Probability in the Engineering and Informational Sciencgg 2003 545-569 Printed in the US.A.

A GENERALIZED CONVERGENCE
RESULT FOR THE GRAPH-BASED
ANT SYSTEM METAHEURISTIC

WALTER J. GUTJAHR

Department of Statistics and Decision Support Systems
University of Vienna
Vienna, Austria
E-mail: walter.gutiahr@univie.ac.at

It is shown that on fairly weak conditionthe current solutions of a metaheuristic
following the ant colony optimization paradigitine graph-based ant systeocon-
verge with a probability that can be made arbitrarily close to unity to one element of
the set of optimal solution3 he result generalizes a previous result by removing the
very restrictive condition that both the optimal solution and its encoding are unique
(this generalization makes the proof distinctly more difficahd by allowing a
wide class of implementation variants in the first phase of the algoritinthis way

the range of application of the convergence result is considerably extended

1. INTRODUCTION

Modern information—technological systems get more and more complash cre-
ates an urgent demand for efficient heuristics for solving search and optimization
problemsHeuristics tailored to the solution of particular problems are required
there is also a growing interest into so-calledtaheuristicghat promise to be
applicable after suitable specificationto large classes of different problem types
It is not surprising that some of these metaheuristics are inspirethtwe since
natural evolution processes can be considdreth a certain point of vieyas mech-
anisms constantly adapting and improving the functionalityerfy complex(bio-
logical) systems

A well-established paradigm within the class of nature-inspired metaheuristics
is that ofgenetic algorithmg$16,18]. Recently also another paradigm within this
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class has found considerable attentitveant colony optimization approachtro-
duced in 1991 by DorigdVlaniezzq and Colorn{4,7], this approach has developed
in the meantime into a powerfujeneraland efficient metaheuristic with applica-
tions in various fieldgseeg e.g., [5,6,17]). In particular the whole range of solving
combinatorial optimization problems heuristically can be covered by this meta-
heuristic A feature making it especially attractive is that it is well suited for imple-
mentations on parallel or distributed systef3$, performing well already on
single-processor systems

Whenever a heuristic algorithm for an optimization problem allows the invest-
ment of an arbitrary amount of computation tinmaproving the current solution as
more computation time is spemne wishes to know what is likely to happen in the
long run Will the current solution get closer and closer to an optimal solutiois
it possible that there will always remain a gap to the optimum? For a prominent
metaheuristic inspired by physical processasulated annealingSA), it has been
shown that the probability distribution of the current solution converges to the uni-
form distribution on the set of optimal solutio(eeee.g.,[1,12,15]). Similar results
would be desirable for other metaheuristics

In[13], a first step toward a convergence result for the ant colony optimization
approach has been achievetbr a special metaheuristic algorithm of this type
graph-based ant systernovering the range of static combinatorial optimization
problemsit has been shown that on four particular conditiéwsich will be out-
lined here at the beginning of Section, 3he current solutions converge with a
probability that can be made arbitrarily close to one to the optimal soluTibis
convergence result is weaker than that for(@&ere convergence holds with prob-
ability 1), but the more serious drawback lies in one of the conditions which requires
not only that there is a unique optimal solutibuit even that this solution is encoded
within the framework in a unique wajn many applicationsthis cannot be guar-
anteedThus it seems highly desirable to remove or at least to relax the uniqueness
condition

As it turns ouf howeverthis is not easy at allWe will show that the uniqueness
conditioncanbe totally droppegbut at the price of making the convergence proof
considerably more involved/oreover we will relax another of the four conditions
of the result in[13], requiring a specific parameter update stratég will show
that the result remains valid if this strategy is applied at least in the final phase of the
algorithm after a phase where the update mechanism can be chosen arbitrarily within
the given frameworkincluding for example the rank-based variant suggested in
[2]. Contrary to the removal of the uniqueness conditthis second generalization
causes no serious difficulties

The rest of the article is organized as follovis Section 2 we present our
formal framework the graph-based ant systeand illustrate the relevance of the
uniqueness condition by a concrete examg@lection 3 contains the mathematical
result and its progfwhich is performed with the help of seven lemmE&mally,
Section 4 contains some short concluding remarks
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2. THE ALGORITHM

The description of our general algoriththe graph-based ant systé@®BAS), fol-
lows closely the presentationih3]. The reader should be awat®mweverof some
extensions in the definitions

The graph-based ant system is based on the representation of a feasible solution
of a combinatorial optimization problem as a walk in a directed grapirch we call
the “construction graph

DEerFINITION 2.1: Let an instance of a combinatorial optimization problem be given.
By aconstruction grapfor this instance, we understand a directed graph (V, A)
together with a functio® with the following properties:

1. InC, a unique node is marked as the so-cal&drt node
2. Let W be the set of (directed) walks w i satisfying the following
conditions:
(i) w starts at the start node @f.
(i) w contains each node @f at most once.
(iif) The last node on w has no successor nodé€ that is not already con-
tained in w (i.e., w cannot be extended without violating (ii)).

Then,® maps the setV onto a setS of solutions of the given problem instance
containing all feasible solutions. In other words, to each walk w satisfying (i)—(iii),
there corresponds (vid®) a solution inS, and to each solution it§ (in particular, to
each feasible solution), there corresponds (#ia') at least one walk satisfying
(D)—(iii).

As can be seen from this definitipa construction grapliC, ®) specifies a
particular encoding of the solutions as “walkEhe objective function value of the
walk is set equal to the objective function value of the corresponding solution of the
original problem if this solution is feasihland to infinity otherwiseWe assume
throughout that the optimization problem under consideration is formulated as a
minimizationproblem that is the objective function represerdssts Usually there
are several ways to design a construction graph for a given combinatorial optimiza-
tion problem a standard way is outlined [A3].

