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SATURATED FREE ALGEBRAS REVISITED

ANAND PILLAY AND RIZOS SKLINOS

Abstract. Wegive an exposition of results of Baldwin–Shelah [2] on saturated free algebras,
at the level of generality of complete first order theories T with a saturated modelM which
is in the algebraic closure of an indiscernible set. We then make some new observations when
M is a saturated free algebra, analogous to (more difficult) results for the free group, such as
a description of forking.

§1. Introduction. This paper has its origin in joint discussions during
the second author’s work on his Ph.D. thesis in Leeds. Although the topic
of the thesis was the model theory of the free noncommutative group, we
were interested in analogies with the much easier situation of saturated
free algebras, which had been studied in a paper of Baldwin and Shelah [2].
(But note that free groups, although stable, are never saturated.) InSection 2,
we recapitulate, with quick proofs, the main results of [2], in the more
general model-theoretic context described in the abstract, which was already
alluded to in [2]. These results consist of�-stability andfinite-dimensionality
of T , and some refinements involving decompositions of suitable models
of T as the algebraic closure of Morley sequences in weight one types.
In Section 3, we look in more detail at a basis (or free generating set) I of a
saturated free algebra, proving various results which are more specific to the
case at hand and not necessarily valid at the level of generality of Section 2.
For example we prove that I is a Morley sequence in a stationary type over
M , and we describe forking inM in terms of free decompositions. We also
ask several questions, some of which may have easy answers. In Section 4 we
give a few examples, mainly highlighting the distinction between the context
of Section 2 and that of Section 3.
Our model theory notation is standard. For simplicity we will work
throughoutwith countable languages and theories. IfL is a language consist-
ing only of function symbols then we will call an L-structure an L-algebra.
In that case, by a variety V in the language L (in the sense of universal
algebra) we mean a class of L-algebras axiomatized by a collection of so-
called identities, namely universal closures of expressions t1(x̄) = t2(x̄)
where t1, t2 are L-terms. Free algebras exist in V : the free algebra FX on
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generators X is characterized by the property that X generates FX as an
algebra and any map from X to an algebra A ∈ V extends to a homomor-
phism from FX to A, necessarily unique. It is clear that any permutation of
X extends to an automorphism of FX whereby X will be an indiscernible set
in FX which of course generates FX under the terms of L.
Up to and including the 1970’s there was considerable interaction between
universal algebra and model theory, and it was natural for Baldwin and
Shelah to study algebras F which are both free (on some set of generators)
and uncountably saturated (as first order structures). In the paper [2] a
number of interesting structural results are proved about Th(F ), although
as John Baldwin mentioned to us, the actual statements of their Theorem 1
and Theorem 2, may need some tweaking to be correct. As Baldwin and
Shelah mention in their paper, these structural results should hold with
appropriate modifications under the weaker assumption that T is what we
call below almost indiscernible, namely has a model M which is uncount-
ably saturated and in the algebraic closure of some indiscernible set. In any
case, working in this slightly more general context of almost indiscernible
theories, we give a quick account of the main lemmas of [2] and correct
versions of their Theorems 1 and 2.
One would imagine on the other hand that there are model-theoretic or
stability theoretic properties of saturated free algebras which are more
specific anddonot generalize to almost indiscernible theories, andSections 3
and 4 explore this topic. For example, we conjecture in Section 3 that the
theory of a saturated free algebra has finiteMorley rank,whereas in Section 4
we give examples of almost indiscernible theories with infinite Morley rank.
Note that in the informal definition above of an almost indiscernible
theory, we say indiscernible set not indiscernible sequence. If we say rather
sequence then this is a weaker notion which could be explored separately.
In fact in [7] Benoist Mariou studies countable first order theories T with a
saturated modelM which has an expansionM ′ in a countable language such
thatM ′ itself is in the algebraic closure of an indiscernible sequence.Mariou
proves that such a theory isNIP (does not have the independence property)
and moreover among stable theories the property characterizes the �-stable
theories. This whole topic is of course related to the old proof of �-stability
of uncountably categorical theories, using Ehrenfeucht–Mostowski models.

