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In this study we examine two-component shear flows that are stable with respect to
Kelvin–Helmholtz and to double-diffusive instabilities individually. Our focus is on
diffusively stratified ocean regions, where relatively warm and salty water masses are
located below cool fresh ones. It is shown that such systems may be destabilized by
the interplay between shear and thermohaline effects, caused by unequal molecular
diffusivities of density components. Linear stability analysis suggests that parallel
two-component flows can be unstable for Richardson numbers exceeding the critical
value for non-dissipative systems (Ri= 1/4) by up to four orders of magnitude. Direct
numerical simulations indicate that these instabilities transform the initially linear
density stratification into a series of well-defined horizontal layers. It is hypothesized
that the combined thermohaline–shear instabilities could be ultimately responsible for
the widespread occurrence of thermohaline staircases in diffusively stable regions of
the World Ocean.
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1. Introduction
This study contributes to the discussion of the origin of thermohaline staircases in

high-latitude regions of the World Ocean. The term thermohaline staircase describes a
series of mixed layers separated by thin high-gradient interfaces, commonly observed
in vertical profiles of temperature and salinity. Staircases in the Arctic and Southern
Oceans are typically diffusive, with warm salty water masses located below those that
are relatively cold and fresh. Diffusive staircases often exhibit remarkable spatial and
temporal coherence. For instance, layers of the Beaufort Gyre staircase in the Arctic
Ocean maintain their identity across hundreds of kilometres laterally and over several
years of observation (e.g. Timmermans et al. 2008).

Despite the profound importance of staircases for high-latitude ocean dynamics
(Turner 2010; Flanagan, Lefler & Radko 2013), the physical cause of diffusive
layering has not been fully explained (Kelley et al. 2003; Radko 2013). It is generally
accepted that staircases are ultimately produced and maintained by double-diffusive
processes. A major challenge in the development of a complete theory of high-latitude
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148 T. Radko

staircases is to explain the initiation of layering and diffusive convection from smooth
original distributions of temperature and salinity. The parameter range for diffusive
instability in the ocean is extremely narrow (e.g. Walin 1964; Veronis 1965):

1< Rρ <
Pr+ 1
Pr+ τ , (1.1)

where Rρ is the diffusive density ratio, i.e. the ratio of vertical gradients of temperature
and salinity, normalized by the expansion/contraction coefficients, τ = kS/kT is the
diffusivity ratio and Pr = ν/kT is the Prandtl number. Here, kT and kS are the
molecular diffusivities of temperature and salinity, and ν is the molecular viscosity.
For oceanic parameters (τ ∼ 0.01, Pr ∼ 10), condition (1.1) reduces to 1< Rρ < 1.1,
and this interval lies outside the density ratio range typical for oceanic diffusive
staircases (1.5 < Rρ < 10). The typical internal wave energy and associated vertical
shears in the Arctic at the staircase depth range (150–300 m) are also weak (e.g.
Levine, Paulson & Morison 1985; Halle & Pinkel 2003; Cole et al. 2014). As a
result, the representative values of the Richardson number (Ri), the measure of flow
susceptibility to dynamic instability, are high (Ri ∼ 10), substantially exceeding the
threshold value of Ri = 1/4 required for dynamic instability. Hence, the background
stratification is generally stable with respect to both primary diffusive and dynamic
instabilities.

To rationalize the propensity for layering in stably stratified waters, several
hypotheses have been proposed. The applied flux mechanism (Turner & Stommel
1964; Kelley et al. 2003) assumes the presence of an external source of buoyancy
(e.g. heating from below or, equivalently, cooling from above) which is sufficiently
strong to produce top-heavy stratification in the immediate vicinity of the forcing
region. The ensuing localized convection creates a well-mixed region and concurrently
transfers buoyancy vertically, leading to the formation of an adjacent convecting layer.
The process then repeats several times, eventually producing a multilayer staircase.
The proposed scenario is actually realized in laboratory experiments, in which a
staircase is created by heating the bottom of a tank filled with doubly stratified fluid
(Turner & Stommel 1964; Fernando 1987). However, in the ocean interior, outside
of geothermal heating zones and the subsurface mixed layer, buoyancy forcing is too
weak and lacks sufficient variation with depth to consistently generate large-scale
convective overturns.

Stern (2003) suggested that the transition from the smooth-gradient regime
to the staircase configuration in a stable halocline could be initiated by lateral
molecularly-driven interleaving (Holyer 1983), which, in turn, is contingent on the
presence of horizontal temperature and salinity (T–S) gradients. What casts some
doubt on the generality of this mechanism is that staircases exist throughout the
Arctic diffusive zone and no correlation has been reported between the incidences of
layering and the strength of lateral isopycnal gradients. Another possible pathway
to thermohaline layering stems from the tendency of diffusive systems to be
destabilized by fundamentally nonlinear processes (Veronis 1965). While Veronis’
effect undoubtedly plays a role in the transition to fully developed diffusive convection,
it requires large-amplitude perturbations of unspecified origin. Thus, a complete and
satisfying explanation of layering calls for some additional dynamical considerations.
Furthermore, simulations in our study indicate that staircases can form spontaneously
even in the absence of lateral property gradients, large-amplitude initial disturbances
or external heating, which suggests that none of the aforementioned phenomena are
essential for diffusive layering.
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This paper argues for adding a new candidate to the list. We point out that
even when a two-component flow is stable with respect to dynamic and diffusive
instabilities individually, it may become unstable due to the interplay between shear
and thermohaline effects. This conclusion is supported by a Floquet-based stability
analysis for a sinusoidal velocity profile in a fluid linearly stratified in the diffusive
sense. The growth rates and stability conditions are shown to be highly sensitive to
the diffusivity ratio of the density components. Direct numerical simulations (DNS)
indicate that the combined thermohaline–shear instabilities can indeed trigger the
transition of uniformly stratified systems to well-defined staircases. In this regard, it
is interesting to mention that strong large-scale shears can have adverse effects on the
coherence and persistence of thermohaline staircases (e.g. Bebieva & Timmermans
2016). Yet, somewhat counterintuitively, the vertical shear could also be essential for
their generation.

