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Abstract

Objective: A significant proportion of inpatient antimicrobial prescriptions are inappropriate. Post-prescription review with feedback has
been shown to be an effective means of reducing inappropriate antimicrobial use. However, implementation is resource intensive.
Our aim was to evaluate the performance of traditional statistical models and machine-learning models designed to predict which patients
receiving broad-spectrum antibiotics require a stewardship intervention.

Methods: We performed a single-center retrospective cohort study of inpatients who received an antimicrobial tracked by the antimicrobial
stewardship program. Data were extracted from the electronic medical record and were used to develop logistic regression and boosted-tree
models to predict whether antibiotic therapy required stewardship intervention on any given day as compared to the criterion standard of note
left by the antimicrobial stewardship team in the patient’s chart. We measured the performance of these models using area under the receiver
operating characteristic curves (AUROC), and we evaluated it using a hold-out validation cohort.

Results: Both the logistic regression and boosted-tree models demonstrated fair discriminatory power with AUROCs of 0.73 (95% confidence
interval [CI], 0.69–0.77) and 0.75 (95% CI, 0.72–0.79), respectively (P= .07). Both models demonstrated good calibration. The number of
patients that would need to be reviewed to identify 1 patient who required stewardship intervention was high for both models (41.7–45.5 for
models tuned to a sensitivity of 85%).

Conclusions: Complex models can be developed to predict which patients require a stewardship intervention. However, further work is
required to develop models with adequate discriminatory power to be applicable to real-world antimicrobial stewardship practice.

(Received 25 October 2019; accepted 2 March 2020; electronically published 18 June 2020)

Antimicrobial resistance is a growing problem in the care of hos-
pitalized patients, and it is driven by the overuse of antimicrobials.
Prior studies have shown that ~30% of antibiotics prescribed
in the inpatient setting are inappropriate—either unsuitable or
unnecessary.1,2 Antimicrobial stewardship programs aim to
improve the appropriate use of antimicrobial agents by promoting
the selection of optimal antibiotic regimens.3 Postprescription
review with feedback (PPRF), or real-time review of antibiotic
prescriptions with feedback to prescribers, is a cornerstone of
many antimicrobial stewardship programs. PPRF strategies have
been shown to reduce inappropriate antibiotic use, resulting in
decreased antibiotic resistance and improved clinical out-
comes.3–7 A major drawback of PPRF is that it is labor intensive
and requires a significant time commitment on the part of expe-
rienced antimicrobial stewardship pharmacists and/or physicians.8

Much of the inefficiency is due to the fact that many prescriptions
require review to identify targets appropriate for feedback. Thus,
new approaches are needed to improve the efficiency of daily
PPRF. One approach to improving efficiency and effectiveness
of PPRF is through computerized clinical decision support
systems.9 However, these systems generally require programming
priorities for patients to be reviewed (eg, those on dual anaerobic
coverage or those with positive blood cultures). More complex
factors or interactions of factors may more accurately predict
which patients are receiving inappropriate or unnecessary
antibiotics.

Machine learning, the ability of a computer to learn without
being explicitly programmed,10 is a complex set of approaches that
are being applied in medicine for a wide variety of purposes.
Machine-learning methods are increasingly being applied to
infectious diseases, including to identify drug-resistance genes in
multidrug-resistant tuberculosis11 and to predict recurrent
Clostridium difficile infection.12 The goal of this study was to apply
traditional statistical modeling and machine-learning methods
utilizing information contained within the electronic health record
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(EHR) to determine which patients on antibiotics required stew-
ardship intervention. Our ultimate goal was to develop a model
that could be employed by antimicrobial stewardship programs
(ASPs) to improve efficiency and effectiveness of PPRF.

Methods

This project was approved by the UCSF Institutional Review Board
for the Protection of Human Subjects.

Study sample

This study cohort included adult patients hospitalized between
December 1, 2015, and August 1, 2017, at the University of
California San Francisco Medical Center (UCSF), a 600-bed
academic tertiary-care medical center. The eligible population
included adults ≥18 years of age who received at least 1 antimicro-
bial from a list of those routinely tracked by the ASP (or “tracked
antimicrobial,” listed in Appendix 1 online). Patients could be
included multiple times if there were multiple admissions or
courses of antimicrobials during the study period. The unit of
analysis was patient days. Days on which patients were being seen
by the infectious diseases consultation team were excluded (these
patients are not reviewed by the ASP). Only weekdays were
included in the data sets used for model development because
our ASP does not perform reviews on weekends. New antibiotic
courses were defined as courses that were started at least 72 hours
after the most recent antibiotic dose administration. Multiple
antibiotics given concurrently were defined as a single course.

