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It is shown that on fairly weak conditions, the current solutions of a metaheuristic
following the ant colony optimization paradigm, the graph-based ant system, con-
verge with a probability that can be made arbitrarily close to unity to one element of
the set of optimal solutions+The result generalizes a previous result by removing the
very restrictive condition that both the optimal solution and its encoding are unique
~this generalization makes the proof distinctly more difficult! and by allowing a
wide class of implementation variants in the first phase of the algorithm+ In this way,
the range of application of the convergence result is considerably extended+

1. INTRODUCTION

Modern information–technological systems get more and more complex,which cre-
ates an urgent demand for efficient heuristics for solving search and optimization
problems+Heuristics tailored to the solution of particular problems are required, but
there is also a growing interest into so-calledmetaheuristicsthat promise to be
applicable, after suitable specifications, to large classes of different problem types+
It is not surprising that some of these metaheuristics are inspired bynature, since
natural evolution processes can be considered, from a certain point of view, as mech-
anisms constantly adapting and improving the functionality ofverycomplex~bio-
logical! systems+

A well-established paradigm within the class of nature-inspired metaheuristics
is that ofgenetic algorithms@16,18# + Recently, also another paradigm within this
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class has found considerable attention: theant colony optimization approach+ Intro-
duced in 1991 by Dorigo,Maniezzo, and Colorni@4,7# , this approach has developed
in the meantime into a powerful, general, and efficient metaheuristic with applica-
tions in various fields~see, e+g+, @5,6,17# !+ In particular, the whole range of solving
combinatorial optimization problems heuristically can be covered by this meta-
heuristic+A feature making it especially attractive is that it is well suited for imple-
mentations on parallel or distributed systems@3# , performing well already on
single-processor systems+

Whenever a heuristic algorithm for an optimization problem allows the invest-
ment of an arbitrary amount of computation time, improving the current solution as
more computation time is spent, one wishes to know what is likely to happen in the
long run+Will the current solution get closer and closer to an optimal solution, or is
it possible that there will always remain a gap to the optimum? For a prominent
metaheuristic inspired by physical processes, simulated annealing~SA!, it has been
shown that the probability distribution of the current solution converges to the uni-
form distribution on the set of optimal solutions~see, e+g+, @1,12,15# !+Similar results
would be desirable for other metaheuristics+

In @13# , a first step toward a convergence result for the ant colony optimization
approach has been achieved: For a special metaheuristic algorithm of this type,
graph-based ant system, covering the range of static combinatorial optimization
problems, it has been shown that on four particular conditions~which will be out-
lined here at the beginning of Section 3!, the current solutions converge with a
probability that can be made arbitrarily close to one to the optimal solution+ This
convergence result is weaker than that for SA~where convergence holds with prob-
ability 1!, but the more serious drawback lies in one of the conditions which requires
not only that there is a unique optimal solution, but even that this solution is encoded
within the framework in a unique way+ In many applications, this cannot be guar-
anteed+ Thus, it seems highly desirable to remove or at least to relax the uniqueness
condition+

As it turns out, however, this is not easy at all:We will show that the uniqueness
conditioncanbe totally dropped, but at the price of making the convergence proof
considerably more involved+Moreover, we will relax another of the four conditions
of the result in@13# , requiring a specific parameter update strategy+We will show
that the result remains valid if this strategy is applied at least in the final phase of the
algorithm, after a phase where the update mechanism can be chosen arbitrarily within
the given framework, including, for example, the rank-based variant suggested in
@2# +Contrary to the removal of the uniqueness condition, this second generalization
causes no serious difficulties+

The rest of the article is organized as follows+ In Section 2, we present our
formal framework, the graph-based ant system, and illustrate the relevance of the
uniqueness condition by a concrete example+ Section 3 contains the mathematical
result and its proof, which is performed with the help of seven lemmas+ Finally,
Section 4 contains some short concluding remarks+
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2. THE ALGORITHM

The description of our general algorithm, the graph-based ant system~GBAS!, fol-
lows closely the presentation in@13# + The reader should be aware, however, of some
extensions in the definitions+

The graph-based ant system is based on the representation of a feasible solution
of a combinatorial optimization problem as a walk in a directed graph,which we call
the “construction graph+”

Definition 2.1: Let an instance of a combinatorial optimization problem be given.
By aconstruction graphfor this instance, we understand a directed graphC5 ~V,A!
together with a functionF with the following properties:

1. In C, a unique node is marked as the so-calledstart node.
2. Let W be the set of (directed) walks w inC satisfying the following

conditions:
(i) w starts at the start node ofC.

