead predictions based on the two methods+ These two predictions were com-
pared to one out-of-sample value+ Averaging the squared prediction errors over
the 10,000 replications leads to the results reported in Figure 6+ They confirm
that there can be notable gains in precision from using the two-stage estimation
method instead of QML estimation+ Similar out-of-sample experiments con-
ducted with the other models led to the same findings as in the in-sample ex-
periments+ Therefore, they are not reported here+

In summary, several conclusions can be drawn from the experiments pre-
sented in this section+ First, as we know from the very beginning, the QML is
certainly more efficient than the two-stage method when the DGP is a strong
GARCH, and, consequently, the predictions of the squares are more accurate+
Second, weak GARCH representations can be incompatible with strong GARCH
subject to positivity constraints+ Imposing these constraints in QML estimation
can therefore lead to very poor approximations of the DGP+ Finally, even if no
positivity problems occur, i+e+, when the weak GARCH representation could be
derived from a strong GARCH model, the QML may fail to estimate this opti-

Table 3. Percentage of cases in which the MSE’s obtained by QML are less
than the MSE’s obtained by the two-stage method~ p-values of the Wilcoxon
rank test for the equality of the medians in parentheses!

n

Model 100 200 300 400 500

~20! 82 ~1+000! 78 ~1+000! 84 ~1+000! 82 ~1+000! 87 ~1+000!
~21! 40 ~+005! 35 ~+000! 37 ~+000! 32 ~+000! 38 ~+001!
~23! 22 ~+000! 9 ~+000! 3 ~+000! 2 ~+000! 3 ~+000!
~24! 46 ~+041! 44 ~+015! 42 ~+018! 47 ~+157! 36 ~+000!

n

Model 600 700 800 900 1,000

~20! 83 ~1+000! 86 ~1+000! 87 ~1+000! 95 ~1+000! 88 ~1+000!
~21! 37 ~+002! 30 ~+000! 26 ~+000! 25 ~+000! 32 ~+000!
~23! 0 ~+000! 1 ~+000! 2 ~+000! 0 ~+000! 0 ~+000!
~24! 31 ~+000! 31 ~+000! 26 ~+000! 22 ~+000! 15 ~+000!
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mal ~although misspecified! strong GARCH because the martingale difference
assumptions do not hold+ As a consequence, the predictive accuracy of the es-
timated strong GARCH can be very poor+

6. CONCLUSION

Of course, as are all statistical models, ARCH models are merely an approxi-
mation of the true DGP+ In applied work, finding autocorrelation in the squared
ordinary LS residuals is generally interpreted as evidence for the presence of
ARCH+ A misspecified model, however, will typically be selected because, as
we have seen in this paper, such autocorrelation structure is compatible with
severe misspecifications of strong GARCH+

This paper has proposed an asymptotic theory for weak ARMA-GARCH rep-
resentations, using the principle of two-stage LS+ The method is very simple to
implement, and it is already used by practitioners+ However, using confidence
intervals based on strong assumptions can be misleading+ In particular standard
identification routines based on strong hypothesis on the innovation of the
squared ordinary LS residuals can result in serious misspecifications+ Most sig-
nificantly, our approach can potentially serve as a basis for selecting and esti-
mating some more specific classes of stochastic conditional variance models+
We hope to report results on this topic in the near future+

NOTES

1+ El Babsiri and Zakoïan~2000! have documented some asymmetry features of stock returns
that are different from the so-called leverage effect+ They typically found significant correlations
between the current innovation and its past positive and0or negative parts+ In addition they showed
that conditional skewness and kurtosis can have huge fluctuations over time, just as conditional
variances+

2+ Recent papers that study asymptotic properties of a QMLE with different requirements on
the finiteness of the unconditional variance or the assumed innovation density include Bollerslev

Figure 6. Out-of-sample one-step-ahead MSE’s: comparison between a strong GARCH
model ~dashed line! and a weak GARCH model~dotted line!, as function of the sizen
of a simulated trajectory of model~22!–~23!+
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and Wooldridge~1992!, Lee and Hansen~1994!, Lumsdaine~1996!, and Newey and Steigerwald
~1997!+