PPRF description and study outcome

At UCSF, PPRF occurs every weekday and includes review of
inpatients receiving any of the broad-spectrum antimicrobials
being tracked. The ASP teammarks patients on a flowsheet as their
records are reviewed, and they make notes to other ASP providers
and set a time for the next review. Not all charts are reviewed every
day. A chart may not have been reviewed on a given day either
because it had been reviewed on a prior day and follow-up had
been set for a future date or because there was insufficient time
available for the ASP to review all charts on that day. When the
ASP suggests a change in antimicrobial management, a note is left
in the chart in addition to direct feedback. Our primary outcome
was whether the ASP left a note on any given patient day, a proxy
measure for whether the ASP deemed antimicrobial management
to require a stewardship intervention. Antimicrobial management
could be deemed to require intervention by the ASP team if the
antibiotic choice was felt to be inappropriate (ie, unnecessarily
broad spectrum, drug–pathogen mismatch, redundant therapy)
or unnecessary.

Data extraction and processing

Our hospital uses an electronic health record (EHR) system
consisting of a combination of commercially available software
(Epic, Epic Systems, Verona, WI) and locally developed databases
for infection control purposes, which are derived from the EHR.
We extracted data from both the Epic-based relational database
management system (Clarity) and our infection control database.

For each day a patient was administered at least 1 tracked
antimicrobial, we extracted >200 potential predictors from the
EHR. We split the data into 2 main categories: time-invariant
and time-varying variables. Time-invariant variables included
patient demographics (eg, gender, age), admitting service, and

statistics on prior admission (eg, number of admissions in the
prior 90 days). Time-varying variables extracted for each day
included antimicrobial administration, length of stay, procedures
(ie, whether an incision and drainage had been performed), and
laboratory and vital sign data. Daily laboratory and vital sign data
were extracted corresponding to a time range of 9:00 AM the day
prior to 9:00 AM the day of interest to replicate the data used by the
stewardship team during their review.

The raw data set included highly granular data including
multiple vital sign readings per day, which were simplified to
include only the maximal or minimal value per day, depending
on the variable (ie, maximum temperature, maximum creatinine,
minimum absolute neutrophil count). We mapped all categorical
data to binary features (eg, if a patient received a particular
antimicrobial on a given day, then the binary feature associated
with that medication was set to “1,” or “0” if they did not). For
many of the continuous variables, we dichotomized the variables
into binary features based on well-established reference ranges
(eg, fever if maximum temperature was >38°C, see Appendix 2
online for all criteria). We extracted data for each day a patient
was prescribed a tracked antimicrobial.

Statistical methods

Univariate analyses were performed using χ2 tests for categorical
data and t tests for continuous variables. Data were split randomly
into derivation (80%) and validation (20%) data sets by patient
(based on medical record number). Values of variables varying
over time (eg, vital signs, most lab values, and antibiotics
administered) were analyzed on the day of interest. Fixed variables
that were considered relevant to an entire course of antibiotics
(eg, initial positive urinalysis or cultures, admission to intensive
care unit, admitting service, or demographics) were reported by
antibiotic course.

For the logistic regression model, we included a final set
of 26 predictors based on a priori assumptions and statistical
performance (P < .05 in univariate analysis). We used a stepwise
logistic model and calculated a C statistic (area under the receiver
operating characteristic curve (AUROC)) for comparison to the
machine-learning models. Significance levels for removal and
addition to the model were 0.15 and 0.10, respectively.

For the machine-learning model, all ordinal and categorical
predictors were binarized via one-hot encoding i.e. a new binary
column was added to represent each possible predictor/value pair.
However, feature selection was handled internally by an approxi-
mate algorithm based on feature distributions. Each model con-
sisted of an ensemble of shallow decision trees. They were
trained using 10-fold cross validation on the derivation set across
160 different parameter combinations. All parameters were hard-
coded except the number of trees, which was determined by an
early stopping rule. Trees were added to each model until
AUROC for predictions on the hold-out sets did not increase
for 50 training rounds. The final model (ie, parameter set) was
identified by the best average AUROC across all hold-out sets.

A Brier score,13 the mean squared prediction error, was
calculated for each model. The Brier score measures differences
between observed events and predicted probabilities. Scores vary
from 0 to 1 with a score of 0 indicating perfect predictive
performance.14 Sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) were calculated via
standard methods for the corner point of each model as well as
prespecified thresholds of sensitivity. The number needed to
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review (NNR) is the number of patient days needed to review to
identify 1 patient requiring stewardship intervention and was cal-
culated as 1/PPV. The logistic regression and boosted-tree models
were compared using the McNemar test15 using the threshold
determined by the corner point of the area’s receiver operating
curve on the test set.