Of course, destabilization driven by buoyancy diffusion is a known phenomenon
which can occur even in one-component flows (e.g. Balmforth & Young 2002;
Radko & Stern 2011; Thorpe, Smyth & Li 2013). However, in non-double-diffusive
models, this effect is modest. It affects only a relatively narrow parameter range
(Ri . 1) and does not lead to the formation of persistent staircases. The growth
rates in this extended range are much lower than those typical of Kelvin–Helmholtz
instability. In contrast, the double-diffusive case is characterized by the appearance
of a fundamentally new and dramatic phenomenon which bears little resemblance
to either dynamic or diffusive oscillatory instabilities. Both shear and the unequal
diffusivities of density components are essential, and the stability boundary can reach
surprisingly high values – for instance, it could be as high as Ri ∼ 103 for Rρ = 2.
Such unrestrictive conditions are easily met in the Arctic Ocean, which lends credence
to our proposition that diffusive layering could be initiated by thermohaline–shear
instability.

It is also interesting to note that the origin of salt-finger staircases, in which warm
and salty water is located above cold and fresh, has proven to be a simpler and less
controversial subject than diffusive layering. Fingering staircases are found in tropical
and mid-latitude ocean regions that are already susceptible to primary (salt-finger)
instabilities. These microscale perturbations produce vertical fluxes of heat and salt
that are modulated by large-scale T–S gradients. The interplay between finger-driven
fluxes and vertical gradients leads to the spontaneous generation of secondary
double-diffusive structures – thermohaline staircases, collective instability waves and
intrusions. Plausible theories of finger-driven layering based on the instability of
flux-gradient laws have already been developed and numerically validated (Merryfield
2000; Radko 2003; Stellmach et al. 2011; Radko 2014). The diffusive problem
considered here is very different. The static basic state in this case is linearly
stable in the relevant parameter regime, and therefore even the origin of primary
perturbations is uncertain.

The paper is organized as follows. The model set-up is described in § 2. Section 3
presents numerical evidence for spontaneous layering in shear flows that are dynami-
cally and diffusively stable, suggesting the existence of a new type of instability.
This proposition is supported by linear stability analysis based on the Floquet theory
(§ 4). In § 5, we discuss the energetics – and offer physical interpretation – of the
thermohaline–shear instability. The results are summarized and the conclusions are
drawn in § 6.
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150 T. Radko

2. Formulation

The temperature and salinity fields (T∗tot, S∗tot) are separated into linear vertical
background profiles (T∗bg, S∗bg) and a departure (T∗, S∗) from them:

T∗tot = T∗bg + T∗ = ATz∗ + AT0 + T∗,
S∗tot = S∗bg + S∗ = ASz∗ + AS0 + S∗,

}
(2.1)

where (AT, AT0, AS, AS0) are constants. The asterisks hereafter denote dimensional
quantities and the subscripts ‘tot’ represent the total field variables. Our focus is
on the diffusive case, in which both temperature and salinity decrease upward:
∂T∗bg/∂z∗ = AT < 0 and ∂S∗bg/∂z∗ = AS < 0. In the present version of the theory, we
ignore planetary rotation, compressibility and the nonlinearity of the equation of state,
which reduces the governing Boussinesq equations of motion to

∂T∗

∂t∗
+ v∗tot · ∇T∗ +w∗tot

∂T∗bg

∂z∗
= kT∇2T∗,

∂S∗

∂t∗
+ v∗tot · ∇S∗ +w∗tot

∂S∗bg

∂z∗
= kS∇2S∗,

∂v∗tot

∂t∗
+ v∗tot · ∇v∗tot =−

1
ρ0
∇p∗tot + g(αT∗ − βS∗)k+ ν∇2v∗tot,

∇ · v∗tot = 0,


(2.2)

where v∗tot = (u∗tot, v
∗
tot, w∗tot) is the velocity, p∗tot is the dynamic pressure, g is gravity

and (α, β) are the thermal expansion and haline contraction coefficients.
Consider the basic state (denoted by overbars) representing unidirectional shear flow

with a sinusoidal velocity profile:

ū∗(z∗)=U0 sin
(

2πz∗

H

)
, v̄∗ = w̄∗ = T̄∗ = S̄∗ = 0. (2.3a,b)

It is assumed that the shear (2.3) is maintained against viscous dissipation by the
externally imposed pressure gradient force

∂ p̄∗

∂x∗
=−4π2νρ0U0

H2
sin
(

2πz∗

H

)
. (2.4)

For convenience, the governing equations are non-dimensionalized using H as the
unit of length, U0 as the unit of velocity and H/U0 as the unit of time. The non-
dimensionalization is implemented as follows:

(u∗, v∗,w∗)→U0(u, v,w), p∗→ ρ0U2
0p,

αT∗→ α

∣∣∣∣∂T∗bg

∂z∗

∣∣∣∣HT, βS∗→ α

∣∣∣∣∂T∗bg

∂z∗

∣∣∣∣HS,

(x∗, y∗, z∗)→H(x, y, z), t∗→ H
U0

t,

 (2.5)
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which transforms the governing equations to