In any case if T is the theory of a free (uncountable) saturated algebra
then T is almost indiscernible and really the results in [2] were about such
theories.
So in Section 2 we will study almost indiscernible theories and make
reasonably free use of stability theoretic notions. Saharon Shelah invented
stability theory, and the fundamental notions of the subject trace back
to him, although alternative expositions, proofs, and even definitions, have
been developed by others. At the time of the writing of [2], Shelah’s [13]
was the only source in book form for stability theory, although some other
important and influential papers were in circulation, such as [5] and [6].
In the meantime several books on stability theory have appeared, and
a common vocabulary and conceptual framework has been more or less
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established among practitioners of the subject. Chapter 1 of [10] is devoted
to a summary, with selected proofs, of stability theory, and we will in par-
ticular use Section 4 (Miscellaneous facts about stable theories), as a basic
reference for the current paper. The reader might also wish to consult [1], [4]
as well as the paper [9] which gives an exposition of the computation of the
spectrum function for �-stable nonmultidimensional theories. In any case
we complete this introduction with some facts about nonmultidimensional
�-stable theories.
We fix a complete �-stable theory T and work in a big saturated model
(M̄ say).
A complete type usually refers to a complete type over some small subset
of M̄ . Sometimes we refer to global types which are complete types over M̄ .
Regular types are assumed, among other things, to be stationary.

Definition 1.1. Recall that T is said to be nonmultidimensional (finite-
dimensional) if there are only boundedly many (finitely many) regular types,
up to nonorthogonality.

In fact for a general stable theory nonmultidimensionality is defined as any
two nonalgebraic stationary types being nonorthogonal, which is equivalent
to the definition above for superstable T .
In [2] there are statements to the effect that arbitrary models of an
�-stable finite-dimensional theory are prime over a finite union of indis-
cernible sequences related to regular types. We want to make this a little
more precise (and correct). LetM0 denote a copy of the prime model as an
elementary substructure of M̄ .

Fact 1.2. SupposeT is nonmultidimensional. Then up to nonorthogonality
every regular type can be chosen as a type overM0 (which moreover is strongly
regular).

We now assume in addition that T is nonmultidimensional.
Let now pi(x) for i ∈ I be a list of regular types overM0, up to nonorthog-
onality, and let ai be a finite tuple fromM0 such that pi is definable over ai .
Let (pi )ai (x) be the restriction of pi(x) to ai . Note that |I | ≤ � (as for
example S(M0) is countable).

Fact 1.3. Let M be any elementary substructure of M̄ . Assume that M
contains ai for each i . Let Ji be a maximal independent set of realizations of
(pi )ai inM, for each i . ThenM is prime (andminimal ) over

⋃
i∈I ai∪

⋃
i∈I Ji .

The cardinality of Ji inM depends only onM and (pi)ai . We denote this
cardinality by dim((pi)ai ,M ).

Remark 1.4. The condition thatM contains all the ai ’s is minor. In gen-
eral M contains an isomorphic (elementary) copy M ′

0 of the prime model
M0, and so will contain a′i for i ∈ I such that tp((a′i : i ∈ I )) = tp((ai :
i ∈ I )). Then work instead with the “copies” of the (pi)ai ’s over the a

′
i .

When it comes to counting models, it becomes important to note that if ai
and a′i have the same strong type over ∅, then (pi)ai and its copy over a′i
have the same “dimension” in a model containing both ai and a′i .
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The notion of an “a-model” (see Definition 4.2.2 of Chapter 1 of [10]) is
important and for �-stable T coincides with an �-saturated model.

Lemma 1.5. LetM be as in Fact 1.3. ThenM is �-saturated if and only if
|Ji | is infinite for each i ∈ I .
Proof. Note that there is a unique countable �-saturated model of T
which we will call M� and which we can assume to contain M0. Now
supposeM is such that for each i , dim((pi )ai ,M ) is infinite. Let b be a finite
tuple fromM and r(y, b) a complete type over b. Then there are countably
infinite J ′i ⊂ Ji for i ∈ I such that b is contained in an elementary submodel
M ′ of M prime over the ai ’s together with the J ′i . So M

′ is isomorphic to
M� hence �-saturated too. So r(x, b) is realized inM ′ so inM . HenceM
is �-saturated. �
Corollary 1.6. Any elementary extension of an �-saturated model of T
is also �-saturated.