We used STATA version 15.1 software (StataCorp, College
Station, TX) for statistical analyses. For the machine-learning
analysis, XGBoost 0.72 was used with Python version 3.6.5
software (Python Software Foundation, Wilmington, DE).
Sensitivity, specificity, and positive and negative predictive values
were determined using Python, with output from STATA for the
logistic regression model.

Results

Between December 15, 2015, and August 1, 2017, 9,651 adult
hospitalized patients without infectious diseases consultations
received at least one “tracked” antimicrobial for a total of 18,275
antimicrobial courses (mean duration, 3.4 days) over 62,095
patient days. The ASP left recommendations during 684 antimi-
crobial courses (3.7%). Each patient received 1.9 courses of antibi-
otics on average during the study period. The most frequently
administered antimicrobials in our cohort were vancomycin
(43.7%) and piperacillin-tazobactam (20.5%) by patient days.
ASP recommendations were made, on average, on day 4.9 of
therapy (SD ± 4.3). Baseline demographics of age and gender were
similar between patients who did and did not receive an ASP note
(Table 1). By univariate analysis, variables that were associated
with whether an intervention was made included positive cultures,
positive urinalysis, admission to the intensive care unit, lack of
prior infectious diseases consultation, international normalized
ratio (INR), and type of antibiotic (Table 2).

A list of 25 predictors (see Appendix 1 and Supplementary
Materials online) that had been selected a priori and identified
as significant in the unadjusted analysis were included in a stepwise

Table 1. Characteristics of the Study Population

By Course
Total Antibiotic Courses
(n=18,275)

ASP Recommendation
Made (n=684)

No Recommendation
(n=17,591) P Value

Female, no. (%) 7,922 (43.4) 288 (42.1) 7,634 (43.4) .45

Age, mean y (SD) 56.8 (± 0.1) 57.5 (± 0.6) 56.8 (± 0.1) .27

Service, no. (%)

Medical 11,587 (63.4) 446 (65.2) 11,141 (63.3)

Surgical 4,693 (25.7) 157 (23.0) 4,536 (25.8) .23

Solid-organ transplant 1,995 (10.9) 81 (11.8) 1,914 (10.9)

Positive blood culture, no. (%) 1,373 (7.5) 130 (19.0) 1,243 (7.0) <.05

Positive urinalysis, no. (%) 1,861 (10.2) 117 (17.1) 1,744 (9.9) <.05

ICU, no. (%) 4,504 (24.7) 285 (41.7) 4,219 (24.0) <.05

Prior ID consultation 2,491 (13.6) 45 (6.7) 2,446 (13.9) <.05

By Day of Tracked Antibiotic Therapy Total Antibiotic Days
(n=62,095)

Recommendation
(n=684)

No Recommendation
(n=61,411)

P Value

WBC count, mean (SD) 10.1 (± 0.1) 10.2 (± 0.1) 10.1 (± 0.1) .87

Maximum temperature, mean 37.3 (± 0.1) 37.4 (± 0.1) 37.3 (± 0.1) .07

Daily no. of antibiotics, mean (SD) 1.5 (± 0.1) 1.9 (± 0.1) 1.5 (± 0.1) <.05

Antibiotic days, no. (%)

Meropenem 5,611 (9.0) 152 (22.2) 5,459 (8.9) <.05

Piperacillin-Tazobactam 18,334 (29.5) 303 (44.3) 18,031 (29.4) <.05

Cefepime 7,184 (11.6) 76 (11.1) 7,108 (11.6) .75

Vancomycin 27,106 (43.7) 414 (60.5) 26,692 (43.5) <.05

Note. ASP, antimicrobial stewardship program; SD, standard deviation; ID, infectious diseases; WBC, white blood cell; ICU, intensive care unit.

