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A review of analyses based upon anti-parallel vortex structures suggests that
structurally stable dipoles with eroding circulation may offer a path to the study
of vorticity growth in solutions of Euler’s equations in R3. We examine here the
possible formation of such a structure in axisymmetric flow without swirl, leading
to maximal growth of vorticity as t4/3. Our study suggests that the optimizing flow
giving the t4/3 growth mimics an exact solution of Euler’s equations representing
an eroding toroidal vortex dipole which locally conserves kinetic energy. The dipole
cross-section is a perturbation of the classical Sadovskii dipole having piecewise
constant vorticity, which breaks the symmetry of closed streamlines. The structure
of this perturbed Sadovskii dipole is analysed asymptotically at large times, and its
predicted properties are verified numerically. We also show numerically that if mirror
symmetry of the dipole is not imposed but axial symmetry maintained, an instability
leads to breakup into smaller vortical structures.
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1. Introduction
The purpose of this paper is to construct an Euler flow involving an eroding

dipole structure which achieves maximal long-time growth of vorticity as t4/3 in
axisymmetric flow without swirl. Our analysis will employ asymptotic estimates and
neglect certain higher-order effects, but the results will be supported by numerical
calculations. Our aim is to present a plausible if approximate physical model with a
number of compelling features, which enables some explicit (if formal) analyses of
vorticity growth in three dimensions.

We focus here on the local amplification of vorticity, in other words on the
self-stretching of a vortex structure. This is in contrast to the stretching that results
from distant interactions of vortex structures. The scaling invariance inherent in Euler
flows allows such local stretching to proceed in principle to arbitrarily small scales,
possibly leading to extremely rapid growth of the vorticity. This viewpoint has indeed
motivated much of the research into the possibility of blow up of vorticity in finite
time in three dimensions and has led almost exclusively to consideration of the
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2 S. Childress, A. D. Gilbert and P. Valiant

interaction of anti-parallel vortex structures. An excellent summary of this research
may be found in Gibbon (2008). We mention in particular the work of Pumir &
Siggia (1987) on the interaction of anti-parallel, thin vortex tubes, research which
showed that such tubes tend to pair up and begin to interact. However, it turns out
this interaction cannot avoid the ultimate distortion of vortex cores. This is because,
considered as line vortices, the motion brings the filaments together at a rate which
is proportional to the logarithm of the product of the radius and the curvature. This
product must remain large to ensure the integrity of the cores. This then implies that
the distance between the filaments shrinks faster than the core size, so distortion must
occur and the filament model fails; for details see Hormoz & Brenner (2012).

Explicit numerical studies of core interaction in three dimensions have again
involved anti-parallel tubes, see Gibbon (2008), and also Bustamante & Kerr (2008)
and Hou & Li (2008). Here rapid growth of vorticity is observed. The presence or not
of a finite-time singularity has been controversial, but recent analysis of higher-order
norms of vorticity indicate double-exponential growth (Kerr 2013). The problem of
core interaction also occurs in the simpler problem of collision of two vortex rings,
see Oshima (1978), Lim & Nickels (1992) and Riley (1998). This brings us to
the main focus of the present paper, the interaction of anti-parallel vortex tubes in
axisymmetric flow without swirl (AFWOS). In a subsequent paper, we shall extend
the discussion to include general anti-parallel structures in three dimensions.

Our approach is to use this simpler problem to explore in detail core interaction.
It is well known that in AFWOS there can be no finite-time blow up of vorticity
(Majda & Bertozzi 2001). Nevertheless, this is an arena where modest amplification of
vorticity can be studied in detail. We have argued that this problem leads naturally to
the important role played by the local conservation of total kinetic energy (Childress
2008). This enforces a loss of volume of the vortical structure associated with growth,
which can then be described as an ‘eroding’, toroidal, dipolar structure. Such erosion
is sometimes also described as ‘stripping’, in which a vortex loses outer layers of
vorticity, thus sharpening the vorticity profile. We show that such a structure should
emerge generally from equal and opposite colliding vortex rings, and that the ultimate
fate can be realized by a solution of Euler’s equations corresponding to a eroding,
locally two-dimensional structure having a uniform vorticity in each of the two
constituent eddies. The non-eroding counterpart is the well-known two-dimensional
(2-D) Sadovskii vortex with continuous velocity (Sadovskii 1971; Pierrehumbert 1980;
Saffman & Tanveer 1982).

Analysis of uniform vorticity patches have an interesting history. It has long
been know that steady flows with closed streamlines should, for sufficiently small
viscosity, tend to regions of constant vorticity (Prandtl 1952; Batchelor 1956). In
particular, Batchelor proposed that they occur in the wake of a bluff body at high
Reynolds number. Solutions of Euler’s equation illustrating such eddies were given
by Childress (1966) under the condition that they be slender, a constraint that did not
allow continuous velocity at the boundary of the eddy but exhibited a doubly cusped
limiting case. Sadovskii studied the class quite generally and obtain the example
with continuous velocity (Sadovskii 1971). A interesting example of a non-slender
doubly cusped Sadovskii eddy is to the stable 2-D wake behind a bluff body at large
Reynolds number (Chernyshenko 1988).

There is already clear numerical evidence for the existence of such eroding
structures. Studies of interactions of anti-parallel vortex rings have suggested that
vorticity tends to be shed into a sort of ‘tail’ aft of the main body of the resulting
dipolar vortex, as the tubes are stretched, see e.g. Pumir & Kerr (1987), Shelley,
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Vorticity growth 3

Meiron & Orszag (1993), Bustamante & Kerr (2008) and Grafke & Grauer (2013).
Calculations of colliding rings using the techniques of contour dynamics explicitly
exhibit the development of a long ‘tail’ and a ‘head’ and thus a ‘tadpole’ shape
for the dipole/tail structure; see Riley (1998), Shariff, Leonard & Fersiger (2008).
In Shariff, Leonard & Fersiger (2008) it was shown that the head of the tadpole
is indeed very close to the shape of the Sadovskii dipole. Our claim here is that
this configuration emerges generally in AFWOS under the condition that we are
dealing with a toroidal dipole that is anti-symmetric about a plane dividing the two
vorticity regions. Note that the physical experiment described in Lim & Nickels
(1992) involves vortex stretching in an apparently axisymmetric phase, before a
non-axisymmetric instability develops that ends the expansion. (A video may be seen
at http://www.youtube.com/watch?v=12ozAloKYyo.) However, prior to the instability
one observes an axisymmetric ‘membrane’ which is consistent with the shedding of
a tail behind the axisymmetric dipole pair propagating radially outwards.

The paper is organized as follows. Section 2 introduces the axisymmetric geometry
and gives some background of the development of the dipolar structure. In § 3 we
present a simplified analysis of the eroding dipole based upon the ad hoc temporal
scalings of scale and velocity derived from the constraint of locally constant kinetic
energy. In § 4 the program outlined in § 3 is subjected to more detailed asymptotic
analysis in order to compute these scalings explicitly. We shall thereby derive the
property of local energy conservation directly from the dynamics of a perturbed
Sadovskii vortex. In § 5 numerical simulations are described which are found to
exhibit the scalings of the previous sections as well as show the evolution toward the
asymptotic state. We also calculate in one instance break-up of the dipole through
an instability breaking the mirror symmetry. We summarize our results and indicate
their implications for more general anti-parallel vortex interactions in the discussion
of § 6.

2. Preliminaries
2.1. The axisymmetric geometry

In AFWOS, we may study the growth of vorticity by expansive stretching in its
simplest setting. It is known that no finite-time singularity can then be formed
(Majda & Bertozzi 2001), but one may still pose an initial value problem in R3

and ask how fast vorticity can grow at large times. The problem was taken up in
Childress (2008), and we now summarize the results. The ideas outlined here will be
developed further in § 3.

Since the vorticity consists of rings with a common axis, maximal growth of
vorticity as t → ∞ can be determined by considering a symmetric anti-parallel
bundle of vortex rings. Optimization under the condition of conservation of vorticity
volume then bounds (for large t) the maximum of vorticity as a multiple of t2.
This estimate can be understood as follows. Imagine a torus with a centreline C of
radius R and a circular cross-section of radius a. Let the angular vorticity component
(the only component to be considered here) be ±ωθ in the two half-discs of the
cross-section, the signs such as to produce expansive stretching. By conservation of
volume, a2R∼ 1 in order of magnitude. Also, vortex dynamics ensures dR/dt ∼ ωθa.
Finally, conservation of vorticity flux requires ωθa2 ∼ 1. Thus dR/dt∼√R leading to
the t2 estimate. We now set ωθ =ω for the axisymmetric case.

The growth as t2 cannot be obtained by solutions of Euler’s equations since
the volume-conserving optimizer does not conserve total kinetic energy E. Indeed,
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4 S. Childress, A. D. Gilbert and P. Valiant

FIGURE 1. Vorticity distribution for the dipole which maximizes the velocity of the
centreline ‘target’ (the centre dot), subject to constraints on volume, ω/r, and total kinetic
energy. Here C denotes the maximum initial value of |ω/r|.

E ∼ Ra2(ωa)2 ∼ R. If conservation of energy is also imposed, and a cross-sectional
scale determined again by a single length a, one must take a∼R−3/4 so that vorticity
volume is lost. In fact we can only maintain kinetic energy approximately, with loss
of volume and energy occurring through the shedding of a ‘tail’ of vorticity-laden
fluid from the vortex pair, of thickness H ∼ R−5/2.