Nowwe can in fact choose ai to be the canonical base of pi (as an element
of Meq0 ), and it is well-known that then ai is in the definable closure of J
whenever J is an infinite Morley sequence in (pi )ai . We conclude:

Proposition 1.7. Any �-saturated modelM of T is prime over a union of
indiscernible sets.

Proof. We may assume M contains M0 so ai for each i ∈ I . Let Ji be
a maximal Morley sequence in M in (pi)ai . Then Ji is infinite, whereby
ai ∈ dcl(Ji ). So by Fact 1.3,M is already prime over the union of the Ji . �
Remark 1.8. Of course when T is finite-dimensional I is finite. At the
current level of generality, Theorem 1 of [2] seems only valid for �-saturated
models of T .

Explanation. Theorem 1 of [2] says that any model M of the theory T of
of a saturated free algebra is prime over a finite union of indiscernible sets.
Once we know T to be �-stable and finite-dimensional, this follows from
Proposition 1.7 whenM is�-saturated. But for arbitraryM one has to also
include the ai as in Fact 1.3.

Finally note by Corollary 1.6 that:

Remark 1.9. LetM be an �-saturated model of T , and B any set. Then
the primemodel overM ∪B coincides with the a-primemodel (primemodel
in the category of �-saturated models) overM ∪ B .
Both authors would like to thank John Baldwin for some useful corre-
spondences. The second author would like to thank Artem Chernikov for
pointing out the connection with Mariou’s work [7].

§2. Almost indiscernible theories. We work with a countable language L
and complete L-theory T .

Definition 2.1. The theory T is said to be almost indiscernible if there
is a saturated model of T of cardinality ℵ1 which is in the algebraic closure
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of an indiscernible set of finite tuples I (so I is forced to have cardinality
ℵ1 too).
Assumption 2.2. The theory T is almost indiscernible.

So we letM denote a saturated model of T of cardinality ℵ1 which is in
the algebraic closure of an indiscernible set (which we write as a sequence)
I = (eα : α < ℵ1) of cardinality ℵ1.
Let κ̄ be a cardinal much bigger than ℵ1. Let M̄ be a κ̄-saturated elementary
extension ofM . Let Ī = (eα : α < κ̄) be an indiscernible set in M̄ extend-
ing I . For each infinite � ≤ κ̄, let I� = (eα : α < �) and letM� = acl(I�)
inside M̄ . So Mℵ1 = M is an elementary substructure of M̄ by definition
of M̄ but on the face of it the other M�’s are just subsets of M̄ . Note that
M� has cardinality �. We then easily obtain:

Lemma 2.3.

(i) TheM�’s form an elementary chain.
(ii) The structureM� is �-saturated.

Proof. (i) is left to the reader.
(ii) Let Σ(x) be a partial type over a finite subsetA ofM� , consistentwith M̄ .
Then A is contained in the algebraic closure of e1, . . . , en say, and Σ(x) is
realized inMℵ1 by some d in the algebraic closure of e1, . . . , en together with
some other eα1 , . . . , eαk with αi < ℵ1. Then as tp(e1, . . . , en, eα1 , . . . , eαk ) =
tp(e1, . . . , en, en+1, . . . , en+k) we can find such a realization inM� . �
Remark 2.4. In fact one can also show directly at this stage that each
M� is �-saturated, although it will also follow easily from �-stability, proved
next.

Proposition 2.5. The theory T is �-stable.