∂T
∂t
+ vtot · ∇T −wtot = 1

Pe
∇2T,

∂S
∂t
+ vtot · ∇S− Rρwtot = τ

Pe
∇2S,

∂vtot

∂t
+ vtot · ∇vtot =−∇ptot + 4π2Ri

Rρ − 1
(T − S)k+ Pr

Pe
∇2vtot,

∇ · vtot = 0,


(2.6)

where

Rρ =
β
∂S∗bg

∂z∗

α
∂T∗bg

∂z∗

(2.7)

is the background density ratio,

Ri= N2
b H2

4π2U2
0
= α

∣∣∣∣∂T∗bg

∂z∗

∣∣∣∣ gH2

4π2U2
0
(Rρ − 1) (2.8)

is the Richardson number, Nb is the buoyancy frequency, Pe= (U0H)/kT is the Peclet
number, τ = kS/kT is the diffusivity ratio and Pr = ν/kT is the Prandtl number. It
should be noted that the Richardson number is based on the maximal shear (2πU0/H).
While this convention leads to a rather cumbersome coefficient of the buoyancy term
in the vertical momentum equation, it represents the most physical definition of the
Richardson number. The Peclet number can also be expressed in terms of Ri and Nb
as follows:

Pe=√Ri
NbH2

2πkT
. (2.9)

Representative values of the Richardson number and the buoyancy frequency in the
diffusive regions of the World Ocean are Ri ∼ 1 − 10, Nb ∼ 10−3s−1. The relevant
vertical scale of the basic shear that could trigger thermohaline–shear instabilities
is highly uncertain. If we assume that H ∼ 1m, then (2.9) implies Pe ∼ 103, which
provides very rough guidance for the exploration of the parameter space. The basic
state (2.3), (2.4) reduces in non-dimensional units to

ū(z)= sin(2πz), p̄x =−(2π)2
Pr
Pe

sin(2πz), v̄ = w̄= T̄ = S̄= 0. (2.10a−c)

The non-dimensional perturbation velocity and pressure are defined accordingly as

v = (utot − ū, vtot,wtot), p= ptot − p̄. (2.11a,b)

3. Direct numerical simulations
Preliminary insights into thermohaline–shear destabilization were first generated

from numerical solutions. The governing equations (2.6) were integrated in time
using the dealiased pseudospectral method (e.g. Stern, Radko & Simeonov 2001;
Stellmach et al. 2011) with periodic boundary conditions applied to the perturbation
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fields in each spatial direction. Both two- and three-dimensional DNS were performed.
Double-diffusive DNS are computationally expensive, particularly for thermohaline
layering experiments. In this case, it becomes necessary to resolve a wide range
of dynamically significant scales – from the anticipated step height, which greatly
exceeds the scale of heat dissipation, to the salinity dissipation scale, which is smaller
than the heat scale by a factor of

√
τ . In this study we consider oceanographically

relevant parameters (Pr, τ ) = (10, 0.01), and such a small diffusivity ratio restricts
the integration periods accessible by three-dimensional DNS. Two-dimensional DNS
are certainly less demanding computationally and can be used to simulate relatively
weak instabilities evolving on longer time scales. Furthermore, as will be shown here,
they adequately capture key features of the nonlinear evolution of thermohaline–shear
instabilities – staircase formation and subsequent layer-merging events.

Figure 1 presents a typical 3D simulation. The chosen parameters (Ri, Rρ, Pe) =(
0.5, 2, 104

)
define a system that is individually stable with respect to dynamic and to

diffusive instabilities. This calculation was initiated by the basic state (2.10) perturbed
by small-amplitude random initial (T, S) distributions. The computational domain
(Lx, Ly, Lz)= (2, 1, 1), which corresponds to a dimensional size of 6 m× 3 m× 3 m,
was resolved by a numerical mesh with 768× 384× 384 grid points. The evolution
of this system is illustrated by a sequence of temperature perturbation snapshots
(figure 1a–f ). It should be noted that the perturbation initially (figure 1a) attains
its largest values in the low-shear part of the flow (z ≈ 3/4) – one of the many
features distinguishing this phenomenon from Kelvin–Helmholtz instability. This
pattern gradually amplifies in time, leading to a substantial nonlinear modification of
the vertical stratification and shear. As a result, the Richardson number is reduced
below the critical value of Ricr = 1/4 in selected locations and becomes susceptible
to Kelvin–Helmholtz instabilities. These secondary instabilities, clearly visible in
figure 1(b), tend to be localized to high-shear (z ≈ 0, 1/2, 1) regions. The ensuing
mixing produces a series of well-defined horizontally uniform layers (figure 1c).
While the layers formed initially are relatively thin, they merge sequentially, until
there is only one well-defined layer left by t= 20 902 (figure 1f ).

The layering dynamics is revealed more clearly by the plots (figure 2) of the total
horizontally averaged density profiles, which include the contribution from linear
background stratification:

ρmean = 〈S− T〉 + (1− Rρ)z, (3.1)

where 〈· · ·〉 denotes averaging in (x, y). These profiles demonstrate the formation of
relatively homogeneous layers separated by high-gradient interfaces – structures that
are suggestive of the observed thermohaline staircases. The transition from uniformly
stratified to layered systems is slow, with a growth rate of λ ∼ 1.5 × 10−3, which
corresponds to a dimensional time scale of several days.