To see this, suppose then that we seek a structure with a ∼ R−p, p > 0, which
extrudes a tail in the form of a sheet of thickness H ∼ R−q. The rate of change of
dipole volume is of order d(a2R)/dt ∼ R−2pṘ and the flux of volume into the tail is
(since vorticity is proportional to R) equal to HRṘ∼ R1−qṘ. Conservation of volume
requires that

R−2pṘ∼ R1−qṘ, (2.1)

so that q= 2p+ 1. For the kinetic energy, considered relative to the fluid at infinity,
we first compute the flux of energy into the tail. The velocity in the tail is of order
ωH∼R1−q and therefore, as the circular band of height H and radius R expands at a
rate Ṙ, energy is created in the tail at a rate

dEtail

dt
∼ RṘ(ωR−q)2R−q ∼ R3−3qṘ. (2.2)

If this must equal the energy decrease in the ‘head’ of the structure, estimated as

dEhead

dt
∼ d

dt
[Ra2(ωa)2] ∼ d

dt
R3−4p ∼ (3− 4p)ṘR2−4p, (2.3)

and also p 6= 3/4, then R2p+2 ∼ 1, which is impossible. The only recourse is to set
3 − 4p = 0 to make Ehead ∼ 1. Thus (p, q) = (3/4, 5/2) and dR/dt ∼ ωR−3/4 ∼ R1/4,
yielding a maximum growth for large tas R∼ t4/3. Kinetic energy is lost to the tail at
a rate R1−7p = R−17/4 from (2.2) and so is extremely small at large R, consistent with
Ehead ∼ 1 in (2.1). We have thus established that the condition of a negligible loss of
kinetic energy uniquely determines the exponents p, q.

In Childress (2008) we described the solution to the variational problem for
conserved energy and volume. Details, and related work without energy conservation,
are given in Childress (2009). The form of the optimizing dipole is shown in figure 1.
The extruded ‘tail’ conserves volume while negligibly reducing kinetic energy.

Despite their origin from a problem with axial symmetry, these last estimates
provide a crucial piece of information concerning the structure of fast-growing
vortical structures of this kind. For an anti-parallel, symmetric pair of adjacent
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Vorticity growth 5

FIGURE 2. The upper half of the snail, showing the instantaneous flow lines relative to a
co-moving frame, in local coordinates (ξ , η)= R3/4(x, y). The spiral shown is the unique
interior flow line terminating at a stagnation point on η= 0. Note that the streamfunction
is multivalued on this spiral, jumping across it by an amount equal to the flux into the
tail, as a result of the apparent distribution of sources across the dipole. In the asymptotics
to be developed the spiral is much ‘tighter’ than depicted here.

eddies, conservation of energy forces a contraction of eddy cross-section over and
above that imposed by conservation of volume. Relative to a co-moving frame
with coordinates suitably normalized (here by a factor R3/4), the apparent flow now
contains a small non-solenoidal component, effectively feeding volume into the tail
as the true cross-section contracts. The key point is that this component breaks the
constraint of closed streamlines that prevails without it. In effect conservation of
energy turns a structurally unstable topology into a structurally stable, spiral topology.
We sketch the proposed flow lines of the upper eddy, a structure we shall refer to as
the ‘snail’, in figure 2. (Note that the direction of motion of the vortices is opposite
to the direction of crawling of the ‘snail’.)

Since we shall not consider here the calculation of the ‘optimizer’ shown in
figure 1, it is perhaps useful to explain how it relates to the construction to follow.
To obtain the fastest growth of vorticity under the constraint of constant kinetic
energy we maximize the velocity at a ‘target’ vortex ring by arranging the available
vorticity in an optimal way. Since we are interested only in the maximal final rate
of growth at large times, we examine the maximum absolute value k of ω divided
by distance R from the axis of symmetry. The ±k is used in eddies of uniform
vorticity, and the shape of the dipole chosen to maximize the velocity of the target
ring. Since at large R we know that vorticity on every ring is proportional to R, we
may bound the growth of vorticity as t→∞. It is shown in Childress (2009) that for
R large compared to the diameter of the dipole cross-section, the optimizer satisfies
|ω|6 Ck5/3E1/3t4/3 +O(t1/3), where C is a positive number and E is the total kinetic
energy of the toroidal dipole structure (with unit density). For the Sadovskii snail R
would be chosen so large that the asymptotic Sadovskii state had been reached, and
so a similar estimate, applied for the uniform vorticity eddies, would apply. But the
number C would presumably be smaller. We have not computed this number since
the exponent 4/3 is the only property of interest here.

2.2. The change of topology in AFWOS
We now summarize results to be derived in the next section. An asymptotic analysis of
the maximal growth of vorticity in time results in the leading-order flow and vorticity
field ω taking the form of an arbitrary 2-D eddy with closed streamlines. At the next
order, however, contour averaging introduces a compatibility constraint on the leading
vorticity term, needed to ensure the existence of the solution at second order.

We are dealing, therefore, with a singular perturbation in the topology of the flow.
Realizing that the actual structure at second order is that of the snail, we see that
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6 S. Childress, A. D. Gilbert and P. Valiant

the compatibility constraints on individual closed streamlines are removed, provided
that the perturbed velocity field is taken as the ‘leading flow field’, establishing
the spiral flow lines. Thus we have an example of bringing forward a second-order
effect, in order to completely reorder a calculation, here for the purpose of correctly
identifying the spiral topology. Once this is done, contour integration along spiral
flow lines terminating in the tail determines the tail, that is, determines the vorticity
shed to the wake, irrespective of the particular form of the forcing at second order.

Analysis of the snail configuration will lead naturally to the hypothesis that
the preferred ultimate vorticity distribution is one which is piecewise constant,
corresponding to zeroth-order eddies which are of the form of the Sadovskii vortex.
We use ‘the’ here to refer to the special case where velocity (and the total pressure)
is continuous at the dipole boundary. This dipole is one of a family, allowing
a discontinuity of velocity at the boundary, considered by Sadovskii (1971). The
solution of interest here was independently studied by Saffman & Tanveer (1982);
for a review of these problems see Moore, Saffman & Tanveer (1988). The constant
vorticity regions emerge from any other dipolar configuration by the stripping away of
vorticity into the tail, leaving tubular neighbourhoods of two symmetric anti-parallel
vortex lines, thus giving the Sadovskii structure.

3. Analysis of vorticity growth in AFWOS
We now turn to the asymptotic analysis of a dipolar vortex structure under the

constraints of AFWOS, for large values of the dipole radius R. Motivated by the
preceding estimates and bounds, we shall seek a structure whose cross-sectional area
decreases as R−3/2 but which maintains self-similarity of shape to leading order. We
shall not initially fix p to be 3/4, since the arguments in this section are kinematic
in nature. In contrast to the analysis to be presented in § 4, we here consider a
slightly more general class where area goes as R−2p, and impose explicitly the
scaling associated with R∼ t4/3 and a dipole area decreasing as t−2. We then assess
the resulting equations for large t.

3.1. Local analysis of eroding dipoles
In cylindrical coordinates (r, z, θ) (this order being chosen as we shall be working
largely in the (r, z)-plane), the vorticity equation is[

∂

∂t
+ ur

∂

∂r
+ uz

∂

∂z

]
ω

r
= 0, ω= ∂uz

∂r
− ∂ur

∂z
. (3.1)

The conservation of volume is expressed, for an incompressible fluid of unit density,
by

1
r
∂rur

∂r
+ ∂uz

∂z
= 0. (3.2)

We now pass to local coordinates (x, y) though the transformation r= R(t)+ x, z= y,
ur = Ṙ+ u, uz = v, with Ṙ= dR/dt. We then have[

∂

∂t
+ u

∂

∂x
+ v ∂

∂y

]
ω

R(t)+ x
= 0, ω= vx − uy, (3.3)

ux + vy + u
R(t)+ x

=− Ṙ
R(t)+ x

. (3.4)

The time derivative is now understood to be for x fixed.
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Vorticity growth 7

Writing

ω=ω0
R(t)
R0

Ω(x, y, t), (3.5)

where R0 is a reference length and ω0 a reference vorticity, for example associated
with initial conditions, we have[

∂

∂t
+ u

∂

∂x
+ v ∂

∂y

]
ΩR

R+ x
= 0, ux + vy + u

R+ x
=− Ṙ

R+ x
. (3.6a,b)

Next, let a(t) = R0(R(t)/R0)
−p be a lateral scale for the dipole, and set (ξ , η) =

a−1(x, y). Here p is an exponent we expect to be 3/4 from the previous section, but
we leave it unspecified for the moment as we wish to emphasize the independence
of the constraint of conservation of energy from the form of the dipole topology. We
may assume for eroding vortices that p> 1/2 (so volume a2R decreases). Lastly, we
set

(u, v)=ω0R0

(
R
R0

)1−p

(U, V)− p
(

Ṙ
R

)
(x, y), (3.7)

and define a dimensionless time τ by

∂τ

∂t
=ω0

R
R0
. (3.8)

In these variables we set h= 1+ x/R and have[
∂

∂τ
+U

∂

∂ξ
+ V

∂

∂η

]
Ω

h
= 0, Uξ + Vη + εUh =

(2p− 1)ε
h

. (3.9a,b)

Here we have chosen ω0, R0 so that

Ṙ=ω0R0(R/R0)
1−p, R= R0(1+ pω0t)1/p, (3.10a,b)

and therefore

ε=
(

R0

R

)1+p

= ṘR0

ω0R2
= Rτ

R
= ε(τ )= 1

1+ (1+ p)τ
∼ (1+p)−1τ−1, h=1+ εξ . (3.11)

One useful point to note is that the tail thickness here is R−(1+2p) and so the vorticity
in the tail contributes a velocity of order R× R−(1+2p) ∼ R−2p, whereas relative to the
head the fluid flow exits the tail with velocity of order R1−p so as to match with the
free stream velocity, consistent with the above estimates. Thus the vorticity in the tail
contributes a velocity which is negligible compared to the free stream.

