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SPARRE ANDERSEN IDENTITY AND
THE LAST PASSAGE TIME

JEVGENIJS IVANOVS,∗ University of Lausanne

Abstract

It is shown that the celebrated result of Sparre Andersen for random walks and Lévy
processes has intriguing consequences when the last time of the process in (−∞, 0], sayσ ,
is added to the picture. In the case of no positive jumps this leads to six random times, all
of which have the same distribution—the uniform distribution on [0, σ ]. Surprisingly,
this result does not appear in the literature, even though it is based on some classical
observations concerning exchangeable increments.
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1. The main observation

The main observation of this short paper is best illustrated by a Lévy process Xt, t ≥ 0
without positive jumps. A particular example of such X is given by a compound Poisson
process with positive linear drift and negative jumps, which occupies a central place in applied
probability: in risk theory it is known as a Cramér–Lundberg model [5], and in queueing theory
−X drives the workload process in the classical M/G/1 queue [4].

Let σ = sup{t ≥ 0 : Xt ≤ 0} be the last time of X in (−∞, 0], which is finite almost surely
(a.s.) when EX1 > 0. Define the following random times, see Figure 1:

N− =
∫ σ

0
1{Xs≤0}ds, N+ =

∫ σ

0
1{Xs≥0}ds,

−→
F = sup{t ∈ [0, σ ) : Xt = Xt },

−→
G = sup{t ∈ [0, σ ) : Xt = Xt }, ←−

F = σ −−→F , ←−
G = σ −−→G,

where Xt = sup{Xs : s ∈ [0, t]} and Xt = inf{Xs : s ∈ [0, t]} are the running supremum and
infimum processes, respectively. When σ = 0 we assume that all these times are 0. In words,
N− is the time spent in the nonpositive half-line,

−→
F is the time of the infimum, and

←−
F is the

time from the infimum to σ .

Proposition 1. Let X be a Lévy process without positive jumps, such that EX1 > 0. Then−→
F ,
←−
F ,
−→
G,
←−
G,N−, and N+ have the same distribution.

Note that we can replace σ by∞ in the definitions of N− and
−→
F . The equivalence of laws

of these two random variables is known as the Sparre Andersen identity, see, e.g. [6, Lemma
VI.15]. This identity for random walks was first established by E. Sparre Andersen in [2] using
a combinatorial approach; a simpler proof can be found in [9, Theorem XII.8.2].
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Figure 1: A sample path of X and the corresponding random times.

The transform of the single distribution in Proposition 1 is well known. Define the first
passage time τx = inf{t ≥ 0 : Xt > x} and let ψ(s) = log(EesX1),�(s) = − log(Ee−sτ1) for
s ≥ 0, which are known to satisfy ψ(�(s)) = s. Then it follows from [6, Theorem VII.4(ii)]
that

Ee−s
−→
F = ψ ′(0)�(s)

s
, s > 0. (1)

Alternatively,
←−
F is the last passage time of the post-infimum process (known asX conditioned

to stay positive) over I = −X∞. It is well known that the post-infimum process is independent
of the infimum and by William’s representation [6, Theorem VII.18] its last passage time over x
has the law of τx . Hence, we can add the following identity to Proposition 1:

←−
F

d= τ̂I , (2)

where τ̂ is a copy of τ independent of X. In particular, this readily implies that the transform
of
←−
F coincides with (1) by way of the generalized Pollaczek–Khinchine formula Ee−sI =

ψ ′(0)s/ψ(s).
Similarly to the classical identity, Proposition 1 can be reformulated for a Lévy process on

a finite interval [0, T ], see Proposition 2 below. Yet another possibility is to consider a general
Lévy process and to condition on the event {Xσ = 0}, assuming it has positive probability. In
Corollary 1 we present this type of result for random walks. Note that if local extrema are not
necessarily distinct then

←−
F and

←−
G must be defined in a slightly different way; see Section 4.

Proposition 2. Let X be a Lévy process without positive jumps, such that P(XT > 0) >
0, and let σ = sup{t ∈ [0, T ] : Xt ≤ 0}. On the event {XT > 0} the random times−→
F ,
←−
F ,
−→
G,
←−
G,N−, and N+ have the same distribution.