During the early stages of the experiment (figure 1a,b), the perturbation is relatively
uniform in the y-direction, which suggests that the most rapidly growing instability
mode is quasi-two-dimensional and therefore the linear phase can be adequately
represented by the 2D model. This proposition was readily confirmed by reproducing
the foregoing simulation in two dimensions (x, z) and observing similar evolutionary
patterns. For instance, figure 3 presents an analogous two-dimensional experiment for
Ri = 1 (all other parameters were kept the same). The increase in the Richardson
number results in a much lower growth rate (λ ∼ 2 × 10−4), which places this case
beyond the current capabilities of 3D DNS. Nevertheless, this system evolves in
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FIGURE 1. (Colour online) Three-dimensional DNS of layering in the dynamically and
diffusively stable regime (Rρ,Ri,Pe, τ )= (2, 0.5, 104, 0.01). The instantaneous temperature
perturbations are shown in (a–f ) at t = 4012, 5007, 6010, 7054, 15 014 and 20 902
respectively.

a very similar manner – the compact perturbation localized in the low-shear zone
gradually amplifies (figure 3a–c) and eventually transforms the uniform stratification
into a well-defined staircase. As previously (cf. figure 2), the layers that are formed
first are not steady but undergo a series of merging events, until there is only one
step left within the limits of the computational domain. The tendency for layers to
merge is a generic property of thermohaline staircases, which is realized in both
diffusive and fingering configurations, in two and in three dimensions (e.g. Radko
et al. 2014a,b).

The relatively slow evolution of the perturbations in figures 1–3 is consistent
with our interpretation that these instabilities are being driven by the molecular
diffusion of density components. Since the foregoing simulations are only weakly
dissipative (Pe = 104), it is not surprising that the corresponding non-dimensional
growth rates are also very low (λ∼ 10−3–10−4). The reduction in the Peclet number,
however, dramatically increases both the growth rates and the parameter range
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z

z

z

(a) (b)

(c) (d )

(e) ( f )

FIGURE 2. The horizontally averaged density profiles for the simulation in figure 1. One
can note the formation of relatively small homogeneous layers separated by high-gradient
interfaces (c) and their subsequent merger (d–f ).

of thermohaline–shear instability. Figure 4, for instance, presents the simulation
performed for (Pe,Ri)= (100, 10). The perturbation in this case amplifies much faster
(λ∼ 0.02), and the Richardson number is a factor of 40 greater than the critical value
of Ricr= 1/4 suggested by classical theory for non-dissipative shear flows (Richardson
1920; Howard 1961; Miles 1961).

Another notable difference between the low-Pe (figure 4) and high-Pe (figure 3)
simulations is the much larger ratio of the vertical/horizontal wavenumbers (m/k) in
the unstable modes. This ratio was m/k ∼ 2 in high-Pe experiments, but the most
unstable solutions were found for m/k∼50 in low-Pe cases, a finding that is supported
and rationalized by the following (§ 4) linear stability analysis. However, there are a
number of similarities in the evolution of the low-Pe system in figure 4 and high-Pe
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FIGURE 3. (Colour online) Two-dimensional DNS of layering for (Rρ, Ri, Pe, τ ) =
(2, 1, 104, 0.01). The instantaneous temperature perturbations are shown in the left panels
and the horizontally averaged density profiles are on the right for t=30 575,49 020,52 118
and 55 823 in (a–d) respectively.

systems (e.g. figure 3) as well. The transition starts with the exponential growth of
unstable perturbations (figure 4a,b). When instabilities amplify to a level sufficient
to substantially modify the vertical density and velocity gradients, they produce
isolated regions that are susceptible to Kelvin–Helmholtz instability (figure 4c). These
secondary instabilities manifest themselves in the form of relatively narrow eddies,
with O(1) lateral extent, which are clearly visible in the late stages of the experiment
(figure 4c,d). The ensuing intense mixing generates patches of relatively uniform
density separated by interfaces (figure 4d). Since the system in figure 4 is much
more dissipative than our previous examples, the staircase is not as well defined as
in figures 1–3. The interfaces are diffused considerably by molecular dissipation and
the mixed layers are not as homogeneous as in high-Pe simulations. Nevertheless,
we expect that in nature, the initiation of layering by means of thermohaline–shear
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FIGURE 4. (Colour online) Two-dimensional DNS in the low-Pe regime: (Rρ,Ri,Pe, τ )=
(2, 10, 102, 0.01). The instantaneous temperature perturbations are shown in the left panels
and the horizontally averaged density profiles are on the right for t = 108, 311, 500 and
600 in (a–d) respectively.

instability represents only the first evolutionary stage. Layer-merging events (e.g.
Radko et al. 2014a,b) can systematically increase the step heights in the staircase,
concurrently increasing the effective Peclet number, and eventually produce a series
of thick well-defined layers.

Numerical support for the layer-merging hypothesis is provided by the simulation
in figure 5, which is identical in all respects to the calculation in figure 4, except
that the vertical size of the computational domain is now Lz = 64. As expected, the
dominant vertical scale of instability modes that emerge first matches the wavelength
of the basic shear (figure 5a). These modes produce a system of horizontal layers. In
time, however, layers merge sequentially and their number reduces from N = 64 at
t= 1009 (figure 5a) to N = 3 at t= 4040 (figure 5d). The merging pattern is revealed
very clearly in the space–time diagram of the horizontally averaged density gradient
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FIGURE 5. (Colour online) Two-dimensional DNS in the low-Pe regime: (Rρ,Ri,Pe, τ )=
(2, 10, 102, 0.01). The vertical extent of the computational domain is increased relative
to that in figure 4 to Lz = 64. The instantaneous temperature perturbations are shown for
t= 1009, 2005, 3500 and 4040 in (a–d) respectively.

