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This article introduces and motivates the notion of a “properly extensive” quantity by
means of a puzzle about the reliability of certain canonical length measurements. An
account of these measurements’ success, I argue, requires a modally robust connection
between quantitative structure and mereology that is not mediated by the dynamics and is
stronger than the constraints imposed by “mere additivity.” I outline what it means to say
that length is not just extensive but properly so and then briefly sketch an application of
proper extensiveness to the project of providing a reductive ground for metric quantita-
tive structure.

1. Introduction

1.1. Physical Quantities. Physical quantities—like mass, charge, vol-
ume, and length—are associated with a class of determinate magnitudes or
values, each member of which is a property or relation itself. So when an
object possesses mass, charge, or length, it always instantiates one particular
magnitude of that quantity.Magnitudes are commonly represented in science
and in everyday practice with mathematical entities, like numbers and vec-
tors ðe.g., 2.5 kg, 7 C ½coulombs�, 2p mÞ.
These mathematical representations are appropriate because they faith-

fully represent these magnitudes, or the objects that instantiate them, as
exhibiting certain structural features. This article introduces a phenomenon
that I call “proper extensiveness.” Proper extensiveness is one way the
structure exhibited by quantity’s magnitudes can influence the mereological
ðparthoodÞ structure of their worldly instances.
In the next two sections, I provide motivations for positing proper ex-

tensiveness and argue that it does not depend on dynamics. Section 2 in-
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troduces a puzzle about explaining the reliable success of paradigm length
measurements. The worry is that no explanation that essentially appeals to
dynamics can account for the success of these measurements. The best ex-
planation for this success, I argue, requires a predynamic but modally robust
connection between quantitative structure and mereology.
Section 3 outlines two candidate connections, one commonly known as

“additivity” and a strictly stronger connection, the aforementioned proper
extensiveness. I show that only proper extensiveness is sufficient to un-
derwrite the explanation of the length measurement presented in section 2.
Also, taking length to be properly extensive rather than merely additive
better accords with our modal intuitions involving the quantity.
I conclude and briefly sketch an application of the notion of proper

extensiveness to the problem of quantity ði.e., the problem of finding a
nonmetrical ground for metrical quantitative structureÞ. The constraints
properly extensive quantities put on mereological structure render toothless
a common objection many potential solutions to this problem face.

1.2. Quantitative Structure. We can understand “quantitative struc-
ture” in terms of a system of structuring relations. We can represent these
relations as holding between a quantity’s magnitudes or between the in-
stances of those magnitudes.
Some of these relations are metrical—we say “this pumpkin is precisely

8.73 times as massive as that gourd” when talking about objects and “1.5 m
is 10 times as much as 15 cm” when talking about magnitudes. Others are
submetrical. Let me introduce two relations that handily express the sub-
metrical structure we intuitively apply to one-dimensional unsigned scalar
quantities, that is, things like mass, length, and volume ðand unlike charge,
velocity, and spinÞ.1
We say “this pumpkin is less massive than that table” and “22 m3 is less

than 22.1 m3,” when talking about the ordering on ðin these casesÞ massive
objects and determinate magnitudes of volume, respectively.
Let ‘�’ denote a two-place relation symbolizing the intuitive “less than”

relation over magnitudes, Qi, of some quantity, Q. Intuitively Qa � Qb when
Qa is “less than” Qb. When an object, x, instantiates a mass magnitude that
bears � to the magnitude instantiated by another object y, we say that x is
less massive than y.
We say “this stick is as long as that pencil and this highlighter put

together” and “12 kg is the sum of 7 kg and 5 kg,” when talking about the

1. By “one-dimensional scalar” quantity, I mean one that is intuitively gradated along
only one axis, does not involve any notion of direction, and does not employ “signed”
categories ðlike “positive” or “negative”Þ, where two magnitudes might have the same
“degree” but differ in “sign.”
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concatenation or summation structure on ðin these casesÞ lengthy objects
and mass magnitudes, respectively.
Let ‘�’ denote a three-place relation over the Qis that serves to map two

magnitudes to a third magnitude that is their “sum.” So when�ðQa,Qb,QcÞ,
we say Qc is the sum of Qa and Qb, and we write Qa � Qb 5 Qc. When �
obtains between three length magnitudes instantiated by objects x, y, and z,
respectively, we say that z is as long as x and y taken together.