3+ See however Leroux~1992!, Rydén ~1994!, and Francq and Roussignol~1997! for condi-
tions ensuring consistency of the maximum likelihood and the asymptotic normality of a sequence
of pseudo-likelihood estimators+

4+ It seems that our approach can be connected with that of Nelson~1992! and Nelson and
Foster~1995!+ They have shown that, even when misspecified, a sequence of GARCH models can
consistently estimate the underlying conditional variance of a~near-!diffusion ~for increasingly
higher sampling frequencies!+ The present paper also addresses misspecification of GARCH mod-
els but with a quite different perspective+

5+ To see this, consider the EGARCH~1,1! model defined byet 5 st Zt , log st
2 5 c 1

b log st21
2 1 aZt21, where6b6 , 1 and~Zt ! is an i+i+d+ N~0,1! process+ Tedious computations show

that ∀h . 0

Cov~et
2, et2h

2 ! 5 expF 2c

12 b
1

a2

~12 b!2GH@11 a2b2~h21! # expF a2bh

~12 b!2G2 1J +
6+ These results cannot be straightforwardly extended to the current context+ However, we con-

jecture that a proof of consistency can be obtained along the same lines and leave it for future
research+

7+ The necessary and sufficient condition for existence ofE~X8! is 105a4 1 b4 1 18a2b2 1
4ab3 1 60a3b , 1+

8+ Easy computations show that

jt
2 5

1

0+3
1
#3 2 2+7

#3 2 2 (
h50

` F~#3 2 2!h 2
0+7h11

#3 2 2
G~et2h

2 2 1! . 0+7044+
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APPENDIX: PROOFS OF THEOREMS 1 AND 2
Proof of Theorem 1. The theorem relies on a set of intermediate results that we

now present+ It will be convenient to consider the functions~∀u [ Q!: On
~1!~u~1! ! 5

~10n!(t51
n et

2~u~1! ! and On
~2!~u! 5 ~10n!(t51

n ut
2~u!, where~et~u

~1! !,ut~u!! is given by
~9!–~10!+ We use7{7 to signify the Euclidean norm7A7 5 $tr~A'A!%102 and7{7p to sig-
nify the Lp-norm 7A7p 5 ~E7A7 p!10p+ The first lemma was established by Francq and
Zakoïan~1998, Theorem 1!+

LEMMA 1 + Zun
~1! r u0

~1! a+s+ as nr `+

LEMMA 2 + For any u [ Qd and any t[ Z,

Het ~u
~1! ! 5 et a+s+

ut ~u! 5 ut a+s+
n u 5 u0+ (A.1)

Proof. The proof thatet~u
~1! ! 5 et ~a+s+! n u~1! 5 u0

~1! was given in Francq and
Zakoïan~1998!+ The rest of the proof is similarly based on the innovation property ofut

along with the fact that representation~2! is the canonical one+ n

LEMMA 3 + For anyu~2! [ Qd
~2! , let O`

~2!~u0
~1! ,u~2! ! 5 Eu0

ut
2~u0

~1! ,u~2! !+ Then for any
u~2! Þ u0

~2! , u~2! [ Qd
~2! , we have

z2 5 O`
~2!~u0

~1! ,u0
~2!! , O`

~2!~u0
~1! ,u~2! !+

Proof. The lemma is a straightforward consequence of the innovation property ofut

and of Lemma 2+ n
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LEMMA 4 + For any u [ Qd there exist two sequences of absolutely summable con-
stants~ci ~u

~1! !! and ~di ~u
~2! !! and a constant w~u~2! !! such that a+s+ ~∀t [ Z!:

et ~u
~1! ! 5 Xt 1 (

i51

`

ci ~u
~1! !Xt2i (A.2)

and

ut ~u! 5 w~u~2! ! 1 et
2~u~1! ! 1 (

i51

`

di ~u
~2! !et2i

2 ~u~1! !+ (A.3)