Table 2. Predictors Associated with a Recommendation Being Made by the
Stewardship Team

Predictor
Unadjusted
OR (95% CI)

Adjusted
OR (95% CI)

Abnormal creatinine 1.70 (1.39–2.06) 1.21 (0.99–1.47)

Culture þ for resistant GNRa 2.67 (1.52–4.67) 2.37 (1.34–4.20)

Positive blood culture 2.89 (2.12–3.95) 2.50 (1.82–3.44)

Fever (>38.0°C) 0.67 (0.54–0.82) 0.61 (0.49–0.76)

Prior ID consult 0.42 (0.30–0.57) 0.39 (0.28–0.53)

Tachycardiab 1.61 (1.35–1.92) 1.31 (1.09–1.58)

Meropenem 2.90 (2.37–3.55) 3.54 (2.81–4.45)

Piperacillin-Tazobactam 2.00 (1.70–2.36) 2.04 (1.70–2.45)

Vancomycin 2.16 (1.82–2.56) 1.88 (1.57–2.25)

Ampicillin 1.93 (0.99–3.77) 1.73 (0.87–3.41)

Clindamycin 2.94 (1.74–4.96) 2.16 (1.27–3.68)

Metronidazole 1.54 (1.05–2.25) 1.64 (1.12–2.42)

Note. OR, odds ratio; CI, confidence interval; GNR, gram-negative rod; ID, infectious diseases.
aResistant GNR was defined as ESBL or Amp-C–producing gram-negative rod.
bTachycardia was defined as a heart rate >110 beats per minute.
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logistic regressionmodel using the development data set. Using the
prespecified criteria for addition or removal of predictor variables,
12 variables remained in the final model (Table 2).

All features extracted from the EHR were used to construct
the boosted-trees model using an unbiased approach. The final
boosted-tree model contained 232 trees, with a depth of trees of 1.

Both models were then applied to the validation data set,
and C-statistics (AUROCs) of 0.73 (95% CI, 0.69–0.77) and 0.75
(95% CI, 0.72–0.79) were obtained for the logistic regression
and boosted-tree models (P= .07) (Fig. 1A and 1B). Decision
thresholds were selected at the corner points for eachmodel as well
as at prespecified sensitivities of 0.85, 0.90, and 0.95, which resulted
in diagnostic performance shown in Table 3. We tuned the
models to higher sensitivity thresholds under the assumption that
a stewardship programwould want to capture a comprehensive list
of patients on inappropriate antibiotics. The number needed to
review ranged from 33.3 to 45.5 for the logistical model and from
27.8 to 50 for the boosted-trees model. For comparison, based on
our data, the number needed to review using our current process
would be 99 based on recommendations being made on 1.1%
of cases.

The types of variables that were included in the logistic
regression model compared to the boosted-tree model are shown
in Table 4 (for full set of variables used in both models see
Appendix 3 in the Supplementary Materials online).

Discussion

In this cohort, both the machine-learning (boosted trees) and
logistic regression models demonstrated modest performance
for predicting which patients required stewardship intervention
on a given day. Both methods exhibited similar performance, with
AUROCs favoring the boosted-tree model, although this difference
was not statistically significant. Both models had high NPVs, and
therefore performed well in regard to identifying cases that do not
need further manual review, though the paucity of outcomes limits
the interpretation of the NPVs. However, both models showed low
PPV and high NNR to identify patients requiring stewardship
intervention on a given day. The high NNR may diminish the util-
ity of making the PPRF process more efficient, although this may
be mitigated in part by the fact that a larger number of patients can
be screened with the use of an automated algorithm.

Fig. 1. Area under the receiver operating characteristic curve (AUC) for logistic regression (dotted line) and boosted trees (solid line) for the derivation (left) and
validation sets (right).

Table 3. Performance Characteristics of Logistic Regression and Boosted-Tree Modelsa

Model AUC Brier Score Sensitivity Specificity PPV NPV NNR

Logistic regression 0.73 0.15 0.57 0.71 0.03 0.99 33.3

0.85 0.45 0.02 0.99 41.7

0.90 0.40 0.02 0.99 43.5

0.95 0.33 0.02 0.99 45.5

Boosted trees 0.75 0.19 0.68 0.72 0.04 0.99 27.8

0.85 0.42 0.02 0.99 45.5

0.90 0.34 0.02 0.99 47.6

0.95 0.27 0.02 0.99 50.0

Note. AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; NNR, number needed to review.
aThe first line for each model shows the performance characteristics at the corner point with performance characteristics at prespecified sensitivities
below.
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This study had several limitations that may have compromised
the performance of the predictive models. First, the number of
outcomes was sparse. Optimal tuning of machine-learning models
requires a large number of outcomes for training and validation.