2. Quantities and the World. The primary way that we gain epistemic
access to facts about quantities is by performing measurements. For our
purposes, a “Q measurement” is a physical procedure performed on certain
objects, a and b ðthere need not be just twoÞ, which instantiate magnitudes
of the quantity, Q. Measurements have a ready state—a specification of the
state of the measurement apparatus and of a and b relative to that appara-
tus—as well as a set of mutually incompatible possible outcomes. Out-
comes include things like the positions of a pointer, the relative positions of
plates on a balance scale, or a distribution of illuminated pixels on a readout
screen.
Call a token Q measurement, performed on a and b, successful if the

occurrence or nonoccurrence of each outcome is reliably correlated with the
obtaining or nonobtaining of a distinct ðmutually incompatibleÞ quantitative
relation between a and b ðor between the magnitudes of Q they instantiateÞ.
A successfulQmeasurement generates a counterfactually robust correlation
between its outcomes and the quantitative facts—that is, it renders true
conditionals of the form “if a had stood in Ri to b ðat the time of our
measurementÞ, then outcome Oi would have occurred.”
Such robust correlations, when they occur, cry out for explanation. Many

such explanations appeal to the role of Q in the dynamics ðcase 1, below,
provides an exampleÞ. However, certain paradigmatic length measurements
do not admit of explanation by such means yet may still be successful. Case 2
describes one such successful lengthmeasurement and offers an intuitive, non-
dynamic explanation for its success. The rub is that this explanation requires
that we posit a substantive connection—not mediated by the dynamics—
between length’s quantitative structure and the mereology of lengthy phys-
ical entities.

2.1. Case 1: Weights on a Scale. We want to measure the ordering
structure of a pair of massive objects, a and b ði.e., to determine which, if
either, is more massive than the otherÞ. To do this, we set up a balance scale,
with two plates suspended from opposite ends of a rigid bar, itself balanced
at its center on a rigid vertical stand. The ready state for the scale is with the
bar parallel to the ground and with a and b positioned on opposing plates.
To perform this measurement, we release the plates and wait a moment or
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two. The possible outcomes are a’s plate is lower than b’s plate, b’s plate is
lower than a’s plate, or the bar is parallel to the ground.2

Suppose we run this measurement and get the first outcome—a’s plate
is lower. Suppose further that a is more massive than b and that if a had
been less massive than ð just as massive asÞ b, the second ðthirdÞ outcome
would have obtained. That is, we have performed a successful length mea-
surement on a and b. In this particular case, what explains our measurement’s
success?
No mystery here. Mass’s quantitative structure plays a certain role in the

dynamic laws of motion and gravitation, which govern the evolution of the
measurement apparatus. Objects that are more massive experience a greater
force pulling them toward the earth. After we set the scale up in its ready
state, the weights on the scale are impressed by gravitational forces, as dic-
tated by the physical laws. The downward forces on the plates will unbalance
a properly calibrated balance scale just in case the objects differ in mass, with
themoremassive object being pulledmore forcefully. Thus, the dynamic laws
come together with the quantitative facts and the physical makeup of the scale
to bring about one of the three outcomes in a way that is reliably correlated
with the “less massive than” relation. Call a successful measurement with
an explanation of this sort a dynamic measurement.