Let us now describe the GBAS as an extension of the Ant Sypten8]. The
GBAS contains the following components

1. Aconstruction grapiiC, ®) according to Definition 2.

2. AsetA,,..., Asof agentst Each agent performs a random walk with certain
transition probabilitiegsee component)3n the construction graphn a
multiprocessor systenthe walk of each agent may be computed on a sepa-

1Despite the important role tretmetaphor has played for the development of the class of heuristics to
which our approach belongae prefer to call our computational units “agents” rather than “arithe

ant metaphor suggests a relatively simple behawbereas our agents may as well act in a very “intel-
ligent” way, using for exampleheuristics based on sophisticated methods of mathematical programming
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rate processdcf.[3]). In asingle-processor systethe moves of\,, ..., Ag
are computed sequentiallx time period in which each agent performs a
walk (consisting of several single movyethrough the construction graph
will be called acycle An application of the ant system consists of several
cycles 1...,M; the numbeM of cycles can be fixed in advance or be de-
termined at a later time during the execution of the algorithm

3. Transition probabilitiesfor the random moves of the agents during each
cycle Letu = (uq,...,U,_1) denote the partial walk an agent has already
traversed before itgh transition step in a fixed cycle, whereuy, ..., U1
are node indices in the construction grdphreferring to the start nodewe
write | € uif nodel is contained in the partial wally, andl & u otherwise
Moreoverlet.A be the set of arcs in the construction grapthen the general
form of the transition probabilities is

[Tia (M1 [1a (W)]?
Pa(nu) = (1)
Z [Tkr(n)]a [nkr(u)]ﬁ
réu, (kr)eA
if | Zuand(k,1) € A4, and
Pa(n,u) =0 (2)

otherwiseTherein p (N, u) denotes the probability that a fixed agent having
already traversed a partial walk= (u,...,U_»,U;_1 = K) in the current
cycle n moves from nodé (its current positionto nodel. (Note that this
probability is only defined ik = u;_4.) The numbers,(n) are called “trail
levels” (see component)dand the numbersy (u) are called “attractiveness
values”(see component)5 « = 0 andB = 0 are parameters
At the beginning of each cycleach agent s positioned in the start node

of the construction graplin thetth transition step of the current cyckach
agentAg performs a single random move in the construction grajoim-
trolled by the transition probabilitigs,(n, u), whereu is the partial walkAg
has already traverséde., each agent has a particular If, for a fixed agent
As, pa(n,u) = 0 holds for all nodeshbefore theth transition stepgthen agent
Ashas completed his walk in the current cyoléccording to Definition 21,
this walk determines a solution of the given optimization problem

4. An array oftrail levels 7y, wherery = 0 is assigned to artk, 1) in the
construction graphrhe trail levels usually change from cycle to cy¢éee
below), so their dependence on the cycle indezan be represented in the
form 7,4(n). At the beginning of cycle lwe setr, = 1/|.A| (] A| being the
number of arcsfor each ardk, |). At the end of each cycla(n=1,2,...,
M —1), the following update rule is applieHirst, for each agemdsand each

2In [13], the terms “pheromone values” and “desirability values” have been used for the numbers

andny (u), respectivelyHerg we use the terminology ¢.7], which is not that closely related to the ant
metaphor(cf. footnote 1.
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arc(k, 1), a valueAr,? is determined as a function of the solutions assigned
to the walks of the agents in the current cycl&uppose these solutions have
cost valuegobjective function valueds,.. ., fs. For each ar¢k, | ) and each
se{l,...,S}, we set

®3)

T =

© o f1,..., fs) if agentAg has traversed ar(, | )
0 otherwise

Therein eachg, is a nonnegativeeward functior? which is nonincreasing
in the corresponding variabfgand may depend on the walks of the agents
inthecycles L..,n—1. Let

S
C= > XA, (4)
(kDEA s=1
Now, if C = 0, we set
Ta(N+1) = 74(n)

forall arcs(k, 1 ); that is the valueg,, are the same in cycke+ 1 as in cycle
n. If, on the other handC > 0, we set

Ta(N+1) = (1— p)7g(N) + pATy, %)
where
l S
ATy = = 2 A7'|£|S)~ (6)
C s=1

As in [8], the numberp will be called theevaporation factorlt is easily
verified from (5), (6), and (4) that the sum of trail levels¥ |)e.4 T (N),
always remains equal to onfeorcing the sum of the valueg (n) to be one
is arenormalizatiopwhich favors the numerical stability of the algorithm by
preserving the overall order of magnitude of the trail level values

The above trail level update rule may be interpreted as folldfnso
walk is rewardegdeverything remains constar®therwise due to “evapo-
ration” only an amount of & p of the sum of the trail levels remains on the
graph after cycle. The remaining amount gf is the “budget” for rewarding
the walks traversed in cycleaccording to their respective objective func-
tion valuesEach agenfs can be imagined to report by which “bonusty’
he wants to reward his walk in cycle The actual trail level increments
result by distributing the total budget of proportionally to the reported

valuesAr..

SNote that this formalism covers thank-basedrail level updateas introduced ii2], as well as the
classical proportional update
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By the described update ryle trail levels of “successful” arcs of the
construction graph are increassdch that they are traversed more often by
the agents in the futur®y settingp = 0, the influence of the cost function
on the walks of the agents is switched.dff in addition the influence of the
attractiveness valueg, (u) is switched off by setting = 0, then we obtain
random searchy a(“blind”) random walk in the construction graphhich,
in this way turns out to be a special case of the GBAS

5. An array ofattractiveness valueg,, wheren,, = 0 is assigned to and, | )
in the construction grapfhe attractiveness values may depend on the par-
tial walk u = (ug, ..., U;_»,U;_1 = k) the current agent has already traversed
so they can be written ag, = 1 (u). Typically, the valuen,(u) is obtained
from agreedy heuristid GH) for the combinatorial optimization problem
under consideratigrin this view it may also be interpreted as the value of a
so-calledgreedy functior(seg[9]): Assume that a GH is givetit specifies
the stepwise construction of a “goojut, in generalnot optima) solution
of the problemIn our formalism this construction can be represented by a
walk in the construction grapfhe GH defines “weights” for all feasible
arcs(k, ) leaving nodek and determines the next notlef the walk by the
“greedy principle” that the weight dk, | ) is maximum We may now con-
sider the weight of ar¢k, | ) as the “attractiveness” of the transition from
nodek to nodel; that is we may sety,(u) = weight(k, ). Alternatively a
second way of defining the attractiveness values may also be ch&sen
nq(u) =1 if weight(k, | ) is maximum among all successor nodes of niade
andn(u) = 0 otherwise The reader should note that the weightkfl ) is
allowed to depend on the whole “history™ (uq,...,U;_», U1 = K).

The valuesy (u) can also be used fdockingwalks corresponding to
infeasible solutionsIf w is such a walklet u be the longest partial walk
(starting at the start noglenw that can still be prolonged to a feasible walk
(i.e, that did not contradict a feasibility condition so fzand let(k, | ) be the
first arc onw not belonging tal. Then w can be “locked (without locking
any feasible walkby settingn,, (u) = 0.