Although our data set included >60,000 patient days, this is a rel-
atively small data set by machine-learning standards. Additionally,
not all patient days in the data set were reviewed by the ASP team,
even during the business week, due to limited resources, but they
were still included in the model. These omissions may have
compromised the ability of the models to discriminate patients
on requiring stewardship intervention because some cases may
not have been intervened upon simply because resources were
insufficient to review them. Because our stewardship team sched-
ules dates for follow-up review of patients, a significant subset
of patients not reviewed on a given weekday were not reviewed
intentionally because the antibiotic course was deemed appropriate
for that day a priori. For example, a patient on appropriate defini-
tive therapy would be scheduled for follow-up review on the
day therapy is scheduled to be completed to ensure appropriate
duration, but the days prior to this would not have been reviewed
further. Thus, including in the model the days not reviewed
provided additional information about appropriateness of antibi-
otics despite the important drawback that some of the days lacking
review were not due to presumed appropriateness but instead
were due to limited ASP resources for review that day. Whether
an intervention was made also depends on additional factors such
as perceived probability of acceptance of recommendations by the
prescribing team and the availability of data on which a decision to
intervene can be based. Pragmatically speaking, these considera-
tions may be important when choosing whether a stewardship
intervention should be made but may not be fully recognized by
the model. We must be careful when interpreting the output of
the model to take into consideration the circumstances under
which it was trained. During the study period, most recommenda-
tions were made by a small number of individuals staffing the
ASP team (ie, 1–2), which further limits the generalizability of
the model.

One limitation of machine learning in general is the “black box”
nature of the models. The models provide probabilistic outputs
but offer no explanation of how these predictions are made.16

Explainable models are being developed that incorporate
hypothesis-driven experiments with the limitation that they
require large data sets (tens of thousands to millions of subjects).17

The advantage of machine learning over other methods
includes the ability to handle a large number of variables and
samples. In this study, we used a preprocessed data set, which is
labor intensive and limits implementation feasibility. We also
simplified the data set to include only the maximum or minimum
values per day for each variable, which allowed for logistic regres-
sion modeling but may have eliminated additional data that would
have been predictive in the machine-learning model. In addition,
having a well-characterized data set of patients on antibiotics and
interventions made will be critical and may necessitate compre-
hensive point-prevalence style review of patients on antibiotics
to achieve. This study used a basic boosted-trees machine-learning
model. Other models exist, such as learning to rank models,16

which model the relative ordering of inputs according to their
true labels or scores and may be better suited to the practice of
antimicrobial stewardship by allowing prioritization of patients
by likelihood of antimicrobial inappropriateness. Future directions
include building a model that can use highly granular raw data
output from the EHR that would allow for availability of larger
sets of data for training as well as real-time updating of the model
after implementation, which could then be integrated into the E
HR to allow for identification of high-yield targets for manual
review.

Table 4. Predictors Used in Each Model

Predictor Logistic Boosted Trees

Arterial blood gas pH≤7.2 X

Antibiotic X X

Creatinine X X

Currently in intensive care unit X

Fever (>38ºC) X

High C-reactive protein X

Systolic blood pressure ≤90 mmHg X

International normalized ratio X X

Length of stay X X

White blood cell count >10 X

No. of concurrent antibiotics X X

Positive blood culture X X

Positive urinalysisa X X

Currently on pressors X

Prior infectious diseases consult X

Resistant GNR isolatedb X

Heart rate >110 beats per minute X

Arterial blood gas pH X

Arterial blood pressure X

Alanine aminotransferase level X

Blood glucose X

Currently admitted to intensive care unit X

Day of antibiotic course X

Days since last C. difficile infection X

Days since last infectious diseases note X

Days since last pulmonary note X

Department (location in hospital) X

Heart rate X

Platelet count X

Noninvasive systolic blood pressure X

Miscellaneous culturec positive for
Amp-C–producing organism

X

Sputum positive for gram-positive rods X

Sputum positive for nontuberculous
mycobacteria

X

Service X

Maximum temperature X

Minimum temperature X

White blood cell count X

Note. GNR, gram-negative rod; ESBL, extended-spectrum beta-lactamase.
aPositive urinalysis defined as >10 white blood cells per high powered field.
bResistant GNR was defined as ESBL or Amp-C producing gram-negative rod.
cMiscellaneous cultures is defined as sterile or nonsterile site cultures other than blood, urine,
respiratory or cerebrospinal fluid culture.
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PPRF has the potential to improve antimicrobial use and to
improve outcomes, but optimal implementation remains
hampered by the labor intensiveness of manual review. This study
serves as an example of an approach to leveraging statistical and
machine-learning models to identify patients who may require
stewardship intervention and can be targeted for manual review.
Our models suggest that machine learning may be able to outper-
form statistical models when dealing with complex data sets using
large numbers of interacting variables. Further research is needed
to develop advanced models to predict need for stewardship
intervention in hospitalized patients and optimize the efficiency
of post-prescription review with feedback.
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