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Some oceanic and atmospheric flows may be modelled as equivalent-barotropic
systems, in which the horizontal fluid velocity varies in magnitude at different vertical
levels while keeping the same direction. The governing equations at a specific level
are identical to those of a homogeneous flow over an equivalent depth, determined
by a pre-defined vertical structure. The idea was proposed by Charney (J. Met.,
vol. 6 (6), 1949, pp. 371–385) for modelling a barotropic atmosphere. More recently,
steady, linear formulations have been used to study oceanic flows. In this paper, the
nonlinear, time-dependent model with variable topography is examined. To include
nonlinear terms, we assume suitable approximations and evaluate the associated error
in the dynamical vorticity equation. The model is solved numerically to investigate
the equivalent-barotropic dynamics in comparison with a purely barotropic flow.
We consider three problems in which the behaviour of homogeneous flows has
been well established either experimentally, analytically or observationally in past
studies. First, the nonlinear evolution of cyclonic vortices around a topographic
seamount is examined. It is found that the vortex drift induced by the mountain is
modified according to the vertical structure of the flow. When the vertical structure is
abrupt, the model effectively isolates the surface flow from both inviscid and viscous
topographic effects (due to the shape of the bottom and Ekman friction, respectively).
Second, the wind-driven flow in a closed basin with variable topography is studied
(for a flat bottom this is the well-known Stommel problem). For a zonally uniform,
negative wind-stress curl in the homogeneous case, a large-scale, anticyclonic gyre is
formed and displaced southward due to topographic effects at the western slope of
the basin. The flow reaches a steady state due to the balance between topographic,
β, wind-stress and bottom friction effects. However, in the equivalent-barotropic
simulations with abrupt vertical structure, such an equilibrium cannot be reached
because the forcing effects at the surface are enhanced, while bottom friction effects
are reduced. As a result, the unsteady flow is decomposed as a set of planetary
waves. A third problem consists of performing simulations of the wind-driven flow
over realistic bottom topography in the Gulf of Mexico. The formation of the so-called
Campeche gyre is explored. It is found that such circulation may be consistent with
the equivalent-barotropic dynamics.
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926 L. Zavala Sansón

1. Introduction
The dynamics of geophysical flows in the oceans and the atmosphere is dominated

by both the Earth’s rotation and fluid stratification (Pedlosky 1987). For sufficiently
slow motions with respect to the rotation period, the flow consists of vertical
columns aligned with local gravity, so the flow is essentially two-dimensional (2-D).
Barotropic models have been used as a first approximation to represent some of
the most paradigmatic oceanic and atmospheric flows, such as the ocean wind-driven
circulation in a closed basin (Stommel 1948), or the β-drift of cyclonic vortices in the
atmosphere (Adem 1956). The motion of a barotropic fluid admits spatial variations
of the solid bottom (Grimshaw, Tang & Broutman 1994). With variable topography
the flow still moves in a columnar fashion, but now under stretching and squeezing
effects as columns transit from deep to shallow regions or vice versa. The dynamics
of geophysical flows may be studied using laboratory experiments with homogeneous
fluids in a rotating container (van Heijst & Clercx 2009). In particular, experiments
with flows over variable topography are often performed to investigate the behaviour
of vortices, jets and quasi-2-D turbulence in rapidly rotating systems (Zavala Sansón
& van Heijst 2014).

A substantial limitation of barotropic dynamics to model geophysical systems is
the stiffness of fluid columns, a characteristic that does not hold for atmospheric
and oceanic flows because of vertical stratification. An intermediate, 2-D barotropic
formulation that mimics the vertical structure of a stratified flow was derived by
Charney (1949) in the atmospheric context. The model consists of assuming a
baroclinic atmosphere whose horizontal motion at different vertical levels varies in
magnitude but not in direction, according to a pre-defined vertical structure. Charney
justified such a strong dynamical constraint by noticing that horizontal isobars and
isotherms in the atmosphere nearly coincide and that large-scale winds maintain
their direction at different heights. The dynamical equations at an intermediate
level (determined by the average of the vertical structure) were shown to have an
approximate form identical to the equations for an ‘equivalent-barotropic’ atmosphere
using the variables at that level. Thus, solving the equivalent-barotropic system was
equivalent to solving the baroclinic flow at the intermediate level.

The concept of an equivalent-barotropic flow was not used in the oceanographic
context until decades later. Killworth (1992) reported that the Antarctic circumpolar
current (ACC) might be approximated as an equivalent-barotropic structure, that is,
a flow whose velocity decreases with depth while maintaining the same direction.
Gille (1995) proposed an exponential structure function ez/z0 , where z is the vertical
direction and z0 a reference e-folding depth. Using a large number of autonomous
mid-depth (900 m) drifters, Gille (2003) confirmed the equivalent-barotropic character
of the ACC with an e-folding depth of 700 m. One of the few other regions where
an equivalent-barotropic structure is documented is in the southern Gulf of Mexico.
Perez-Brunius et al. (2013) measured the surface and deep circulation at the Bay
of Campeche (located at the south-western part of the basin), using surface drifters
and current meter moorings at depths of up to 2000 m during several months. One
of the main circulation features was a semi-permanent cyclonic gyre. By mean of
empirical orthogonal functions, the authors found that the decreasing circulation
at different depths maintained the same direction, approximately, with an estimated
e-folding depth of 650 m. Another example was reported in the Caspian Sea (Ghaffari,
Isachsen & LaCasce 2013).

The equivalent-barotropic approach is based on the large-scale, linear geostrophic
dynamics (Killworth 1992). Consequently, model studies are focused on the steady,
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Nonlinear and time-dependent equivalent-barotropic flows 927

linear problem. Krupitsky et al. (1996) derived a model for a stationary, linear ACC
in the presence of wind forcing and bottom friction. A detailed account of several
linear models to study this oceanic system was reported by LaCasce & Isachsen
(2010). However, nonlinear effects might play an important role in, for instance,
western boundary currents or flows with strong curvature (Hughes & De Cuevas
2001). Also, it is well known that nonlinear effects provide the self-propelling
propagation mechanism of intense vortices and prevent their dispersive decay as
they drift on a β-plane (Sutyrin 1994) or over a topographic slope in laboratory
experiments (Flór & Eames 2002). Regarding the ACC, Hughes (2005) proposed that
nonlinear terms should be taken into account to understand the topographic effects
on the ACC better. That author concluded that the advection of relative vorticity in
the meandering motions of the current is part of the near-surface vorticity balance.

In this paper, a time-dependent, nonlinear formulation of an equivalent-barotropic
flow over bottom topography is analysed. Forcing and dissipative terms are considered
as well. The vertical structure function is exponential, although the model accepts
arbitrary functions subject to some basic conditions. The inclusion of nonlinear effects
necessarily restricts the model validity because the assumption of a pre-defined vertical
structure is incompatible with the quadratic form of advective terms. Nevertheless, the
barotropic assumption is still reasonable when the vertical structure is not abrupt. The
advantages and limitations are discussed.

To test the model, numerical simulations of three flow systems with bottom
topography are performed. In the first example, we explore the behaviour of cyclonic
vortices in the presence of a submarine mountain. The purpose is to examine the
nonlinear vortex drift induced by the topographic feature depending on the vertical
structure of the flow. This problem was studied for a homogeneous flow through
laboratory experiments and simulations by Zavala Sansón, Barbosa Aguiar & van
Heijst (2012). Such experimental observations serve as a reference to evaluate the
modification of nonlinear effects on the translating vortex. The second example is
the wind-driven oceanic flow in a closed basin with topography. It is the classical
Stommel problem (Stommel 1948), but now considering a non-flat bottom and the
equivalent-barotropic dynamics. It is found that the steady balance that characterises
the Stommel problem is not reached when the vertical structure decays rapidly, thus
decreasing the effects of the topography and enhancing the wind forcing. A third
example concerns the wind-driven circulation in the western Gulf of Mexico, which is
simulated by using realistic bottom topography and a simplified, climatological wind
field. We explore the formation of the Campeche cyclone mentioned above under the
equivalent-barotropic dynamics. In contrast to the Stommel problem, we can compare
the results, at least qualitatively, with oceanographic observations.