2.2. Case 2: Aligning Rods. We want to measure the ordering structure
for a pair of lengthy objects, in this case straight rigid rods. To do this, we
adjust the rods so that they are parallel and lay them side by side. We then
align them at one endpoint—that is, while keeping them parallel, posi-
tioning one endpoint of rod a such that it is immediately adjacent to the
endpoint on the same side of rod b. This is the ready state. There are three
possible outcomes, as before: rod a extends past rod b, rod b extends past
rod a, or neither rod extends past the other ðwhere “extending past,” for
these rods, just means one rod having a part that is not adjacent to any part
of the other rodÞ.3 We observe which of the rods, if either, extends past the
other and conclude that that rod is longer.
Suppose we perform this measurement and get the second outcome—rod

b extends past rod a. Let us also suppose that this measurement is suc-
cessful, that is, that b is, in fact, longer than a and that if b had not been
longer than a, then b would not have extended past a, and so on. What
explains this success?

2. One might worry that “lower” is a quantitative notion. However, it is not a matter of
any quantitative relations between a and b and, in particular, is not a fact about a and
b’s masses.

3. That is, adjacent in a direction orthogonal to a and b.
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In contrast with the previous case, we cannot appeal to length’s role in the
dynamics to explain our measurement’s success because this measurement
has no temporal component. The procedure’s ready state ða and b laid flush
against each other and aligned at one endpointÞ is simultaneous with its
outcome ðb’s extending past aÞ. Certainly the dynamics may play a role in
our observing the outcome after the measurement and in our positioning the
rods before the measurement, but it plays no role in evolving the system
from the ready state to the particular outcome. This means that the success
of this measurement, and the reliable correlation between its nonquantita-
tive outcome and the quantitative facts, cannot be dependent on the dy-
namics of length or any other quantity. Indeed, this length measurement
could succeed even in a world governed by no dynamic laws, which exists
only for one moment—as long as, at that moment, the rods a and b are
situated in the right way.

2.3. The Problem of Nondynamic Measurement. Despite its non-
dynamic nature, there is nothing especially mysterious about the success of
this length measurement. What is going on, intuitively, is something like
this: b extends past a. So while there is a part of b that is perfectly aligned
with a, there is also a remainder ði.e., another part of b that has no part that is
adjacent to any part of aÞ. Call the first part x and the second part, the
remainder, y. The existence of such parts does not yet establish that b is
longer than a. For that we need two bridge principles connecting the mereol-
ogy and the quantitative facts.

1. If two rods are laid side by side such that neither extends past either
endpoint of the other, then they are as long as each other.4

2. A rod must be longer than any of its proper “rod segments.”5

4. Premise 1 approximates something akin to Euclid’s Common Notion 4: “Things which
coincide with one another are equal to one another” ð1908, 155Þ. Since material bodies
cannot interpenetrate, the closest to coinciding we can practically achieve is alignment
without remainder, i.e., being laid side by side with neither extending beyond the other.
There is much more to be said about this premise and why it is reliable, but that would take
us beyond the scope of this article.

5. Premise 2makes use of the notion of a “rod segment.”This is not ideal, but it is important
to recognize that the more natural-sounding principle: “a rod must be longer than any of its
proper parts” has some unfortunate exceptions. A 3 m rod could be cut “lengthwise,” so to
speak, and thus divide into two 3m parts, or cut into parts that, intuitively, have no length at
all but are just spatially disconnected bits of rod. The notion of “rod segment” is meant to
rule such cases out. If the reader is still worried that a rod could be as long as one of its rod
segments, perhaps with thoughts of a rod segment that is just the rod itself minus some
length-less slice at one endpoint, we can add premise 3: If a rod can be partitioned into two
rod segments, it is longer than each of them. Premise 3 relies on the idea that an infinitely
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Premise 1 establishes that a is as long as x. Premise 2 establishes that b is
longer than x. Together they establish that, in situations like our length mea-
surement above, b is longer than a.
According to this explanation, the outcome ðb extending past aÞ and the

quantitative facts ðb being longer than aÞ are correlated but not because of
length’s role in the dynamics. Rather, they are correlated because of certain
constraints on the possible lengths of objects given their mereological struc-
ture and relations and the possible mereological structure of objects given their
lengths and length relations. This connection between quantitative structure
and mereology shows up at two points in the explanation.
The first is obvious. Premise 2 establishes that a rod bears a certain quan-