−∂ρmean/∂z (figure 6a). Radko (2007) suggested that layered systems can exhibit two
merging patterns: B and H modes. B-mergers represent the strengthening of stronger
interfaces at the expense of weaker interfaces, which gradually erode. H-mergers
occur when interfaces drift vertically and coalesce. Figure 6(a) indicates that both
H- and B-mergers are realized, although H-mergers are more common. This feature
is somewhat unusual since non-sheared double-diffusive systems are generally more
susceptible to B-mergers (e.g. Radko et al. 2014a,b). Our finding that the average
layer thickness greatly increases in time suggests that the effective step height is not
directly controlled by the vertical shear scale (H). This is an encouraging result. It
opens prospects for developing theoretical models of the equilibrium-layer thickness
without the explicit knowledge of the relevant wavelength of the basic shear, a
quantity that is poorly constrained by observations or models. It should be noted
that the non-dimensional layer thickness of h∼ 20 realized at the final stages of this
experiment (figure 5d) can be converted to dimensional values using (2.9), resulting
in

h∗ = h
(

4π2k2
TRiPe2

N2
b

)1/4

∼ 10 m, (3.2)

which is broadly consistent with step sizes of diffusive staircases observed in the
Arctic and Southern Oceans (e.g. Kelley et al. 2003).
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FIGURE 6. (a) Space–time diagram of the mean density gradient for the experiment in
figure 5. (b) Space–time diagram for the experiment in which Ri= 100; other parameters
are the same as in (a).

Figure 6(b) presents an analogous experiment in which the Richardson number is
increased to Ri= 100. The outcome is qualitatively similar. The spontaneous transition
from uniform to stepped stratification starts with the formation of relatively thin layers,
the scales of which are set by the periodicity of the background shear. These layers
then undergo a series of mergers, which systematically increases the average layer
thickness in the staircase. The time scale of the transition is, however, significantly
longer for Ri= 100 than for Ri= 10. The initial layering does not occur until t= 6000
– which corresponds to a dimensional time scale of years – whereas in figure 6(a)
(Ri= 10) layers are already visible at t= 500.

4. Linear stability analysis
The preliminary experiments (§ 3) revealed that dynamically and double-diffusively

stable flows in the ocean can be unstable with respect to mixed thermohaline–shear
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instability, and its nonlinear evolution can ultimately produce layered stratification.
Therefore, this section offers a more systematic description of thermohaline–shear
instability by means of a Floquet-based linear stability analysis.

To examine stability properties of doubly stratified shear flows, the governing
equations are first linearized with respect to the basic state (2.10), resulting in

∂T
∂t
+ sin(2πz)

∂T
∂x
−w= 1

Pe
∇2T,

∂S
∂t
+ sin(2πz)

∂S
∂x
− Rρw= τ

Pe
∇2S,

∂u
∂t
+ sin(2πz)

∂u
∂x
+ 2πw cos(2πz)=−∂p

∂x
+ Pr

Pe
∇2u,

∂v

∂t
+ sin(2πz)

∂v

∂x
=−∂p

∂y
+ Pr

Pe
∇2v,

∂w
∂t
+ sin(2πz)

∂w
∂x
=− ∂p

∂z
+ 4π2Ri

Rρ − 1
(T − S)+ Pr

Pe
∇2w,

∇ · v = 0,



(4.1)

where the velocity and pressure perturbations are defined in (2.11). The solution is
sought in the following form, suggested by the Floquet theory:

T
S
u
v
w
p

= exp(ikx+ ily+ imf z+ λt)
N∑

n=−N


Tn
Sn
un
vn
wn
pn

 exp(2πinz), (4.2)

where λ is the growth rate, k and l are the horizontal wavenumbers, and mf is the
Floquet coefficient, which controls the fundamental wavelength in z. When (4.2) is
substituted into the linear system (4.1) and the individual Fourier components are
collected, the stability problem reduces to the matrix form

λξ = Aξ , (4.3)

where

ξ = (T−N, S−N, u−N, v−N,w−N, p−N, . . . , TN, SN, uN, vN,wN, pN), (4.4)

and A is the (12N + 2) × (12N + 2) matrix, whose elements are functions of
k, l,mf , Pe, Rρ, Ri,N.

For each set of governing parameters, the eigenvalue with the maximum real part
determines the growth rate of the most rapidly amplifying mode. The spatial pattern
of the perturbation is then reconstructed from the corresponding eigenvector ξ :

T̃ = Re[exp(ikx+ ily+ imf z)
N∑

n=−N

Tn exp(2πinz)], (4.5)

where T̃ represents the temperature distribution in the fastest growing mode. The
patterns of S, v and p in the normal modes are reconstructed in a similar manner.
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Extensive experimentation with the model indicated that the most rapid growth
occurs when the Floquet factor is zero. This means that the fastest growing mode
of instability has the same periodicity as that of the shear, and mf = 0 will be used
in all subsequent calculations. Likewise, testing the performance of the model for
different resolutions revealed that N = 100 is sufficient for an accurate representation
of the thermohaline–shear instabilities in the considered parameter range, and this
value will be employed hereafter.