The paper is organised as follows. In § 2 we revisit the equivalent-barotropic
model and present the nonlinear, time-dependent vorticity equation. Section 3 is
devoted to examining numerical solutions of cyclonic vortices in the presence of a
submerged circular mountain. In § 4 we present simulations of the Stommel problem
with topography. In § 5, the conditions for the formation of the Campeche gyre are
analysed. Finally, in § 6 the results are summarised and discussed.

2. Equivalent-barotropic dynamics

The present derivation follows several steps and assumptions made in previous
studies, mainly those reported by Gille (1995), Krupitsky et al. (1996) and LaCasce
& Isachsen (2010). The aim is to justify the inclusion of the time derivative and
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928 L. Zavala Sansón

nonlinear terms in the vorticity equation and to identify the associated error. Also,
the procedure allows the use of different forms of the vertical structure of the flow
and considers the vertical advection of vorticity.

2.1. Flow with vertical structure
Consider a barotropic flow under the β-plane approximation in a coordinate system
(x, y, z) (with zonal, meridional and vertical directions, respectively). The planetary
vorticity is f = f0 + βy, where f0 is the Coriolis parameter at a reference latitude
(chosen as y = 0), and β its latitudinal variation. The solid bottom is space
dependent, so the fluid depth is h(x, y), which is time independent under the rigid-lid
approximation. The vertical coordinate is z = 0 at the surface and z = −h at the
bottom.

The horizontal velocity v and the pressure p are assumed to have a separable form

v(x, y, z, t)= P(z)vs(x, y, t),
p(x, y, z, t)= P(z)ps(x, y, t),

}
(2.1)

where the subindex s indicates the variables evaluated at the surface and P(z) is the
dimensionless structure function in the vertical direction. The full 3-D velocity vector
is (u, v,w)= (Pus,Pvs,w) with w(x, y, z, t) the vertical component. The function P(z)
is required to satisfy the following conditions:

P(0)= 1
P(z) > 0 for − h 6 z< 0
P(z)= 1 for a homogeneous fluid.

(2.2)

The first condition ensures that the surface values are recovered at z= 0. The second
one avoids flow reversal through the fluid depth, which is a physical but not a
mathematical restriction. The third condition states that a homogeneous flow does not
have a vertical structure.

2.2. Equivalent depth and velocity components
Given P(z), the following vertical scales are calculated

F(x, y)=
∫ 0

−h
P(z) dz, G(x, y)=

∫ 0

−h
P2(z) dz. (2.3a,b)

The vertical average of the vertical structure, F, is defined as the equivalent depth. If
the fluid is homogeneous (P= 1), then both F and G are the same as the fluid depth,
F=G= h.

The fluid is incompressible, so the continuity equation is ∇ · (Pus, Pvs, w) = 0.
Integrating from −h to 0 (using the kinematic conditions at the surface w(0)= 0 and
at the bottom w(−h)= v(−h) · ∇(−h)) yields

∂(Fus)

∂x
+
∂(Fvs)

∂y
= 0. (2.4)

The Leibnitz rule was used to find that the vertical velocity at the bottom is w(−h)=
−vs · ∇F. Continuity (2.4) allows the introduction of a transport function ψ(x, y, t),
such that the surface horizontal velocities are

us =
1
F
∂ψ

∂y
, vs =−

1
F
∂ψ

∂x
. (2.5a,b)
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Nonlinear and time-dependent equivalent-barotropic flows 929

The vertical velocity w can be derived by integrating the continuity equation again,
but now from an arbitrary level z to the surface z= 0 (or, equivalently, from −h to z),

w(x, y, z, t)=
(∫ 0

z
P(z′) dz′

)
∇ · vs. (2.6)

Note that w is separable also: the x, y-dependence is given by the horizontal
divergence of the surface flow, while the z-dependence is given by the integral of
P(z). For a purely barotropic flow with uniform horizontal velocity (u, v) = (us, vs),
the vertical component is linear in z,

w(x, y, z, t)=−z∇ · vs (2.7)

(Zavala Sansón et al. 2012).

2.3. Vertical structure function
To move forward, the form of the vertical structure function is discussed. In oceanic
applications, a suitable model is an exponential function representing a surface flow
that becomes weaker at higher depths. Based on several previous observational studies
of the ACC, Gille (1995) proposed the exponential structure function

P(z)= ez/z0, (2.8)

where the e-folding depth z0 > 0 is a free parameter. This function has been used
in modelling studies of the ACC (Krupitsky et al. 1996; LaCasce & Isachsen 2010).
More recently, the exponential structure was associated with field observations of
vertical profiles in the Gulf of Mexico (Perez-Brunius et al. 2013).

Evidently, the exponential function satisfies conditions (2.2). The vertical
velocity (2.6) is

w(x, y, z, t)= z0(1− P)∇ · vs. (2.9)

Vertical scales in (2.3) are, respectively,

F= z0(1− e−h/z0), G= F
(

1−
F

2z0

)
. (2.10a,b)

The equivalent depth has upper and lower limits

F(x, y)= h(x, y) for z0� h (2.11)
F= z0 for z0� h. (2.12)

The first case corresponds with a purely barotropic fluid. In the second case, the
influence of the topography becomes negligible as the equivalent depth becomes
constant.

Of course, there may be other vertical functions P(z) that satisfy conditions (2.2),
including bottom-intensified flows. Nevertheless, given the relevance of the exponential
structure (2.8) found in previous studies, we shall use it in the rest of the paper and
discuss its limitations for small z0.
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930 L. Zavala Sansón

2.4. Vorticity equation
The dynamical model for inviscid flow with no forcing or dissipation is examined first.
Since the flow is barotropic, it is assumed that the dynamics is well represented by
the evolution equation for the vertical component of the relative vorticity ω= vx− uy,

∂ω

∂t
+ v · ∇ω+∇ · v(ω+ f )+ βv +w

∂ω

∂z
= 0. (2.13)

Note that the vertical advection of vorticity, wωz, is included. The relative vorticity has
the same vertical structure as the horizontal velocities: ω(x, y, z, t) = P(z)ωs(x, y, t).
Substituting the separable form of the variables and the general expression of the
vertical velocity (2.6) gives

P
∂ωs

∂t
+ P2vs · ∇ωs +∇ · vs

[
P2ωs + Pf +

(∫ 0

z
P(z′) dz′

)
∂P
∂z
ωs

]
+ Pβvs = 0. (2.14)

We saw that the integral of the exponential vertical structure is z0(1 − P) and, in
addition, z0Pz = P. Thus, the sum of the first and third terms in the square bracket
is simply Pωs. The remaining terms are

P
∂ωs

∂t
+ P2vs · ∇ωs + P∇ · vs(ωs + f )+ Pβvs = 0. (2.15)

It must be noted, however, that this expression is not consistent because the linear
terms are proportional to P, while nonlinear terms are proportional to P2. Such an
inconsistency only disappears for the homogeneous model, P = 1, and for a linear
model, which does not contain P2 terms.