In addition, et~{! and ~∀u~1! [ Qd
~1!!ut ~u

~1!,{! are continuously differentiable func-
tions, and for anyu [ Qd, any m1 [ $1, + + + ,P 1 Q%, and any m2 [ $1, + + + , p 1 q 1 1%,
there exist a constant wm2

~u~2! ! and two absolutely summable sequences~ci,m1
~u~1! !!i$1

and ~di,m2
~u~2! !!i$0 such that

]

]um1

~1! et ~u
~1! ! 5 (

i51

`

ci,m1
~u~1! !Xt2i and

]

]um2

~2! ut ~u! 5 wm2
~u~2! ! 1 (

i51

`

di,m2
~u~2! !et2i

2 ~u~1! !+ (A.4)

Moreover there existr [ @0,1@ and K [ @0,`@ such that, for all i $ 1,

sup
u~1![Qd

~1!
6ci ~u

~1! !6 # Kr i, sup
u~2![Qd

~2!
6di ~u

~2! !6# Kr i, (A.5)

sup
u~1![Qd

~1!
6ci,m1

~u~1! !6 # Kr i, sup
u~2![Qd

~2!
6di,m2

~u~2! !6# Kr i+ (A.6)

Proof. Again, this is a straightforward consequence of the invertibility assumptions
on the MA polynomials in~1!–~2!+ Similar results have been established in Francq and
Zakoïan~1998!; therefore we do not detail the proof+

Now we show the following almost sure uniform convergence result+

LEMMA 5 + We have a+s+

lim
nr`

sup
u~2![Qd

~2!
6On

~2!~ Zun
~1! ,u~2! ! 2 On

~2!~u0
~1! ,u~2! !6 5 0+

Proof. From ~A+3! we have

6ut
2~ Zun

~1! ,u~2! ! 2 ut
2~u0

~1! ,u~2! !6

5 *et
2~ Zun

~1! ! 2 et
2 1 (

i51

`

di ~u
~2! ! @et2i

2 ~ Zun
~1! ! 2 et2i

2 #*6ut ~ Zun
~1! ,u~2! ! 1 ut ~u0

~1! ,u~2! !6

# F6et ~ Zun
~1! ! 2 et 6 6et ~ Zun

~1! ! 1 et 61 (
i51

`

6di ~u
~2! !6 6et2i ~ Zun

~1! ! 2 et2i 6 6et2i ~ Zun
~1! ! 1 et2i 6G

3 6ut ~ Zun
~1! ,u~2! ! 1 ut ~u0

~1! ,u~2! !6+ (A.7)
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Now using a Taylor expansion we can write

6et ~ Zun
~1!! 2 et 6 # ** ]

]u~1!
~et ~ Dut,n

~1!!!** 3 7 Zun
~1! 2 u0

~1!7, (A.8)

where Dut,n
~1! is between Zun

~1! andu0
~1! + We deduce from~A+7! and~A+8! that

sup
u~2![Qd

~2!
6On

~2!~ Zun
~1! ,u~2! ! 2 On

~2!~u0
~1! ,u~2! !6

# F 2

n (
t51

n

sup
u~1![Qd

~1!S** ]

]u~1!
~et ~u

~1! !!**D sup
u~1![Qd

~1!
6et ~u

~1! !6Wt

1
2

n (
t51

n

(
i51

`

sup
u~2![Qd

~2!
6di ~u

~2! !6 sup
u~1![Qd

~1!S** ]

]u~1!
~et2i ~u

~1! !!**D sup
u~1![Qd

~1!
6et2i ~u

~1! !6WtG
3 7 Zun

~1! 2 u0
~1!7, (A.9)

whereWt 5 supu~1![Qd
~1! supu~2![Qd

~2! 6ut ~u
~1!,u~2! ! 1 ut ~u0

~1! ,u~2! !6+ Using ~A+2!–~A+6! and
the Hölder inequality, it can be shown that

Eu0H sup
u~1![Qd

~1!S** ]

