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A Non-abelian, Non-Sidon, Completely
Bounded Λ(p) Set

Kathryn E. Hare and Parasar Mohanty

Abstract. �e purpose of this note is to construct an example of a discrete non-abelian group G and

a subset E of G, not contained in any abelian subgroup, that is a completely bounded Λ(p) set for all

p < ∞, but is neither a Leinert set nor a weak Sidon set.

1 Introduction

�e study of lacunary sets, such as Sidon sets and Λ(p) sets, constitutes an interesting
theme in the theory of Fourier series on the circle groupT. It hasmany applications in
harmonic analysis and in the theory of Banach spaces, and various combinatorial and
arithmetic properties of these sets have been studied extensively.�ese concepts have
also been investigated in the context of more general compact abelian groups (with
their discrete dual groups) and compact non-abelian groups; see [5], [9], [15] and the
references cited therein. �e study of these sets in the setting of discrete non-abelian
groups was pioneered by Bożejko [1], Figà-Talamanca [4], and Picardello [10].

In abelian groups, there are various equivalent ways to define Sidon sets, and these
sets are plentiful. Indeed, every infinite subset of a discrete abelian group contains an
infinite Sidon set. �e natural analogues of these definitions in discrete non-abelian
groups are known as strong Sidon, Sidon, and weak Sidon sets. It was shown in [10]
that every weak Sidon set is Λ(p) for all p < ∞. In [8], Leinert introduced the concept
of a Λ(∞) set, a notion only of interest in the non-abelian setting because in abelian
groups such sets are necessarily finite. In striking contrast to the abelian situation,
Leinert showed that the free group with two generators contains an infinite subset
that is both weak Sidon and Λ(∞), but does not contain any infinite Sidon subsets.

In [6], Harcharras studied the concept of completely bounded Λ(p) sets, a prop-
erty more restrictive than Λ(p), but still possessed by Sidon sets. �e converse is not
true as every infinite discrete abelian group admits a completely bounded Λ(p) set
that is not Sidon; see [7].

In this paper, we construct a non-amenable group G and a set E not contained
in any abelian subgroup of G , which is completely bounded Λ(p) for every p < ∞,
but is neither Λ(∞) nor weak Sidon. It remains open if every infinite discrete group
contains such a set E.
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2 Definitions

�roughout this paper,Gwill be an infinite discrete group. To define Sidon and Λ(p)
sets in this setting one requires the concepts of the Fourier algebra, A(G), the von
Neumann algebra, VN(G), and the Fourier–Stieljies algebra, B(G), as developed
by P. Eymard in [3] for locally compact groups. We also need the concept of a non-
commutative Lp -space introduced by I. E. Segal.We refer the reader to [12] for details
on these latter spaces.

Definition 2.1 (i) �e set E ⊆ G is said to be a strong (weak) Sidon set if for all f ∈
c0(E) (resp. l∞(E)) there exists g ∈ A(G) (resp. B(G)) such that f (x) = g(x) for all
x ∈ E.

(ii)�e set E ⊆ G is said to be a Sidon set if there is a constant C such that for all
functions f , compactly supported in E , we have ∥ f ∥1 ≤ C∥ f ∥VN(G). �e least such
constant C is known as the Sidon constant of E.

�ese definitions are well known to be equivalent in the commutative setting. For
any discrete group, it is the case that strong Sidon sets are Sidon, and Sidon sets are
weak Sidon. Finite sets are always strong Sidon sets. In [10], it was shown that E ⊆ G
is Sidon if and only if for every f ∈ l∞(E), there is some g ∈ Bρ(G) that extends f,
where Bρ(G) is the dual of the reduced C∗ algebra C∗ρ (G). Since in an amenable
group Bρ(G) = B(G), weak Sidon sets are Sidon in this setting. Very recently, Wang
[16] showed that every Sidon set in any discrete group is a strong Sidon set. It remains
open if every infinite amenable group contains an infinite Sidon subset.