To circumvent this problem, the structure function may be rewritten as P2
= P −

P(1− P). Substituting in (2.15), integrating in the vertical and dividing over F, gives

∂ωs

∂t
+ vs · ∇ωs +∇ · vs (ωs + f )+ βvs −

(
1−

G
F

)
vs · ∇ωs = 0. (2.16)

Now the inconsistency of the equation is given by the last term proportional to (1−
G/F). The nonlinear, equivalent-barotropic model consists of neglecting the last term
on the basis that 1−G/F is small over the whole domain. This condition occurs when
P→ 1 (or, equivalently, P2

→ P), so that G ≈ F pointwise. Thus, the approximate
model is

∂ωs

∂t
+ vs · ∇ωs +∇ · vs(ωs + f )+ βvs = 0. (2.17)

The goodness of the nonlinear approximation depends on the maximum value of 1−
G/F over the whole domain. Given the maximum depth scale H in the exponential
structure function, the error may be calculated as

max
{

1−
G
F

}
=max

{
F

2z0

}
≡

1
2

(
1− e−H/z0

)
. (2.18)

This quantity varies from 0 (for z0�H in the homogeneous case) to 0.5 (for z0�H,
the smallest equivalent depth). Thus the error is zero for a purely barotropic flow and
up to 50 % in regions with small z0/H.
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Nonlinear and time-dependent equivalent-barotropic flows 931

To close the vorticity equation (2.17) in the vorticity-transport function formulation,
we use the horizontal divergence calculated from (2.4) and the surface velocity
components (2.5), which yields

∂ωs

∂t
+ J

(
ωs + f

F
, ψ

)
= 0, (2.19)

where J is the Jacobian operator. The surface relative vorticity ωs= vsx− usy in terms
of the transport function is

ωs =−
1
F
∇

2ψ +
1

F2
∇F · ∇ψ. (2.20)

The relevance of system (2.19)–(2.20) is that it has the same form as for a
homogeneous fluid with vertically uniform vorticity ωs and depth F. In other words,
the surface vorticity is the same for two different systems: a z-dependent barotropic
flow with vorticity P(z)ωs(x, y, t) and depth h(x, y), and a homogeneous flow with
vorticity ωs(x, y, t) and depth F(x, y). Thus, by solving the homogeneous model
one solves the vertically dependent flow. Hence the name of equivalent barotropic
(Charney 1949).

In a rapidly rotating system, the dominant terms in the vorticity equation are
the linear contributions as the flow moves approximately in geostrophic balance.
Geostrophy implies that

J
(

f
F
, ψ

)
= 0, (2.21)

which states that the flow is restricted to follow the so-called geostrophic contours f /F
because vs · ∇( f /F)= 0. For a homogeneous flow on an f -plane (β = 0, h= h(x, y))
the geostrophic contours are the isolines of topography (Bretherton & Haidvogel 1976;
Zavala Sansón, González-Villanueva & Flores 2010). For a flat bottom on a β-plane
(β 6= 0, h=H constant) such contours are lines of constant latitude.

2.5. Adding forcing and dissipation
To include an external forcing and dissipative effects we introduce suitable
parametrisations for the upper stress due to the wind and for the lower stress due to
bottom friction. Consider the vorticity equation (2.13) but now including Laplacian
viscosity and the curl of the applied stress τ (x, y, z)

∂ω

∂t
+ u · ∇ω+∇ · u(ω+ f )+ βv +w

∂ω

∂z
= ν∇2ω+

1
ρ0
∇×

∂τ

∂z
, (2.22)

where ν is the kinematic viscosity and ρ0 a reference density. The stress may be
divided into two parts, τ = τa − τb, where τa corresponds to the wind stress at the
surface and τb to the lower stress due to the solid bottom.

The effects of the wind stress decay at higher depths, so they are assumed to
have the same vertical structure as the flow, τa = P(z)τs(x, y). The wind stress is
approximated as

1
ρ0
∇×

∂τa

∂z
−→

1
ρ0
∇×

τa

F
=

P
ρ0
∇×

τs

F
, (2.23)
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932 L. Zavala Sansón

which states that the wind curl only affects the upper layer of depth F. This
parametrisation is equivalent to that used in earlier studies (Krupitsky et al. 1996;
LaCasce & Isachsen 2010).

At the lower boundary we assume that the stress is proportional to the bottom
relative vorticity, τb = Rωb, where R is a constant with units of (m s−1). Thus, the
bottom friction term is

1
ρ0
∇×

∂τb

∂z
−→

R
h
ωb =

R
h

P(−h)ωs, (2.24)

where the exponential structure function over the topography is

P(−h)= e−h/z0 = 1−
F
z0
. (2.25)

Parametrisations (2.23) and (2.24) are inserted in the vorticity equation (2.22). Then
we proceed as before, integrating from −h to 0, dividing over F and omitting the
(1−G/F) term,

∂ωs

∂t
+ J

(
ωs + f

F
, ψ

)
= ν∇2ωs +

1
ρ0
∇×

τs

F
− R

(
1
F
−

1
z0

)
ωs. (2.26)

This is the vorticity equation of the equivalent-barotropic dynamics with exponential
P(z), and including forcing and dissipation. The most relevant aspect of the bottom
friction term is the dependence on F and the parameter z0. When z0 � h then
F= h and the linear Ekman friction of the homogeneous model is recovered, −Rωs/h
(Zavala Sansón & van Heijst 2002). More importantly, for shallow F the factor
(1/F − 1/z0) is reduced as z0 decreases (the limit value is 0 as z0 → F, so the
factor never becomes negative). As a consequence, bottom friction becomes less
important when flow motions predominate near the surface. In other words, the
model captures the reduction of frictional effects due to the lower boundary when
the vertical structure decays rapidly (in such cases, of course, one must keep in mind
that the nonlinear model might contain a greater error).

2.6. Numerical scheme
The governing equations are solved in a rectangular grid with a finite differences
code, originally developed by Orlandi and Verzicco for two-dimensional flows (see
e.g. Orlandi & van Heijst (1992)). The nonlinear terms are spatially discretised with
an Arakawa scheme (which avoids the spurious production of energy/enstrophy in the
inviscid limit), and in time with an explicit, third-order Runge–Kutta method. The
viscous terms are treated implicitly with a centred, second-order scheme. van Geffen
included rotational effects and several additional features (van Geffen & Davies 2000).
The code was modified independently by the author to include variable topography
effects by solving the vorticity-transport function equation with a multigrid method
(for a purely 2-D flow, such expression is reduced to the Poisson equation, which is
solved with a fast Fourier transform in the original scheme). By also adding viscous
topographic effects (i.e. Ekman friction), the code has been applied in numerous
studies to simulate the evolution of quasi-2-D vortices and currents in laboratory
experiments (see Zavala Sansón & van Heijst (2014) and references therein). Recently,
an external forcing term was included to simulate experimental observations of
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Fluid system Mountain and vortex Simulations (z0/H)

L= 3 m H = 0.8 m 100 (∼homogeneous)
f0 = 0.42 s−1 Hm = 0.3 m 1
β = 0 Rm = 0.5 m 0.5
ν = 10−6 m2 s−1 ωv = 1.54 s−1 0.25
R= 4.58× 10−4 m s−1 Rv = 0.12 m
τs = 0 (xc, yc)= (0.7071,−0.7071)

TABLE 1. Flow parameters in the simulations of cyclonic vortices in the presence of a
submarine mountain. The spatial resolution is 257 × 257 grid points and the numerical
time step dt= 0.3 s. The rotation period is T = 4π/f0 = 30 s.

continuously forced shear flows (González Vera & Zavala Sansón 2015). Summarising,
the code solves the motion of a homogeneous flow with vertically uniform vorticity
ω and fluid depth h. The equivalent-barotropic equations, equations (2.20) and (2.26),
are solved with the same formulation using the uniform vorticity ωs and the equivalent
depth F. In all examples shown below, there are 257× 257 grid points. The time step
dt is chosen to satisfy a Courant number criterion (Cr <

√
3) to ensure numerical

stability in each specific problem.

