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Piecing it together

JOHN D. MAHONY

1.   Introduction
‘All the King's horses and all the King's men couldn't put Humpty

together again’.  Such is how it goes in the nursery rhyme books about
Humpty Dumpty and his great fall from the top of a wall.  Oddly enough,
that is how it seems also to be going now in respect of efforts to piece
together the dynamics of Felix Baumgartner's great fall (flight) from the
capsule of a very high altitude balloon at nearly 40 km MSL (above Mean
Sea Level).  During his flight he reached a maximum velocity fairly early
on, after which he slowed down until deployment of a drogue that arrested
his free fall.  Graham Hoare raised issues in the Letters column of
Mathematics Today [1] about the mathematical modelling of the fall and this
stimulated discussions that resulted in various efforts seeking to reconcile
the dynamics of the fall to facts that were known about it.  Such facts have
been refined over time and the purpose of this note is to present a very
simple mathematical model incorporating the latest data that an A level
student familiar with Newton's laws of motion can well understand.  Briefly,
the problem is treated as one of gravitational motion through a series of
adjacent, horizontally stratified layers wherein resistance to motion at any
point within a layer is presumed to vary with the square of the velocity at
that point.  To this end, a multiplicative motion resistance factor is
introduced as a staircase type function, one which is presumed to be
constant within each layer but varying from one layer to the next.
Following a description based on Newton's equations of motion, outputs
from one layer provide inputs to the next, and so on.  In this respect the
approach to the problem is much the same as one commonly adopted in
other sciences, for example in Electromagnetic Theory, where plane wave
propagation through a layered media, such as a Radome used to protect an
antenna, is treated in a similar fashion, again to very good effect.

2.   The equations of motion
These are well known and the relevant ones for a typical layer appear

below.  In such a layer, the  one say, it will be assumed that the distance
fallen to any point is denoted by , .  The forces acting on the
body are downwards (gravitational) and  upwards (motion resistive),
where  is the constant motion resistance factor for the layer,  denotes
the velocity,  denotes the point mass of the falling body and

 is the acceleration due to gravity.  In the usual notation,
these equations are

n th
x (xn−1 ≤ x ≤ xn)

mknv2

kn v (x)
m

g(= 9.78 ms−2)

dv

dt
= kn (u2

n − v2) (1)
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and

v
dv

dx
= kn (u2

n − v2) (2)

where .un = g / kn

Solutions to these equations involve standard integration techniques.  It
is assumed that, for example, the falling body reaches the layer entry point

 at a velocity  after a time , and exits the layer with a velocity
 at the point  after a time .  Accordingly, from (1) it follows that the

time spent in the  layer,  say, is given by

xn − 1 vn − 1 tn − 1

vn xn tn

n th Tn (= tn − tn − 1)

Tn =
un

2g
ln ((un + vn) (un − vn − 1)

(un − vn) (un + vn − 1)) . (3)

Similarly, denoting the thickness of the  layer by , it may be deduced
from (2) that

n th Dn

v2
n = u2

n (1 − exp(−2knDn)) + v2
n − 1 exp(−2knDn) . (4)

Provided starting information about the fall is available and provided also
that the motion resistance term  (and hence the term ) is known it is
possible to track the velocity and associated times at the entry and departure
points through each layer.  For example, if the start velocity  and the
motion resistance term  in the first layer are known together with the
thickness , then (4)  will determine the exit velocity , and (3) will
determine subsequently the associated time  taken to traverse the layer.
Equation (4) can then be used again with an input velocity  (the previous
exit velocity) to determine an output velocity  for the second layer, after
having taken into account the other input parameters (thickness and motion
resistance) associated with it.  Then, as before, the time parameter  for the
second layer can be determined from (3).  Thus it is possible to put together
the bits and pieces of the motion.  However, for this process to be successful
it is necessary to determine or at least have available across the spectrum a
description of the discrete motion resistance factor .  This issue is
addressed below.

kn un

v0

k1

D1 v1

T1

v1

v2

T2

kn

3.   The motion resistance factor
Generally, there is a consensus of opinion that resistance to motion in

the ethers surrounding Felix Baumgartner's great fall increases more or less
exponentially with distance fallen.  Thus, it seems reasonable to assume an
exponential format for the motion resistance factor.  This notion was
exploited in [2], where it was shown that with this type of model it is
possible to achieve a prescribed maximum velocity at a given height such as
was the case in Baumgartner's descent.  Specifically, a continuous motion
resistance factor  was assumed in the formk (x)

k (x) = exp(xα − β) (5)
where  denoted the distance fallen, and  and  were parameters chosen to
ensure that a specified maximum velocity could be met at a given distance

x α β
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of fall.  This particular model can thus be sampled to determine a
representative or averaged value for the motion resistance factor  in the

 layer, as follows:
kn

nth

kn =
k (xn − 1) + k (xn)

2
. (6)

The  values on the right-hand side of (6) are determined using (5).  Having
shown how a discrete spectrum of values might be obtained for the motion
resistance factor, it remains to address a case study of the fall to appreciate
just how well the bits and pieces of it might be put together.

k

4.   Case study, discussion and conclusion
The latest known facts about Baumgartner's great fall [3] indicate that

his drop off point was at an altitude of 38.9694 km (MSL), and that he
reached a maximum velocity of 377.1  after having fallen a distance of
11.1364 km in about 50 seconds.  Drogue deployment occurred at 2.5668
km (MSL) after a total free fall time of about 260 seconds.  This implied a
free fall distance of 36.4026 km.  The analysis in [2] showed that the
maximum velocity information (speed and associated distance fallen) could
be met here with values for the parameters  and  given by

ms−1

α β

α = 1.703224 × 10−4 and β = 11.4814594.