Picardello [10] defined the notion of Λ(p) sets in this setting, and Harcharras [6]
introduced completely bounded Λ(p) sets. For these, we require further notation.
Let ⋋ denote the le� regular representation ofG intoB(l2(G)) and denote by Lp(τ0)
the non-commutative Lp-space associated with the von Neumann algebra generated
by ⋋(G) with respect to the usual trace τ0. Let L

p(τ) denote the non-commutative
Lp-space associated with the von Neumann algebra generated by ⋋(G) ⊗B(l2) with
respect to the trace τ = τ0 ⊗ tr, where tr denotes the usual trace inB(l2). Observe that
Lp(τ) has a canonical operator space structure obtained from complex interpolation
in the operator space category. We refer the reader to [11] for more details.

Definition 2.2 (i) Let 2 < p < ∞. �e set E ⊆ G is said to be a Λ(p) set if there exists
a constant C1 > 0 such that for all finitely supported functions f, we have

∥∑
t∈E

f (t) ⋋ (t)∥
Lp(τ0)

≤ C1(∑
t∈E

∣ f (t)∣2)
1
2

.(2.1)

(ii)�e set E ⊆ G is said to be a completely bounded Λ(p) set, denoted Λcb(p), if there
exists a constant C2 > 0 such that

∥∑
t∈E

⋋(t) ⊗ xt∥
Lp(τ)

≤ C2 max (∥(∑
t∈E

x∗t xt)
1/2∥

Sp

, ∥(∑
t∈E

xtx
∗
t )

1/2∥
Sp

),(2.2)

where xt are finitely supported families of operators in Sp , the p-Schatten class on l2.
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�e least such constants C1 (resp. C2) are known as the Λ(p) (resp. Λcb(p))
constants of E.

It is known that every infinite set contains an infinite Λ(p) set [1] and that every
weak Sidon set is a Λ(p) set for each p < ∞[10]. Completely bounded Λ(p) sets are
clearly Λ(p), but the converse is not true, as seen in [6].

Extending these notions to p = ∞ gives the Leinert and L-sets.

Definition 2.3 (i) �e set E ⊆ G is called a Leinert or Λ(∞) set if there exists a
constant C > 0 such that for every function f ∈ l2(E), we have ∥ f ∥VN(G) ≤ C∥ f ∥2.

(ii) �e sets of interpolation for the completely bounded multipliers of A(G) are
called L-sets (i.e., l∞(E) ⊆ Mcb(A(G))).

It is well known that the Leinert sets are the sets of interpolation for multipliers of
A(G), so any L-set is Leinert; see [14].�e setE is said to satisfy the Leinert condition if
every tuple (a1 , . . . , a2s) ∈ E2s , with a i ≠ a i+1 , satisfies the independence-like relation

a1a
−1
2 a3 . . . a2s−1a

−1
2s ≠ e .(2.3)

Here e is the identity of G. It can be shown [14] that any set that satisfies the Leinert
condition is an L-set.

It was seen in [7] that in abelian groups, there are sets that are completely bounded
Λ(p) for all p < ∞, but not Sidon. �us, the inclusion, weak Sidon is Λcb(p), is
strict for groups with infinite abelian subgroups.�e purpose of this paper is to show
the existence of sets not contained in any abelian subgroup that also have this strict
inclusion. In fact, we prove, more generally, the following result.

�eorem 2.4 �ere is a discrete group G that admits both infinite L-sets and weak
Sidon sets, and an infinite subset E of G that is Λcb(p) for all p < ∞, but not a Leinert
set, an L-set or a weak Sidon set. Moreover, any subset of E consisting of commuting
elements is finite.

3 Results and Proofs

3.1 Preliminary Results

To show that the set we will construct is not a Leinert or weak Sidon set, it is helpful
to first establish some arithmetic properties of Λ(p) and Leinert sets. We recall that
a set E ⊆ G is said to be quasi-independent if all the sums

{∑
x∈A

x ∶ A ⊂ E , ∣A∣ < ∞}
are distinct. Quasi-independent sets in abelian groups are the prototypical Sidon sets.