]u~1!
~et ~u

~1! !!**D sup
u~1![Qd

~1!
6et ~u

~1! !6WtJ , ` (A.10)

and

Eu0 (
i51

`

sup
u~2![Qd

~2!
6di ~u

~2! ! 6 sup
u~1![Qd

~1!
S** ]

]u~1!
~et2i ~u

~1! !!**D sup
u~1![Qd

~1!
6et2i ~u

~1! !6Wt , `+

(A.11)

Finally, the sums in brackets on the right-hand side of~A+9! involve ergodic positive
processes~as measurable functions ofXt and its past values!+ Therefore, the ergodic
theorem can be applied, and, in light of ~A+10! and~A+11!, the limit is finite a+s+

Because7 Zun
~1! 2 u0

~1!7 converges to zero a+s+, Lemma 5 is proved+ n

LEMMA 6 + We have a+s+

lim
nr`

sup
u[Qd

!n6Qn
~2!~u! 2 On

~2!~u!6 5 0 (A.12)

and for i [ $1,2%,

lim
nr`

sup
u[Qd

*!n
]

]u~i ! ~Qn
~i !~u! 2 On

~i !~u!!* 5 0+ (A.13)

Proof. In view of Lemma 4 we haveIet~u
~1! ! 5 Xt 1 (i51

t21 ci ~u
~1! !Xt2i + Then from

~A+5!

sup
u~1![Qd

~1!
6et ~u

~1! ! 2 Iet ~u
~1! !6 # (

i$t

Kr i 6Xt2i 6, a+s+ (A.14)
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Using ~A+3!, ~A+5!, and~A+14! we have

sup
u[Qd

6 Iut ~u! 2 ut ~u!6 # (
i50

t21

Kr i (
j$t2i

Kr j 6Xt2i2j 6 sup
u[Qd

6et2i ~u
~1! ! 1 Iet2i ~u

~1! !6

1 K sup
u[Qd

(
i5t

`

r iet2i
2 ~u~1! !+

Because there exists a constantM1, independent oft, such thatE supu[Qd
6et ~u

~1! ! 1
Iet~u

~1! !6 # M1, the Markov inequality and the Borel–Cantelli lemma show that

K 2r1
t (

i50

t21

sup
u[Qd

6et2i ~u
~1! ! 1 Iet2i ~u

~1! !6 # K1r2
t , a+s+

for K1 . 0 andr1 , r2 , 1+ Similarly we show thatK (i5t
` r1

i supu[Qd
et2i

2 ~u~1! ! #
K2 r2

t , a+s+ for some constantK2 . 0+ Therefore, we obtain

sup
u[Qd

n6Qn
~2!~u! 2 On

~2!~u!6 # (
t51

n

sup
u[Qd

6 Iut ~u! 2 ut ~u!6 S sup
u[Qd

6ut ~u!61 sup
u[Qd

6 Iut ~u!6D
# (

t51

`

r2
tS sup

u[Qd

6ut ~u!61 sup
u[Qd

6 Iut ~u!6DSK1 (
k$0

rk 6X2k61 K2D,
which is finite a+s+ ~because it is positive and its expectation is finite!+We deduce~A+12!+
By the same arguments~using~A+6! instead of~A+5!! we obtain~A+13!+ n

LEMMA 7 + For any u*
~2! [ Qd

~2! , u*
~2! Þ u0

~2! , there exists a neighborhood V~u*
~2!! of

u*
~2! such that V~u*

~2!! , Qd
~2! and

lim inf
nr`

inf
u~2![V~u*

~2!
!

Qn
~2!~ Zun

~1! ,u~2! ! . z2, a+s+

Proof. We have

inf
u~2![V~u*

~2!
!

Qn
~2!~ Zun

~1! ,u~2! ! $ inf
u~2![V~u*

~2!
!

On
~2!~u0

~1! ,u~2! !