3.2. Formal expansion

We now return to (3.9) and carry out a formal expansion in ε (or τ−1) for the flow
in the upper half of the dipole. We introduce the new time variable τ ∗ by

∂Ω0

∂τ
= ε ∂Ω0

∂τ ∗
. (3.12)
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8 S. Childress, A. D. Gilbert and P. Valiant

Thus τ ∗ = (1+ p)−1 log[1+ (1+ p)τ ] ∼ (1+ p)−1 log τ . Then (3.9) becomes[
ε
∂

∂τ ∗
+U

∂

∂ξ
+ V

∂

∂η

]
Ω

h
= 0, Uξ + Vη + εUh =

(2p− 1)ε
h

. (3.13a,b)

The reasoning here is that the scaling of the coordinates and velocity components
has already absorbed the dominant time dependence, and we are left with the slower
dependence on τ ∗. Of course now ε may be regarded as a function of τ ∗, with

∂ε

∂τ ∗
=−(p+ 1)ε. (3.14)

We now let Q≡ (U,V)=Q0(ξ , η, τ
∗)+ εQ1(ξ , η, τ

∗)+ · · · and Ω =Ω0(ξ , η, τ
∗)+

εΩ1(ξ , η, τ
∗)+ · · · . We then obtain the equations

Q0 · ∇Ω0 = 0, ∇ ·Q0 = 0, (3.15)
∂Ω0

∂τ ∗
+Q0 · ∇Ω1 +Q1 · ∇Ω0 −U0Ωo = 0, ∇ ·Q1 = 2p− 1−U0. (3.16)

Let us first solve (3.15) simply by setting Ω0= constant in a lobe of the vortex. This
is a special case which, however, will be shown in the following subsection to be the
only allowed solution for the eroding dipole. At next order a particular solution is
seen to satisfy

Ω1 = ∂V1

∂ξ
− ∂U1

∂η
=Ω0ξ,

∂U1

∂ξ
+ ∂V1

∂η
= 2p− 1−U0. (3.17a,b)

For example, we can take

U1 = 1
2ηV0 + (p− 1

2)ξ , V1 = (p− 1
2)η+ 1

2Ω0ξ
2 + 1

2(Ψ0 − ηU0)− 1
4η

2Ω0, (3.18a,b)

where the streamfunction Ψ0 is specified by

(U0, V0)=
(
−∂Ψ0

∂η
,
∂Ψ0

∂ξ

)
. (3.19)

Any potential flow can be added to this solution and the result matched with an
exterior potential flow to make the velocity continuous on the bounding streamline
of the vortex.

The point is then that we have a way of extending the zeroth-order solution. In fact
we know that there exists a Q0 of the desired form, namely the Sadovskii vortex with
continuous total pressure.

3.3. The general case
We shall say that the dipole vortex is compatible if an asymptotic solution exists
inclusive of the terms of order ε. We now establish a simple but somewhat surprising
result:

LEMMA 1. The class of eroding dipoles just studied, where vorticity is constant in
each eddy, is the only compatible, zeroth-order flow field independent of τ ∗.
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Vorticity growth 9

To prove this we note from (3.15) that the general solution has the form Ω0=F(Ψ0)
where F is an arbitrary function, Then, from (3.16) we see that

Q0 · ∇Ω1 +Q1 · ∇Ψ0 F′(Ψ0)=U0 F(Ψ0). (3.20)

We now restrict attention to one of the two regions of closed streamlines of the zeroth-
order dipole, and introduce the contour average

〈·〉 =
∮ ·
|Q0|

ds, (3.21)

taken along the direction of flow around a streamline of the flow Q0 in the upper eddy.
Then it is easy to see from (3.20) that

〈Q0 · ∇Ω1〉 = 0= F′(Ψ0)

∮
Q1 · n ds+ F(Ψ0) 〈U0〉. (3.22)

However, from the divergence theorem and (3.16),∮
Q1 · n ds=

∫ ∫
(2p− 1−U0) dξ dη= (2p− 1)A(Ψ0) (3.23)

(U0 makes no contribution), where A is area within a contour of constant Ψ0 in the
(ξ , η) plane. Also

〈U0〉 =
∮

U0

|Q0|
ds=

∮
dx
ds

ds= 0. (3.24)

It then follows from (3.22) and p> 1/2 that F′(Ψ0)= 0 and the lemma is proved.
This lemma brings to mind the classical Prandtl–Batchelor result concerning

the constancy of vorticity in steady flow in a region of closed streamlines at large
Reynolds number; see Batchelor (1956). Indeed, that work inspired investigation of the
associated Euler flows (Childress 1966). However, the proof of the Prandtl–Batchelor
theorem uses the Navier–Stokes equation, since the result depends upon the small but
persistent diffusion of vorticity, whereas here the drift to the constant state follows
from erosion of vorticity in an inviscid flow and thus convergence to the vorticity
value at the vortex centre.

Now we allow Ω0 to depend upon τ ∗. The contour average then gives〈
∂Ω0

∂τ ∗

〉
+ ∂Ω0

∂Ψ0

∮
Q1 · n ds+ F(Ψ0) 〈U0〉 =

〈
∂Ω0

∂τ ∗

〉
+ ∂Ω0

∂Ψ0
(2p− 1)A(Ψ0). (3.25)

But 〈
∂Ω0

∂τ ∗

〉
= ∂Ω0

∂τ ∗

∣∣∣
Ψ0

〈1〉 + ∂Ω0

∂Ψ0

〈
∂Ψ0

∂τ ∗

〉
. (3.26)

Since (see e.g. Childress (1987))

〈1〉 = ∂A
∂Ψ0

, −
〈
∂Ψ0

∂τ ∗

〉
= ∂A
∂τ ∗

, (3.27a,b)

we have
∂Ω0

∂τ ∗
∂A
∂Ψ0
− ∂Ω0

∂Ψ0

[
∂A
∂τ ∗
− (2p− 1)A

]
= 0. (3.28)
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10 S. Childress, A. D. Gilbert and P. Valiant

Consequently
Ω0 =G(e−(2p−1)τ∗A(Ψ0, τ

∗)), (3.29)

for some function G, But e−(2p−1)τ∗ ∼ τ−(2p−1)/(1+p) ∼ R1−2p and R1−2pA is equal to R
times the dimensional area. Thus we obtain a steady flow-preserving constant total
volume, with area shrinking as R−1. This is a compatible dipole for arbitrary F(Ψ0)

since it corresponds to (3.22), (3.23) with p = 1/2. The dependence on τ ∗ when
p>1/2 results from observing a steady volume-preserving structure within coordinates
shrinking faster than is required by conservation of volume.

Using the term ‘steady’ in the above sense, meaning that Ω0 is independent of τ ∗,
we thus have the following result:

THEOREM 1. The compatible dipole vortex structures consist of the steady eroding
vortices ( p> 1/2) with piecewise constant vorticity and the steady volume-preserving
vortices ( p= 1/2) with arbitrary F(Ψ0).

We emphasize that compatibility is a fairly weak measure of dynamic consistency,
leaving the requirement of constant kinetic energy as an added and independent
constraint. The exponent p needs to be fixed by a full asymptotic solution for large
R involving matching an eroding vortex to an external potential flow, as well as
proper treatment of the vorticity ‘tail’, and this requires a numerical solution for
the perturbed Sadovskii vortex, a problem we take up in the next section. We know
of course that the unique compatible structure preserving total kinetic energy is the
steady eroding vortex with p= 3/4.

In spite of the limited implications of compatibility, we do gain a basic constraint
of the zeroth-order structure. We know that the vorticity squared of the dipole, times
the area of one vortex, divided by the speed of propagation squared, must equal 37.11
(Saffman & Tanveer 1982). Let the dipole be at position R� R0, moving with speed
Ṙ=ω0R0(R/R0)

1/4, and having vorticity ω0R/R0 and area 2A(R0/R)3/2. It then follows
that

R0 =
√

A/37.11 (3.30)

is our reference length.
We remark that the structure of our preferred dipole with p = 3/4 can be studied

directly in the stable topology. The idea is simply to take the ‘zeroth-order’ term of
the snail velocity field, (Us, Vs) say, to include the apparent fluid source to order ε:

(Us, Vs)= (U0, V0)+ 1
4ε(ξ, η),

∂U0

∂ξ
+ ∂V0

∂η
= 0, (3.31a,b)

where again (U0, V0) is the unperturbed Sadovskii velocity field. Our ‘zeroth-order’
problem then becomes;

Us
∂Ωs

∂ξ
+ Vs

∂Ωs

∂η
= 0, Ωs = ∂Vs

∂ξ
− ∂Us

∂η
. (3.32a,b)

Our result is now immediate. All flow lines of each vortex are spirals out of
a common centre. Since Ωs is constant on these flow lines, Ωs must be equal
everywhere to the value at this centre. We thus may understand the perturbed
Sadovskii structure as a result of eroding away the outer layers of the initial structure.
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Vorticity growth 11

3.4. Summary of the composite solution at leading order
We have seen that the snail emerges as the only compatible vortex structure conserving
kinetic energy. We now shall describe the ‘leading-order’ structure in its entirety,
including the external potential flow. By ‘leading order’ we here mean that the
nominally higher-order effect needed to capture the vortex shrinkage is to be included
as a leading-order effect. We thus will describe a perturbed Sadovskii vortex. We are
here neglecting entirely the dynamics of erosion. We assume a contracting Sadovskii
dipole, at a rate determined by the assumption of energy conservation, and match
this with an external flow. To justify this leading-order solution one must derive
the erosion from the equations of motion, and this problem we will take up in the
following section.