3. Vortices around seamounts
In this section, numerical simulations of strong cyclonic vortices in the presence

of a submarine mountain are presented. This problem was selected to illustrate the
modification of nonlinear effects in barotropic flows with a vertical structure, so
the β- and wind-forcing terms are omitted. Laboratory experiments and numerical
simulations of a purely barotropic vortex in the vicinity of a seamount were performed
by Zavala Sansón et al. (2012), so that study serves as a reference to compare with
the present simulations. The essential feature of the problem is that a nonlinear
vortex drifts around the mountain in clockwise direction, i.e. with shallow water to
the right. Also, there is the formation of negative relative vorticity on the mountain
summit due to squeezing effects of fluid columns. The aim here is to illustrate how
the vortex drift is modified according to the vertical structure of the flow when
using the equivalent-barotropic dynamics. Before presenting the results, we describe
first the numerical flow parameters. Afterwards, we present the vortex behaviour in
simulations with different z0-values and illustrations of the vertical velocity field.

3.1. Flow parameters
Table 1 shows the parameters of the fluid system, the topographic mountain and
the initial, cyclonic vortex. Most of the parameters are taken from the barotropic
simulation shown in figures 12 and 13 of Zavala Sansón et al. (2012), which
simulates the experimental observations effectively. The numerical domain is a square
with half-length L {x, y| − L 6 x 6 L, −L 6 y 6 L} and no-slip boundary conditions.
We consider the f -plane approximation, so β = 0 and f = f0 (with the rotation period
T = 4π/f0).

The topographic mountain has an exponential shape centred at the origin, such that
the fluid depth is

h(x, y)=H −Hm exp
[
−
(x2
+ y2)

0.36R2
m

]
, (3.1)
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FIGURE 1. (Colour online) (a) Depth contours of the submarine mountain (3.1). Outer
(inner) contour is 0.75 m (0.525 m); the contour interval is 0.025 m. (b) Normalised
equivalent depth profiles F(x, 0)/H calculated with the e-folding depths z0/H=∞, 1, 0.5
and 0.25. Case z0/H =∞ corresponds to the homogeneous flow with F(x, y)= h(x, y).

where H is the maximum depth (away from the mountain), Hm the height of the
topography and Rm its radial scale. Figure 1(a) shows the circular topography contours.
In the absence of β, the h-contours have the same shape as the geostrophic contours,
f0/h. The equivalent depth F is calculated with (2.3). Four equivalent-barotropic
simulations with different non-dimensional e-folding depths z0/H are performed:
z0/H � 1 (corresponding to the homogeneous case), 1, 0.5 and 0.25. Figure 1(b)
presents the corresponding F(x, 0) profiles across the mountain. Note that the
equivalent depth field gives a smoothed mountain in a shallower fluid layer as
z0 is reduced.

Bottom friction is determined by the Ekman pumping/blowing condition at the
lower boundary layer with thickness δE= (2ν/f0)

1/2
≈ 0.0022 mm. For a homogeneous

model, the main contribution of Ekman friction is a linear term −δE f0ω/(2h)≡−Rω/h
(Zavala Sansón & van Heijst 2002), so the friction coefficient is R= δE f0/2.

The initial condition is a well-known cyclonic vortex with azimuthal velocity profile
(van Heijst & Clercx 2009)

V(r)=
ωvR2

v

2r

[
1− exp(−r2/R2

v)
]
, (3.2)

where r2
= (x− xc)

2
+ (y− yc)

2 with (xc, yc) the vortex initial position; ωv is the initial
peak vorticity and Rv its radial scale. The velocity decays as 1/r at long distances.
The initial Rossby number is V(Rv)/( f0Rv) = 1.1, but after one rotation period, the
structure is adjusted in a more geostrophic regime. The vortex initial position is close
enough to the mountain so the topographic effects are important, and far enough from
the lateral walls so the influence of the walls is negligible.

3.2. Vortex evolution
The behaviour of a homogeneous vortex (z0/H � 1) is examined first. Figure 2(a)
shows the relative vorticity field and vortex trajectory at time t/T = 31.5. The vortex
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FIGURE 2. (Colour online) Relative vorticity fields numerically calculated at t/T = 31.5
in four simulations of vortices around a seamount: (a) z0/H = ∞ (homogeneous flow),
(b) z0/H= 1, (c) z0/H= 0.5, (d) z0/H= 0.25. The vortex parameters and initial positions
(indicated with a black circle) are the same in all cases (see table 1). Vorticity values are
normalised with the initial peak vorticity ωv . The trajectory of the maximum vorticity at
the vortex centre is shown every 0.15 T . White circles are F-contours with outer (inner)
values of: (a) 0.74 m (0.515 m), (b) 0.49 m (0.39 m), (c) 0.29 m (0.34 m), (d) 0.19 m.
In all cases the contour interval is 0.025 m.

drifts almost two turns around the mountain, and there is the formation of negative
vorticity on top of the topography (a secondary result is the formation of a weaker
cyclonic patch at the upper-left part of the panel that is generated at the beginning of
the simulations when fluid over the mountain is displaced downhill, acquiring positive
vorticity). This plot can be compared with the simulation presented in figure 13(a)
of Zavala Sansón et al. (2012). The results are not exactly the same because the
parametrisation of bottom friction effects is slightly different (in that study, weakly
nonlinear Ekman effects were included).

Figure 2(b) shows the equivalent-barotropic case with z0/H = 1. The vortex
behaviour can be explained by considering the shape of the equivalent depth F,
as shown in figure 1b). The influence of the smoothed topography implies that now
the vortex drift around the mountain is slower in comparison with the homogeneous
case: the vortex completes less than one turn after the same time lapse. For smaller z0
the vortex drift is progressively shorter, as shown in figure 2(c,d) for z0/H = 0.5 and
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FIGURE 3. (Colour online) Time evolution of normalised (a) total energy and (b) peak
vorticity calculated in the simulations shown in figure 2: z0/H=∞ (lower curves), 1, 0.5
and 0.25.

0.25, respectively. In the latter case, the vortex experiences a very weak influence of
the almost-flat topography F. These results may be thought in terms of the barotropic
flow with vertical structure ez/z0 and depth h. The decay rate of the surface variables
(1/z0) reduces the effects of the bottom topography for smaller z0. In the last example
(z0/H = 0.25), the topography is nearly flat (see figure 1b), so the vortex is barely
influenced by the mountain and therefore is only displaced a short distance from the
original location.

To appreciate the effects of bottom friction in the simulations, we calculate the time
evolution of the total kinetic energy E over the whole volume and the peak vorticity
at the vortex centre. In the (ωs,F) equivalent-barotropic system, the energy (per mass
unit) is E = (1/2)

∫
A

∫ 0
−F(u

2
s + v

2
s ) dz dA where dA is the differential horizontal area.

The quadratic term w2 is considered negligible because it is proportional to (1− P)2.
It is easy to show that

E= 1
2

∫
A
ψωs dA. (3.3)

If the energy is calculated in the (Pωs, h) system the result is the same, with an
error (1 − G/F) multiplied by quadratic terms. Figure 3 presents the time evolution
of the normalised kinetic energy and maximum vorticity in the four simulations.
In both plots, the decay is stronger in the purely barotropic case (z0/H � 1), and
such a behaviour is progressively weaker for smaller z0. The reason is that bottom
friction effects are proportional to (1/F− 1/z0), so they are reduced for flows with a
vertical structure. The flow experiences not only a weaker topographic slope but also
a decreased bottom friction.