In the above formalispthe GBAS is a natural stochastic generalization
of a GH Note that if the parameter is set equal to zerand the above
second way described of defining the attractiveness values is chibgen
behavior of the agents is exclusively governed by the greedy prinaple
GH is another special case of the GBAS

A mathematically more sophisticated approach covered by the pre-
sented formalism consists in deriving the attractivenggsi) from a lower
bound for the cost values in the subset of the solution space defingdby
it is done in the demanding but often very efficient ANTS technique devel-
oped by Maniezz§17].

It should be emphasized that the GBAS is applicable to all combinatorial opti-

mization problems with a finite solution space per problem instafiis point is
discussed in detail ifl3].
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FiIGURE 2.1. Example construction graph

Let us now continue the discussion of Sectiolf tonvergence of the walks of
the agents to oneptimalwalk would hinge on the uniqueness of the optimal walk in
an essential wayhis would have undesirable consequenées problems where
the exact optimal solution isotunique there would be no reason to believe that the
GBAS leadsin the long runto a situation where only the arcs of the optimal walks
have trail levels essentially larger than zddowever even if this should be the case
in a particular applicationthe GBAS might nevertheless output suboptimal solu-
tions To illustrate this important pointve refer to Figure 2. Suppose there are two
optimal walks in this construction grapi; = (0, 1, 3,4, 6, 7, 9, 10, 12) andw; =
(0,2,3,5,6,8,9,11 12) and that the other walks are suboptirfedy with equally
high cost values Assume that (u) = 1 for all arcs If the relative frequencies of
the traversals ofv; andw; should tend to the same valug2l(which might be
conjectured in view of the symmetry and a possible influence of the law of large
numbers, all arcs would obtairinearly the same trail levelThen however also
each of the 14 suboptimal walks would have the same probability of being traversed
by an agent in the current cyclewas$ or w;. In other wordswith a high probability
the GBAS would output a suboptimal soluti@ven if only optimal walks have been
reinforced

Theorem 3L in the following section implies thatortunately this is not the
final development to be expectdd the above situatiofand on the conditions of
the Theorem 3), only oneof the walksw; andws; will survive; the trail levels of
the other one will vanistShowing ageneralresult of this type is especially difficult
because of the possibility ofverlappingoptimal walks In the case of walks sharing
arcs hardly controllable phenomena may ocdar examplea rewarded walk may
profit less by the trail level update than a not rewarded wahather subtle analysis
(using the introduction of a suitable “impact valuatill be necessary in order to
cope with this problem

3. THE CONVERGENCE RESULT

The aim of this section is to show that under weaker conditions than th¢%8]in
the current solutions of the GBA&e solutions corresponding to the walks of agent
A, ...,Agin cyclen) converge with a probability that can be made arbitrarily close
to unity toone optimal solutionThe conditions are the following
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1. The parametew in (1) is chosen ag = 1.

2. There is at least oneachableoptimal walkw* [i.e., an optimal walkw*
with the property that the attractiveness values saijgfiyu) > 0 for all arcs
(k, I of w* and the corresponding partial walk®f w*].

3. The reward functiongs chosen for the definition of the valuas,” at the
beginning of cyclen + 1 (seg(3)) have the following propertLetf * =f *(n)
be the lowest cost value observed in the cycles. In — 1 (i.e,, the lowest
objective function valués corresponding to a walk of an agei{ in these
n—1cycles. (Itis easy to store and update the current value afuring the
execution of the algorithmnIn the case of cycle =1, letf * = co. Then for
all nlarger or equal to some fixatl, € IN,

(i) @s(fy,...,fs) > 0forfs=f*
(i) @s(fp,..., fs) =0forfs>f*.

In other words after cyclem,, only walks that are at least as good as the
best found walk up to now get a positive incremant® . For positive cost
functions for example ¢4( fo,..., fs) may be chosen agy( fo,...,fs) =
1/f5if fg=f* andgg( fo,..., fs) = 0 otherwise Note thates is allowed to
depend on the “history(the cycles L..,n — 1), and hencgin particular

on the valuef *.

Condition 1 is identical to conditiofa) in [13]. As stated therghis condition
does not imply an essential restricti@ince the main purpose of the parameters
andg is not to “shape” trail levels and attractiveness val(tbs could be done by
other mean) but to have easy control over their impact relative to each osiveve
may fix one of these two parameters as long as the other remains free

Condition 2 is a weaker form of conditidn) in [13] (condition(b) in [13] is the
unigueness condition which we can drop in the present ayti€le reader should
note that Condition 2 can easily be satisfied by arbitrarily slight changes of the
attractiveness valuefor eachfeasiblecontinuation(k, |) of a partial walku with
N (u) = 0, replacen,(u) = 0 by i (u) = 6 with a smallé > 0. Let us remark that
as long as global optimization is intend@&dnakes sense anyway not to exclude any
feasible continuation of a partial walk a prioAlthough not very restrictivecon-
dition 2 is essential because otherwise it may happen that a specific arc belonging to
the optimal walk is inaccessible for the ageiist because of an unlucky choice of
the attractiveness values

Condition 3 finally, relaxes conditior(d) in [13]. It says that after a certain
cyclemq (in[13], mg= 1 was requirey] a rewarding strategy similar to “global-best”
(see Gambardella and Dori¢p1]) is followed Only the best walks up to now are
rewardecl walks that are dominated by another already traversed walk do not get
trail level increments anymore

Our main result is the following

THEOREM 3.1: Let conditions 1-3 be satisfied and Igf(R) denote the probability,
computed from (1), that a fixed ageni thaverses the walk w in cycle n. Then, the
following two assertions are valid:
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1. For eache > 0 and for fixed parameterg andp, it can be achieved by the
choice of a sufficiently large number S of agents that for an integen N
with a probability larger or equal td — €, there is an optimal walk Wwsuch
that B:(n) =1 — e foralln = N(e).

2. For eache > 0 and for fixed parameters S ai] it can be achieved by the
choice of an evaporation factersufficiently close to zero that for an integer
N(e), with a probability larger or equal td — ¢, there is an optimal walk
such that B«(n) =1 — e for all n = N(e).