3.4.1. The exterior flow
We begin with calculation of a uniform approximation to the external potential flow.

This flow exists outside the structure consisting of the Sadovskii vortex plus tail. In
fact the tail will not be considered in detail as it will have no active role in the
leading-order solution.

It is helpful to first consider a simpler potential flow problem, that of an expanding,
volume-preserving torus centred at r = R(t) with local radius a(t). We present this
calculation in appendix A. It will suffice here to give the result obtained for the
velocity potential φ in the immediate neighbourhood of the torus:

φtorus = a2Ṙ
[
− x
ρ2
+ 1

2R
log

8R
ρ
+ 1

2R
x2

ρ2

]
+O(a2Ṙ/R2). (3.33)

Here the notation is essentially that used earlier in § 2.1 with ρ2 = x2 + y2. Note that,
relative to an observer moving with the torus, the normal velocity on ρ = a is ȧ, as
required. Also ∫ 2π

0
2πa(R+ a cos θ)

∂φ

∂ρ

∣∣∣
ρ=a

dθ = 0, (3.34)

consistent with volume conservation. Moreover, if we wish to create a potential flow
which conserves kinetic energy, with the cross-sectional area decreasing as R−3/4, we
need only change the middle term of (3.33) to (3/4R) log(8R/ρ), with a corresponding
addition of a multiple of (A 1) to the potential function.

Now we can obtain (3.33) directly by observing that φ0≡−a2Ṙx/ρ2 is the perturbed
potential for 2-D flow past a cylinder. In 3-D we need to solve

φxx + φyy =∇2φ =− 1
R+ x

φx, (3.35)

and with φ = φ0 + φ1 + · · · we would have ∇2φ1 =−R−1∂φ0/∂x. Thus

φ1 =− 1
2R

xφ0 (3.36)

plus a harmonic function. The latter must be proportional to log ρ in order to satisfy
(up to a function of time) (3.34), yielding (3.33). The terms involving R−1 come from
the shrinking of the cross-section as the torus expands, and the effect of curvature of
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12 S. Childress, A. D. Gilbert and P. Valiant
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FIGURE 3. (Colour online) Flow lines for the velocity field with potential given by (3.37)
with 1/R= 0.2.

the axis of the torus. We show in figure 3 a plot of the flow lines corresponding to
the potential

φtorus =−x− x
ρ2
− 1

2R
log ρ + 1

2R
x2

ρ2
+ 1

4R
(x2 + y2), (3.37)

where we have added a dilation to make the normal velocity vanish on ρ = 1.
For the Sadovskii dipole (not the snail, so dipole volume is preserved) we can

proceed similarly. Let φ0 be the dipole’s 2-D exterior flow. Then

φ = φ0 − 1
2R

xφ0 + φ1 + · · · , (3.38)

where φ1 is a harmonic function, which sets the appropriate normal velocity at the
boundary of the dipole; see below. In the following subsection we match (3.38),
modified to produce the snail, to a potential flow defined on the scale of the toroidal
dipole, using the functions developed in appendix A.

3.4.2. A uniformly valid solution at leading order
Our aim now is to exhibit a uniformly valid and compatible dipole to leading order

in the sense that the first-order terms necessary to describe the topology of the flow
lines are included. We know that the zeroth-order dipole is the Sadovskii vortex, and
what follows is an approximate treatment of the modifications which produce the snail.

Let S̃ denote the cross-section of the dipole in (ξ , η) coordinates. Referring back to
the coordinates in § 3.1, we define S by

(x, y) ∈ S⇔ (ξ , η) ∈ S̃. (3.39)

Then in the vicinity of the dipole, including both interior and exterior, the solution
we seek has the form

u=−Ṙi+ udipole + ushrink. (3.40)

The first two terms on the right-hand side of (3.40) describe the instantaneous flow
for the Sadovskii dipole relative to the co-moving coordinates, and in the exterior we
include the correction in (3.38) associated with the ‘squeeze’ flow. The area of the
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Vorticity growth 13

dipole cross-section is A ≡ A(R0/R)3/2. In the intermediate region A � x2 + y2� R2

we will have

udipole ∼−k1Ṙ
π

A ∇

[
x
ρ2
− 1

2R
x2

ρ2

]
, ρ2 = x2 + y2, (3.41)

for some positive constant k1.
The term ushrink represents the potential flow due to dipole shrinkage. Thus ushrink=
∇φshrink outside the dipole, where in the intermediate region we may write

φshrink =−k2

π

Ṙ A

R
log (8R/ρ)+ φadd, (3.42)

where k2 is a constant to be determined and φadd is harmonic and O(ρ−2) for large
ρ. Note that within the dipole the shrinkage of the snail in the (x, y, z) frame is a
uniform contraction equivalent to that of a volume-preserving torus (vorticity grows
as if there were no erosion), but the boundary of the dipole contracts faster owing to
the stripping away of vorticity.

Other first-order terms are ignored. For example the sink distribution contained in
ushrink is over S, instead of the perturbed vortex which includes the tail. There is thus
a ‘boundary layer’ of vorticity missing here, associated with a tangential jump in
velocity within first-order terms. Also the tangential component of the perturbation
flow in the exterior has not been matched to an interior flow perturbation. To put this
another way, (3.40) captures the shrinking snail, but makes small errors in its shape.

Let us now consider the exterior potential flow relative to the fluid at infinity. Given
the instantaneous centre curve of the Sadovskii vortex, we surround the structure by
a concentric torus of cross-sectional area large compared to the Sadovskii vortex area
but small compared to R2. Call the surface of this torus ∂T . In the region outside of
∂T we shall represent the potential of the flow relative to the fluid at infinity in the
form

φext =−2ṘA (k1Φ + k3φ/R), (3.43)

where Φ, φ are as given in appendix A, and k3 is another constant to be determined.
On ∂T we have, to leading order

φext ∼ k1

π
ṘA

[
− x
ρ2
− 1

2R
log

8R
ρ
+ 1

2R
x2

ρ2

]
+ k3ṘA

πR
log

8R
ρ
. (3.44)

Using (3.44) we may compute the net flux of fluid into T , which must equal the rate
of change of volume of the toroidal dipole (and the flux into the tail). We obtain

− 4πṘA (−k1 + k3)= d
dt

2πRA = d
dt

2πRA
(

R0

R

)3/2

=−πṘA . (3.45)

Thus
k3 = 1

4 + k1. (3.46)

On the other hand, approaching ∂T from within we may write,

u∼∇φin, (3.47)
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14 S. Childress, A. D. Gilbert and P. Valiant

where

φin ∼ k1

π
Ṙ A

[
− x
ρ2
+ 1

2R
x2

ρ2

]
− ṘA

πR
k2 log(8R/ρ). (3.48)

Comparing (3.44) and (3.48) we see that

k2 = 1
2 k1 − k3, k2 =− 1

2 k1 − 1
4 . (3.49a,b)

Here the term −(1/2)k1 contributes a correction to udipole to yield zero flux into the
dipole, while the term −1/4 gives the flux into the dipole, flux which is then expelled
into the tail.

Since we have correctly established the flow through ∂T we are assured that the
boundary condition in ∂S can be met for a suitable φadd in (3.42), so as to match the
normal velocity associated with shrinkage due to geometry and erosion.

3.4.3. Summary
We recapitulate the results of this section in anticipation of the redevelopment of

the problem in the next section. We have established that the imposition of local
conservation of energy leads to an eroding Sadovskii dipole. From this we deduce the
existence of a tail to which the eroded vorticity is extruded. However, if correct this
model should evolve naturally from the dynamics. In particular the scaling following
from p = 3/4 should evolve as an eroding structure with locally steady structure in
the shrinking coordinates, and the flow of vorticity into the tail should be a derivable
perturbation of the underlying Sadovskii eddy. It is just such a dynamical calculation
that we now want to pursue.

This will entail a somewhat different approach in the coordinates used and the
formulation of the underlying scaling of the dipole as an unknown. While this will
involve a more systematic asymptotic theory, we will again encounter elements of the
solution already exhibited. For example the terms ξΩ0 and −U0 on the right-hand side
in (3.17) embody the curvature of the cylindrical geometry, the former closely related
to terms in § 4 indicated by the superscript ‘sq’, short for ‘squeeze’. These terms arise
from curvature of the vortex lines, which induces a flow along the binormal, causing
curved anti-parallel vortex filaments to be squeezed together. This is a main cause of
shedding of vorticity into the tail.

4. Full analysis of the perturbed Sadovskii dipole
We now determine dynamically how the perturbation of the Sadovskii dipole shape

leads to erosion of vorticity and therefore determines the rate of shrinkage and speed
of the dipole. The parameter p in § 2 becomes an unknown to be determined from an
asymptotic solution of Euler’s equations valid for large a/R. We will find that p may
be computed numerically from the condition that a scaling actually exists, i.e. that in
suitable coordinates the structure appears steady, just as to leading order the snail is
steady in local (ξ , η) coordinates. We shall maintain a certain part of the notation
of the previous sections; however, there will be departures and so the reader should
regard this section as largely self-contained in notation.