3.3. Vertical velocity
Given the horizontal surface solutions (us, vs, 0) it is possible to reconstruct the
3-D velocity field (Pus, Pvs, w) and investigate the vertical characteristics of the
equivalent-barotropic flows. We consider the simulations with z0/H = 1 and 0.5. To
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FIGURE 4. (Colour online) Surface kinetic energy field in two simulations with cyclonic
vortices passing at the left flank of the mountain: (a) z0/H = 1, t/T = 13.5. (b) z0/H =
0.5, t/T = 31.6. The trajectory of the maximum vorticity at the vortex centre is shown
every 0.15T . White circles are F-contours as in figure 2(b,c). The straight line across the
mountain indicates the position of the vertical planes used in figure 5.

make a fair comparison, it is necessary to select specific times at which the vortices
in these cases are in a similar position during their translation around the mountain.
Figure 4 presents the surface kinetic energy field Es= (u2

s + v
2
s )/2 at a time when the

corresponding vortices are located at the left flank of the mountain. Note the kinetic
energy intensification at the side facing the topography. The vortex with z/H = 1
(panel a) drifts at a faster speed and reaches that point at an earlier time than the
vortex with z/H = 0.5 (panel b). In these positions, the vortices generate an intense
flow in the positive y-direction over the mountain. The aim is to compare the vertical
velocity fields on the vertical plane at x = 0, indicated with a straight line in both
panels.

Figure 5 shows the vertical velocity fields calculated in the two simulations.
Consider first the case with z/H = 1. In terms of the barotropic flow with vertical
structure P(z) and depth h, the velocity field is (Pvs, w), shown in figure 5(a). The
flow is intensified as fluid columns are squeezed over the mountain summit. Note the
flow decay with depth due to P(z). The vertical velocity w is given by (2.9). It is
verified that this component is zero at the surface, w(0)= 0, and the flow is tangent
to the bottom topography, according to the boundary condition w(−h)=−P(−h)vshy

(with us∼ 0 at this time). When the problem is thought of as a purely barotropic flow
over the smoothed topography F, the velocity field is (vs, w), shown in figure 5(b).
Now the horizontal component is uniform over the (equivalent) fluid depth, and the
vertical velocity is calculated with (2.7). Recall that both fields have the same surface
velocity component vs. Thus, the effect of the vertical decay in panel a is mimicked
with the smoothed topography in panel (b). Analogous plots of the vertical velocity
fields for the simulation with z/H = 0.5 are shown in figure 5(c,d). The equivalent
fluid system with a depth of F becomes very shallow (panel d).

The vertical structure in the two simulations can be compared with figure 5(a,c).
It is noted that the velocity field decays with depth at a faster rate for smaller z0
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FIGURE 5. (Colour online) Velocity fields on a vertical plane x = 0 over the mountain
(see figure 4). (a,b) z0/H = 1, with maximum speed 0.054 m s−1. (c,d) z0/H = 0.5, with
maximum speed 0.048 m s−1. In (a,c) the vertical velocity is calculated with (2.9), the
depth profile is h(x, y) and the vertical axis −H 6 z 6 0. In (b,d) the vertical velocity is
given by (2.7), the depth profile is F(x, y) and the vertical axis −Fmax 6 z6 0, where Fmax
is the maximum value of the equivalent depth.

(panel c). As a result, the topographic effects of the mountain slopes are reduced, and
the vortex drifts at a slower speed.

4. Wind-driven flow
In this section, the planetary β-effect and wind forcing are addressed. We examine

the evolution of a large-scale, wind-driven oceanic flow in a closed basin with
topography, in which nonlinear effects are secondary. The classical Stommel problem
consists of a single homogeneous fluid layer, subject to a uniform wind stress acting
along the zonal direction in a flat-bottomed, square basin (Stommel 1948). For
steady, linear flow and anticyclonic forcing, the vorticity equation has exact analytical
solutions in which the wind-stress curl, bottom friction and β-effect are balanced.
The solutions consist of a large-scale, anticyclonic gyre covering the whole domain,
intensified at the western boundary (in the Northern Hemisphere).

Numerical simulations of the Stommel problem are performed, but now including
(i) topographic effects due to the continental slopes near the walls of the basin,
and (ii) the vertical structure of the flow according to the equivalent-barotropic
formulation. Salmon (1998) discussed the Stommel problem with topography for a
double-gyre structure in a rectangular domain. The aim of the present simulations
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Fluid system Square basin Simulations (z0/H)

L= 2500 km H = 4000 m 100 (∼homogeneous)
f0 = 10−4 s−1 D= 2450 km 1
β = 2× 10−11 (ms)−1 α = 10 0.5
ν = 0 0.25
R= 4× 10−3 m s−1

τ0 = 0.4 N m−2

TABLE 2. Flow parameters in the simulations of the Stommel problem with topography.
The spatial resolution is 257× 257 grid points and the time step dt= 3600 s.

is to show the modification of single oceanic gyres due to the new dynamical
conditions. We discuss first the flow parameters, the forcing and the topographic
basin. Afterwards, we present the results for the homogeneous case, followed by the
results for equivalent-barotropic flows.

4.1. Flow parameters
Table 2 shows the flow parameters of the system and the topographic basin. The
numerical domain is again a square with half-length L, centred at the origin of a
Cartesian x, y-coordinate system, with the coordinate x (y) along the zonal (latitudinal)
direction. The rotation parameters f0 and β are typical of a mid-latitude ocean.
Laplacian viscosity is omitted, and free-slip boundary conditions are considered.

The topography is a square basin of the form

h(x, y)=H exp
(
−
|x|α + |y|α

Dα

)
, (4.1)

with maximum depth H at the domain centre and slopes near the walls. The steepness
of the slopes depends on the scale D and the exponent α. For the chosen parameters
the topography is nearly flat at the central part of the domain and has abrupt slopes
along the walls, as shown in figure 6(a). Four simulations with different z0/H are
presented: z0/H = 100, 1, 0.5 and 0.25. The corresponding zonal profiles of the
equivalent depth, F(x, 0), are shown in figure 6(b). The deepest curve corresponds
to the homogeneous system with F= h. In the other cases, the equivalent depth is a
shallower basin with less steep slopes (as we saw for the topographic mountain).

The single-gyre solution of the Stommel problem is obtained with a uniform stress
acting along the zonal direction

τs = (τ
x, τ y)=

(
−τ0 cos

[ π

2L
(y+ L)

]
, 0
)
, (4.2)

where τ0 is the stress amplitude. In the numerical code, the curl of the wind stress in
the vorticity equation is written as

1
ρ0
∇×

τs

F
=

1
ρ0

(
1
F
∇× τs +

Fy

F2
τ x

)
(1− e−t/ti). (4.3)

The time-dependent factor at the right-hand side is used to set the flow at rest initially
and then apply the forcing gradually. As time progresses, the wind-stress curl rapidly
reaches a steady state value in a time scale ti = 12 dt (half a day).
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FIGURE 6. (Colour online) (a) Depth contours of the oceanic square basin (4.1). Outer
(inner) contour is 1000 m (3800 m); the contour interval is 400 m. (b) Normalised
equivalent depth profiles F(x, 0)/H calculated with the e-folding depth z0/H =∞, 1, 0.5
and 0.25.

The linear friction coefficient R= δE f0/2 is estimated with a bottom Ekman layer of
approximately 80 m (see previous section). With the chosen combination of forcing
and friction coefficients (τ0,R), the interior flow speed in the homogeneous simulation
varies between 0.01 and 0.03 m s−1, while the intensified western flow is about
0.3 m s−1. For the equivalent-barotropic simulations, the chosen (τ0, R)-values may
lead to unrealistic high speeds because the forcing (topography) effects are enhanced
(inhibited), as shall be discussed below. Despite this, the simulations are useful to
illustrate the effects of changing only the vertical structure of the flow. A different
procedure would be to modify the (τ0, R) pair to obtain similar root-mean-square
(r.m.s.) velocities in experiments with different z0.