The assertion of TheoremI3only makes sense if the valuBg(n) are consid-
ered as random variables themseliestead of deterministic probabilities of ran-
dom events In order to fix a probability space where the valig$n) can be given
this interpretationwe represent the process induced by the GBAS algorithmin terms
of a stochastic process in discrete tirtiee final part of whicHthe cyclesng, my,...)
will turn out as aMarkov processseeg e.g., [10]). The states of the stochastic pro-
cess are the triples

(z(n),w(n), f*(n)) (n=12,...),
where

 7(n) is the vector of the trail levelg,(n) for all arcs(k, ) during cyclen

« w(n) is the vector of the walke/®(n) (s=1,...,S) of the agentg\,, ..., Ag
in cyclen

e f*(n) is the best found cost value corresponding to the walk of any agent in
one of the cycles,1..,n — 1. For cyclen =1, we setf *(1) = co.

ProposITION 3.1: For n = my, mg + 1,..., the state variablesz (n),w(n), f *(n))
form a Markov process.

The proof is a repetition of the proof of Propositiori 4n [13], applied to the
cyclesmg, mg +1,....

Remark 3.1:In the considered stochastic procgdg numberp, (n,u) defined by
(1) are functions ofr (n) and therefore also functions of the states of the process in
the cycles L..,n—1(respectivelyonly of cyclen — 1, if n> my). In particularthe
numbergy (n,u) arerandom variablesFrom this point of viewtheir interpretation
as probabilities is only an indirect onBy the state transition rule of the considered
stochastic procesthey determine the distribution of the vectofn) of the walks in
cyclen.

In the extension of13], the following abbreviations will be used

« W*={wj,...,wk} denotes the set eéachableoptimal walks in the sense of
condition 2

 L(w) denotes the lengtthumber of arcsof walk w.

 IP is written for the probability measure on the stochastic process defined
earlier
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« E'¥(w) denotes the event that® (n) = w (i.e., the event that agem; tra-
verses walkv in cyclen).

+ B,is the event thatv'®(n) & W* for all s=1,..., S(the event that no agent
traverses an optimal walk in cyci®.

» F,is an abbreviation foB, 0---0B,_; 0= B, (i.e., for the event that at least
one optimal walk is traversed by at least one agent in aydbeit by no agent
in the cycles L..,n — 1). Obviously the eventsF;, F»,... are mutually
exclusive

* Ais an abbreviation foF, OF, O --- (i.e., for the event that there is anand
an s such thatw®(n) € W*; the event that at least one optimal walk is
traversed by at least one agent in some gycle

Moreover the notatior(k, | ) € wwill be used for the assertion that digl) lies
on the walkw, and a walkw shall sometimes also be denoted by the sequence of
nodes lying on it

Because of the definition aiV* and the fact that there are only finitely many
arcs(k,|) and only finitely many partial walks, we have

v = min{[ny(W]?|w* € W* (k,|) € w* u partial walk onw*} > 0 (7
and
I' = maxX{[ 9 (W]?|(k |)arg u partial walk < co.

Multiplying all attractiveness values,(u) by a fixed constant does not change the
transition probabilitie$1). Sq it can be assumed without loss of generality that the
valuesn,(u) are normalized in such a way that= 1; that is

[ma(W]? =1 (8)

for all arcs(k, ) and all partial walksu.
Lemma 31 is an extension of LemmaXin [13].

Lemma 3.1: For each n= 1, the conditional probability, given arbitrary events in
cyclel,...,n—1,thatevent B, occurs is larger or equal td — (1— c" *p)S, where
c=(1-p)to, p=(y/[A]", and L, = min{L(w*)|w* € W*}.

Proor: Letw* € W™ be a fixed walk of lengti.,. We want to determine a lower
bound for the probability that in cycle there is at least one agent who travensés
given arbitrary events in the cycles befo&nceAr,, = 0 andp > 0, (5) implies

Ta(N+1) =1 — p)rq(n) )

in the caseC > 0, and again because pf> 0, this holds also in the cage = 0.
Repeated application ¢9) yields

ma(n) = (1= p)" 7y (D). (10)
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This estimate holds independently of the events in previous cyBEsause of8)
andX miu(n) =1,

2 Tkr(n)l:nkr(l'l):l'6 = E Tkr(n) =1

reu, (kr)eA reu, (k,r)eAd

Thereforethe transition probabilitiep, (n, u) given by(1) satisfy for a nodd with
| & u, the inequality

n B
pun) = —— W WIE__ e (11)
2 TKr(n)[T]kr(u)]B
réu, (k,r)eA
Letw* = (vo,...,v ). Then by (11), (7), and(10),
IP(Er{IS)(W*)) = ]:I(:) pvlqu(n’(UO"'"vi )) = ];lC:) Tu,u,+1(n)[1]v,v|+l(vo""7Ui )]B
= yto 11 Ty, (N)

=yt [T 1-p)" (D)
i=o0

= yho(l—p)om D T 74(1)
(k 1ew*
= yho(1— p)-o"V(1/|A])*e
=c"p.
Because the walks of tH@agents are independethis implies
P(B,) = P(-EP(wW*) O--- O-E®(W")) = (1-c"'p)Ss
which yields the assertion u

In the following lemmagswe consider the stochastic process defined above con-
ditioned on the everf,, that is on the event that cycleis the first cycle where an
optimal walk is traversed he conditional probability of an evergivenF,,, will be
denoted in the usual way by{BventF.}. For the formulation of the lemmai is
convenient to introduce some additional definitions

DEerFINITION 3.1: We distinguish two possibtg/cle typescycle nis called a B-cycle
if event B, occurs (no agent traverses an optimal walk in cycle n), and it is called a
- B-cycle if event B, occurs (if at least some agent traverses an optimal walk in
cycle n).

Anepochis a sequence of consecutive cycles after cyglemax(mg, m) (cycle
m being the first: B-cycle) with the property that all of these consecutive cycles are
B-cycles, except the last, which issd—cycle.

A periodis a sequence of a fixed number of consecutive epochs. (The number of
epochs contained in a period will be determined later.)
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During a fixed epochthe trail levels remain constariiecause at the end of a
B-cycle after cyclem; = max(mg, m), the valueC is set equal to zero in view of
condition 3 so no change takes plag@nly after the last cycle of an epadhe trail
levels changeTherefore we may consider the cycles of an epoch as independent
trials (with identical success probabilitie® produce the evertB,,. As soon as: B,
occurs the epoch endsThe distribution of the states during an epoch depends on
previous epochs only via the trail levels at the beginning of the epdoheoverthe
probability of any event in the last cycle of an epoch is identical tactireditional
probability of this event in a fixed cycle of the current epocli.e., in a cycle with
the trail levels valid in this epoghgiven the event B,.