4.1. Inner expansion about a steady Sadovskii vortex
We seek a solution for the vortex pair evolution at large radii R(t) for which it
is helpful to set r$ = ω = ∂uz/∂r − ∂ur/∂z and to solve (3.2) using a Stokes
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Vorticity growth 15

streamfunction ψ , ur = −r−1∂ψ/∂z, uz = r−1∂ψ/∂r. Introducing these into (3.2), we
seek to solve the vorticity equation

∂$

∂t
+ 1

r
∂(ψ, $)

∂(r, z)
= 0, $ = 1

r
∂

∂r

(
1
r
∂ψ

∂r

)
+ 1

r2

∂2ψ

∂z2
. (4.1a,b)

This simplifies a little if we replace the radial coordinate r by (1/2)r2 and this
motivates the change of variables from (r, z, t) to (ξ , η, τ ) given by

r2=R2+ 2aRξ =R2
0(g

2+ 2fgξ), z= aη=R0fη, dτ/dt=ω0R/R0=ω0g, (4.2a−c)

with R0 and ω0 dimensional reference quantities as before. We have introduced
dimensionless radii given by a(t) = R0f (τ ) and R(t) = R0g(τ ). The transformation
differs only in minor ways from that introduced earlier in § 3.1. For the fields we set

$(r, z, t)= ω0

R0
$̃ (ξ, η, τ ), ψ(r, z, t)=ω0R3

0f 2g2 ψ̃(ξ , η, τ ). (4.3a,b)

Dropping any tildes leaves the vorticity equation and vorticity–streamfunction link
as

∂$

∂τ
− ġ

f
∂$

∂ξ
− ġ

g
ξ
∂$

∂ξ
− ḟ

f

(
ξ
∂$

∂ξ
+ η ∂$

∂η

)
+J (ψ, $)= 0, (4.4)

$ = ∂
2ψ

∂ξ 2
+ 1

1+ 2fg−1ξ

∂2ψ

∂η2
, (4.5)

where we use J for a Jacobian with respect to the (ξ , η) coordinates and a dot (in
this section only) for a τ -derivative of f or g. This formulation is exact but we have
in mind g = R/R0 � 1 and f = a/R0 � 1 for large times and that these are slowly
varying, that is,

f � 1, g� 1, ḟ /f � 1, ġ/g� 1; (4.6a−d)

these may be verified a posteriori. We remark that the assumption p= 3/4 in § 2 leads
to f ∼ t−1, g ∼ t4/3, so that, as before, an expansion for large t is implied. Our aim
now is to obtain a value for p asymptotically by analysis of the shedding of vorticity
into the tail.

Thus for an inner solution, that is valid for (ξ , η)=O(1), we drop the 2fg−1ξ term
in (4.5) and the frame contraction terms involving ḟ /f and ġ/g in (4.4) at leading
order. We use an inner expansion

$ =$0+ f0

g0
$1+· · · , ψ=ψ0+ f0

g0
ψ1+· · · , g=g0+g1+· · · , f = f0+ f1+· · · ,

(4.7a−d)
in which we will find that the $1 and ψ1 are of order unity. This gives, at leading
order, equations for purely 2-D Euler flow,

∂$0

∂τ
− c0

∂$0

∂ξ
+J (ψ0, $0)= 0, $0 = ∂

2ψ0

∂ξ 2
+ ∂

2ψ0

∂η2
, (4.8a,b)

with c0 defined by
c0 = ġ0/f0. (4.9)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

57
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.573


16 S. Childress, A. D. Gilbert and P. Valiant

Now all we have done so far is valid for any f0(τ ) and g0(τ ) and so without further
information c0 could also depend on τ . However we are seeking a leading-order
approximation as the steady Sadovskii vortex with continuous velocity. We thus set
the vorticity, streamfunction and speed, that is ($0, ψ0, c0), to be one of the family
of such vortices, with c0 taken as constant. We will later choose one with $0 =±1
in the two lobes, and c0 = 1, but for the moment the choice is arbitrary. Thus, (4.9)
provides a single ordinary differential equation (ODE) linking f0 and g0; we need a
further ODE to close the system, and this will emerge at the next order.

Although the choice of our leading-order steady solution is arbitrary, the fact that it
is one of a family has important implications. It means that an infinitesimal translation,

$ trans
0 = ∂$0

∂ξ
, ψ trans

0 = ∂ψ0

∂ξ
, (4.10a,b)

satisfies the linear equations

− c0
∂$ trans

0

∂ξ
+J (ψ trans

0 , $0)+J (ψ0, $
trans
0 )= 0, ψ trans

0 = G$ trans
0 . (4.11)

For a solution ($0, ψ0, c0), a rescaled solution is ($0(λξ, λη), λ
−2ψ0(λξ, λη), λ

−1c0)
for any λ. Thus, taking the derivative with respect to λ at λ= 1, we obtain a solution
giving an infinitesimal change of scale

$ scale
0 = ξ ∂$0

∂ξ
+ η ∂$0

∂η
, ψ scale

0 = ξ ∂ψ0

∂ξ
+ η ∂ψ0

∂η
− 2ψ0, (4.12a,b)

which obeys

−c0
∂$ scale

0

∂ξ
+ c0$

trans
0 +J (ψ scale

0 , $0)+J (ψ0, $
scale
0 )= 0, ψ scale

0 = G$ scale
0 .

(4.13)
Here we have introduced G in (4.11), (4.13) as the operator inverting the Laplacian
in (4.8), that is integration against the kernel

G(ξ , η)= (4π)−1 log(ξ 2 + η2) (4.14)

in infinite (ξ , η) space.
Having dealt with the leading-order problem we now write down the first-order

equation, in which the neglected terms involving ḟ /f , ġ/g in (4.4) and 2fg−2ξ in (4.5)
are reintroduced to drive corrections ($1, ψ1) to the fields:

∂$1

∂τ
− c0

∂$1

∂ξ
− c1

∂$0

∂ξ
− c0ξ

∂$0

∂ξ
+ c0p1

(
ξ
∂$0

∂ξ
+ η∂$0

∂η

)
+J (ψ0, $1)+J (ψ1, $0)= 0, (4.15)

$1 = ∂
2ψ1

∂ξ 2
+ ∂

2ψ1

∂η2
− 2ξ

∂2ψ0

∂η2
. (4.16)

Here we have made use of (4.6) and (4.9), and defined

c1 = g0

f 2
0
(ġ1 − c0 f1), p1 =− ḟ0g0

c0 f 2
0
. (4.17a,b)
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Vorticity growth 17

To deal with this first-order problem, first invert (4.16) as

ψ1 = G$1 +ψ sq
1 , ψ

sq
1 ≡ 2G

(
ξ
∂2ψ0

∂η2

)
(4.18a,b)

and then use (4.10), (4.12) to rearrange (4.15) as

∂$1

∂τ
− c0

∂$1

∂ξ
+J (ψ0, $1) = c0ξ

∂$0

∂ξ
−J (G$1, $0)−J (ψ

sq
1 , $0)

+ c1$
trans
0 − c0p1$

scale
0 (4.19)

On the left-hand side we have advection of vorticity $1 in the basic flow field of
the Sadovskii vortex; on the right-hand side are the remaining terms. This equation
is ‘driven’ by the terms c0ξ∂$0/∂ξ and J (ψ

sq
1 , $0), in that if these terms were

absent a solution would be $1 = 0, c1 = p1 = 0. Although the driving terms are
constant (independent of τ ), the solution $1(ξ , η, τ ) will generally not be steady, as
it will acquire pieces of $ trans

0 corresponding to drift in the ξ -direction and $ scale
0

corresponding to a change in scale; see (4.10)–(4.13).
However we can eliminate these terms by suitable choice of c1 and p1 – we will

check this numerically in due course – and with this choice we expect to be able
to obtain a solution $1 independent of τ . Note that this choice is available to us
as the functions f and g are arbitrary rescalings and so we can choose to fix them
order by order. This imposition of a solvability condition gives a solution representing
the modified Sadovskii vortex, travelling outwards according to g0(τ ) and shrinking
through shedding vorticity according to f0(τ ).

So, we suppose we have converged to a steady solution $1(ξ , η) with constants c1
(which is not of use to us as it involves f1 as a new unknown) and p1 which gives a
second ODE linking f0 and g0 in (4.17). Together with (4.2), (4.9) we obtain

f0 ∝ τ p1/(1+p1) ∝ (ω0t)−1, g0 ∝ τ 1/(1+p1) ∝ (ω0t)1/p1, τ ∝ (ω0t)1+1/p1, (4.20a−c)

and we anticipate p1 > 0 so that g0 increases with t and the approximations are all
self-consistent. Here we may identify p1 = p, the exponent introduced in § 2.1.

We comment that the term in ψ sq corresponds to the leading-order effect of curved
vortex lines creating a flow that drives the two lobes of the Sadovskii vortex together,
a weak but controlling effect in our expansion. We should also note that when we
invert minus the Laplacian and write down ψ0 = G$0 and G$1, for example in
(4.18) we could add on a component which is harmonic in the (ξ , η) plane. In fact
fundamentally this is how the distant structure of the vortex would feed into the inner
solution, modifying vortex shape and motion. It is clear that the terms that would be
incorporated would take the form of a multipole expansion: the first would appear at
the level of G$1 and would correspond to uniform flow. This could be absorbed into
c1 (a Galilean transformation) but would not affect the vortex structure or p1.