4.2. The Stommel problem with topography
The homogeneous case is presented first. Initially, the large-scale, anticyclonic gyre
that characterises the Stommel solution is formed as the forcing is applied. After
approximately 30 days the flow reaches a steady state which, however, is very
different to the traditional Stommel gyre. Figure 7(a) shows the transport function
field at t = 45 days, superposed with the geostrophic f /h contours. Due to the
β-term, the f /h contours are trapezoidal, with the base parallel to the southern
wall. The anticyclonic circulation is strongly deformed and displaced towards the
south-western corner of the domain. The northward flow detaches from the western
boundary and follows the geostrophic contours, indicating that the linear terms
predominate. Figure 8(a) presents the relative vorticity surfaces of the resulting flow,
also superposed with the planetary vorticity contours. The vorticity field shows more
clearly the structure and latitudinal position of the northward flow detached from the
western wall. Besides, as the large-scale gyre acquires its southern latitude, a negative
vorticity strip is formed over the topographic slope, parallel to the wall.
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FIGURE 7. (Colour online) Transport function fields numerically calculated at t =
45 days in four simulations of the Stommel problem: (a) z0/H = ∞ (homogeneous
flow), (b) z0/H = 1, (c) z0/H = 0.5, (d) z0/H = 0.25. The ψ-values are normalised
with ULFmax, where U = [0.04, 0.06, 0.07, 0.12] m s−1 is the r.m.s. velocity and Fmax =

[4000, 2528, 1729, 982] m the maximum equivalent depth. Segmented curves indicate
the normalised ψ-contours [−0.22 : 0.02 : −0.02]. Solid curves are geostrophic contours
( f0+βy)/F(x, y). The minimum contours in the interior are cmin=[0.17,0.25,0.36,0.59]×
10−7 (ms)−1, respectively, with contour interval cmin/5.

The southward displacement of the large-scale circulation is due to the topographic
β-effect associated with the western bottom slope, which favours the tendency of the
gyre to move towards the local ‘western’ direction, that is, to the geographical south.
This result has been discussed previously by other authors in the context of large-scale,
forced circulations (Salmon 1998) or in the context of unforced, mesoscale vortices
over sloping bottom topographies (Grimshaw et al. 1994; Zavala Sansón & van Heijst
2000).

The flow configuration (a steady, large-scale circulation at the southern region of
the domain) is very robust. The persistence of the solutions and its linear character
implies that a new balance occurs in the vorticity equation. Such a balance is between
the topographic, β, forcing and bottom friction terms,

J
(

f0

h
, ψ

)
−
β

h
∂ψ

∂x
=

1
ρ0
∇×

τs

h
−

R
h

(
−

1
h
∇

2ψ +
1
h2
∇h · ∇ψ

)
, (4.4)

where the wind curl is given by (4.3) without the temporal factor. In terms of
ψ , expression (4.4) is a linear, second-order, inhomogeneous (because of the forcing
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FIGURE 8. (Colour online) Relative vorticity fields (divided by f0) and geostrophic
contours in the Stommel problem with topography shown in figure 7.

term) partial differential equation with spatially variable coefficients. For a flat bottom
(h=H constant, ψ/H→ψ) (4.4) is the Stommel balance.

4.3. Equivalent-barotropic cases
Now the numerical solutions for equivalent-barotropic flows are analysed. Figure 7(b–
d) shows the transport function at t = 45 days in three simulations with z0/H = 1,
0.5 and 0.25, respectively. The geostrophic contours f /F are superposed. Note the
different shape of the f /F contours for smaller z0/H. In the interior, the contours are
lines of constant latitude (because the bottom is nearly flat). But near the western
and eastern walls, the contours are confined into a narrower region and become
more parallel to the boundaries. For z0/H = 1 (figure 7b), the large anticyclone
behaves similarly as in the homogeneous example: the gyre drifts southward and
remains steady at southern latitudes. Also, the northward flow at the western slope
detaches from the wall following the geostrophic contours. As z0 is further reduced,
the southward drift of the structure is shorter (figure 7c) or even tends to remain at
the original latitude (figure 7d). The western flow is confined to the vicinity of the
wall, according to the narrower and more latitudinally oriented f /F contours.

The vorticity fields in figure 8 reveal further details of the flow evolution. For
z0/H = 1 (panel b) the western flow is more intense and detaches from the wall at
a more northern latitude in comparison with the homogeneous case. In contrast, for
shallower equivalent depths (panels c,d), the flow is decomposed in meridional bands
with positive and negative vorticity values, characteristic of Rossby waves. The train
of waves travels westward along the f /F isolines located at y≈−1000 km. The phase
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speed is approximately 0.39 m s−1 (estimated by measuring the speed of a wave crest
at the centre of the domain, which travels 850 km in 25 days, approximately). This
number agrees quite well with the phase speed of a westward-travelling Rossby wave
β/k2
≈ 0.37 m s−1, where the wavenumber k is calculated with the wavelength of the

oscillation (850 km).
The results in figures 7 and 8 are explained as follows. For z0/H = 1 (figures 7b

and 8b), the flow behaves in a similar fashion as the homogeneous case because
its vertical structure does not depart dramatically from the uniform structure. Thus,
the large anticyclone drifts southward until reaching a steady state. As for the
homogeneous case, the balance in the vorticity equation is between the topographic,
β, forcing and bottom friction terms

J
(

f0

F
, ψ

)
−
β

F
∂ψ

∂x
=

1
ρ0
∇×

τs

F
− R

(
1
F
−

1
H

)(
−

1
F
∇

2ψ +
1

F2
∇F · ∇ψ

)
. (4.5)

This balance is equivalent to (4.4), but now with coefficients depending on the
derivatives of F, instead of h, and reduced bottom friction.

For z0/H = 0.5 and 0.25 (panels c,d in figures 7 and 8) the solutions behave
differently because of three reasons. First, the influence of the topographic slopes is
greatly reduced due to the vertical structure of these flows. As a result, the southward
drift of the large-scale gyre is inhibited. Second, as F decreases, bottom friction is
also reduced because of the factor (1/F− 1/z0). Lower friction is physically plausible
since the flow motion is weaker near the bottom (due to its vertical decay). Third,
the effects of the wind are enhanced because the forcing term is proportional to 1/F.
Even though the wind stress is the same, the applied force over a shallower layer is
greater than over the whole fluid depth. These three effects impede the flow to reach
a steady balance as in the Stommel problem because the forcing and topographic
terms cannot be balanced with the β term. As a consequence, the anticyclonic gyre
is transformed into a set of planetary waves.

5. The Campeche cyclone

The problem to examine in this section concerns a semi-permanent cyclonic
circulation observed in the Bay of Campeche at the southern Gulf of Mexico.
This feature is often referred to as the Campeche cyclone, and several studies
have documented its surface structure and seasonal occurrence (see e.g. Vázquez
de la Cerda et al. (2005)). This problem is chosen because it is one of the few
oceanic systems (besides the ACC) that presents a barotropic vertical structure,
according to averaged current-meter measurements along the water column reported
by Perez-Brunius et al. (2013). The authors estimated an exponential profile with a
reference depth of z0 = 650 m. Here we explore the generation of the cyclone under
the equivalent-barotropic dynamics.

Figure 9(a) presents the western Gulf of Mexico over an area of 10◦ × 10◦.
The deepest part is approximately 4000 m. The Bay of Campeche is located at
the southernmost part, approximately between [98 ◦W, 91 ◦W] and [18 ◦N, 22 ◦N]. The
panel also presents the mean surface velocity in a regular grid with resolution of 0.25◦.
The field was interpolated from the velocity records of 441 surface drifters released in
the Bay of Campeche between September 2007 and August 2014 (Perez-Brunius et al.
2013; Zavala Sansón, Pérez-Brunius & Sheinbaum 2017). The climatological signature
of the Campeche cyclone is the elongated structure along the NW–SE direction at the
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FIGURE 9. (Colour online) (a) Velocity field in the western Gulf of Mexico calculated
from the velocity records of 441 surface drifters during a 7 year period (see text).
Maximum velocity is 0.36 m s−1. (b) Kinetic energy in each geographical bin (i, j),
normalised with the mean value of all records Emean=0.0629 m2 s−2. Topography contours
(0, 200, 500, 1500, 2500 and 3500 m) are denoted with thin black lines.

south-western part of the bay. Note that there are no data over the shallow Yucatan
shelf to the east, because the circulation is strongly constrained by the shelf break
that starts at about 200 m (shallowest contour). Figure 9(b) shows the kinetic energy
field normalised with the mean value of the whole velocity records. The highest
values correspond to the cyclone at the south, the northern region and the western
margins. Further details of these and other Lagrangian measurements are reported in
Zavala Sansón et al. (2017) and Zavala Sansón, Sheinbaum & Pérez-Brunius (2018).