Proof. By Lemma 2.3(ii), it suffices to show that there only countably
many complete 1-types overM� . Now any such type is of the form tp(d/M�)
for some d ∈ M�1 and d ∈ acl(M� ∪ I ′) where I ′ = I�1 \ I�. So
tp(d/M� ∪ I ′) is isolated by some formula φ(x, ē) where φ(x, ȳ) has param-
eters fromM� and ē is a finite tuple from I ′. As the type overM� of such
a finite tuple ē is determined by the cardinality of ē we see that tp(d/M�) is
determined by the formula φ(x, ȳ) (which includes the length of ȳ). As there
are countably many possibilities there are countably many such types. �
Concerning the saturation of theM�’s: let q(x) be a complete type over a
subset A ofM� of cardinality < �. We may assume that A containsM� .
Let now p denote the so-called average type of I over M̄ . Namely p(x) ∈
S(M̄ ) and for φ(x) over M̄ , φ(x) ∈ p if φ(ei) holds for all but finitely many
i < κ. By �-stability p is definable over {ei : i < n} for some finite n, in
particular it is definable overM� and moreover p|M� = tp(e�/M�) and Ī
is a Morley sequence in p|M� .
Lemma 2.6. Any complete type over M� is nonorthogonal to p, hence
nonweakly orthogonal to p asM� is an a-model.
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Proof. Let q(y) ∈ S(M�). Then asM =Mℵ1 is ℵ1-saturated q is realized
by some d ∈ acl(M�, ē) for some finite ē from I . As ē is an independent set
of realizations of p|M� it follows that q is nonorthogonal to p. �
Proposition 2.7. The theory T is finite-dimensional.

Proof. For any regular type r over M� , by the previous lemma there is
a realization ar of r such that e� forks with ar over M� . If r1, . . . , rn are
pairwise orthogonal regular types then the ari are independent overM� and
each forks with e� overM� . So the weight of p gives a bound on n. Hence
there are only finitely many regular types overM� up to nonorthogonality.
By �-stability and the fact that M� is an a-model, this implies that T is
finite-dimensional. �
So we see by Proposition 1.7 and its proof that any �-saturated model
of T is prime over a finite union of indiscernible sets each of which comes
from a nonorthogonality class of a (strongly) regular type of T . This is
(suitably adapted) Theorem 1 of [2], as remarked earlier. We now make a
few refinements.

Proposition 2.8. The structureM�+1 = acl(M�, e�) is prime and a-prime
(and minimal ) over (M�, c1, . . . , cn) where tp(ci/M�) is regular, {c1, . . . , cn}
is M�-independent, and each regular q ∈ S(M�) appears up to nonortho-
gonality among the tp(ci/M�).

Proof. Now M�+1 is clearly prime over (M�, e�) and by Remark 1.9 is
also a-prime over (M�, e�). Let {c1, . . . , cn} be a maximal independent over
M� subset of M�+1 such that each tp(ci/M�) is regular. By the proof of
Corollary 4.5.7 of Chapter 1 of [10], M�+1 is a-prime and so also prime
over (M�, c1, . . . , cn). It remains to be seen that every regular q ∈ S(M�)
appears among the tp(ci/M�) up to nonorthogonality. But by Lemma 2.5,
the type p|M� dominates q, so q is realized inM�+1 by some d , and then d
forks with some ci overM . �
We now aim for a stronger result which decomposes p|M� into a product
of weight one types in a stronger sense. The following proposition is essen-
tially Lemma 13 of [2], although they have in (iii) only one direction of the
interalgebraicity result, namely that e� is algebraic over M� ∪ {d1, .., dn}.
(But the other direction follows automatically as we point out.) Our proof
follows the same general line of argument as in [2] with a few simplifications.

Proposition 2.9. There are tuples d1, . . . , dn such that:

(i) the type tp(di/M�) has weight one and ci ∈ acl(M�, di ), for each i ;
(ii) the set {d1, . . . , dn} isM�-independent; and
(iii) the element e� is interalgebraic with (d1, . . . , dn) overM� .

Proof.

Claim I. There are d1, . . . , dn such that {d1, . . . , dn} isM�-independent,
and tp(di , ci/M�) = tp(e�, ci/M�) for each i . In particular ci ∈ acl(M�, di )
for each i , and (d1, . . . , dn) realizes (p|M�)(n).
Proof (of Claim I). Simply choose di to realize tp(e�/M�, ci) such that
the di ’s are as independent as possible over M�. For example, inductively
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choose the di such that di+1 is independent from M�, d1, . . . , di over ci+1.
Then the independence of the ci plus forking calculus guarantees the
independence of the di .

Claim II. There are d1, . . . , dn as in Claim I, such that e� ∈
acl(M�, d1, . . . , dn).