DEeFINITION 3.2: Therelative trail levely,,(n) of an arc(k, |) is defined by

Tia(N)

S ne(n)

(k,ryeA

Ya(n) =

Note that the sum here is ovalt arcs(k, r) with k as the start node, including those
withr € u.

In view of (1), (7), and(8), for each ardk,|) on a walkw* € W* with partial
walk u,~ (k) up to nodex,

pan Uy = — 07 o ™ @2
2 7-kr(n)l 2 Tkr(n)
réu, (k,r)ye A (k,r)eA

DErINITION 3.3: Theimpact value¥ (w*) of a walk w' is the product of the relative
trail levels of its arcs:

w(w*) = H Pa(n).

(k,Hew*

As a consequence ¢12), we obtain the following relation between the proba-
bility of a walk w* € W* to be traversedand its impact value

Pus(n) = [T palnu,(K)=y"""w(w") (13)
(kD ew*

for eachw® € W*,

Forn = m; = max(mgy, m), it will be convenient to considem parallel to the
trail level update mechanis(), a slightly different alternative way of updating the
trail levels defined by

Fa(My) = 79 (My),

fan+1) = 7g(n) + 77— Ang (n=my). (14)
p
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The right-hand side dfL4) is equal to the trail level that would have been obtained
by the original update rujenultiplied by the factor (1 — p). Furthermoreif an arc
(k,1) is not rewardedi.e., if A, = 0), then its trail level remains constant instead of
being subject to evaporatipeo we may call this variant aevaporationlessrail
level updatelt is clear that the sum of trail levels computed in this way is no longer
equal to unity instead it is multiplied by the factor (1 — p) in each-B—cycle
However the computation of the probabilitigs (n,u) can be based as well on the
values7,(n) instead of the values,(n), yielding the same resultsince by the
denominator of1), the factor (1 — p) cancelsThus both alternatives of the trail
level update are equivalemtlso, the computation of the relative trail leve],(n)
and of the impact valu#(w*) can be based on the valugg n) instead of the values
7 (N) with the same result

We call the numberg, (n) thegross trail levelsWith their help Definition 3.4,
which is crucial for our progfcan be given

Let us label the epochs after cyatg byh=1,2,.... In epochh, walkw" € W*
(1=j=R) obtains a certain nonnegative gross level increme(tt) for each of its
arcs according to the evaporationless trail level update rule described.ddolier
that this increment is the same for each arevpf but, of course an arc(k, 1) can
possibly obtain such increments from differérawarded walks on which it lies
Now, let

h

Zi(h) = X m(h")

h'=1

be the total gross level increment an areyhas obtained in the epochs 1, hdue
to the rewards for wally". (If the arc belongs also to other walks @ft, it may have
obtained additional total gross level increments from these other watkd&s not
contained irlW*, however are no longer rewarded after cyctg.)

DEeriNITION 3.4: By thechampionof epoch h, we understand a walk & W* for
whichZ,(h) = max{Z;(h)|1=j = R}. (If there is more than one;iwith Z; (h) = max,

the champion may be chosen arbitrarily from these walks.) By the champion of a
period we understand the champion of the first epoch of this period.

It is now possible to show the following basic lower bound estimation

LeEmmMmA 3.2: Conditional on event & the champion yvof an epoch h after cycle
m; = max(mo, m) always has a probability 2(n) = [, > 0 to be traversed by a
fixed agent A where the numberdqonly depends o, R, p, my, and the structure
of the construction graph.

Proor: We start the proof with the following observatiobetc > 0, 0 < ¢ =
x=1,0=y=1 and

f@=——2_  (az0)
a_x+y+ca a="o.
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Then there is anumbar= p(c, ¢) > 0 such thaf (a) = pforalla= 0. This is easily
verified by distinguishing the two cases= 2/c anda > 2/c: In the first casgwe
obtainf(a) = £/4, whereas in the second caééa) = 1/2c. Sq the assertion holds
with

(€1
p=m|n<z,2—c). (15)

Now, consider a fixed arck,|) contained in the champiow; and its “sister
arcs” (k,r) sharing with(k,|) the start nodek. Let x,; and x,, be the gross trail
levels of (k,1) and(k,r), respectivelyin cyclem,. Leta = Z,(h). In epochh, the
gross trail level of(k,I) has increased at least to the vakig+ a and at most
to the valuex,, + Ra compared to cyclen,. (Note that(k,|) may be contained
in several optimal—and therefore possibly rewarded—walk&ie gross trall
level of an arc(k,r) (r # 1), however has increased at most to the valgg +
(R—1a, sinceZj(h) = aforallj # v, and(k,r) & w;.

Denoting byd the maximal outdegree of a node in the construction grajeh
conclude that the relative trail levélhich is identical to the relative gross trail
level) of arc(k,|) in epochh is larger than or equal to

Xkl + a - Xkl +a
Xk|+ Ra+2xkr+(d_l)(R_l)a Xkl +2Xkr+dRa’

where the sunY;, x,, is over all “sister arcstk, r) of (k,|). Hence the impact value
¥ (w;) of the champiorw; in epochh is larger than or equal to

X+ a

khew; X + 2, X + dRa
r

Applying the observation at the beginning of the proof with x,; € [ £,1] (£ will
be determined latgry = >, x,, € [0,1], andc = dR > 0 yields the existence of a
numberp > 0, depending only o, R, and a lower bound = £(m,) > 0 of the
(grosg trail levels in cyclem,, such that the impact valuk(w;) of the champion is
bounded below byl-™’. (Let us emphasize that is independent of the epoch
which walk is the champiarhowever depends on the epogiBy (15), u < 1, and
henceby (13),

Rz (n) =y W (W) = y WPt = -
with

L = max{L(w*)|w* € W*}. (16)
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All that remains to show is that a lower bouéd- £(m,) > 0, depending only op,
m,, and the structure of the construction grapan be found for thégrossg trail
levels in cyclem,. This, however follows by Eq (10) from

Ta(My) = (1= p)™ *1(1) = (1= p)™ V[ Al u

CoroLLARY 3.1: Conditional on event F; the probability that in the final cycle of

a fixed epoch after cycle 1+ max(mgy, m), the champion y§, but no other optimal

walk that is traversed by an agent, is larger or equal §fwith o from Lemma 3.2).