Calculations based on the above input values and procedures are
accommodated easily on a spreadsheet.  The free fall atmosphere was
considered to comprise 400 equal-depth layers, so that  and

 with a layer depth of .  A selection of
data rows from the ensuing spreadsheet is shown in the table below.  It is
largely self explanatory and, not surprisingly, the data confirms that the
magnitude of the maximum velocity occurred pretty much at the alleged

x0 = 0
x400 = 36402.6 m Dn = 91.0065 m

Time T Total
n Xn (m) Alt. (m) K Kn KnDn Un Vn − 1 Vn Tn (s) T (s)
0 0 38969.401.032E-05 0.00 0.00 0.00
1 91.006538878.391.048E-051.040E-059.465E-04969.72 0.00 42.17 4.31 4.31
2 182.01338787.391.064E-051.056E-059.613E-04962.24 42.17 59.61 1.79 6.10
3 273.02 38696.381.081E-051.073E-059.763E-04954.81 59.61 72.97 1.37 7.48

…
121 11011.827957.616.733E-056.681E-056.080E-03382.60377.00377.07 0.24 49.62
122 11102.827866.616.838E-056.786E-056.175E-03379.64377.07377.20 0.24 49.86
123 11193.827775.606.945E-056.892E-056.272E-03376.71377.20377.09 0.24 50.10
124 11284.827684.397.053E-056.999E-056.370E-03373.80377.09377.05 0.24 50.34

…
397 36129.6 2839.82 4.885E-034.817E-034.384E-0145.67 45.67 45.31 2.00 264.90
398 36220.6 2748.81 4.931E-034.893E-034.453E-0144.71 45.31 44.96 2.02 266.92
399 36311.6 2657.81 5.008E-034.969E-034.522E-0144.36 44.96 44.61 2.03 268.95
400 36402.6 2566.80 5.086E-035.074E-035.057E-0144.02 44.61 44.26 2.05 271.00

TABLE: Data selection from the spreadsheet
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altitude after about 50 seconds.  The results show also that drogue
deployment occurred at about 271 seconds, which is 11 seconds later than
when it was observed.  This represents a time error of about 4.2%, which is
not unreasonable given the assumptions implicit in the argument.  For
example, Baumgartner's falling body has been treated simply as a point
mass under the influences only of gravity and an air resistance that has been
relatively easy to model.  The following figure showing how the velocity
varied as a function of time during the fall was produced from data in the
complete table:
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FIGURE 1:  Descent velocity as a function of time

The result in the figure is similar to that which may be found on various
web sites concerning the fall and it is of course also possible to produce a
plot of  the altitude variation with time from the spreadsheet data.  This is
left as an exercise for the reader.  The same exercise was repeated using data
gleaned from other sources [4], where Baumgartner's drop off point was
assumed to be at an altitude of 39.045 km (MSL) and his maximum velocity
was 372.6  after having fallen a distance of 11.165 km in about 50
seconds; drogue deployment occurred at 2.516 km (MSL) after a total free
fall time of, again, 260 seconds.  This implied a free fall distance of 36.529
km.  The analysis in [2] showed that the maximum velocity information now
given could be met with the following values for the parameters  and :

ms−1

α β

,α = 1.556362 × 10−4 β = 11.298350.

This description differs marginally from the one cited earlier, but the
ramifications in respect of time are pertinent.  For example, whilst the reader
might care to employ this latest data in a spreadsheet to see that the
maximum velocity conditions have been met, it will be seen also that the
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free fall time is now predicted to be about 248.9 seconds.  Again there is a
difference compared to the reality of 260 seconds, indicating that the
predicted arrival time for drogue deployment is about 11 seconds early,
whereas the previous results showed a late arrival by a similar amount.
Thus it seems that this particular model is sensitive to variations in input
data, at least as far as time calculations are concerned.  Nonetheless, it is a
simple model that goes some considerable way to accommodating the facts
and it is particularly amenable to treatments using a spreadsheet, for
example in a classroom setting, provided the required input parameters (
and ) obtained elsewhere are taken on trust.  Not least, this latest great fall
provides for the opportunity to analyse and appreciate a recent and historic
event using some very simple sums in the field of elementary dynamics.

α
β

References
1. Graham T. Q. Hoare, Falling humans, Mathematics Today, 48

(December 2012), p. 278.
2. John D. Mahony, The maximum velocity of a falling body,

Mathematics Today, 50 (2), (April 2014).
3. http://issuu.com/redbullstratos/docs/

red_bull_stratos_summit_report_final_050213
4. P. Wheeler, Falling Humans,Mathematics Today, 49 (August 2013),

pp. 176-181.
doi: 10.1017/mag.2014.5 JOHN D. MAHONY

5 Bluewater View, Mt. Pleasant, Christchurch 8081, New Zealand
e-mail: johndmahony@gmail.com

https://doi.org/10.1017/mag.2014.5 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2014.5