Proof (of Claim II). LetMn = acl(M�, d1, . . . , dn). Then by Lemma 2.2
Mn is the prime model over (M�, d1, . . . , dn) so contains a copy of the
prime model over M�, c1, . . . , cn. Thus, by Proposition 2.7, we find e′� in
Mn realizing tp(e�/M�, c1, . . . , cn), which suffices.

Finally we massage the situation in a routine manner to get the full
statement of Proposition 2.8. For each i = 1, . . . , n let fi be a tuple
such that ci is independent from ci over M� and the Morley rank of
tp(di/M�,fi) isminimized. Thenwe know that ci dominatesdi overM�,fi ,
whereby tp(di/M�,fi ) has weight one. Now choosing the fi ’s as free as
possible, we can ensure that (f1, . . . , fn) is independent from (c1, . . . , cn)
over M� from which we conclude that (c1, . . . , cn) dominates (d1, . . . , dn)
over (M�,f1, . . . , fn). Let f̄ = (f1, . . . , fn). Note that as (c1, . . . , cn) dom-
inates e� overM� , we have that:
(*) e� is independent from f̄ overM� .
Now choose finite A ⊂ M� such that tp(e�, c1, . . . , cn, d1, . . . , dn)/M�, f̄)
does not fork over A, f̄, and bearing in mind (*), we may assume that
tp(e�/M�f̄) is also definable over A. Note that we have that (c1, . . . , cn)
dominates (d1, . . . , dn) over (A, f̄), and e� ∈ acl(d1, . . . , dn, A, f̄). AsM�
is�-saturated, we may choose f̄′ inM� such that tp(f̄/A) = tp(f̄′/A). So:
(a) tp(a�, c1, . . . , cn, f̄/A) = tp(a�, c1, . . . , cn, f̄′/A).
So we can choose (d ′1, . . . , d

′
n) such that

(b) tp(e�, c1, . . . , cn, d ′1, . . . , d
′
n, f̄

′/A) = tp(e�, c1, . . . , cn, d1, . . . , dn, f̄/A).
In particular:
(c) e� ∈ acl(d ′1, . . . , d ′n, A, f̄′), and
(d) (c1, . . . , cn) dominates (d ′1, . . . , d

′
n) over (A, f̄

′) and tp(di/A, f̄′) has
weight 1.
But (c1, . . . , cn) is independent fromM� over (A, f̄′), so by (d) we see that
each di is independent fromM� over (A, f̄′) whereby
(e) each tp(d ′i /M�) has weight 1, ci dominates di overM , (c1, . . . , cn) dom-
inates (d ′1, . . . , d

′
n) overM�, and {d ′1, . . . , d ′n} isM�-independent.

So renaming d ′i as di , we have (i) and (ii) of Proposition 2.8, as well as e�
being algebraic over (M�, d1, . . . , dn). To see that the di are in acl(M�, e�),
we do the following. As (c1, . . . , cn) dominates (d1, . . . , dn) over M� we
can find a copy M ′ of the a-prime (so prime) model over (M�, c1, . . . , cn)
which contains (d1, . . . , dn). By (c), e� ∈M ′. By Proposition 2.7,M ′ is also
prime over (M�, e�) so by uniqueness equalsM�+1 = acl(M�, e�) so each
di ∈ acl(M�, e�). �
We obtain the following “structure theorem”, which is our version of
Theorem 2 from [2].
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Proposition 2.10. LetM be a model of T containingM�. Then there are
J1, . . . , Jk each being a Morley sequence in some weight 1 type overM� such
thatM is the algebraic closure ofM� union the Ji .

Proof. For simplicity we assume that in Proposition 2.7 the (strongly)
regular types qi = tp(ci/M�) are pairwise orthogonal. In Proposition 2.8,
we may assume that ci is a subtuple of di for i = 1, . . . , n. As ci dominates
di overM� it follows that tp(di/M�, ci) is actually isolated, by the formula
φi(yi , ci ) say (φ(y, z) over M�). Let ri = tp(di/M�). Now let M ′ be any
model containing M� . For i = 1, . . . , n, let Ki be a Morley sequence of
qi in M ′. Note that qi might not be realized in M , in which case Ki is
empty. So as in Proposition 1.7, M ′ is prime over M� ∪ ⋃

i Ki . Now for
each ci,j ∈ Ki , let di,j ∈ M ′ be such that |= φi(di,j , ci,j). So di,j realizes ri
and {di,j : i, j} is M�-independent. In any case let Ji = (di,j)j , a Morley
sequence in the weight 1-type ri , which is contained inM ′.