This holds independently of arbitrary events in epochs before the considered epoch.

Proor: Because an epoch consists of independent trials until evBpoccurs the
probability we ask for is

IP{no agent traverses a walk' € W*\{w;}|= B, OF.}
= IP{no agent traverses a walk’ € W*\{w;;} 0-B,|F.}

= IP{all agents traversey;|F.,} = [R,-(n)]° = 3.

If we condition on certain events in previous epadhsse events can enter into the
probability computation only via the trail levels at the beginning of the given epoch
The above estimatigimowevery holds independently of the specific values of these
trail levels u

Remark 3.2:From the definition of the champion of an epodffollows that if w;;
is the champion of epodinandw; is the only optimal walk traversed by an agentin
epochh, thenw; is also the champion of epot¢it 1.

Remark 32 implies that whenever the champiafi of a period (cf. Definition
3.4) is the only traversed walk in all epochs of this perittenw; is also the cham-
pion ofeach epoclof the considered periodhen by Lemma 32, in each cyclen of
this period the variableR,:(n) is larger than or equal t,.

Lemma 3.3: For a fixed n=my, let w* € W*, p, = B,«(n), and

> = 2 Pw(n)~

wewW *\{w*}

el

Then, if p = 1/2, the probability that in the final cycle of the epoch containing
cycle n, walk v is the only walk traversed by an agent and is larger than or
equal tol — 2p..

Proor: The considered probability is
IP{no agent traverses a walkke W*\{w*}|= B, OF.}

_ IP{no agent traverses a walkke W~ \{w"} [J= B.|Fm}
a P(-~B,) '
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The denominator of the last expression is equaltoR(B,) =1 — (1—p; — p,)°.
By elementary probabilistic calculatigrane finds that the nominator of the expres-
sion is equal to

P1
1- P2

(1_p2)8{1_<1_ ) ] =(1-p)°—(1—p.—P2)°

Thus the probability that in the final cyclev* is notthe only traversed walk is

1_(1_52)5_(1_p1_pz)52 1-(1-p)°
1-(1-p;—p)° 1-(1-p—p)°

=2[1-(1-p,)°%] =2,
sincel-p;—p=1/2forp;=1/2,and(1—x)"=1—nxfor0 < x < 1. u

Now, consider a fixed periad_et w; be the champion of this peridde., the
champion of its first epogh For abbreviationwe use the following notatian

« HIK s the event that in thkth epoch of the given perigsvalk w is the only
traversed optimal walk
« Cl s the event thal; is the champion of thith epochof the given period

Lemma 3.4: For a fixed period after cycle pand for each K& IN,
PHMO... OHKI|CR) = pgX
with the number plof Lemma 3.2.
ProoFr: The considered probability is equal to
PHE | CEYP(HEHE OCM)..... PHIIHI O... ORIk OCH),
Remark 32 states tha€* OH = Clk+1] By repeated applicatignve obtain
HEO... gHkU Ocl = clk)
e
HEO...oHkUgcH OocK o HIM O... oHIY OC,
Therefore by the Corollary to Lemma.3,
PHM|HE O... gHKY Oc)
= PHM|HMO... OHKU gclh) gck) = s,

which completes the proof u

https://doi.org/10.1017/50269964803174086 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964803174086

GRAPH-BASED ANT SYSTEM METAHEURISTIC 561

LEmMA 3.5: Let7(n,w* €) denote the assertion

Ti(n) — Ok 1) € w* Ory(n) < L(w*)e Ok, 1) & w*

1
| <
Then, to eacls > 0and me N,

P{Cn = m,w* € W*: T(n,W*e)|Fn} =1 —¢,
where m = max(mg, m).

Proor: Lete > 0 andm & IN be fixed We construcir (e) periods after cyclen,,

each period consisting &f(e) epochsThe numbersr(e) andK(e) will be deter-
mined laterAt the beginning of each peripis champion is determinedccording

to Lemma 34, for each considered peripthe champion of this period,isvith a
probability larger or equal tpg<©’, the only traversed optimal walk in the entire
period This estimation holds independently of what has happened in the previous
periods Again, by considering conditional probabilitiéas in the proof of Lemma
3.4), one obtains the result that among thé) successive periodghere is with a
probability larger or equal to

1- [1— p§ee] @ (17)

at least one period with the property that its champion is itkK&#) epochs of this
period the only traversed optimal walRecause of + u§<¢ < 1, it is possible to
choose the number (¢) (to the givere, r, S andK(e)) large enough that

[1- B9 < e,

such that the expressid7) gets larger or equal to % €. In other wordswith a
probability =1 — € (conditional onF,,), there is a period containing only epochs
where one and the same wallayw®, is rewarded

We show now that at the end of this perjod

Ta(N) — <e forall (k)€€ w*

1
L(w*)
holds provided thatK(e) is sufficiently large It is easy to verify from(4)—(6)

(cf. [13, proof of Lemma 42]) that in the case where only walk* is rewarded in
cyclen,

ra(n+1) - =(1—p><m(n>—i> for(k)ew  (18)

L(w*) L(w*)

that is the distance betweety and YL (w*) is reduced to a portion of  p of the
former distanceChoosingK (¢) large enough thatl — p)<(©) < ¢ effects therefore

a reduction of the distance betwegg(n) and YL (w™) to a value less than or equal
toe.
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The assertiom,(n) < L(w*)e for all (k,I) & w* follows immediately because
the sum of all trail levels,(n) is unity. u
Lemma 3.6: Let L be given by (16) and suppose that for soniesnWW* and some
n € N, we have

1
ma(N) = oL forall (k,1) € w*

Furthermore, let
D = 2Ld/y (19)
with d = maximal outdegree of a node in the construction graph, and suppose
Tmax = MaxX{7, (N)|k € wr & w*} =1/D. (20)

Then, the probability that a fixed agent traverses some walk different froisless
than or equal to LB,y

Proor: By assumption and by definition g, (n,u), the probability that a fixed
agent located at nodeof w* does not proceed to the successor riaaf& onw*, but
to another node, is less than or equal to

_Tmad
/L)y ™
Hence the probability that a walk different fromv* is traversedis less than or

equal to

1- H (1 - DTmax) =1- (1 - DTmax)L =1- (1 - LDTmax)