Figure 7 presents some typical experiments in which Ri and Pe are varied while
other parameters are held constant: (Rρ, Pr, τ ) = (2, 10, 10−2). The growth rate
Re(λ) is plotted as a function of (k, l) for (Ri, Pe) = (1, 104), (1, 102), (10, 102) in
(a–c) respectively. In all cases, the system is stable with respect to dynamic and
diffusive instabilities individually. Yet, it is apparently destabilized by the interaction
between weak shear and two-component stratification (figure 7a–c). The maximal
growth rate rapidly increases with decreasing Pe. For instance, the growth rate
in the high-Pe regime (figure 7a) is less by two orders of magnitude than in
the low-Pe case (figure 7b) for the same Ri. The decrease in Pe also shifts the
(non-dimensional) wavelength of the fastest growing mode to much larger values. For
the same Pe, a reduction in shear (larger Ri) results in considerably lower growth
rates (cf. figure 7b,c). It is important to emphasize that in all cases considered, the
largest growth rates were always attained for l= 0, which means that the wave fronts
of the most rapidly amplifying perturbations are aligned perpendicular to the direction
of the basic current. All of these features are consistent with the observed evolution
of thermohaline–shear instabilities in DNS (§ 3).

In figure 8, we plot the representative spatial pattern of the most rapidly amplifying
mode for (Ri, Pe) = (1, 104), which was reconstructed using (4.5). The amplitude
of this mode was normalized by the maximal value of the temperature perturbation,
and the resulting solution is denoted by (T̂, Ŝ, û, ŵ). As observed in high-Pe DNS
(figures 1, 3), the unstable perturbations in the temperature and salinity fields tend
to be localized to the low-shear part of the flow. Because of the symmetry of our
system, there are two modes corresponding to the same (largest) growth rate: one is
centred at z= 1/4 and another, the mirror image of the first, at z= 3/4. In figure 9,
the same calculation is performed for a low-Pe case: (Ri, Pe) = (10, 102). In this
regime, the structure of the fastest growing normal mode is substantially different. The
temperature perturbation is relatively uniform at all z-levels (figure 9a). Salinity, on
the other hand, tends to be localized in the high-shear zones (z≈ 0, 1/2, 1). In both
low-Pe and high-Pe regimes (figures 8 and 9), the amplitude of the horizontal (vertical)
velocity is largest in the high-shear (low-shear) regions.

Figure 10 presents the plot of maximal growth rates, in logarithmic coordinates,
as a function of (Pe, Ri) for various density ratios (Rρ). A reduction in Rρ has a
destabilizing effect on the system. The parameter space occupied by unstable modes
tends to be very wide at low density ratios (Rρ = 1.5 and Rρ = 2 in figure 10a,b)
and contracts with the increasing Rρ (Rρ = 10 and Rρ = 50 in figure 10c,d). Likewise,
the thermohaline–shear instability is sensitive to the diffusivity ratio (figure 11).
For τ = 0.005 (figure 11a) and τ = 0.1 (figure 11b), unstable modes occupy most
of the parameter space explored in figure 11. Increasing τ tends to stabilize the
system. For τ = 1, the dynamics of our system simplifies to that of an effectively
one-component fluid, and the maximal unstable Richardson numbers reduce to the
rather unremarkable interval of Ri < 1. While being of marginal relevance for our
primary objective (i.e. explaining the origin of diffusive staircases), it is interesting
to examine the case in figure 11(d). This configuration (τ = 1.5) represents a fluid
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FIGURE 7. (Colour online) The growth rates Re(λ) predicted by the Floquet-based
stability analysis are plotted as a function of the horizontal wavenumbers (k, l).
Calculations are presented for (Ri, Pe)= (1, 104), (1, 102), (10, 102) in (a–c) respectively.
Only positive growth rates are shown.
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FIGURE 8. (Colour online) The most rapidly amplifying normal mode identified by a
Floquet-based stability analysis for (Rρ, Ri, Pe, τ )= (2, 1, 104, 0.01). The perturbation is
normalized by the maximal temperature value. The patterns of T , S, u and w are shown
in (a–d) respectively.

stratified in the fingering sense (the slower diffusing component is unstably stratified)
but linearly stable with respect to double diffusion (Rρ >τ). Curiously, in this regime
we find no evidence of new types of instability driven by a combination of shear
and different molecular diffusivities of density components. Thus, thermohaline–shear
destabilization appears to be an exclusively diffusive phenomenon.

5. Physical interpretation and energetics

In this section, an attempt is made to generate some insight into the dynamics
of thermohaline–shear instability. One of the key questions in this regard is the
ultimate source of energy required to amplify the unstable perturbations. The answer
to this question is by no means obvious. The source of energy of Kelvin–Helmholtz
instability is the kinetic energy of the basic shear, whereas double diffusion is
driven by the release of potential energy stored in the unstably stratified density
component. To identify the energy source for thermohaline–shear instabilities, the
(non-dimensional) perturbation energy equation is derived as follows. First, we
subtract the temperature and salinity equations in the linearized system (4.1), multiply
the result by (S− T), and integrate the result over one fundamental wavelength in x,
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FIGURE 9. (Colour online) The same as figure 8 but for the low-Pe case
(Rρ, Ri, Pe, τ )= (2, 10, 102, 0.01).

y and z to obtain the density variance equation:

∂

∂t

∫
(S− T)2

2
dV =

∫
(S− T)w(Rρ − 1) dV + 1

Pe

∫
(S− T)∇2(τS− T) dV. (5.1)

Similarly, the kinetic energy equation is obtained by multiplying the x, y and z
momentum equations by u, v and w respectively, adding them, and integrating the
result:

∂

∂t

∫
u2 + v2 +w2

2
dV +

∫
∂ ū
∂z

uw dV =
∫

4π2Ri
Rρ − 1

(T − S)w dV

− Pr
Pe

∫
(|∇u|2 + |∇v|2 + |∇w|2) dV. (5.2)

Next, the density variance equation (5.1) is multiplied by (4π2Ri)/(Rρ − 1)2 and added
to the kinetic energy equation (5.2), which results in the total perturbation energy
equation:

∂E
∂t
= Pdd + Psh + Pvisc, (5.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

54
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.547


164 T. Radko

102

103

104

101

100

102

103

104

101

100

102

103

104

101

100

102

103

104

101

100

–6

–5

–4

–3

–2

–1

0

–6

–5

–4

–3

–2

–1

0

–6

–5

–4

–3

–2

–1

0

–6

–5

–4

–3

–2

–1

0

Pe

Pe

Ri Ri

(a) (b)

(c) (d )

0.25 2.00 10.00 200.000.25 2.00 10.00 200.00

0.25 2.00 10.00 200.000.25 2.00 10.00 200.00

FIGURE 10. (Colour online) The decimal logarithm of the maximal growth rate
log10(Re(λ)) is plotted as a function of (Ri, Pe) for Rρ = 1.5, 2, 10 and 50 in (a–d)
respectively for τ = 0.01. Only the growth rates exceeding 10−5 are shown. One can
note the reduction in the intensity of thermohaline–shear instability with increasing density
ratio.

where

E=
∫ (

u2 + v2 +w2

2
+ 4π2Ri
(Rρ − 1)2

(S− T)2

2

)
dV,

Pdd = 4π2Ri
Pe(Rρ − 1)2

∫
(S− T)∇2(τS− T) dV,

Psh =−
∫
∂ ū
∂z

uw dV,

Pvisc =−Pr
Pe

∫
(|∇u|2 + |∇v|2 + |∇w|2) dV.


(5.4)

The Pdd term in (5.3) represents the production of perturbation energy by diffusion of
heat and salt, Psh is interpreted as the production of energy by shear, and Pvisc is the
viscous dissipation.

Finally, the individual terms in (5.3) were evaluated for the fastest growing
normal modes identified using the linear analysis in § 4. Of particular interest
is the relative contribution of double-diffusive, shear-driven and viscous energy
production/dissipation mechanisms. The answer turned out to be regime-dependent.
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FIGURE 11. (Colour online) The decimal logarithm of the maximal growth rate
log10(Re(λ)) is plotted as a function of (Ri, Pe) for τ = 0.005, 0.1, 1 and 1.5 in (a–d)
respectively for Rρ = 2. Only the growth rates exceeding 10−5 are shown. One can note
the reduction in the intensity of thermohaline–shear instability with increasing diffusivity
ratio.

Figure 12 shows the variation in the energy balance for a series of Floquet-based
calculations in which Pe was systematically increased, whereas all other governing
parameters were kept constant: (Rρ, Ri, τ )= (2, 1, 0.01). The relative contribution of
various processes is quantified by plotting

(Pdd rel, Psh rel, Pvisc rel)= (Pdd, Psh, Pvisc)

Pdd + Psh + Pvisc
(5.5)

as a function of Pe. These diagnostics highlight the stark differences between the
low-Pe and high-Pe regimes, which were evident in the DNS (§ 3) and in the linear
stability analyses (§ 4). For high Peclet numbers (Pe> 500), the dominant balance is
between the energy production by basic shear and its viscous dissipation. Nevertheless,
double diffusion still accounts for a surprisingly large fraction of energy production
(Pdd rel = 0.55–0.65). The reason for such a high double-diffusive contribution is that
much of the perturbation kinetic energy produced by shear is immediately dissipated
by viscosity.

The dynamics of low-Pe systems is dissimilar. The perturbation energy is produced
almost entirely by double diffusion (Pdd rel = 1.05–1.1). The shear-driven contribution
is small (Psh rel = 0.01–0.05) and so is the viscous dissipation (−Pvisc rel = 0.05–0.15).
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FIGURE 12. (Colour online) The energy production/dissipation balances for various values
of Pe. One can note the existence of two dynamically dissimilar regimes: (i) the high-Pe
regime (Pe > 500) in which the dominant balance is between the production of the
perturbation energy by shear and its viscous dissipation and (ii) the low-Pe regime
(Pe< 500) in which the energy released by the unstable basic temperature gradient is
transferred directly into the perturbation field, resulting in its amplification.

This result, however, should be interpreted with caution. Even though shear-induced
effects are not strongly reflected in the energetics, it would be erroneous to conclude
that they are largely irrelevant for the dynamics of thermohaline systems at low Pe.
On the contrary, the release of potential energy by double diffusion is only possible
due to the catalytic role of shear. In the absence of shear, the smooth thermohaline
stratification in the oceanographically relevant parameter regime would be linearly
stable.