4.2. Formulation in terms of contours and numerical solution
Now the above is written as if the vorticity fields are smooth, but in fact we are
working about the Sadovskii vortex in which the vorticity field is piecewise constant,
and so to actually solve the above problem we need to work, not with the fields $0,
$1, but instead using contour dynamics. We have in mind here the asymptotic state
of the dipole pair for large radius R, where erosion has led to the vorticity being
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18 S. Childress, A. D. Gilbert and P. Valiant

FIGURE 4. Schematic of the perturbed Sadovskii vortex indicating the local Cartesian
coordinates (ξ , η) and the curvilinear coordinates (χ, σ ) (4.25) adapted to follow the
bounding contour C0 of the unperturbed vortex. The oncoming velocity at infinity is −c0i.

effectively constant in each lobe and the eroded edge is taken as a discontinuity. We
thus need to further manipulate the equations, working in the (ξ , η) plane with the
use of polar coordinates (ρ, θ) in this plane when needed. Note that (4.19) takes the
form

∂$1

∂τ
+U0 · ∇$1 +U1 · ∇$0 = 0 (4.21)

(we will express U0 and U1 explicitly below), which is the linear piece of the full
equation

D$
Dτ
≡ ∂$
∂τ
+U · ∇$ = 0, $ =$0 +$1 + · · · ,U=U0 +U1 + · · · . (4.22)

The leading piece of this is U0 · ∇$0= 0 and gives the steady Sadovskii vortex with
the velocity U0 = (U0, V0) and vorticity linked to the total streamfunction Ψ0 =ψ0 +
c0η (including the flow past the vortex) via

U0 =−∂Ψ0

∂η
, V0 = ∂Ψ0

∂ξ
, $0 = ∂V0

∂ξ
− ∂U0

∂η
. (4.23a−c)

The vortex has vorticity $0= 1 in a region bounded by the ξ -axis and a contour C0
in the half-plane η > 0 and $0 =−1 in the mirror image region; see figure 4. Using
the divergence theorem the corresponding streamfunction ψ0 = G$0 can be obtained
by integrating over the boundaries and gives

ψ0(ξ , η) = 1
4π

∫
C0

{
log |(ξ ′, η′)− (ξ , η)| [(ξ ′, η′)− (ξ .η)] · (dη′,−dξ ′)

+ log |(ξ ′,−η′)− (ξ , η)| [(ξ ′,−η′)− (ξ , η)] · (−dη′,−dξ ′)
}

+ η

2π

[
ξ ′ log

√
ξ ′2 + η2 + η tan−1(ξ ′/η)− ξ ′

]ξ ′=ξ0−ξ

ξ ′=−ξ0−ξ
, (4.24)

with the latter term giving the contribution from the integral along the base, that is the
piece −ξ0 6 ξ 6 ξ0 of the ξ axis. For this to represent a steady vortex dipole embedded
in a flow (−c0, 0) at infinity we need the total streamfunction Ψ0 = ψ0 + c0η to be
zero on the contour C0. This condition enables C0 to be found for a given c0, for
example using a collocation method as described in Saffman & Tanveer (1982). (In
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Vorticity growth 19

equation (4.24) we correct a misprint in Saffman & Tanveer (1982), noting that their
streamfunction is taken with the opposite sign to ours.)

With C0 known at least numerically, we can use a coordinate system based on arc-
length σ along the contour and a coordinate χ that measures distance perpendicular
to the contour C0; see figure 4. The corresponding metric is then

ds2 = dχ 2 + h2 dσ 2, h= 1+ κ(σ )χ, (4.25)

where κ is the curvature of the curve C0 at the point given by σ . We need to recast the
first equation of (4.22) in a contour dynamics setting. We take the non-zero constant
vorticity to be $ = 1 in the upper half-plane, confined by a time-dependent contour
which we call C and suppose (with mild abuse of notation) given by a function χ =
C(σ , τ ) (see figure 4). The situation in the lower half-plane is mirror symmetric. Now
C is a material curve and so

D
Dτ

(C(σ , t)− χ)= 0, (4.26)

or
∂C
∂τ
=U ·

(
n− 1

h
∂C
∂σ

t
) ∣∣∣

χ=C(σ ,τ )
, (4.27)

with t= h∇σ and n=∇χ being tangential and normal unit vectors. The unperturbed
problem has C(σ , τ )=C0(σ , τ )≡ 0 and U0 ·n= 0. At the first order we set C(σ , τ )=
C1(σ , τ )+ · · · , U=U0 +U1 + · · · to obtain in the linear approximation,

∂C1

∂τ
=
(

C1
∂U0

∂χ
+U1

)
· n− ∂C1

∂σ
U0 · t (4.28)

evaluated on the curve C0 given by χ = 0. With the use of the streamfunction we
write

U0 =−1
h
∂Ψ0

∂σ
n+ ∂Ψ0

∂χ
t (4.29)

and after a short calculation obtain

∂C1

∂τ
+ ∂

∂σ

(
C1
∂Ψ0

∂χ

)
=U1 · n (4.30)

again evaluated on C0.
Setting

Φ1 =C1
∂Ψ0

∂χ
≡C1U0 · t (4.31)

we can write the equation in perhaps the most intuitive form

∂Φ1

∂τ
+U0 · t

∂Φ1

∂σ
= (U0 · t)(U1 · n). (4.32)

This represents advection of vorticity flux Φ1(σ , τ ) between curves C0 and C1
along the unperturbed curve C0, with a source term that involves the perpendicular
component of the perturbation velocity U1. Note that as we approach the trailing
stagnation point, where vorticity will peel off into the flow, U0 · t→ 0 and so the
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FIGURE 5. (Colour online) In (a) the flow field for the Sadovskii vortex is depicted, given
by curves of constant Ψ0 = ψ0 + c0η (4.24) in the (ξ , η) plane, and in (b) the flow ψ

sq
1

(4.18) driven by vortex curvature, which is roughly of stagnation point form.

source term on the right-hand side is suppressed and the quantity Φ1 will be seen to
converge, even though C1 must diverge there.

With the key machinery in place, we indicate the numerical solution that aims to
fix p1, through time stepping the partial differential equation (PDE) (4.32) until it can
be made to converge to a steady state. Before we time step we evaluate the boundary
of the Sadovskii vortex from (4.24) following Saffman & Tanveer and express this as
a curve ρ = ρ0(θ) in polar coordinates in the (ξ , η)-plane; the resulting flow field is
depicted in figure 5(a). From this we may evaluate t and n along C0 relative to polar
coordinates. Then, for the left-hand side of (4.32) we need U0 · t which is obtained
from the Sadovskii streamfunction in (4.24) with Ψ0=ψ0+ c0η by finite differencing
of ψ0 as obtained numerically. Turning to the right-hand side of (4.32), U1 contains
several components from (4.19), in order,

U1 =Uframe
1 +UG

1 +Usq
1 + c1Utrans

1 − c0p1Uscale
1 . (4.33)

The most straightforward of these are expressed in polar coordinates as

Uframe
1 =−c0ρ cos θ(cos θ ρ̂ − sin θ θ̂), (4.34)

Usq
1 =−

1
ρ

∂ψ1

∂θ

sq

ρ̂ + ∂ψ1

∂ρ

sq

θ̂ , (4.35)

Utrans
1 =− cos θ ρ̂ + sin θ θ̂ , Uscale

1 =−ρρ̂. (4.36a,b)

The term arising from vortex line curvature is ψ sq
1 which is a fixed flow field that

can be evaluated once at the start of the computation. This is done rather crudely
by evaluating ∂2ψ0/∂η

2 using finite differences, then applying G by approximating
the integral as a finite sum over grid points and finally finite differencing again.
Streamlines of the resulting flow field are shown in figure 5(b); this has an
approximate stagnation point form, pressing the two lobes of the vortex together.
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Vorticity growth 21

Finally as we time step the PDE (4.32) the only term that cannot be pre-calculated
is the feedback UG

1 which is the flow arising from G$1, from the perturbed contour
and a functional of C1(σ , τ ). Now the unperturbed contour is ρ = ρ0(θ) in polar
coordinates, and the gap between this and the perturbed contour, χ = C1(σ , τ ),
gives essentially a vortex sheet which has to be integrated as in (4.14) to obtain the
corresponding flow. At a point (ρ0(θ), θ) on the contour the normal component that
we need may be written as an integral over the contour, in terms of the dummy
variable θ ′,

UG
1 · n=

1
2π

×
∫ π

0

{
ρ0ρ

′
0 sin(θ − θ ′)+ (∂θρ0)[ρ0 − ρ ′0 cos(θ − θ ′)]
(ρ0 − ρ ′0)2 + 4ρ0ρ

′
0 sin2 1

2(θ − θ ′)
j
j′

C′1 −
1
2

cot
1
2
(θ − θ ′)C1

}
dθ ′

− 1
2π

×
∫ π

0

{
ρ0ρ

′
0 sin(θ + θ ′)+ (∂θρ0)[ρ0 − ρ ′0 cos(θ + θ ′)]
(ρ0 − ρ ′0)2 + 4ρ0ρ

′
0 sin2 1

2(θ + θ ′)
j
j′

C′1 −
1
2

cot
1
2
(θ + θ ′)C1

}
dθ ′

+π−1 log
(

tan
1
2
θ

)
C1, (4.37)

where ∂θρ0= dρ0/dθ , a prime denotes evaluation with respect to the dummy variable
θ ′ and the Jacobian is given by

j(θ)−1 ≡ dσ
dθ
=
[(

dρ0

dθ

)2

+ ρ2
0

]1/2

. (4.38)