(k,Iew*
because ofl — x)"=1—nxfor0 < x < 1. [

LeEmMA 3.7: Let 7(n,w* €) be defined as in Lemma 3.5. Then, foralk> 0 and
m € IN, there is an N= IN such that

P{Ow* € W*On’ = N: 7(n,w*¢)|Fn} = €.
Proor: We start by showing that for adl > 0 andm & IN,
P{On=m w* e W*On =n:7(n,w"e)|Fn} = €. (22)

First, to the givene > 0, a numbe > 0 is determined as follow$-or fixed p,

) 26
lim [1— exp(——)} =0.
5—0 1%

Thus aé > 0 (depending ok andp) can be found such that-1 exp(—26/p) =
€/2. Without loss of generalityiet § = 1/2. Now, for L given by(16) andD given
by (19), we set

https://doi.org/10.1017/50269964803174086 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964803174086

GRAPH-BASED ANT SYSTEM METAHEURISTIC 563

~ ) {E 1 5 }
E=miny =, —, —=5— (-
2’ 2L’ 2S1’D
Replacing: by €in Lemma 35, we obtain that with a probabiliticonditional orfF,,)

larger or equalto + € =1 — €/2, a cyclen = m; and a walkw* € W™ exist such
that7(n,w*, €) holds that is such that

Tia(N) — <é forall (k1) e w*

s
L(w*)
and

Ta(n) < L(w*)e forall (k1) & w* (22)

Let us suppose that(n,w* €) holds indeedThen in particular

1 1
Ta(N) = —e~z[—e~z— forall (k1) € w*

L(w*) L

and

6 1
< = —_ < — *,
Ta(n) = Lé= 25D~ D forall (k1) & w*;

hence the conditions of LemmaG3are satisfiedlt follows that
P = PW*(n) =1 - LDmnax
Thus because 0€22),

plz1—(LD)L(W*)€21—L2D€21—Zis>%. (23)

Let us now consider the epoch containing cyclgve call it epoch Dand the
epochs after this epoclwhich we label bya = 1,2,... in this proof (The reader
should be aware of the different labeling in this proof Definition 3.4, and in
Lemma 34.) Similarly as in Lemma 3}, let H denote the event that in a considered
epochwalk w* is the only traversed wallor each epoch, we ask for the condi-
tional probability of the evenit, given that evenH has occurred in all previous
epochs L..,A — 1. To estimate this probabilifyve apply Lemma & each time
Since on the condition th&t has occurred in all previous epoglise trail levels of
arcs(k, ) &€ w* have decreased geometrically with factor b, we have

[AT [0]
Tmax = (1 - p)/\Tmax’

whereraxis given by(20) and the indices in brackets refer to the epoch numbers
Becausgon the other handon the condition thaH has occurred in all previous
epochslevels on arcgk, | ) € w* have approached the valud1w*) (see(18)), the
conditiont(n) = 1/2L for (k,1) € w* of Lemma 36 remains always satisfied

https://doi.org/10.1017/50269964803174086 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964803174086

564 W. J. Gutjahr

Moreover the probabilityP,-(n) of a traversal ofv* cannot decrease at the end of
an epoch where evehtoccursas is easily seen by considering the gross trail levels
introduced before Definition.3, so (23) implies alsopi™ = pi” > 1/2 for all A
(againthe indices in brackets refer to the epoch numpéysplying Lemma 36, we
obtain the following The probability that a fixed agent traverses some walk differ-
ent fromw* in epochi, given eventd has occurred in the epochs 1,1 — 1, isless
than or equal to

LD 7o = LD (1~ p) Tipax. (24)

In particular the probabilityp, of traversing amptimalwalk different fromw™ in a
cycle of epochi is then less than or equal to the expressio(2i4).

Now, let us apply Lemma .3. As verified earliey the conditionp, = 1/2 is
satisfied Therefore using (22), we conclude that the conditional probabiliqy
that in the final cycle of epoch, walk w* is notthe only traversed wallgiven event
H has occurred in the previous epochs. 1, A — 1, and is less than or equal to

2SLD(1— p)*ri%d < 2SLD(1 - p)*Lé

= 2SI’D(1— p)* > =(1-p)*o
2SL?D '
As a consequencehe probability that there is an epoghwhere the event H
occurs is

1-[Ta-g"=1-J[Q-(@1-p) ).
A=1 A=1
Becausdl— p)*d =8 =1/2and logl—x) = —2xforx = 1/2,
log[IA1-(1-p)8)=-2>1-p)rs=——
A=1 A=1 P
and therefore
i 20
1-J[a-g*)=1 —exp(——) =<
=1 p 2

Thus conditional on7(n,w* €), with a probability of at least I ¢/2, eventH
occurs inall epochs 12,.... As a consequence of Lemma3the probability(con-
ditional onF,,,) for the existence of an with 7(n,w* €) is larger than or equal to
1-é=1-¢/2. Thereforethe probability for7(n,w* e) andeventH in all epochs
following cyclenis larger than or equal td — e/2)2 =1 — €, which proves assertion
(21), since the occurrence ¢f in an epoch leaveg(n,w* €) satisfied after the
current trail level update

In formulation(21), the numben still depends on the random influeneehich
we may denote by. However in order to prove the lemmave would needch
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outsideof IP, such that it depends anandm but not onw. This can be achieved as
follows. Let us always assume thit, holds According to the proof of Lemma.B,
nis bounded above by the total numkeof cycles between the first cycle and the
end of the considered sequencerdk) periods each consisting df(e) epochsZ

is almost surely finitesince the probability of the occurrence of 8-cycle is larger
than some strictly positive constant by Lemma. 3hus Z can be considered as a
finite discrete random variablgvhose distributionof course depends om). Con-
sequentlyfor any givene > 0 andm € IN, there must be an integdr= N(e) such
thatZ = N with probability (conditional onF,,) of at least 1— ¢/2. Let us now
replace in(21) the numbek by /2 and use the relatiom= n(w) = Z. We obtain

€
1- > =P{ne{m,....,Z},w €W*0On' =n:7(n,w%e)|Fn}

=P{he{m,...,Z}, w* € W*On’' =n: 7T(n,w*e) 0Z < N|F,,}
+ IP{Z > N|F,.}
=P{ne{m,...,Z},w* EW*0On' =n:7(n,w%e) 0Z=N|F,}

€
+ -
2

Subtractings/2 on both sides yields
P{Cne{m,,....,Z,w*EW*On' =n:7(n,w4e) OZ=N|F,}=1—¢€
and hence
P{OW* € W*On" = N: 7(n,w* €)| Fn}
=P{ne{m,....Z},,w € W*On'=n:7(n,w*e) 0Z=N|F,}
=1-—c¢,
which gives the assertion of the lemma u

CoroLLARY 3.2: With B«(n) denoting the probability that a fixed agent traverses
walk w* in cycle n, the following assertion hottis=or eache > 0and me IN, there
isan N& IN such that

P{OW* € W*On' =N:P,(n")=1—¢|F} =1—e.