In general, when jumps of both signs are allowed, the above equivalence of laws does not
hold. Instead, we can partition these times into two classes of three elements in each according
to their laws. We state this general result for random walks and provide its short proof in
Section 3. Its standard extension to Lévy processes is discussed briefly in Section 4.

2. Intuitive explanation and further consequences

There is a simple explanation of the above results: the Sparre Andersen identity holds for the
random time interval [0, σ ] (applied to −X), and the process seen from σ (backwards in time
and downwards in space) has the same law as the original process up to σ . The fundamental
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reason behind these observations is that the increments of the approximating random walk are
exchangeable random variables conditioned on {σ = n}, see Section 3 and Section 4 for details.

By considering the approximating random walk we observe some interesting further conse-
quences. Firstly, we note that the above six random times have the same distribution conditional
on σ , and so the pairs

(
−→
G,
←−
G), (

−→
F ,
←−
F ), (N+, N−)

have the same distribution with exchangeable components. The corresponding transform (under
the assumptions of Proposition 1) can be obtained in a similar way as above:

Ee−s
−→
F −t←−F = Ee−s

−→
F −t τ̂I = Ee−s

−→
F +�(t)X∞ = ψ ′(0)�(s)−�(t)

s − t
using (2) and the explicit form of the Wiener–Hopf factor corresponding to the infimum; see,
e.g. [6, Theorem VII.4(ii)]. Taking t ↑ s, we obtain Ee−sσ = ψ ′(0)�′(s) confirming the result
of [8].

Finally, another result by Sparre Andersen [3], see also [9, Theorem XII.8.3], states that the
time of the maximum of a random walk ‘conditioned’ to hit 0 at its terminal time, cf. Brownian
bridge, has a uniform distribution. This is a simple consequence of cyclical rearrangements
of increments. In our setting the cyclical rearrangement argument shows that our six random
times have a uniform distribution on [0, σ ], i.e.

P(
−→
F ∈ dx | σ = t) = 1

t
1{x∈[0,t]}dx, t > 0.

This result complements well-known uniform laws for Lévy bridges [7], [10] stemming from
the same result of Sparre Andersen; see also [1] and [11] for an extension of the cyclical
rearrangement idea. In general, however, we have to assume that X is a Lévy process with
distinct extrema conditioned on {Xσ = 0}.

3. Random walk

Consider a random walk Si =∑i
j=1 ζj for i = 0, . . . , n, where ζ1, . . . , ζn be independent

and identically distributed random variables. Let us condition this random walk on the (positive
probability) event {Sn ∈ B} for some Borel set B; later we will take B = R and B = [0,∞).
Let σ = max{i ≤ n : Si ≤ 0} be the last time of Si in the nonpositive half-line. Also let
S = min{Si : i ≤ σ }, S = max{Si : i ≤ σ }, and define the following eight quantities:

N− =
σ∑
i=1

1{Si≤0}, N+ =
σ∑
i=1

1{Si≥0},

Ñ− =
σ−1∑
i=0

1{Si≤Sσ }, Ñ+ =
σ−1∑
i=0

1{Si≥Sσ },

−→
F = max{i ≤ σ : Si = S}, −→

G = max{i ≤ σ : Si = S},
←−
F = σ −min{i ≤ σ : Si = S}, ←−

G = σ −min{i ≤ σ : Si = S};

see Figure 2. Moreover, we define a process Ŝi , i = 0, . . . , σ by Ŝi = Sσ −Sσ−i , which is just
−S time reversed at σ .
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Figure 2: A realization of a random walk S and the corresponding random times.

Proposition 3. For a random walk Si, i = 0, . . . , n conditioned on {Sn ∈ B}, it holds that

• Ŝ has the law of S considered up to σ ;

• N−, Ñ+,
−→
F , and

←−
G have the same distribution;

• N+, Ñ−,
←−
F , and

−→
G have the same distribution.

Proof. For fixed k = 0, . . . , n consider an event {σ = k} = {Sk ≤ 0, Si > 0 for all k <
i ≤ n} (assuming it has a positive probability). Note that on the event {σ = k, Sn ∈ B} the
sequences ζ1, . . . , ζk and ζk, . . . , ζ1 have the same law, and so Si, i = 0, . . . , k and Ŝi , i =
0, . . . , k have the same laws. Now the first statement follows by conditioning on σ .