titative relation ðlonger thanÞ to every member of a certain special subclass of
its parts. The second ismore nuanced and involves premise 1. The explanation
of the success of a length measurement of a and b, such that b extends past a,
was presented as fully general. That is, for any rod shorter than b, which is
measured against it in this way, b must have a proper part to be perfectly
alignedwith that rod. By 1 this implies that b has a proper part that is as long as
that shorter rod, for any such rod shorter than b. Here the generality of this
explanation depends on substantial constraints on the parts of b and the lengths
of those parts.
Premises 1 and 2 are approximately true, but we do not need to tether our

explanation to thenature of something as derivative and clunkyas thenotionof
a concrete, straight, macroscopic material rod ðand the “rod segments” that
make it upÞ. If we want a truly rigorous and general explanation, we will need
to give it in terms of the fundamental entities and properties in the vicinity.
Let us say that length is, fundamentally, a property of one-dimensional, open

ði.e., nonloopedÞ paths through space-time. To the extent that a concrete
material rod can be said to have length, it has its length derivatively, in virtue
of occupying a region containing certain, properly oriented, spatiotemporal
paths of that length. For the remainder of this article, I concern myself with
length as a property of substantival spatiotemporal paths.
We can capture the significance of premise 2 and of the generality as-

sumption in one principle:

20. For all paths x of length Ln, and for all lengths Lm ≠ Ln, x has a proper
part of length Lm if and only if Lm � Ln.

Principle 20 puts very strong constraints on the sorts of parts lengthy ob-
jects can have and on the possible lengths those parts can have. Analo-

thin slice off the end point of a rod is not a rod segment ðeven if its complement isÞ. Oncewe
do away with talk of rods in favor of talk of spatiotemporal paths, we can avoid this sort of
ambiguity.
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gously to 2, 20 implies that a given path is as long or longer than all of its
lengthy parts. Analogously to the assumption about generality, 20 implies that
a given path of length Ln must have a lengthy proper part corresponding to
every length property bearing � to Ln.
The only explanation for the reliable success of synchronic length mea-

surement on offer requires a principle like 20. But neither the physical details
of the measurement procedure nor the dynamic laws governing the system
entail such a principle. If this explanation is a good one, then our metaphysics
of length ðand quantities like itÞ must be able to account for 20.

3. Constraining the World. In this section, I distinguish two phenomena,
“additivity” and “proper extensiveness.” I argue that the former is not, while
the latter is, sufficient to underwrite the explanation outlined in the last
section.

3.1. Additivity. An additive quantity, Q, is one where the specific mag-
nitude of Q instantiated by a mereologically composite object is determined
by theQ-magnitudes of its parts.6 For instance, mass and length are additive
quantities: 2 kg and 3 kg stand in� to 5 kg ð2 kg� 3 kg5 5 kgÞ. Composites
ofmassive objects “inherit” theirmasses from their parts, so themereological
sum of a nonoverlapping pair of objects weighing 2 kg and 3 kg must weigh
5 kg.7 The inheritance analogy is a powerful one, as it indicates both the
strength and—we will see—limitations of this connection.
Additive quantities necessarily satisfy the following conditionals. They

hold for any magnitudes, Qi ðof the same additive quantityÞ, that satisfy the
antecedent. The mereological relations used are these: Oðx, yÞ for overlap;
ðx, yÞCðzÞ for a three-place composition relation, with the third relatum
being the fusion of the first two; and Pðx, yÞ for parthood.

Additive �: ðQm � QnÞ→ ∀ x ∀ yððQnðxÞ ∧ Qmð yÞÞ→ : Pðx; yÞÞ.

Additive �: ðQm � Qn 5 QrÞ→ ∀ x ∀ y ∀ zððQmðxÞ ∧ : Oðx; yÞ
∧ ðx; yÞCðzÞÞ→ ðQrðzÞ↔ Qnð yÞÞÞ.