The causes that generate the cyclone are still open to debate. The most likely
candidates are the wind forcing (Gutiérrez de Velasco & Winant 1996; Vázquez
de la Cerda et al. 2005), eddy-driven vorticity fluxes (Ohlmann et al. 2001) and
the confinement effect of the topography (Perez-Brunius et al. 2013). The present
analysis consists of performing equivalent-barotropic simulations of the wind-driven
flow with realistic topography. By using different values of the reference depth z0,
the possible formation of the Campeche cyclone is explored.

5.1. Flow parameters
Table 3 summarises the main parameters. The side length of the square domain is
2L = 1120 km, which approximately corresponds to the 10◦ × 10◦ area shown in
figure 9 [98–88 ◦W, 18–28 ◦N]. The depth field is linearly interpolated and smoothed
from a 5′ bathymetric map into a 257× 257 regular grid, so the spatial resolution is
about 4.4 km. Over the continental shelves (between the shelf break at the 200 m
contour and the coast), the vorticity-transport function equation cannot be solved
because the fluid depth becomes very small. To circumvent this problem, h is set to
a constant value of 200 m, the forcing is null, and the bottom friction is increased a
factor of 100 in coastal regions. This procedure prevents unrealistically high velocities
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Fluid system Topography Simulations (z0)

L= 560 km Hmax = 3800 m 1010 m (∼homogeneous)
f0 = 5.7× 10−5 s−1 Hmin = 200 m 4000 m
β = 2× 10−11 (ms)−1 2000 m
ν = 100 m2 s−1 1000 m
R= 1× 10−3 m s−1 650 m
τ0 = 0.04 N m−2

TABLE 3. Flow parameters in the simulations of the wind-driven flow in the Gulf of
Mexico. The spatial resolution is 257 × 257 grid points and the time step dt = 3600 s.
The Coriolis parameter is calculated at 23 ◦N.

over the shelf and maintains numerical stability, to the cost of underestimating the
flow over shallow waters. Thus, the primary interest is focused on solving the flow
over deep regions (h > 200 m), where the dominant structures are formed, which is
also justified by considering that the exchange between deep and shallow waters is
rather weak (as shown in figure 9). On land, the transport function is prescribed to be
zero. The lateral boundaries are free slip (part of the northern and eastern walls). The
bottom friction coefficient, R, is the average value used in some of the simulations
by LaCasce & Isachsen (2010).

The wind stress is steady, zonally uniform and directed westward. The latitudinal
profile is taken as a simple sine function

τs = (τ
x, τ y)=

(
−τ0 sin

[ π

2L
(y+ L)

]
, 0
)
. (5.1)

The flow starts from rest and the external forcing is gradually applied (as in expression
(4.3)). The wind jet is maximum at 23◦, the centre of the domain, so the southern
(northern) region has a positive (negative) wind-stress curl. This structure and its
magnitude τ0 are a simplified description of the climatological winds described by
Gutiérrez de Velasco & Winant (1996). The existence of a positive curl at the south
suggests that the wind may promote the formation of the Campeche cyclone, as we
shall see below.

5.2. Conditions for the cyclone formation
To determine whether the Campeche cyclone is formed under the equivalent-barotropic
dynamics, we start with four simulations with z0 given in the third column of table 3.
Figure 10 presents the transport function and the velocity fields at t= 90 days, a time
at which the flow has reached a more or less steady state. Note that these examples are
analogous to the experiments discussed in previous subsections: the first panel is the
result for a homogeneous ocean (z0→∞), while the reference depth is progressively
smaller in subsequent panels. In the first two cases (a,b) there is the development of
an anticyclonic circulation that covers most of the gulf along the geostrophic contours
f /F. This circulation is due to the negative wind-stress curl over the northern area
of the domain. The quasi-homogeneous case (z0 = 4000 m, panel b) is more intense
because the effects of the forcing are increased whilst those of the bottom friction
are decreased, as we saw in previous examples (maximum speeds are shown in the
figure caption). These results suggest that the applied forcing is not able to generate
a cyclone in the Bay of Campeche when the vertical profile is almost uniform. As
z0 is further reduced to 2000 and 1000 m (panels c,d), the geostrophic contours are
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FIGURE 10. (Colour online) Transport function field at t = 90 days in four simulations
of the wind-driven flow in the Gulf of Mexico: (a) z0/H = ∞, (b) z0 = 4000 m,
(c) z0 = 2000 m, (d) z0 = 1000 m. The flow parameters are given in table 3. The
r.m.s. speed in each panel is U = [0.002, 0.003, 0.005, 0.012] m s−1, and the maximum
equivalent depth Fmax = [3800, 2453, 1701, 978] m. Maximum speeds are Umax =

[0.106, 0.121, 0.140, 0.153] m s−1. Grey arrows at the eastern side represent the westward
wind stress. Black lines indicate the coast and the 200 m isobath. White curves are the
( f0 + βy)/F(x, y) contours: small contour values at deep regions are [5.362 : 0.1703 :
6.383] × 10−8 (ms)−1; large contour values (near the 200 m isobath) are [6.55 : 1.703 :
13.36] × 10−8 (ms)−1.

closed and shifted southward. Inside these contours, a cyclonic circulation is generated
under 22 ◦N (panel d). This is a strong indication that a cyclonic circulation may
be generated in the Bay of Campeche when the reference depth is of the order of
1000 m.

Now we can examine a simulation with the reference depth of 650 m estimated
in the observations of Perez-Brunius et al. (2013). Figure 11(a) shows the transport
function and the velocity field superposed with the topography contours. The result
is a cyclonic vortex in the Bay of Campeche, which is very similar to the observed
structure presented in figure 9(a). The maximum speed measured in the numerical
cyclone is 0.142 m s−1, which is somewhat weaker than the maximum value in the
observations (0.36 m s−1). In figure 11(b) we plot the same dynamical field but now
in a subdomain that encloses the Bay of Campeche, superposed with the velocity
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FIGURE 11. (Colour online) Transport function field at t= 90 days in the Gulf of Mexico
with z0= 650 m. (a) Whole domain as in figure 10. The r.m.s. speed is U= 0.021 m s−1,
and the maximum equivalent depth Fmax = 640 m. Topography contours (0, 200, 500,
1500, 2500 and 3500 m) are denoted with thin white lines. (b) Transport function and
velocity field over the Bay of Campeche. Maximum speed is Umax = 0.124 m s−1. White
lines indicate the geostrophic contours ( f0 + βy)/F(x, y) shown in Perez-Brunius et al.
(2013):[(7.8 : 0.1 : 8.5), 9.5] × 10−8 (ms)−1. Black lines indicate the coast and the 200 m
isobath.

field and the geostrophic contours f /F. The shape of the contours explains the
position reached by the numerical cyclone, as the resulting flow tends to follow these
isolines. Thus, the simulations support the generation of the Campeche cyclone due
to the positive wind-stress curl at the southern part of the Gulf of Mexico. Moreover,
the structure is topographically confined according to the shape of the geostrophic
contours.

6. Summary and discussion
We discussed the derivation and the limitations of the equivalent-barotropic

dynamics for rotating flows over variable topography. Then, the governing equations
were numerically solved in three different problems. The advantages and shortcomings
of the formulation and the applications are discussed separately.