(ii) w contains each node ofC at most once.
(iii) The last node on w has no successor node inC that is not already con-

tained in w (i.e., w cannot be extended without violating (ii)).

Then,F maps the setW onto a setS of solutions of the given problem instance
containing all feasible solutions. In other words, to each walk w satisfying (i)–(iii),
there corresponds (viaF) a solution inS, and to each solution inS (in particular, to
each feasible solution), there corresponds (viaF21) at least one walk satisfying
(i)–(iii).

As can be seen from this definition, a construction graph~C,F! specifies a
particular encoding of the solutions as “walks+” The objective function value of the
walk is set equal to the objective function value of the corresponding solution of the
original problem if this solution is feasible, and to infinity otherwise+ We assume
throughout that the optimization problem under consideration is formulated as a
minimizationproblem; that is, the objective function representscosts+Usually, there
are several ways to design a construction graph for a given combinatorial optimiza-
tion problem; a standard way is outlined in@13# +

Let us now describe the GBAS as an extension of the Ant System@4,7,8# + The
GBAS contains the following components:

1+ A construction graph~C,F! according to Definition 2+1+
2+ A setA1, + + + ,AS of agents+1 Each agent performs a random walk with certain

transition probabilities~see component 3! in the construction graph+ In a
multiprocessor system, the walk of each agent may be computed on a sepa-

1Despite the important role theantmetaphor has played for the development of the class of heuristics to
which our approach belongs, we prefer to call our computational units “agents” rather than “ants”: The
ant metaphor suggests a relatively simple behavior, whereas our agents may as well act in a very “intel-
ligent” way, using, for example, heuristics based on sophisticated methods of mathematical programming+
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rate processor~cf+ @3# !+ In a single-processor system, the moves ofA1, + + + ,AS

are computed sequentially+ A time period in which each agent performs a
walk ~consisting of several single moves! through the construction graph
will be called acycle+ An application of the ant system consists of several
cycles 1, + + + ,M; the numberM of cycles can be fixed in advance or be de-
termined at a later time during the execution of the algorithm+

3+ Transition probabilitiesfor the random moves of the agents during each
cycle+ Let u 5 ~u0, + + + ,ut21! denote the partial walk an agent has already
traversed before itstth transition step in a fixed cyclen, whereu0, + + + ,ut21

are node indices in the construction graph~u0 referring to the start node!+We
write l [ u if node l is contained in the partial walku, andl Ó u otherwise+
Moreover, letA be the set of arcs in the construction graph+Then, the general
form of the transition probabilities is

pkl ~n,u! 5
@tkl ~n!# a @hkl ~u!# b

(
rÓu, ~k, r ![A

@tkr ~n!# a @hkr ~u!# b
(1)

if l Ó u and~k, l ! [ A, and

pkl ~n,u! 5 0 (2)

otherwise+Therein, pkl~n,u! denotes the probability that a fixed agent having
already traversed a partial walku 5 ~u0, + + + ,ut22,ut21 5 k! in the current
cycle n moves from nodek ~its current position! to nodel+ ~Note that this
probability is only defined ifk5 ut21+! The numberstkl~n! are called “trail
levels” ~see component 4!, and the numbershkl~u! are called “attractiveness
values”~see component 5!+2 a $ 0 andb $ 0 are parameters+

At the beginning of each cycle, each agent is positioned in the start node
of the construction graph+ In thetth transition step of the current cycle, each
agentAs performs a single random move in the construction graph, con-
trolled by the transition probabilitiespkl~n,u!, whereu is the partial walkAs

has already traversed~i+e+, each agent has a particularu!+ If , for a fixed agent
As, pkl~n,u! 5 0 holds for all nodesl before thetth transition step, then agent
Ashas completed his walk in the current cyclen+According to Definition 2+1,
this walk determines a solution of the given optimization problem+

4+ An array of trail levels tkl , wheretkl $ 0 is assigned to arc~k, l ! in the
construction graph+ The trail levels usually change from cycle to cycle~see
below!, so their dependence on the cycle indexn can be represented in the
form tkl~n!+ At the beginning of cycle 1, we settkl 5 106A6 ~6A6 being the
number of arcs! for each arc~k, l !+ At the end of each cyclen ~n 5 1,2, + + + ,
M 21!, the following update rule is applied+ First, for each agentAsand each