In the case of mass, Additive � says that no massive object can have a part
that is more massive than it. Additive � says that the fusion of any two

6. For simplicity of presentation, I assume mereological universalism.

7. Technically an overlapping pair could satisfy these conditions if they have negligible
overlap. Usually overlap is considered negligible when it instantiates the “zero mag-
nitude,” like 0 m or 0 kg. However, if one’s metaphysics of quantity does not include zero
magnitudes ðcf. Balashov 1999Þ the notion of negligible overlap must be obtained at in a
different way.
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nonoverlapping massive objects has, as its mass, the “sum” of their
respectivemassmagnitudes. These conditionals ðon the assumption that� is
commutativeÞ fully specify the mereological significance of additivity.
These conditionals are modally robust.8

Suppose pumpkin is a 5 kg object composed out of nonoverlapping parts
body and stem. If we consider a possibility where stem is 2 kg heavier than it
in fact is, we readily ðoften automaticallyÞ infer that, at this world, pumpkin
is 2 kg heavier as well. Indeed, it is difficult, or at least very awkward, to
conceive of additivity failing here, that is, where body and pumpkin have
their actual masses but stem is 2 kg heavier than it is at the actual world.

3.2. Additivity and Measurement. The reason additivity cannot explain
the success of synchronic length measurement is well illustrated by the
“inheritance” analogy. Additivity says that an object’s length is determined
by the lengths of its parts. However, Additive� and Additive� are entirely
silent on whether a given object has parts ðlengthy or otherwiseÞ. This
means that length’s additivity cannot itself account for the truth of 20.
Since Additive � and Additive � never imply that a given object must

have parts of some kind, they are consistent with a pair of objects, a and
b, instantiating magnitudes, Qa and Qb ðof some additive quantityÞ, where
Qa � Qb yet both a and b are mereological simples. There is nothing obvi-
ously wrong with this possibility if Q is mass. On the ordinary understand-
ing of most particle theories, elementary particles are mereologically sim-
ple. And there is no prohibition on elementary particles differing in mass.
However, the analogous possibility for lengthy entities is flatly inconsistent
with 20. To see this, realize that it is consistent with the dictates of addi-
tivity that there be two lengthy objects, a and b, of lengths 2 m and 5 m,
respectively, where b has no proper part as long as a ði.e., 2 m longÞ because
b is a mereological simple. Mere additivity, then, cannot explain the reliable
and general success of synchronic length measurement.

3.3. Proper Extensiveness. Mycontention is that certain physical quan-
tities—length, volume, and temporal duration among them—put stronger
constraints on the mereological structure of the world than merely additive
quantities do. This feature accounts for why those possibilities presented in
the previous section—which are consistent with additivity but inconsistent
with 20

—fail to characterize the modality of length and lengthy objects.
Physical quantities can be grouped into the additive and the nonadditive

ðsometimes called “intensive”Þ quantities. The class of additive quantities, I

8. The strength of that necessity ðnomological, metaphysical, etc.Þ may differ from
quantity to quantity. Some quantities may constrain in virtue of the dynamics, while
others do not.
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maintain, can be further divided into the merely additive quantities and the
properly extensive quantities. As such, properly extensive quantities also
satisfy Additive � and Additive �: 2 m and 3 m stand in � to 5 m ði.e.,
2 m � 3 m5 5 mÞ. Length is additive, so the fusion of two nonoverlapping
objects of length 2 m and 3 m laid end to end ðin the right wayÞ will be 5 m
long. If length were merely additive, that would be the end of the story.
If we suppose that length is also properly extensive, we can say more: since
2 m� 3 m5 5 m, any 5 m path must admit of a partition ðno overlapÞ into a
2 m part and a 3 m part. That is, properly extensive quantities also neces-
sarily satisfy:9

Extensive �: ðQm � QnÞ→ ∀ x ðQnðxÞ→ ∃ y ðy ≠ x ∧ QmðyÞ ∧ Pðy; xÞÞÞ.