2 sup
u~2![Qd02

~2!
6On

~2!~ Zun
~1! ,u~2! ! 2 Qn

~2!~ Zun
~1!,u~2! !6

2 sup
u~2![Qd02

~2!
6On

~2!~ Zun
~1! ,u~2! ! 2 On

~2!~u0
~1! ,u~2! !6+ (A.15)

Let Vm~u*
~2!! be the open sphere with centeru*

~2! and radius 10m+ Let

Sm~t! 5 inf
u~2![Vm~u*

~2!
!ùQd

~2!
ut

2~u0
~1! ,u~2! !+

The ergodic theorem shows that a+s+

inf
u~2![Vm~u*

~2!
!ùQd

~2!
On

~2!~u0
~1! ,u~2! ! $

1

n (
t51

n

Sm~t! r Eu0
Sm~t!,

as n tends to infinity+ Becauseut
2~u! is a smooth function ofu, Sm~t! increases to

ut
2~u0

~1! ,u*
~2!! asm goes to infinity+ Therefore limmr` Eu0

Sm~t! 5 Eu0
ut

2~u0
~1! ,u*

~2!!+ But
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Eu0
ut

2~u0
~1! ,u*

~2!! . Eu0
ut

2~u0
~1! ,u0

~2!! 5 z2, becauseut ~u0
~1! ,u0

~2!! is the linear innovation
of et + Hence lim infmr` lim infnr` infu~2![Vm~u*

~2!
! On

~2!~u0
~1! ,u~2! ! . z2+ Because, from

Lemmas 5 and 6, the two suprema in~A+15! converge to zero asn goes to infinity, the
stated result follows+ n

The proof of Theorem 1 follows from Lemma 7 and a standard compactness argument+
n

Proof of Theorem 2. Again, the proof of the theorem consists of a sequence of
lemmas+

LEMMA 8 + The randomvector

Zn 5 1!n
]

]u~1!
On

~1!~u0
~1!!

!n
]

]u~2!
On

~2!~u0! 2
has a limiting normal distribution with zero mean and covariance matrix

I 5 SI11 I12

I21 I22
D+

Proof. Using the fact thatet andut~u0! are, respectively, the linear innovations ofXt

andet
2, it is straightforward to show thatZn is centered+ Instead ofZn, we can equiva-

lently prove asymptotic normality ofv 'Zn wherev5 ~l',m'!', ∀l [ RP1Q, m [ Rp1q11+
We have

l'!n
]

]u~1!
On

~1!~u0
~1!! 1 m'!n

]

]u~2!
On

~2!~u0! 5
2

!n (
t51

n

~l'Yt
~1! 1 m'Yt

~2!!,

where

Yt
~1! 5 et

]

]u~1!
et ~u0

~1!! 5 (
i50

`

(
j51

`

ci ~u0
~1!! @cj,m~u0

~1!!#Xt2i Xt2j , (A.16)

Yt
~2! 5 ut ~u0!

]

]u~2!
ut ~u0!

5 (
i50

`

(
j51

`

di ~u0
~2!! @dj,m~u0

~2!!#et2i
2 et2j

2

1 w~u0
~2!! (

j51

`

@dj,m~u0
~2!!#et2j

2 1 @wm~u0
~2!!# (

i50

`

di ~u0
~2!!et2i

2 , (A.17)

with c0~u0
~1!! 5 d0~u0

~2!! 5 1+ To use the strong mixing property of~Xt ! we truncate all
the sums involved in the expansions ofYt

~1! and Yt
~2! + For any positive integerr, let

Yt, r 5 lYt, r
~1! 1 mYt, r

~2! , where
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Yt, r
~1! 5 (

i50

r

(
j51

r

ci ~u0
~1!! @cj,m~u0

~1!!#Xt2i Xt2j ,

Yt, r
~2! 5 (

i50

r

(
j51

r

di ~u0
~2!! @dj,m~u0

~2!!#S (
k150

r

ck1
~u0

~1!!Xt2i2k1D2S (
k250

r

ck2
~u0

~1!!Xt2j2k2D2

1 w~u0
~2!! (

j51

r

@dj,m~u0
~2!!#S (

k150

r

ck1
~u0

~1!!Xt2j2k1D2

1 @wm~u0
~2!!# (

i50

r

di ~u0
~2!!S (

k150

r

ck1
~u0

~1!!Xt2i2k1D2

+ (A.18)