2In @13# , the terms “pheromone values” and “desirability values” have been used for the numberstkl~n!
andhkl~u!, respectively+ Here, we use the terminology of@17# , which is not that closely related to the ant
metaphor~cf+ footnote 1!+
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arc~k, l !, a valueDtkl
~s! is determined as a function of the solutions assigned

to the walks of the agents in the current cyclen:Suppose these solutions have
cost values~objective function values! f1, + + + , fS+ For each arc~k, l ! and each
s [ $1, + + + ,S% , we set

Dtkl
~s! 5 Hws~ f1, + + + , fS! if agentAs has traversed arc~k, l !

0 otherwise+
(3)

Therein, eachws is a nonnegativereward function3 which is nonincreasing
in the corresponding variablefs and may depend on the walks of the agents
in the cycles 1, + + + , n 2 1+ Let

C 5 (
~k, l ![A

(
s51

S

Dtkl
~s! + (4)

Now, if C 5 0, we set

tkl ~n 1 1! 5 tkl ~n!

for all arcs~k, l !; that is, the valuestkl are the same in cyclen11 as in cycle
n+ If , on the other hand, C . 0, we set

tkl ~n 1 1! 5 ~12 r!tkl ~n! 1 rDtkl , (5)

where

Dtkl 5
1

C (
s51

S

Dtkl
~s! + (6)

As in @8# , the numberr will be called theevaporation factor+ It is easily
verified from ~5!, ~6!, and ~4! that the sum of trail levels, (~k, l ![A tkl ~n!,
always remains equal to one+ Forcing the sum of the valuestkl~n! to be one
is a renormalization,which favors the numerical stability of the algorithm by
preserving the overall order of magnitude of the trail level values+

The above trail level update rule may be interpreted as follows+ If no
walk is rewarded, everything remains constant+ Otherwise, due to “evapo-
ration,” only an amount of 12 r of the sum of the trail levels remains on the
graph after cyclen+The remaining amount ofr is the “budget” for rewarding
the walks traversed in cyclen according to their respective objective func-
tion values+ Each agentAs can be imagined to report by which “bonus”Dtkl

~s!

he wants to reward his walk in cyclen+ The actual trail level increments
result by distributing the total budget ofr proportionally to the reported
valuesDtkl

~s!+

3Note that this formalism covers therank-basedtrail level update, as introduced in@2# , as well as the
classical proportional update+
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By the described update rule, the trail levels of “successful” arcs of the
construction graph are increased, such that they are traversed more often by
the agents in the future+ By settingr 5 0, the influence of the cost function
on the walks of the agents is switched off+ If , in addition, the influence of the
attractiveness valueshkl~u! is switched off by settingb 5 0, then we obtain
random searchby a~“blind” ! random walk in the construction graph,which,
in this way, turns out to be a special case of the GBAS+

5+ An array ofattractiveness valueshkl , wherehkl $ 0 is assigned to arc~k, l !
in the construction graph+ The attractiveness values may depend on the par-
tial walk u5 ~u0, + + + ,ut22,ut21 5 k! the current agent has already traversed,
so they can be written ashkl 5 hkl~u!+ Typically, the valuehkl~u! is obtained
from a greedy heuristic~GH! for the combinatorial optimization problem
under consideration; in this view, it may also be interpreted as the value of a
so-calledgreedy function~see@9# !: Assume that a GH is given+ It specifies
the stepwise construction of a “good”~but, in general, not optimal! solution
of the problem+ In our formalism, this construction can be represented by a
walk in the construction graph+ The GH defines “weights” for all feasible
arcs~k, l ! leaving nodek and determines the next nodel of the walk by the
“greedy principle” that the weight of~k, l ! is maximum+We may now con-
sider the weight of arc~k, l ! as the “attractiveness” of the transition from
nodek to nodel; that is, we may sethkl~u! 5 weight~k, l !+ Alternatively, a
second way of defining the attractiveness values may also be chosen: Set
hkl~u! 51 if weight~k, l ! is maximum among all successor nodes of nodek,
andhkl~u! 5 0 otherwise+ The reader should note that the weight of~k, l ! is
allowed to depend on the whole “history”u 5 ~u0, + + + ,ut22,ut21 5 k!+