Extensive�: ðQm � Qn 5 QrÞ→ ∀ x ðQrðxÞ↔ ∃ y ∃ zðQmðyÞ
∧ QnðzÞ ∧ : Oðy; zÞ ∧ ðy; zÞCðxÞÞÞ.

In the case of length, what Extensive � says is that every spatial path of a
given length Ln, such that Lm � Ln, has an interval ðwhich is to say, a part
that is itself a pathÞ of length Lm. Extensive � says a path can instantiate a
length magnitude La such that Lb � Lc 5 La, if and only if it has two
nonoverlapping parts that respectively instantiate those magnitudes. This is
a very powerful condition because it says that, given the quantitative facts,
instantiating a given length magnitude, La, necessarily requires that you
have parts with certain lengths, bearing certain mereological relations to
one another.
In order to support our explanation of synchronic length measurement in

terms of the existence of a remainder, length’s proper extensiveness needs to
imply:

20. For all objects x of length Ln, and for all lengths Lm ≠ Ln, x has a
proper part of length Lm if and only if Lm � Ln.

By Extensive �, we get that if Lm � Ln, then x has a part of length Lm, and
by Additive �, we get that if x has a proper part of length Lm, then Lm must
either 5 Ln or � Ln ðwhich, given the assumption that Lm ≠ Ln, implies that

9. Both mere additivity and proper extensiveness involve principles that concern
objects “put together in the right way.” For quantities like mass or volume, the formula
: Oðx; yÞ ∧ ðx; yÞCðzÞ accurately describes this condition. To apply to length, these con-
ditions must be more stringent. The conditions for length would be something like this:
a and b are both intervals of path c, which is their mereological fusion, and a and b either
do not overlap or have a length-less overlap ðeither with 0 m length or without length,
depending on what we want to say about the lengths of unextended pointsÞ.
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Lm � LnÞ. These, together, entail 20. Proper extensiveness is able to explain
the reliable success of synchronic length measurements.

4. Conclusion

4.1. The Significance of Proper Extensiveness. In this section I briefly
survey some other interesting features of proper extensiveness and then ges-
ture toward a very significant application of the notion. Some of our central
intuitions regarding physical quantities like length, volume, and temporal
duration—specifically those concerning how the mereological structure of
the world reflects the quantitative structure of the properties instantiated at
it—already suggest a tacit commitment to something like proper exten-
siveness. One striking consequence of taking length to be properly extensive
illustrates this quitewell. Supposewe discover a path through space that had a
nonzero length, Lu, but no proper subpaths ði.e., no proper parts that are
pathsÞ. According to Extensive �, this implies that there are no length
magnitudes� Lu ðexcept the zero magnitude, 0 m, if there is such a thingÞ—
meaning that the quantity, length, is discrete ðbest represented by the natural
numbers plus zeroÞ and that Lu is its unit length.
This result very closely accords with our intuitive expectations about what

the physical world can tell us about length. We do not hear metaphysicians
raise concerns when physicists run together the possibility that there is a
smallest nonzero length ðalternatively, that the quantity length is discreteÞ
with the possibility that there are shortest possible paths ðalternatively, that
space is discreteÞ. Indeed, many discussions of length readily use “shorter
than” and “as long as a proper subinterval of ” interchangeably. Similar points
can be made for area, volume, and temporal duration. The pervasiveness of
this line of thought disguises the substantive metaphysical commitments it
requires. It is important to stress again that these commitments simply do not
hold sway for merely additive quantities. According to a very common
understanding of mass, there could very well be two simples ðobjects without
proper partsÞ with differing, nonzero, masses. Mass, then, would be merely
additive.10 When entertaining the epistemic possibility that, for example, the