Claim.M ′ = acl(M� ∪⋃
i Ji)).

Proof (of claim). In fact it is enough to prove that acl(M� ∪⋃
i Ji) is a

model (elementary substructure of M̄ ), because it will then be prime over
(M� ∪⋃

i Ki) so isomorphic toM
′ (in fact equal to M ′ asM ′ is not only

prime but alsominimal overM�∪
⋃
i Ki ). Note that in general theKi ’s may

have different cardinalities for different i = 1, . . . , n. Let J ′i for i = 1, . . . , n
be aMorley sequence in ri extending Ji such that all the J ′i have the same car-
dinality κ say. For each α < κ, let aα be a realization of p|M� interalgebraic
with (di,α ) : i = 1, . . . , n) (where Ji = (di,α : α < κ)). Then (aα : α < κ) is a
Morley sequence in p|M� so by Lemma 2.2 its algebraic closure overM� is
a model. But this coincides with acl(M�,

⋃
i J

′
i ) which is therefore a model.

Now as
⋃
i J

′
i is independent overM� , for each tuple b from

⋃
i J

′
i \

⋃
i Ji ,

tp(b/M� ∪
⋃
i Ji) is finitely satisfiable inM� . So using Tarski–Vaught it fol-

lows that acl(M�∪
⋃
i Ji) is an elementary substructure of M̄ , as required. �

Remark 2.11. In Section 4 we give a few examples of almost indiscernible
theories of infinite rank. But one can check by inspection that any almost
indiscernible theory of abelian groups (in the group language) has finite
Morley rank.

§3. Free Algebras. The reader is referred to [3] for background on uni-
versal algebra (of which not much is needed). As mentioned before we work
with algebras in a countable language (or signature)L. Fix a varietyV . Then
for any set X , FX denotes the free algebra in V on generators X , and we
call X a basis of FX . In general it is possible that FX and FY are isomorphic
even though X andY have different cardinalities, so there is no well-defined
notion of dimension for a free algebra. But this can only happen if both
X,Y are finite. On the other hand it is clear that any bijection between X
and Y extends to an isomorphism between FX and FY and conversely any
isomorphism between FX and FY takes X to another basis of FY .
In general if A is an algebra and X a subset of A then 〈X 〉 denotes the
subalgebra of A generated by X .
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Remark 3.1. Suppose that the algebra A is free on X1 ∪ X2, and A1 is
the subalgebra of A (freely) generated by X1. Let Y1 be another basis of A1.
Then A is freely generated by Y1 ∪ X2.
Proof. Let B be an algebra in V and f : Y1 ∪ X2 → B . So f|Y1 extends
uniquely to a homomorphism f1 : A1 → B . Let g be the restriction of f1
to X1. Then as A1 is free on X1, f1 is also the unique extension of g to a
homomorphism from A1 to B . Now g ∪ f|X2 is a map from X1 ∪ X2 to B
hence extends to a homomorphism h from A to B . Now the restriction of h
to A1 must coincide with f1 hence the restriction of h to Y1 coincides with
f|Y1. So h extends f. �
Assumption 3.2. The algebraM is a free algebra for V on a set I = (eα :
α < ℵ1) and is moreover ℵ1-saturated.
So I is an uncountable indiscernible set in M , dcl(I ) = M and M is
saturated, whereby all of Section 2 applies to T = Th(M ). But we will prove
some results which are specific to the “free saturated algebra” setting.
It is also not hard to see that if I ′ is either a shrinking or stretching of I to
another infinite indiscernible set in the sense of T , then the algebraic closure
of I ′ (in the ambient model of T ) is precisely 〈I ′〉 and is moreover free on
I ′ in the variety V .

Definition 3.3. We call a subset A ofM basic if A is a subset of a basis
ofM . And we call an element a ∈M basic if {a} is basic.
So a basic element is what in the context of a free group is called a primitive
element.