With this in place, we time step the PDE (4.32) in terms of Φ1(σ , τ ) by evaluating
UG

1 · n at each time τ and looking up all the other components of the flow field. We
need to allow c1 and p1 to converge so that Φ1(σ , τ ) becomes steady as τ →∞,
thus avoiding secular behaviour. We have freedom about how this is done: any two
conditions that fix the scale and the ξ -location of the vortex will suffice. We choose

U1 · n= 0 at θ = 0,π/2 (4.39)

and so once all the components of U1 · n are found the calculation of c1 and p1 is
straightforward. The result of time stepping is that Φ1 converges to a τ -independent
profile, depicted in figure 6(a) with p1' 0.74. This is in line with the theoretical value
p1=3/4 needed for energy conservation. Note that of the two driving terms, with only
Usq

1 we obtain p1 = 0.37, and with only Uframe
1 , p1 = 0.35, so these each account for

approximately half the effect.
Finally, we remark on the formula (4.37): the feedback on the flow because the

contour C differs a little from C0 amounts to calculating the flow from a vortex sheet
of strength C1(σ , τ ) along the curve C0. Such an integral has to be taken as a principal
value, and here we have done this by removing explicitly the singular components
from the integrands in (4.37), which are then placed in the final log(tan (1/2)θ) term.
Taking the principal value is appropriate as at a point σ on the vortex sheet/thin layer
the transverse flows generated by the vorticity for σ ′ > σ and σ ′ < σ locally cancel
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FIGURE 6. (Colour online) The steady correction to the Sadovskii vortex is shown by
plots of (a) Φ1 and (b) C1 (see (4.31)) as functions of the polar angle θ in the (ξ , η)
plane, valid in the asymptotic limit τ→∞.

out. However at θ = 0 and θ = π, this argument fails: the vortex sheet comes to an
abrupt end and in fact changes sign. (The curvature singularities and singular flow
field here in the underlying Sadovskii vortex are explained in depth in Saffman &
Tanveer (1982)). This explains the presence of the logarithmic singularity at θ = 0, π
in the term log(tan (1/2)θ). In our calculations we have taken U1 · n= 0 at θ = 0 in
(4.39) which keeps C1 = 0 there (see (4.30)) and removes immediate difficulties with
this term. For θ = π the singular term is present, and is part of the flow field that
leads to the ejection of vorticity from the rear of the vortex pair.

5. Numerical simulation of the snail
We complement the analysis offered in previous sections with the results of a

direct numerical simulation of the evolving axisymmetric vortex dipole. The results of
numerical simulation presented in this section both confirm the leading-order analysis
undertaken in previous sections, and provide crucial insight into the non-asymptotic
regime by showing how the snail reliably emerges and stably evolves from typical
initial conditions of the appropriate symmetry.

5.1. Set-up
We simulate AFWOS subject to the following conditions: vorticity is anti-symmetric
about the z= 0 plane and vorticity is non-zero only in a small region (which possibly
moves over time, and may lie far from the r = 0 axis). The configuration of the
simulation is represented at each time step by the values of θ -vorticity within a
small square region of the plane. Time stepping is implemented via the fourth-order
Runge–Kutta scheme, with the components of the Euler equation recovered from the
vorticity via the Biot–Savart law. Calculations are undertaken in a local Fourier basis
to preserve as much spatial accuracy as possible, both in the simulation, and in the
computation of quantities of interest afterwards. While this Fourier basis has many
convenient features favouring the speed and accuracy of the simulation, there are a
number of complications introduced by the mismatch between the periodic nature of
the basis and the infinite domain of the cylindrical coordinate system.

Every initial configuration we simulated evolved into a ‘snail’; we here examine the
trajectory of one configuration in depth. We describe the initial conditions here and
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Vorticity growth 23

explain why they could be expected to evolve into a snail in a particularly direct and
smooth way. Specifically, the initial condition consists of two anti-parallel vortex rings,
each of which has vorticity which is the product of the radial coordinate r, with a
smooth transition function which is close to 1 inside a torus and close to 0 outside it:
an appropriately shifted and scaled error function applied to the distance from circular
centreline of each torus. Specifically, given cylindrical coordinates (r, z, θ), the initial
condition for the vorticity in the θ direction is defined by

ω= r erf
(√

(r− 0.7)2 + (z− 0.32)2

0.06
− 3
)
− r erf

(√
(r− 0.7)2 + (z+ 0.32)2

0.06
− 3
)
.

(5.1)
Thus our initial conditions have vortex rings at (r, z) = (0.7, ±0.32), each of

radius 3 × 0.06 = 0.18, and with the transition from the interior to the exterior of
each ring occurring over roughly 0.06 distance. The vorticity is chosen to be nearly
homogeneous (before the r scaling) inside each vortex ring so that when the snail
sheds the outer layers of each ring, the vorticity will become increasingly constant
inside the evolving snail.

Starting with vortex rings at radius 0.7, the simulation was run until the radius at the
centre of the snail was 9.6. The diameter of the vortex tube was initially 0.36 and was
finally 0.12 in the radial direction and 0.039 in the z direction, having shed 55 % of
its circulation. Because our simulation repeatedly increases resolution so that the snail
remains several hundred grid points across, the grid size decreases from 0.002 down
to 0.00035 over the course of a run, and would continue to decrease as r increases.
The grid used is 800 × 800 pixels and this is centred on the vortex rings; the tail
is passive, and allowed to trail behind the vortex dipole, and out of the box in the
simulation. As we do many operations in a local ‘periodic’ box, i.e. using a Fourier
basis, in many operations we use masking around the edge to avoid the numerical
periodicity interfering with the actual cylindrical geometry. Stability concerns dictate
that the evolving vortex rings can move at most a fraction of a grid space in each
simulation time step, which employs a fourth-order Runge–Kutta scheme, meaning
that the cost of continuing for larger r would continue to increase rapidly, and running
over a much wider range of radii is infeasible. Nonetheless, we present results in § 5.2
showing that already within the scope of this simulation, the configuration converges
rapidly to the expected behaviour of the snail.

The most time consuming part of the code is, given the vorticity distribution in the
box in the local (r, z)-plane, to compute the corresponding flow field. This involves
a convolution in the z-direction which may be done in Fourier space, the problem
being separable in the axial direction. (A box of twice the vertical extent and masking
are used to avoid any spurious effects of the numerical periodicity interfering with
the convolution.) However in the radial direction it is necessary to undertake the
convolution explicitly and to compute the appropriate elliptic integrals in this Green’s
function (with the use of both Matlab’s built-in function and an expansion valid for
points close to the source). Because of the expense in evaluating the elliptic integrals,
as the window following the vortex moves and also zooms in (through six different
resolutions in the run presented here), much of this Green’s function data are reused
by resampling on the new grid.

5.2. Results
We describe the results of the simulation here, both qualitatively and by quantitatively
verifying scaling laws. In figure 7 we show several snapshots: in each case, we are

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

57
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.573


24 S. Childress, A. D. Gilbert and P. Valiant

z

z

r r r

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6(a) (b) (c)

(d)(e)( f )

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
0

0.1

0.2

0.3

0.4

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
0

0.05
0.10
0.15
0.20
0.25

1.5 1.6 1.7 1.8 1.9 2.0 2.1
0

0.05
0.10
0.15
0.20

2.3 2.4 2.5 2.6
0

0.05
0.10

2.9 3.0 3.1 3.2 3.3
0

0.05
0.10

FIGURE 7. Development of the snail, shown at times t = 0, 15, 21.2, 34.2, 44.3, 54
clockwise from the upper left corner. Vorticity ω is plotted in the (r, z) plane at each
time, scaled on the maximum value (red) in each plot, with zero blue.

displaying a slice in the (r, z) plane, depicting vorticity in the θ direction (note the
changing scale of each panel). Initially, we have two vortex tubes, relatively diffuse,
and separated from each other across the z= 0 symmetry plane. They quickly move
towards each other, without moving much away from the z-axis yet. When well
separated the tubes are driven together by a converging flow along the binormal,
as in the filament computations of Pumir & Siggia (1987). Soon, the tubes have
essentially hit the z = 0 symmetry plane and begin to shed vorticity into the tail as
the dipole expands and the tubes are stretched. From here, the recognizable snail
shape develops.

The lateral extent of the vortex tubes decreases significantly as the tubes are
stretched away from the axis and shed volume; the thickness of the shed tail also
decreases relative to the thickness of the snail, since otherwise the snail would lose
all its volume in finite time. While the speed of the snail increases with distance from
the axis, the shed tail is essentially stationary, having velocity ∼r−3/2, see equation
(2.2). The element of tail shed at a certain radius from the z axis will maintain its
thickness at that radius forever. This justifies the neglect in the simulation of those
parts of the tail that have lagged behind and thereafter fall outside the simulation
box.

We next measure several aspects of the simulated snail and confirm that they follow
the expected scalings. One of the key surprises of the snail is that its velocity increases
without limit. Explicitly, the prediction is that the radius of each vortex ring should
grow superlinearly with time, now adopting the dipole position R(t) used earlier, as

R∼ (t+ c)4/3, (5.2)

where the additive constant c captures the fact that the start time of the simulation is
arbitrary. To demonstrate this 4/3-power relation, we instead plot in figure 8 the 3/4-
power of both sides, R3/4∼ t+ c: in blue is the radius of the centre of each vortex tube
as a function of time; drawn below in black is an arbitrary line to help verify visually
the claim that, asymptotically, R3/4∼ t+ c. Thus the snail does in fact accelerate over
time, with radius proportional to t4/3 and velocity proportional to its derivative, t1/3.