�e first part of the following lemma is well known for abelian groups and even
in our non-commutative setting is essentially a commutative argument, since the von
Neumann algebra of a subgroup is a subalgebra of the von Neumann algebra of the
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group. With this observation, part (i) is essentially [15, 3.5], but we have included the
proof here for completeness.

Lemma 3.1 Let G be a discrete group.
(i) Suppose q > 2 and E ⊆ G is a Λ(q) set with Λ(q) constant A. If a ∈ G has order
pn ≥ 2n, then

∣E ∩ {a, a2 , . . . , an}∣ ≤ 10A2n2/q .

(ii) Suppose E ⊆ G is a Leinert set with Leinert constant B and let F ⊆ E be a finite
commuting, quasi-independent subset. �en ∣F∣ ≤ 63B2.

Proof We will write 1X for the characteristic function of a set X.
(i) Define the function Kn on G by

Kn(x) =
2n

∑
j=−2n

(1 − ∣ j∣
2n
)1{a j}(x).

Let Jn denote the function on Zpn (or Z if pn = ∞) defined in the analogous fashion.
It is well known that the A(G) and VN(G) norms for the function Kn are dominated
by the corresponding norms of the function Jn on Zpn .

As Lq′(τ0) (for q′ the dual index to q) is an interpolation space between A(G) and
VN(G), it follows that

∥Kn∥Lq′(τ0)
≤ ∥Kn∥1/q′A(G)

∥Kn∥1/qVN(G)

= ∥Jn∥1/q′A(Zpn )
∥Jn∥1/qVN(Zpn )

≤ (4n + 1)1/q .
Suppose E ∩ {a, a2 , . . . , an} consists of theM elements {as j}Mj=1 and put

kn(x) =
M

∑
j=1

1{as j}(x).

Since E has Λ(q) constant A, the generalized Hölder inequality implies

M

2
≤ M

∑
j=1

Kn(as j) = ∑
x∈G

Kn(x)kn(x)
≤ ∥Kn∥Lq′(τ0)

∥kn∥Lq(τ0) ≤ (4n + 1)1/qA∥kn∥2
= (4n + 1)1/qA√M .

Consequently, M ≤ 2(4n + 1)2/qA2 ≤ 10A2n2/q , as claimed.
(ii) Let H be the abelian group generated by F. Being quasi-independent, F is a

Sidon subset ofH with Sidon constant at most 6
√
6 [5, p. 115]. Consider the function

h = 1F defined on H and g = 1F defined on G. �e Sidon property, together with the
fact that ∥h∥VN(H) = ∥g∥VN(G), ensures that

∣F∣ = ∥h∥ℓ1 ≤ 6√6∥h∥VN(H) = 6√6∥g∥VN(H).
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Since E has Leinert constant B, we have ∥ f ∥VN(G) ≤ B∥ f ∥2 for any function f defined
on G and supported on E. In particular, this is true for the function g, hence

∣F∣ ≤ 6√6∥g∥VN(H) ≤ 6√6B
√∣F∣. ∎

3.2 Proof of Theorem 2.1

Proof We will let G be the free product of the cyclic groups Zpn , n ∈ N , where
pn > 2n+1 are distinct odd primes. If an is a generator of Zpn , then {an}∞n=1 is both
a weak Sidon and Leinert set, as shown in [10]. �e set E will be the union of finite
sets En ⊆ Zpn , where ∣En ∣ = n2 and En ⊂ {an , . . . , a2nn }.�e fact that any commuting
subset of E is finite is obvious from the definition of E.

We recall the following notation from [6].We say that a subset Λ ⊆ G has the Z(p)
property if Zp(Λ) < ∞ where

Zp(Λ) = sup
x∈G

∣{(x1 , . . . , xp) ∈ Λp ∶ x i ≠ x j , x
−1
1 x2x

−1
3 . . . x

(−1)p

p = x}∣.