Lemma 3.4. There is a complete type p0(x) over ∅ such that for any a ∈M ,
a is basic if and only if a realizes p0.
Proof. Note that all elements of I have the same type over ∅whichwe take
to be p0(x). Suppose first that a is basic. So a extends to a basis X forM .
The basis X has cardinality ℵ1 too and any bijection between X and I
induces an automorphism of M , so a realizes p0. Conversely if a realizes
p0 in M and e ∈ I then there is an automorphism of M taking e to a
(as M is saturated so homogeneous) and the image of I will be a basis of
M containing a. �
For the rest of this section, p0(x) denotes the type given by Lemma 3.3,
namely the type of some/any element of I .

Remark 3.5. As remarked above, if I0 is a countable subset of I andM0
is the subalgebra of M generated by I0, then M0 is free on basis I0, and is
moreover an �-saturated elementary substructure ofM . In particular p0 is
the type of any element of I0 inM0, and Lemma 3.3 also applies toM0 with
the same proof.

Question 3.6. Is p0(x) of maximal Morley rank among complete 1-types
of T ?
Lemma 3.7. Suppose a ∈ M is basic and a is a term in eα1 , . . . , eαn , then
for any countable subset C of I \ {eα1 , . . . , eαn}, C ∪ {a} is a basic set.
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Proof. Extend eα1 , . . . , eαn to a countable subset I0 of I , avoiding C . Let
M0 be generated by I0. Then a ∈M0 and by Remark 3.4 is basic inM0. By
Remark 3.1 {a} ∪ C is basic in M , and also basic in the (free) algebra it
generates. �
Lemma 3.8. The type p0 is stationary (as therefore is p

(n)
0 for any n).

Proof. We have to show that p0 determines a unique strong type over ∅.
So suppose a, b are both realizations of p0. So a is part of a basis I of M
and b part of a basis J of M . By Lemma 3.6 there is b′ ∈ J such that
{a, b′} is a basic set, namely extends to another basis J ′ of M . But then,
as J ′ is indiscernible in M , a and b′ have the same strong type. As for the
same reason b and b′ have the same strong type it follows that a and b
do too. �
Proposition 3.9. The sequence I is a Morley sequence in p0, namely not
only indiscernible but also independent over ∅.
Proof. Let I0 = {eα : α < �}. Let a realizesp0 such that a is independent
from I0 over ∅. By Lemma 3.6 we can find an infinite subset I ′0 of I0 such
that I ′0 ∪ {a} is a basic. But then this is an indiscernible set with the same
“Ehrenfeucht–Mostoswki” type as I . Hence for example e� is independent
from I0 over ∅ which is enough. �
Corollary 3.10. In T , acl eq(∅) = dcl eq(∅).
Proof. Suppose a ∈ acl eq(∅). Then a ∈ dcl eq(ē) for some finite tuple
from I . But by Lemma 3.7 and Proposition 3.8, tp(ē/∅) is stationary,
whereby tp(a/∅) is stationary whereby a ∈ dcl eq(∅). �
We can prove in a similar manner.

Remark 3.11. Let E be any subset of I (or in fact any basic set). Then
acl eq(E) = dcl eq(E).

Proposition 3.12. If ā, b̄ are tuples fromM . Then ā is independent from
b̄ over ∅ if and only if there is a basis B1 ∪B2 ofM such that ā is contained in
〈B1〉 and b̄ is contained in 〈B2〉.
Proof. Right implies left is clear as by a basis (or basic subset) of M
is independent over ∅. For the converse. Suppose ā and b̄ are indepen-
dent over ∅. Without loss, ā, b̄ are both terms in e1, . . . , en and write
ā = t̄(e1, . . . , en). Let ā′t̄(en+1, . . . , e2n). Then ā′ is independent from b̄ and
tp(ā) = tp(ā′). By stationarity tp(ā, b̄) = tp(ā′, b̄), so by automorphism we
can find the suitable basis. �
Remark 3.13. Proposition 3.11 extends naturally to describing indepen-
dence over any basic set B .