The other main prediction of the snail model concerns how volume is shed, and how
the dimensions of the tube decrease faster than mere stretching would allow. Since we
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FIGURE 8. (Colour online) R3/4 versus time, compared with a linear asymptote. The
letters correspond to the frames of figure 7.
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FIGURE 9. (Colour online) Maximum dipole thickness in the z direction times R3/4 as a
function of R. The letters correspond to the frames of figure 7.

expect the dimensions of the snail to decay as R−3/4, we plot in figure 9 the thickness
in the z direction, defined as the maximum z extent of the region where vorticity
exceeds 70 % of its maximum. times R3/4; our result is that this quantity does indeed
approach a constant as the simulation progresses.

Finally, one more qualitative prediction which is supported numerically is that
the ‘edge’ of the snail, that is, the width of the transition from high vorticity to
low vorticity, sharpens quickly, perhaps exponentially, with time, associated with the
emergence of the Sadovskii structure. The thickness of both the outer edge, adjacent
to the exterior flow, and the edge adjacent to the plane of symmetry, quickly fall
below the grid size, 0.002 initially and decreasing over the course of the simulation.

5.2.1. Other initial conditions
It is revealing to consider the sensitivity of our dipole to small changes in the

initial conditions. Two alternatives are especially worth discussing: first if the snail is
inhomogeneous, how do ‘lumps’ in the snail translate to lumps in the tail, or affect
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FIGURE 10. Breakup of the snail by instability when mirror symmetry of the dipole is
not imposed.

the overall scaling? Secondly, how does the snail react to symmetry breaking, and in
particular, violating the anti-symmetry about the plane z= 0?

The brief answers are that: variations of initial conditions that preserve symmetry
do not much affect the snail, which appears to be a very robust phenomenon; however
symmetry breaking rapidly amplifies, leading to a breakdown of the dipole, where
radial stretching not only stops accelerating, but typically stops entirely – thus the
symmetries of the snail seem fundamental to its evolution. We show this break-up
in figure 10. It is significant that precise symmetry is needed to maintain vorticity
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growth, a point that is particularly important in the search for vortical structures which
blow up in finite time. It is interesting that in this example the break-up of the dipole
produces two smaller dipole-like structures.

6. Discussion
We have in this paper presented a model for vorticity growth in anti-parallel vortex

structures in axisymmetric flow without swirl. The model provides an Euler flow
which achieves the maximum possible growth of |ω|max as t4/3. The new feature of
this work is the explicit role of vortex erosion, leading to scalings quite distinct from
those associated with intact vortex tubes. The governing assumption behind the new
scaling is the local conservation of energy following Lagrangian parcels of fluid. Our
analysis has been restricted to a symmetric dipole arrangement of equal and opposite
vortical eddies, which leads to the Sadovskii structure. We believe that asymmetric
2-D dipoles of Sadovskii type, with constant vorticity in each eddy but differing
circulations, are likely to exist (Meleshko & van Heijst 1994). Such a dipole would
move on a circular path, and hence would lead to a more complicated centre curve
involving non-zero torsion. This greatly complicates the analysis but could be an
interesting generalization.

The calculations for the axisymmetric case indicate that the breaking of mirror
symmetry leads to break-up of the dipole. Also non-axisymmetric instabilities occur
when equal and opposite vortex rings collide. Thus the ultimate growth calculated
here may not be observed in actual flows irrespective of the size of the Reynolds
number.

There has been no discussion here of the analogous problem for Navier–Stokes
flows, and in particular of maximizing enstrophy growth for a given enstrophy. This
problem was considered in Lu & Doering (2008) and it is interesting that colliding
vortex rings arise there as optimizing flows. However the length scale of these
optimizers tends to zero with viscosity and so a bound on growth for Euler does not
exist.

What are the implications of these calculations for more general Euler flows? The
‘swirl’ which is absent in the present model amounts to flow in rings along the axis of
the dipole. Axisymmetric flow with swirl can, according to Luo & Hou (2014), blow
up in finite time in the presence of an impenetrable boundary. In R3 the situation
is unclear. The present model will, with the addition of swirl, change significantly
owing to the generation of axial vorticity by the z-derivative of the centrifugal pressure.
More general non-axisymmetric 3-D dipole models must cope with the generation of
axial flow by the axial pressure gradient produced as the dipole stretches differentially.
Variation of this flow along the axis will then modify the axial vorticity. General anti-
parallel geometries must again cope with the loss of a symmetry plane. The time scale
of this breaking of symmetry will compete with the effects of vortex stretching.

The structures we have examined in this paper may play a role in future studies of
more rapid vorticity growth in R3, as we have suggested in Childress (2008). The
more modest growth we obtain here is a direct consequence of the axisymmetric
geometry. In a subsequent paper we will apply many of the ideas of the present paper
to a non-axisymmetric geometry, and discuss the role of axial flow on the resulting
growth of vorticity.
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Appendix A. Potential flow past an expanding torus of constant volume

A torus of radius R and cross-sectional area πa2 expands radially (i.e. outward
in the plane of symmetry) in a perfect inviscid fluid, R = R(t), while maintaining a
constant volume. What is the resulting irrotational flow field?

We first consider the potential

φ =− R
4π

∫ 2π

0

dθ√
R2 + r2 − 2Rr cos 2θ + z2

, (A 1)

representing a uniform distribution of sources over the circle z = 0, r = R. This can
be brought into the form

φ =−R
π

∫ π/2

0

dθ√
(R+ r)2 + z2 − 4Rr sin2 θ

, (A 2)

or

φ =− R
πP

∫ π/2

0

dθ√
1− k2 sin2 θ

=− R
πP

K(k), (A 3)

where

P=
√
(R+ r)2 + z2, k2 = 4Rr

(R+ r)2 + z2
. (A 4a,b)

Near k= 1 we have (Carlson & Gustafson 1985)

K(k)=
N−1∑
n=0

[
( 1

2)n

n!
]2 [

log
1
k′
+ψ(1+ n)−ψ(1/2+ n)

]
(k′)2n +O(k′)2N log k′, (A 5)

where (
1
2

)
n =

Γ
(
n+ 1

2

)
Γ
(

1
2

) , ψ(1)−ψ(1/2)= 2 log 2, (A 6a,b)

ψ(1+ n)−ψ(1/2+ n)= 2
[

log 2− 1+ 1
2
− · · · − 1

2n− 1
+ 1

2n

]
, n > 1, (A 7)

and
k′ =

√
1− k2. (A 8)

Going over to local coordinates we have r = R + x, z = y, ρ2 = x2 + y2. Then we
have

P= 2R
√

1+ x/R+ 1
4ρ

2/R2, k′ = ρ/P. (A 9a,b)

Expanding through terms of order (ρ/R)2 we have

φ = − 1
2π

[
1− 1

2
x
R
+ 3

8

( x
R

)2 − 1
8

(ρ
R

)2
]

×
[

log
8R
ρ
+ 1

2
x
R
+ 9

4

(
log

8R
ρ
− 1
)
ρ2

4R2

]
+ o

(
ρ2

R2

)
. (A 10)
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This gives the ordering

2πφ =− log
8R
ρ
+
[

x
2

(
log

8R
ρ
− 1
)] 1

R
+ · · · . (A 11)

We will use these terms in the expansion of φ to solve the problem of the torus of
constant volume.

We seek the potential flow past a torus expanding so that R(t) increases with time,
with the radius a(t) of the cross-section satisfying

ȧ
a
=−1

2
Ṙ
R
. (A 12)

We use the fact that if φ solves Laplace’s equation in three dimensions, then so
does Rφ′ = xφx + yφy + zφz or, with radial symmetry,

Rφ′ = rφr + zφz = Rφx + ρφρ, (A 13)

or
φ′ = φx + R−1ρφρ . (A 14)

Using (A 11) for the expansion of φ in (A 14) we see that

2πφ′ ≡Φ + 1
R
= x
ρ2
+ 1

2R
log

8R
ρ
− 1

2R
x2

ρ2
+ 1

R
+O(R−2). (A 15)

Thus Φ is a building block of the local potential for a cylindrical cross-section. Indeed

− Ṙ(x+ a2Φ)∼−Ṙx(1+ a2/ρ2) (A 16)

is the potential for uniform flow over a cylinder.
Now in the neighbourhood of infinity we see that

φ′ ∼ 1

2
√

r2 + z2
, (A 17)

giving a net source flux of −2π. We can check that this is consistent with flux out
of the surface of the torus. Indeed x/(2πρ2) contributes

1
2π

∫ 2π

0
(− cos θ/ρ2)2πρ(R+ ρ cos θ) dθ =−π, (A 18)

and (4πR)−1 log(8R/ρ) contributes

2πR
4πR

∫ 2π

0
(−1/ρ)ρ dθ =−π. (A 19)

To obtain a potential free of net source strength we must then add on φ/R, and so
the potential of the expanding torus, at the point where its cross-sectional radius is a,
relative to the fluid at infinity (not co-moving), is

φtorus =−2πṘa2(Φ + φ/R)∼ a2Ṙ
[
− x
ρ2
+ 1

2R
log

8R
ρ
+ 1

2R
x2

ρ2

]
+O(a2Ṙ/R2). (A 20)

Recalling (A 12), it is readily seen that the exhibited terms lead to the appropriate
normal velocity at the instantaneous surface of the torus.
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