The schematic diagram in figure 13 attempts to rationalize the destabilizing tendency
of shear. Before delving into the dynamics of the interaction between shear and
double diffusion, let us recall the conventional interpretation of oscillatory diffusive
instability. A particle initially located at the equilibrium level (A) is slightly displaced
(figure 13) upward into a colder and fresher region (A1). In the absence of diffusion
and friction, the particle would oscillate at the buoyancy frequency (Nb). However,
since heat diffuses faster than salt, the particle quickly adjusts its temperature to its
new environment, but largely retains its salinity. Thus, the particle is now denser than
the surrounding fluid and the buoyancy force is downward. Therefore, as the particle
moves downward, it gains extra kinetic energy due to the buoyancy forcing associated
with the diffusion of heat. This energy gain on the way down is slightly higher than
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FIGURE 13. Schematic diagram illustrating the mechanism of thermohaline–shear
instability. While diffusive instability is inherently oscillatory, and therefore highly
susceptible to viscous damping, the presence of vertical shear allows for direct instability
modes.

the corresponding loss of kinetic energy on the way up (the particle is colder on the
downward part of the cycle) and therefore there is a small net gain of energy in each
cycle. This residual gain can, in principle, drive amplifying (overstable) oscillations.
However, the oscillatory nature of diffusive instability makes it highly vulnerable to
friction, and therefore its parameter range (1.1) is extremely narrow.

Let us now consider the effects of vertical shear, as indicated in figure 13. In this
configuration, possibilities exist not only for oscillatory but also for direct modes of
instability. After the particle is displaced upward (from point A to A1) and its buoyancy
is reduced, it can be advected by the shear into the downward-moving region (B1).
As a result, the downward motion there is further reinforced by buoyancy forcing.
Likewise, as the particle is displaced below the equilibrium level (B2) and it becomes
lighter than the surrounding fluid, it can be advected by shear into the upward-moving
region (A2). Thus, while individual Lagrangian particles in this configuration still
inevitably oscillate, there is now a possibility for the direct amplification of the
velocity field at any given point in space. This dynamics results in the direct – and
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therefore much more efficient – transfer of energy from thermal stratification into
amplifying perturbations. In the direct mode, the buoyancy forcing acts continuously
to amplify the perturbation, rather than alternating between reinforcing and opposing
action. The absence of fast oscillations in the Eulerian velocity field implies that
the proposed mechanism is also less susceptible to viscous damping. Therefore, the
parameter range for thermohaline–shear instability is much wider than for diffusive
convection (figures 10 and 11), and the instability conditions are readily met in the
ocean.

6. Discussion

Some of the most fascinating problems in instability theory arise when two
independently stable processes lead to the destabilization of systems concurrently
affected by both. A well-known example of this counterintuitive behaviour is the
unstable system consisting of a vertically bounded uniform shear and bottom-heavy
stratification, each of which is stable individually (Richardson 1920). Other cases
that fall into the same category include the joint instability of rotating magnetic
fields that are separately stable (Stern 1963) and the instability of a stable thermal
stratification in the presence of a nominally stabilizing magnetic field (Hughes &
Weiss 1995). Our study offers yet another example of such unexpected destabilization
– dynamically and diffusively stable two-component shear flows. Linear stability
analysis based on the Floquet theory demonstrates that shear flows can be unstable
for surprisingly high values of the density ratio (Rρ ∼ 10) and Richardson number
(Ri ∼ 103). These values greatly exceed the individual thresholds for both dynamic
and diffusive instabilities (Rρcr, Ricr) = (1.1, 0.25). Such a wide parameter range
for thermohaline–shear instability includes typical parameters of the ocean regions
characterized by thermohaline layering.

Thermohaline–shear instability exhibits many interesting and, in several ways,
counterintuitive features. Depending on the parameter regime, the most rapidly
amplifying unstable modes can be localized in low-shear or high-shear regions,
and yet the presence of shear is absolutely essential. Thermohaline–shear instability
rapidly intensifies with decreasing Ri, Rρ and τ . As with Kelvin–Helmholtz instability,
the most rapidly amplifying perturbations are aligned in the direction normal to the
flow. The transition to fully three-dimensional patterns occurs only at the nonlinear
evolutionary stages, characterized by the appearance of secondary instabilities.
Multiple lines of evidence, stemming from DNS, Floquet stability analysis and
arguments based on energetics, indicate the existence of two dynamically distinct
regimes, realized for low and high Peclet numbers. The low-Pe regime is perhaps more
interesting since its dissimilarities with one-component systems are most profound.
In both low-Pe and high-Pe cases, most of the energy required for perturbation
growth is supplied by the unstably stratified density component (T). In this regard,
thermohaline–shear instability is similar to double diffusion, with shear flow playing
a catalytic role in the amplification of perturbations. In the high-Pe case, however, a
large amount of energy is supplied by the basic shear, but this gain is compensated
by the equivalent energy loss due to viscous dissipation.

Finally, it should be emphasized that the effects discussed in this study should
not be considered as merely an example of fluid-dynamical curiosity. Fully nonlinear
simulations reveal that thermohaline–shear instability can reorganize smooth T–S
fields into a series of mixed layers separated by thin high-gradient interfaces. These
structures are suggestive of diffusive staircases, commonly observed in high-latitude
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regions of the World Ocean (Arctic and Southern Oceans), which raises an intriguing
question of whether the origin of staircases can be attributed to thermohaline–shear
instability. In this regard, an important caveat of our analysis is the steady-state
model of the background shear. The steady-state assumption made it possible to
perform formal linear stability analysis in a straightforward manner and efficiently
explore the parameter space. However, in the ocean, vertical fine-scale shear is
largely associated with the internal wave field, and therefore it is neither steady
nor unidirectional. It would be of interest to determine whether thermohaline–shear
instability persists in stochastic wave-driven shears (e.g. Radko et al. 2015) and
whether it produces layering as effectively as its steady-state counterpart. Other
suggestions for future research include the development of laboratory-based analogues
of the presented models. Free from computational constraints, experiments could
be used to explore a wider parameter range and bring additional insights into the
dynamics of thermohaline–shear instability.
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