BecauseYt, r is a function of a finite number of values of the process~Xt !, it is strongly
mixing+ Therefore, the central limit theorem for strongly mixing processes~Ibragimov,
1962! can be applied+ It implies that~20!n!(t51

n ~Yt, r 2 Eu0
Yt, r ! has a limitingN ~0, DIr !

distribution+ We will show ~in point ~ii !, which follows! that matrix I exists+ Standard
calculations show thatDIr r ~l,m! I ~l,m!' asr r `+

~i! We will show that the asymptotic distribution of the untruncated random variable
n2102 (t51

n Yt ~whereYt 5 l'Yt
~1! 1 m'Yt

~2!! is equal to the limit~as r r `! of
the asymptotic distribution~as n r `! of the truncated random variable
n2102 (t51

n Yt, r + Let Z t, r 5 l'~Yt
~1! 2 Yt, r

~1!! 1 m'~Yt
~2! 2 Yt, r

~2!!+ It suffices to
prove thatE~~10!n!(t51

n ~Z t, r 2 Eu0
Z t, r !!~10!n!(t51

n ~Z t, r 2 Eu0
Z t, r !!' con-

verges to zero uniformly inn asr r `+ A straightforward adaptation of a result
given by Anderson~1971, Corollary 7+7+1, p+ 426! will provide the advanced re-
sult+ Because the computations are very similar for all the sums involved in the
definition of Z t, r , we will only detail one of them+ For instance, let

Ut, r 5 (
i5r11

`

(
j51

`

di ~u0
~2!! @dj,m~u0

~2!!#et2i
2 et2j

2

and let us show that for allm [ $1, + + + , p 1 q 1 1%

sup
n

VS 1

!n (
t51

n

Ut, r ~m!D rr`
&& 0+ (A.19)

By a classical argument, it is sufficient to show that

(
h52`

`

6Cov~Ut, r ~m!,Ut1h, r ~m!!6
rr`

&& 0+

Using Lemma 4 and the assumption thatEXt
814n , ` we show thatM :5

Eet
814n , `+ By the Cauchy–Schwarz inequality, we deduce that

6Cov~et1
2 et2

2 , et3
2 et4

2!6 # M , ` (A.20)
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and that there exist a positive constantC and a constantr [ @0,1@ such that

6Cov~Ut, r ~m!,Ut1h, r ~m!!6

5 * (
i, i '5r11

`

(
j, j '51

`

di ~u0
~2!!di ' ~u0

~2!!dj,m~u0
~2!!dj ',m~u0

~2!!

3 Cov~et2i
2 et2j

2 , et1h2i '
2 et1 h2j '

2 !*
# M (

i5r11

`

6di ~u0
~2!!6(

j51

`

6dj,m~u0
~2!!6 (

i '5r11

`

6di ' ~u0
~2!!6 (

j '51

`

6dj ',m~u0
~2!!6# Cr2r+

To deal with 6Cov~et2i
2 et2j

2 , et1h2i '
2 et1h2j '

2 !6, we introduce the following
truncations

@et # ~r ! 5 (
k50

r

ck~u0
~1!!Xt2k, @et #

~r ! 5 (
k5r11

`

ck~u0
~1!!Xt2k,

and

@et et ' #
~r ! 5 (

k∨k'$r11

ck~u0
~1!!ck' ~u0

~1!!Xt2k Xt '2k' ,

where r is a positive integer+ Using a Taylor expansion we have, for positive
integersi, j, i ', j ', andh+

et1h2i '
2 et1h2j '

2 5 @et1h2i ' # ~@h04!# !
2 @et1h2j ' # ~@h04# !

2

1 2C~t 1 h, i ', j ' !@et1h2i ' et1h2j ' #
~@h04# ! (A.21)

for some C~t 1 h, i ', j '!, 6C~t 1 h, i ', j '!6 # (k1, k250
` 6ck1

~u0
~1!!ck2

~u0
~1!! 3

Xt1h2i '2k1
Xt1h2j '2k2

6+ Hence we have

6Cov~et2i
2 et2j

2 , et1h2i '
2 et1h2j '

2 !6

# 6Cov~et2i
2 et2j

2 ,@et1h2i ' # ~@h04# !
2 @et1h2j ' # ~@h04# !