10. The fact that mass is closely associated with a certain dynamic role is good ev-
idence that it is not properly extensive, since we standardly think that the same dynamic
role in gravitation or inertia could be played equally well by a mereological complex or
a simple. However, for all we know it may turn out that mass more closely aligns with
earlier conceptions of mass as the “measure of matter.” If that is right, to say that a is
less massive than b is to say that a has less matter making it up than b. One way to draw
out this understanding would be to treat mass as properly extensive and to expect its
instances to obey the associated mereological constraints ði.e., if b has more matter
making it up than a does, then b should have a part that has exactly as much matter
making it up as a doesÞ.
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electron is a point particle ðwithout spatial extension and, it is presumed,
mereologically simpleÞ, we do not at all expect every other elementary par-
ticle to therefore be exactly as massive as the electron. However, that is
precisely the sort of conclusion we should reach in the analogous scenario for
properly extensive quantities like length or volume.
I have offered two considerations in favor of a distinguishing, among the

additive quantities, the merely additive and the properly extensive. This
distinction accords with our intuitions about the modal mereology of
quantities like mass and length, and proper extensiveness is necessary to
adequately explain the reliable success of paradigm length measurements. I
do not pretend to offer a reductive account of proper extensiveness or of
how this constraining of the mereology is supposed to be achieved. For our
purposes, it suffices to say that some quantities are properly extensive and
that they constrain mereology in a modally robust way that is independent
of the dynamic laws.

4.2. Application: The Problem of Quantity. In the previous two sec-
tions I have argued in favor of positing a distinction among the additive
quantities into the merely additive and the properly extensive. I would like
to close by gesturing in the direction of a significant potential application of
this distinction. The problem of quantity is the problem of explaining how a
quantity’s metrical structure—the structure we represent with ratios, like
when we say “this pumpkin is precisely 8.73 times as massive as that
gourd”—can arise out of a nonmetrical basis.
A popular approach involves attempting to reduce facts about metric

structure to facts about the world satisfying the right measurement-theoretic
axioms.11 Measurement theory is a formal discipline that involves rationali-
zations, formalizations, and defenses of empirical measurement practices.
The game of measurement theory is to take a domain of material objects,
which instantiate different magnitudes of some Q, posit some axioms that
these objects obey, and then prove theorems which imply that Q can be
faithfully represented ðup to a pointÞ with a certain mathematical structure
ðe.g., the real numbers; cf. Krantz et al. 1971Þ. Some of the axioms needed to
prove these theorems impose certain requirements on the size and structure
of the domain itself. They require that the domains be well populated ðex-
istence axiomÞ and that there is ample variation in which magnitudes of Q
are instantiated therein ðrichness axiomÞ. The satisfaction of such require-
ments is a contingent matter. If there are not enough objects, or if they do not
instantiate enough different magnitudes, these axioms fail to be satisfied.
This means that measurement-theoretic solutions to the problem of quan-

tity have to contend with a powerful contingency worry. Our account of the

11. Field ð1980Þ is the most famous account along these lines.
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ground of metric structure ought not be contingent on how well populated
the world is.12 This is where proper extensiveness comes in. Suppose that Lx

is a length magnitude, instantiated by a path, p. Extensive � implies that
p will have at least as many proper parts as there are length magnitudes that
bear � to Lx. Similarly, Extensive � implies that p will admit of a partition
into parts of length Ly and Lz, for every such pair of length magnitudes such
that Ly � Lz 5 Lx.
That is, the instances of a properly extensive quantity necessarily, by vir-

tue of the constraints it puts on their mereology, constitute a well-populated
and variegated domain. Would the resulting domain satisfy the relevant ex-
istence and richness axioms? I think this can be shown, but there is no room
to do so here. However, if true, it would allow for a uniquely elegant and
principled solution to the problem of quantity, insofar as it applies to properly
extensive quantities.
A result of this kind, if it works, is important for other reasons as well. A

unique account of metric structure that only works when applied to properly
extensive quantities speaks to the metaphysical depth of the distinction
between properly extensive and additive quantities.
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