Proor: We replace by € in Lemma 37 and setwith L given by(16))

5 . < 1 ye ><
=min|{ — .
¢ oL’ 2d13) ~ €

4As to the interpretation d®,-(n) as a random variablsee Remark 3.
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By Lemma 37, to a givené > 0 andm € IN, there exists alN € IN such that with
a probability(conditional onF,,,) larger than or equal to % €,

Ow* € W*On' = N: 7(n,w* é).
Assume7 (n’,w* é). Then
Ta(N') = L(W*)é = L& = ye/2dL? Ok 1) & w*
and
() = 1/L(w*) —€=1/2L k1) e w?,

as earlierHence we conclude the following in a way analogous to the proof of
Lemma 36. The probability that a fixed agent proceeds from a noeev™ to a node
r & w* is smaller than or equal to

ve/2dL? G

(1/2L)y L

As a consequencthe probability that walkv* is traversed by the considered agent
is larger than or equal to

1-€e/L)")=1—¢/L)-=1—e. |
After these preparationg/e are now in the position to prove the main theorem
ProOF oF THEOREM 3.1: By Lemma 31,
P(B,O--- OB,) = IP(B,)IP(B,|B,):---- IP(B,|B,O--- OBy_1)
=(1-p1-cp>--(1-c"'p°

= [_]_[1(1— c“lp)} )

Let us set
oo ) S
w(p,c,S) = [H(l— c'lp)] .
i=1
SinceA=-(B,; 0B, 0---), we get

n S
P(A) =1— lim P(B,0--- OB,) =1~ lim [ (1—Ci1p):|
n—oo 1

n—co

=1-w(p,cS).
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It is easy to see that by choosifgufficiently large or by choosing sufficiently
small it can be achieved that(p,c, S) gets arbitrarily smallHence by an appro-
priate choice ofSor p, we can achieve that (A) =1 — €/4. Since

§ P(F,) =P(F,OFRO---)=P(A) =

there is an integet = «(e) such that

ad €

> P(F)<-,
n=x+1 4
SO

P(F,0--- OF,) = gl P(F,) = P(A) — ngﬂnn(a) > (1— Z) - =1-3.

Let us replace by € = ¢/2 in the Corollary 3 to Lemma 37. Then for each
m € IN, there must be an integdr= N(e, m) such that

P{OW* € W* 0’ = N(e,m): P-(n) =1 — ¢|Fl =1 — g
LetN(e) = max{N(e,m)|1= m= «}. Then alsq
P{Ow* € W* On" = N(¢):P(nN")=1—€|F}=1— g

for all m= k. Consequently

P{0W* € W* On= N(e): Py-(n) =1 — €}

2 P{CW* € W* 0n = N(e): Py-(n) =1 — ¢|Fn}P(Fyn)

+ P{OW* € W* On=N(e):Py(nN)=1—¢| = (F, 0--- OF,)}
X P(=(F, 0 OF,))

K

2 P{OwW* € W* On= N(e):Py:(n) =1 — ¢|F,,}IP(F,,)

m=

= ( ) 2 P(F,)

)

=1l-e

v

\Y

This proves the theorem u
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CoroLLARY 3.3: Let P, denote the probability that a fixed agent traverses an opti-
mal walk in cycle n. Then, for eaeh> 0, it can be achieved by choosing S sulffi-
ciently large or by choosing sufficiently small that for an integer (¥),

P,=1—¢€ foralln=N(e).
Proor: Replacinge by € andN(e) by N(€) in Theorem 31, we obtain
0é > 00S(é),N(é): P{Ow* € W* On=N(é):P,~(n)=1—-¢é}=1—-¢ (25)

and an analogous assertion wh&(é) is replaced by (¢€). From (25), the weaker
assertion

0é > 00S(¢),N(é)On=N(é): P{w* E W*:P,»(nN)=1—-&é}l=1—-¢  (26)

follows (and analogously fop (€)). Let us consider agems. Then

Po=2 PEPW)) =X PEP W) OR,(n)=1-¢)
=1

j=1

Py

P(P,(N) =1— &)P(EF(W)[Ry:(n) =1 &)

=(1-8 2 P(Ry(n)=1-¢)
j=1
= (1- &) P{wW € W*:R,(n) =1 - é&}.

By (26), the last expression igor n = N(€), larger than or equal tl — €)? =
1 — 2¢. Settingé = /2 andN (&) = N(2¢€) = N(e) completes the proof u

Remark 3.3:Corollary 33 is distinctly weaker than Theorenildbecause it does not
make an assertion on the “persistence” of one optimal walk which finally survives
The special casR = 1 of the corollary is the main resulTheorem 41) of [13].

4. CONCLUSIONS

We have shown that the convergence result demonstraf&d|ifor the graph-based

ant system algorithm also holds on essentially relaxed condit@uasestimations

are coarse and based on worst casesthey are not suitable at all for deriving
assertions on th@average convergence speed or on appropriate parameter values
for either the number of agents or the evaporation fadtois aspect has been dis-
cussed iM13] in more detail It is hoped that future investigations will produce
results concerning the interesting questions mentiofedther open problem is the
convergence behavior of ant-system-type heuristics under completely different trail
level update strategies from the one considered. Méeeconjecture that in the final
phase a strategy resembling “global-bestiustbe applied to prevent premature
convergence to a suboptimal soluti@ma similar way as in simulated annealjiige
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reduction of the temperature parameteessential for convergence to the optimal
solution, but it seems too early to give a definite answer to this question

Of coursegit would be desirable to have convergence with probability exactly 1
and not only with a probability larger than or equal te-%. In [14], almost sure
convergence results are shown for suitably modified trail update schemes in the
framework of a simplified GBAS variantt is possible that by using such modified
update rules also the results in the present astiolethe “complete” GBAS algo-
rithm might be sharpened to obtain convergence with probability 1
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