2 !6

1 26Cov~et2i
2 et2j

2 ,C~t 1 h, i ', j ' !@et1h2i ' et1h2j ' #
~@h04# ! !6+

By the Davydov inequality~Davydov, 1968!, the first term on the right is bounded
by

C27et2i
2 et2j

2 721n7@et1h2i ' # ~@h04# !
2 @et1h2j ' #

2
~ @h04# !721n

3 SaXSminHh 1 i 2 i ' 2 F h

4G , h 1 j 2 i ' 2 F h

4G , h 1 i 2 j ' 2 F h

4G ,
h 1 j 2 j ' 2 F h

4GJDDn0~21n!

# C2 M 10~21n!SaXSF h

4GDD0~210!

(A.22)
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for i ' ∨ j ' # h02, whereC2 is a positive constant+ Moreover by the Hölder in-
equality we have

6Eet2i
2 et2j

2 C~t 1 h, i ', j ' !@et1h2i ' et1h2j ' #
~@h04#! 6

# 7et2i
2 et2j

2 721n7C~t 1 h, i ', j ' !7~412n!0~11n!

3 7@et1h2i ' et1h2j ' #
~@h04# ! 7~412n!0~11n! + (A.23)

The third term in this product is dominated by

(
k∨k'.@h04#

6ck~u0
~1!!ck' ~u0

~1!!67Xt7~412n!0~11n! # C3 r@h04#,

whereC3 is a positive constant+ Similarly we show that the second term in~A+23!
is finite, whereas the first one is bounded byM 10~21n!+ Therefore the left-hand
side in~A+23! is bounded by a term of the orderr@h04#+ Therefore we have shown
that

6Cov~et2i
2 et2j

2 , et1h2i '
2 et1h2j '

2 !6 # C4SaXSF h

4GDDn0~21n!

1 C5 r@h04#,

for i ' ∨ j ' #
h

2
and h $ 0, (A.24)

for some positive constantsC4 andC5+
Using this inequality, we show that, for h $ 0 andr , @h02# ,

6Cov~Ut, r ~m!,Ut1h, r ~m!!6

# (
r,i ',@h02#

(
0,j ',@h02#

(
i, j
6di ~u0

~2!!di ' ~u0
~2!!dj,m~u0

~2!!dj ',m~u0
~2!!

3 Cov~et2i
2 et2j

2 , et1h2i '
2 et1h2j '

2 !6

1 (
i '$@h02#

(
i, j, j '
6di ~u0

~2!!di ' ~u0
~2!!dj,m~u0

~2!!dj ',m~u0
~2!!

3 Cov~et2i
2 et2j

2 , et1h2i '
2 et1h2j '

2 !6

1 (
j '$@h02#

(
i, j, i '
6di ~u0

~2!!di ' ~u0
~2!!dj,m~u0

~2!!dj ',m~u0
~2!!

3 Cov~et2i
2 et2j

2 , et1h2i '
2 et1h2j '

2 !6

# C8 r r SaXSF 6h64 GDDn0~21n!

1 C9 r rr@6h604# 1 C10r rr 6h602,

where C8, C9, and C10 are positive constants+ The same inequality holds for
h , 0+ Therefore there exists a constantK such that

(
h52`

`

6Cov~Ut, r ~m!,Ut1h, r ~m!!6 # Krr r 1 Kr r 1 Kr r (
h

~aX~h!!n0~21n! rr`
&& 0+
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~ii ! It remains to prove the existence of the components of matrixI+ We have