The interested reader can consult [8] for the analogous result for noncom-
mutative free groups. As amatter of fact our proof is a straight adaptation of
the proof there, whose main ingredients had been the homogeneity of non-
commutative free groups and the stationarity of every type over the empty
set and of every type over any primitive element.
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Question 3.14. Let T be the theory of saturated free algebra:
(i) must T have finite Morley rank?
(ii) must T be 1-based.
Given (i), one could prove (ii) by showing that inside suitable strongly
minimal sets, algebraic closure equals definable closure, sowe have “unimod-
ularity” so one-basedness. Probably (i) is easy for saturated free algebras in
a variety of R-modules.
One could also specialize to the context where V is a variety of groups
(in the language of groups including an inverse function).

Question 3.15. SupposeV is a variety of groups andG is free in V as well
as being saturated. Is G commutative and of finite Morley rank (in which one
can explicitly list the possibilities).

Remark 3.16. In the context where T is the theory of a saturated free
group G in a variety of groups, we have that G is connected and p0 is the
generic type over ∅. In order to see this one can use Poizat’s argument and
show that a definable set is generic if and only if it contains all but finitely
many elements of a fixed basis (see [11], [12]).

§4. Examples. We typically work with one-sorted structures, where
the relevant indiscernible set witnessing almost indiscernibility is a set of
n-tuples for some n (rather than working in a many sorted theory Teq).

Example 4.1. Any almost strongly minimal theory is almost indis-
cernible (after adding additional parameters to witness the almost strong
minimality).

The next two examples give almost indiscernible theories of infinite rank
(which we conjectured could not happen for the theory of a saturated free
algebra).

Example 4.2. Consider the theory T of infinitely many disjoint infinite
unary predicatesP1, P2, . . . equipped with, for each n, a bijectionfn between
Pn1 and Pn. The theory is complete. Pn has Morley rank n, whereby the
Morley rank of the universe x = x is �. P1 is an indiscernible set. Let q(x)
be the “type at infinity”: {¬Pn(x) : n = 1, 2, . . .}. Then q is complete with
U -rank 1 (and Morley rank �), and its set of realizations in any model is
also an indiscernible set. LetM be a κ-saturated model ofT of cardinalityκ.
Let (ai : i < κ) be an enumeration of P1 in M , and let (bi : i < κ) be an
enumeration of the set of realizations of q in M . Then ((aibi) : i < κ) is
an indiscernible set in M whose definable closure is precisely M . This is
the simplest example of an almost indiscernible theory with Morley rank of
x = x being infinite.

Example 4.3. This is a kind of group version of the above. Let T be
the theory of Q-vector spaces equipped with a new predicate P for an
infinite Q-linearly independent set. Then T is complete, and �-stable. The
predicate P is strongly minimal (and its solution set in any model is an indis-
cernible set). nP = P + · · · + P (n-times) has Morley rank n. The formula
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x = x hasMorley rank� again, but alsoU -rank�: Let q be the type saying
{x /∈ nP : n = 1, 2, . . .} . Then q has U -rank and Morley rank �. Let M
be a κ-saturated model of T . Let P(M ) = (ai : i < κ) and let (bi : i < κ)
be a maximal independent set of realizations of q in M . Then M is in the
definable closure of ((aibi) : i : κ).
The same thing can be done with the theory of algebraically closed fields
in place of Q-vector spaces.

Example 4.4. This is actually a negative example. Let T be theory of
(Z�p∞ ,+), where Zp∞ is the group of roots of unity of order a power of p.
So T is a theory of abelian groups of Morley rank �. A κ-saturated model
M of T is of the form (Zp∞)κ ⊕ Qκ. M is not in the algebraic closure of
an indiscernible set of finite tuples of cardinality κ. But it is visibly in the
definable closure of an indiscernible set of �-tuples of cardinality κ.

It is easy toproduce analmost indiscernible theory,witnessedby an infinite
indiscernible set I such that tp(a/∅), for a ∈ I is not stationary. For example
the theory of an equivalence relation with two classes, both infinite. But we
would like an example of an almost indiscernible ℵ1-categorical theory, such
that there is noMorley sequence (so infinite, indiscernible, and independent)
witnessing almost indiscernibility.
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