6.1. The model
The main feature addressed in this paper is the consideration of time-dependent,
nonlinear, barotropic flows with vertical structure P(z) and variable depth h(x, y)
due to bottom topography. This approach is in contrast with oceanic models used
in previous studies of the ACC, which are linear and time independent (Gille 1995;
Krupitsky et al. 1996; LaCasce & Isachsen 2010). Those formulations were justified
according to the scales of motion of the problem and, certainly, they provided valuable
information. Here, we discussed the equivalent-barotropic dynamics of nonlinear flows
in laboratory scales and the time evolution of oceanic, wind-driven gyres.

The flow evolution is governed by (2.19)–(2.20) for inviscid, unforced systems
with surface relative vorticity ωs and transport function ψ . The vorticity equation
with forcing and dissipation is (2.26). The dynamical model is identical to that of a
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homogeneous flow with uniform vorticity ωs over a depth field F(x, y), which is the
concept of an equivalent-barotropic system (Charney 1949; Killworth 1992). Such idea
relies on the assumption of steady, geostrophic flow at every vertical level (Killworth
1992). Therefore the nonlinear model must be regarded as an approximation because
the separable form of the variables (2.1) is not consistent with the advective terms
in the original vorticity equation (2.13). The mathematical consistency is subject to
the smallness of the maximum error (2.18) introduced in the vertically integrated
dynamical equation. Thus, the approximation requires weak vertical structures P(z)
such that 1−G/F be small pointwise. The nonlinear model derived by Charney (1949)
dealt with the same problem. Charney considered a barotropic atmosphere defined
by a pressure-dependent vertical structure A(p). The resulting vorticity equation was
equivalent to (2.16) but applied at an intermediate level instead of the surface (and
using a tendency equation for the horizontal divergence). The factor multiplying the
nonlinear terms was a function K=

∫
A2 dp/

∫
A dp equivalent to G/F. Then, Charney

assumed K ≈ 1 according to available observations and argued that the error should
be small.

In the numerical examples, we used the vertical structure P(z)= ez/z0 (Gille 1995),
but different functions may be considered as long as they satisfy the conditions
(2.2). In addition, it would be required to examine the vorticity equation, as we
did for the exponential function. The critical term is the vertical advection wωz,
which involves both the integral and the derivative of P(z), as shown by (2.14). The
consistency of the model depends on the combination of this term and the advective
and stretching P2 terms. The selection of an appropriate P(z) also depends on the
vertical structure observed in a real system. The exponential profile has been reported
in several studies, as discussed above, but the inaccuracy of field observations opens
the possibility to consider other vertical structures. Therefore further investigations
with different functions may be worthwhile in future studies.

Simplified parametrisations were used to include forcing and dissipation terms in
the vorticity equation (2.26). For instance, turbulent viscous effects are chosen as a
standard Laplacian term, and bottom friction is proportional to the relative vorticity,
equivalent to linear Ekman friction (Zavala Sansón & van Heijst 2002). The wind
stress is the same as that used in previous studies (Krupitsky et al. 1996; LaCasce &
Isachsen 2010). The parametrisations capture two physical effects that are expected
when using a shallow equivalent depth F. First, the transfer of momentum due to
the forcing term is increased with respect to the homogeneous case, because now
the wind-stress acts over a shallower fluid layer. Second, the bottom friction term
is reduced because the bottom stress is less effective over the moving fluid near
the surface. The combination of these two effects implies that a stratified flow will
experience a greater forcing at the surface and reduced bottom friction so that the
resulting horizontal flow will be more energetic.

6.2. The simulations
To examine the equivalent-barotropic dynamics over variable topography, we studied
numerically three problems that illustrate the role of nonlinear effects and the long-
term behaviour of time-dependent flows. The simulations included two well-validated
limits: a purely barotropic flow with topography (when the reference depth z0→∞)
and a nearly 2-D flow (as z0 becomes small and the topography is smoothed out). It
is inferred that if the model reproduces well these two limiting dynamics, then the
intermediate cases illustrate the effects of the vertical structure (with the assumption
that the flow remains barotropic).
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First, the topographically induced drift of a cyclonic vortex around a seamount was
studied. This example was chosen because it is highly nonlinear. There is no external
forcing, and bottom friction effects play a secondary role. In the homogeneous case,
a vigorous vortex turns around the mountain in the clockwise sense, while a patch
of negative vorticity is formed on the summit due to squeezing effects (Zavala
Sansón et al. 2012). When the flow has a vertical structure, the equivalent depth is
progressively smoothed as the parameter z0/H decreases. As a result, the revolutions
of the vortex around the mountain are reduced because the topographic influence
is also reduced. For the shallowest F, the vortex barely drifted. Thus, the model
effectively isolates the upper flow region from topographic effects, as expected for a
stratified flow.

The second example concerned the Stommel problem with topography, which
consists of wind-driven flow on a β-plane, enclosed in a basin with variable
topography and bottom friction. The flow is mostly linear, and the aim was to
observe the long-term configuration for different z0/H values. Starting from rest, the
flow evolves towards a large-scale anticyclonic gyre (according to the uniform, zonal
wind with negative curl), intensified at the western wall, as in the classical Stommel
problem over a flat bottom. For a homogeneous system, the flow tends towards a
steady state in which the β-effect, the wind-stress curl, the linear friction and the
topographic terms are balanced in the vorticity equation. The difference with the
Stommel problem is that the large anticyclonic circulation is shifted southward along
the western wall, due to the influence of the topographic slope (Salmon 1998). When
using a shallower equivalent depth F, the southward shift of the gyre is reduced
because the topographic effect is also reduced. For even shallower F, the large-scale
circulation is decomposed as Rossby waves travelling in the zonal direction. Also,
the bottom friction is reduced, making the Stommel balance impossible to achieve.
As a consequence, the flow becomes unsteady as planetary waves are radiated.

Several aspects of the Stommel problem may be further investigated to determine
the relevance of the topographic variations against the thickness of the upper active
region. For instance, the flow detachment from the western boundary along the
f /F contours, and the shape of the bottom topography with either closed or open
geostrophic contours, are relevant issues for the flow dynamics (LaCasce & Isachsen
2010). Also, details of the generated Rossby waves remain to be understood, such as
the latitude of propagation. The results are part of a different study to be published
somewhere else.

Finally, we examined the formation of the Campeche cyclone in the southern
Gulf of Mexico (Vázquez de la Cerda et al. 2005; Perez-Brunius et al. 2013). The
simulations were simplified in the sense that (i) bottom topography is realistic though
smoothed and (ii) the applied wind-stress curl is uniform over the domain, having a
similar distribution and magnitude as the climatological values (Gutiérrez de Velasco
& Winant 1996). When the flow is barotropic (or nearly), the dominant circulation
was a large-scale anticyclonic cell over most of the region. In other words, the
applied forcing was unable to generate a cyclonic structure at the southern part, even
though the wind-stress curl is positive over this region. In contrast, as the reference
depth z0 was reduced, the formation of a cyclone became evident. Moreover, when
using z0= 650 m, as proposed by Perez-Brunius et al. (2013), the resemblance of the
cyclonic vortex with the Campeche cyclone was remarkable. Our main conclusion is
that the formation of a topographically confined, positive circulation over the Bay of
Campeche is compatible with the equivalent-barotropic dynamics.

It is emphasised that the present simulations are not intended to reproduce
observational data, but rather to shed light on the physical mechanisms that promote
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the formation of an oceanic structure, whose origins to this day are not well
understood. A more detailed analysis would be required to examine the influence
of the forcing function (by considering spatial variations, small-scale perturbations,
climatological values, etc.), the size of the numerical domain, the resolution of the
bottom topography and, above all, the influence of realistic stratification.
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