VS 1

!n (
t51

n

Yt
~2!D 5

1

n (
t51

n

(
s51

n

Cov~Yt
~2! ,Ys

~2!!+

For ~l,m! [ $0, + + + , p 1 q%2 andh [ Z, let

c~h! 5 CovS(
i50
j51

`

di ~u0
~2! !dj, l ~u0

~2! !et2i
2 et2j

2 ,(
i50
j51

`

di ~u0
~2! !dj,m~u0

~2! !et1h2i
2 et1h2j

2 D +
First suppose thath $ 0+ We have

6c~h!6 # S1 1 S2, (A.25)

where

S1 5 (
i∨j∨i '∨j '.h02

6di ~u0
~2!!dj, l ~u0

~2!!di ' ~u0
~2!!dj ',m~u0

~2!!6

3 6Cov~et2i
2 et2j

2 , et1h2i '
2 et1h2j '

2 !6,

S2 5 (
i∨j∨i '∨j '#h02

6di ~u0
~2!!dj, l ~u0

~2!!di ' ~u0
~2!!dj ',m~u0

~2!!6

3 6Cov~et2i
2 et2j

2 , et1h2i '
2 et1h2j '

2 !6+

From ~A+5!, ~A+6!, and~A+20! there exists a constantC1 such that

S1 # C1rh02+ (A.26)

Thus forh $ 0, in view of ~A+25!, ~A+26!, and~A+24! we have

6c~h!6 # C1rh02 1 C6SaXSF h

4GDDn0~21n!

1 C7 r@h04#

for some positive constantsC6 and C7+ A similar inequality holds forh # 0+
Therefore, from the strong mixing assumption of Theorem 2, the sequence~6c~h!6!
is summable+ All other terms involved in Cov~Yt

~2! ,Ys
~2!! may be treated in the

same way+ Finally, by a classical application of the dominated convergence theorem

VS 1

!n (
t51

n

Yt
~2!Dr (

h52`

`

Cov~Yt
~2! ,Yt1h

~2! !, asn r `+

We similarly prove the existence of the other components of matrixI+ n

LEMMA 9 + Almost surely the matrices J11, J12, and J22 exist and are strictly positive
definite+

Proof. The proof is very similar to the one given in Francq and Zakoïan~1998!+ It is
mainly based on the ergodic theorem, applied to sequences involving second derivatives
of theet’s and theut ~u0

~1! ,u0
~2!!’s+ The fact that these sequences belong toL2 is deduced

from expansions similar to~A+4!+ n
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To complete the proof of Theorem 2, we make Taylor expansions around the true
parameter values+ First, we have

0 5 !n
]

]u~1!
Qn

~1!~ Zun
~1! ! 5 !n

]

]u~1!
Qn

~1!~u0
~1! ! 1F ]2

]ui
~1!]uj

~1! Qn
~1!~un, i, j

~1!* !G!n~ Zun
~1! 2 u0

~1! !,

where theun, i, j
~1!* ’s are betweenZun

~1! andu0
~1! + Doing again a Taylor expansion we obtain

* ]2

]ui
~1!]uj

~1! Qn
~1!~un, i, j

~1!* ! 2
]2

]ui
~1!]uj

~1! Qn
~1!~u0

~1!!*
# sup

u~1![Qd
~1! ** ]

]u~1! S ]2

]ui
~1!]uj

~1! Qn
~1!~u~1! !D**7un, i, j

~1!* 2 u0
~1!7r 0

a+s+ asn r `+ Similarly, two successive Taylor expansions lead to

0 5 !n
]

]u~2!
Qn

~2!~u0
~1! ,u0

~2!! 1 F ]2

]ui
~2!]uj

~1! Qn
~2!~un, i, j

~1!**,u0
~2!!G!n~ Zun

~1! 2 u0
~1!!

1 F ]2

]ui
~2!]uj

~2! Qn
~2!~ Zun

~1! ,un, i, j
~2!* !G!n~ Zun

~2! 2 u0
~2!!,

where theun, i, j
~1!**’s ~resp+ un, i, j

~2!* ’s! are between Zun
~1! and u0

~1! ~resp+ Zun
~2! and u0

~2!!+ The
second-order derivatives ofQn

~2!~{! can then be handled in the same way as forQn
~1!~{!+

Therefore, using Lemmas 6, 8, and 9, the proof of Theorem 2 is routinely completed+
n
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