In [6], Harcharras proved that if 2 < p < ∞, then every subset Λ of G with the Z(p)
property is a Λcb(2p).

We will construct the sets En so that they have the property that for every even
s ≥ 2, there is an integer ns such that Zs(⋃n≥ns

En) ≤ s!. Consequently, ⋃n≥ns
En will

be Λcb(2s) for all s < ∞. As finite sets are Λcb(p) for all p < ∞, and a finite union of
Λcb(p) sets is again Λcb(p), it will follow that E is Λcb(p) for all p < ∞.

We now proceed to construct the sets En by an iterative argument. Temporarily fix
n and take g1 = an . Inductively assume that for N < n2, {g i}Ni=1 ⊆ {an , . . . , a2nn } have
been chosen with the property that if

(PN)
N

∏
j=1

g
ε j
j = 1 for ε j = 0,±1,±2,∑

j

∣ε j ∣ ≤ 2s, then all ε j = 0.

Now choose

gN+1 ≠
N

∏
j=1

g
ε j
j for any ε j = 0,±1,±2 and ∑

j

∣ε j ∣ ≤ 2s

and

g2N+1 ≠
N

∏
j=1

g
ε j
j for any ε j = 0,±1,±2 and ∑

j

∣ε j ∣ ≤ 2s.

�ere are at most (N
2s
)52s ≤ CsN

2s terms that gN+1 must avoid and similarly for g2N+1.

Provided 2CsN
2s ≤ 2n , we canmake such a choice of gN+1 ∈ {an , . . . , a2nn }. Of course,

it is immediate that property ( PN+1) then holds. �is can be done for every N < n2

as long as n is suitably large, say for n ≥ ns .�e set En will be taken to be {g j}n2 .
j=1 .
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Now we need to check the claim that Zs(⋃n≥ns
En) ≤ s!. Towards this, suppose

x1x
−1
2 . . . x−1s = y1 y−12 . . . y−1s(3.1)

where x i are all distinct, y j are all distinct, and all x i , y j ∈ ⋃n≥ns
En .�e free product

property guarantees that if this is true, then it must necessarily be the case that if
we consider only the elements x ik and y j l that belong to a given En , we must have

∏k x
δk
ik
= ∏l y

ε l
j l
for the appropriate choices of δk , ε l ∈ {±1}. As there are at most s

choices for each of x ik and y i l , our property ( PN ) ensures that this can happen only
if {x ik ∶ δk = 1} = {y j l ∶ ε l = 1} and similarly for the terms with −1 exponents. Hence,
we can only satisfy (3.1) if upon reordering, {x1 , x3 , . . . , xs−1} = {y1 , y3 , . . . , ys−1}, and
similarly for the terms with even labels. (We remark that for non-abelian groups, this
is only a necessary but not, in general, sufficient condition for (3.1).) �is suffices to
establish that

Zs( ⋃
n≥ns

En) ≤ ((s/2)!)2 ≤ s!,

and hence, as explained above, E is a Λcb(p) set for all p < ∞.
Next, we will verify that E is not a weak Sidon set. We proceed by contradiction.

According to [10], if it was, then E would be a Λ(p) set for each p > 2, with Λ(p)
constant bounded by C

√
p for a constant C independent of p. Appealing to Lemma

3.1(i), we have

n2 = ∣En ∣ = ∣E ∩ {an , . . . , a2nn }∣ ≤ 10C2p22n/p .

Taking p = 2n for sufficiently large n gives a contradiction.
Finally, to see that E is not a Leinert set, we first observe that an easy combinatorial

argument shows that any set ofN distinct elements contains a quasi-independent sub-
set of cardinality at least logN/ log 3.�us, we can obtain quasi-independent subsets
Fn ⊆ En with ∣Fn ∣→∞. But according to Lemma 3.1(ii), this would be impossible if E
was a Leinert set. As E is not Leinert, it is also not an L set.

�is concludes the proof. ∎
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