From the law equivalence of S and Ŝ, we obtain

N− d= Ñ+, N+ d= Ñ−, −→
F

d=←−G, ←−
F

d= −→G,
which is easily understood from Figure 2. More precisely, observe that Si ≥ Sσ is the same
as 0 ≥ Sσ − Si = Ŝσ−i and so Ñ+ = ∑σ−1

i=0 1{Ŝσ−i≤0} =
∑σ
i=11{Ŝi≤0}. This proves the first

equality, and the second follows similarly. Also

←−
G = max{σ − i ∈ [0, σ ] : Si = S}
= max{j ∈ [0, σ ] : Sσ − Sσ−j = Sσ − S}
= max{j ∈ [0, σ ] : Ŝj = min{Ŝi : i ≤ σ }}.

This proves the third statement and the fourth follows similarly.
Next, note that ζ1, . . . , ζn conditioned on the event {Sn ∈ B} are exchangeable random

variables. Thus, it follows from the Sparre Andresen identity, see [9, Theorem XII.8.2], that
N− and

−→
F have the same distribution (note that in their definitions σ can be replaced by n).

Moreover, ζ1, . . . , ζk conditioned on the event {σ = k, Sn ∈ B} are exchangeable random
variables. Thus, on this event N+ and

−→
G have the same distribution, which by conditioning

also holds on the event {Sn ∈ B}. �
Corollary 1. Assume that P(Sσ = 0) > 0, then on the event {Sσ = 0} it holds that N−, N+,−→
F ,
←−
F ,
−→
G , and

←−
G have the same distribution.

Proof. The above proof requires only a small modification: we need to condition on {σ = k}
in the proof ofN− d= −→F . Finally, it follows thatN− = Ñ− andN+ = Ñ+, showing that there
is a single distribution. �
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4. Lévy process

Extension of Proposition 3 to the case of a Lévy process is standard, and hence only a sketch
of it is presented in this paper. Consider a general Lévy processX, and without loss of generality
assume that T = 1. Define σ = sup{t ∈ [0, T ] : Xt ≤ 0} and the corresponding time reversed
process by

X̂t = Xσ− −X(σ−t)−, t ∈ [0, σ ),
where Xt− denotes the left limit of X at t . Define the random times as in Section 1 and in
addition put

Ñ− =
∫ σ

0
1{Xt≤Xσ−}dt, Ñ+ =

∫ σ

0
1{Xt≥Xσ−}dt.

Consider a sequence of random walks S(n), defined by S(n)i = Xi/n, i = 0, . . . , n, and the
corresponding sequence of continuous approximationsX(n) ofX, where points (i/n,Xi/n), i =
0, . . . , n are connected by line segments (the appropriate topology is M1; see [13, Chapter
3.3]). This setup and the law equivalence of Ŝ and S readily show that X̂ has the same law as
Xt, t ∈ [0, σ ). Alternatively, this result can be obtained using Nagasawa’s time reversal theory
for Markov processes [12].

Finally, we need to show that n−1N(n)− (corresponding to S(n)) converges to N− (corre-
sponding to X) a.s., and the same for the other quantities. The case of a compound Poisson
process is rather obvious, but requires us to use another definition of

←−
F and

←−
G :

←−
F = σ −min{t ∈ [0, σ ) : Xt = XT },

←−
G = σ −min{t ∈ [0, σ ) : Xt = Xσ−}.

Now suppose that X is not a compound Poisson process. Then
∫ σ

0 1{Xt=0}dt = 0 a.s, see [6,
Proposition I.15], and then also

∫ σ
0 1{Xt=Xσ−}dt = 0 a.s., because of the law equivalence of X

and X̂. In addition, local extrema of X are all distinct; see [6, Proposition VI.4]. Now the
convergence of the scaled times for random walks to their Lévy counterparts is clear; see also
the proof of [6, Lemma VI.15] where an extension of the Sparre Andersen identity to the Lévy
process case was presented.

In conclusion,N−, Ñ+,
−→
F , and

←−
G have the same distribution, and the same is true forN+,

Ñ−,
←−
F , and

−→
G . Moreover, Proposition 1 follows from Proposition 2, and the latter follows

immediately from the general result, by noting thatXσ− = 0 and, thus,N− = Ñ−, N+ = Ñ+.
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