The valueshkl~u! can also be used forlockingwalks corresponding to
infeasible solutions+ If w is such a walk, let u be the longest partial walk
~starting at the start node! onw that can still be prolonged to a feasible walk
~i+e, that did not contradict a feasibility condition so far!, and let~k, l ! be the
first arc onw not belonging tou+ Then, w can be “locked”~without locking
any feasible walk! by settinghkl~u! 5 0+

In the above formalism, the GBAS is a natural stochastic generalization
of a GH+ Note that if the parametera is set equal to zero, and the above
second way described of defining the attractiveness values is chosen, the
behavior of the agents is exclusively governed by the greedy principle, so
GH is another special case of the GBAS+

A mathematically more sophisticated approach covered by the pre-
sented formalism consists in deriving the attractivenesshkl~u! from a lower
bound for the cost values in the subset of the solution space defined byu, as
it is done in the demanding but often very efficient ANTS technique devel-
oped by Maniezzo@17# +

It should be emphasized that the GBAS is applicable to all combinatorial opti-
mization problems with a finite solution space per problem instance+ This point is
discussed in detail in@13# +
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Let us now continue the discussion of Section 1+ If convergence of the walks of
the agents to oneoptimalwalk would hinge on the uniqueness of the optimal walk in
an essential way, this would have undesirable consequences+ For problems where
the exact optimal solution isnotunique, there would be no reason to believe that the
GBAS leads, in the long run, to a situation where only the arcs of the optimal walks
have trail levels essentially larger than zero+However, even if this should be the case
in a particular application, the GBAS might nevertheless output suboptimal solu-
tions+To illustrate this important point,we refer to Figure 2+1+Suppose there are two
optimal walks in this construction graph, w1

*5 ~0, 1, 3, 4, 6, 7, 9, 10, 12! andw2
*5

~0, 2, 3, 5, 6, 8, 9, 11, 12! and that the other walks are suboptimal~say, with equally
high cost values!+ Assume thathkl~u! 5 1 for all arcs+ If the relative frequencies of
the traversals ofw1

* and w2
* should tend to the same value 102 ~which might be

conjectured in view of the symmetry and a possible influence of the law of large
numbers!, all arcs would obtain~nearly! the same trail level+ Then, however, also
each of the 14 suboptimal walks would have the same probability of being traversed
by an agent in the current cycle asw1

* or w2
*+ In other words, with a high probability,

the GBAS would output a suboptimal solution, even if only optimal walks have been
reinforced+

Theorem 3+1 in the following section implies that, fortunately, this is not the
final development to be expected+ In the above situation~and on the conditions of
the Theorem 3+1!, only oneof the walksw1

* andw2
* will survive; the trail levels of

the other one will vanish+ Showing ageneralresult of this type is especially difficult
because of the possibility ofoverlappingoptimal walks: In the case of walks sharing
arcs, hardly controllable phenomena may occur; for example, a rewarded walk may
profit less by the trail level update than a not rewarded walk+A rather subtle analysis
~using the introduction of a suitable “impact value”! will be necessary in order to
cope with this problem+

3. THE CONVERGENCE RESULT

The aim of this section is to show that under weaker conditions than those in@13# ,
the current solutions of the GBAS~the solutions corresponding to the walks of agent
A1, + + + ,AS in cyclen! converge with a probability that can be made arbitrarily close
to unity toone optimal solution+ The conditions are the following:

Figure 2.1. Example construction graph+
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1+ The parametera in ~1! is chosen asa 5 1+
2+ There is at least onereachableoptimal walkw* @i+e+, an optimal walkw*

with the property that the attractiveness values satisfyhkl~u! . 0 for all arcs
~k, l ! of w* and the corresponding partial walksu of w*# +

3+ The reward functionsws chosen for the definition of the valuesDtkl
~s! at the

beginning of cyclen11 ~see~3!! have the following property: Let f *5 f *~n!
be the lowest cost value observed in the cycles 1, + + + , n 2 1 ~i+e+, the lowest
objective function valuefs corresponding to a walk of an agentAs in these
n21 cycles!+ ~It is easy to store and update the current value off * during the
execution of the algorithm+! In the case of cyclen51, let f *5`+ Then, for
all n larger or equal to some fixedm0 [ IN,

~i! ws~ f1, + + + , fS! . 0 for fs # f *

~ii ! ws~ f1, + + + , fS! 5 0 for fs . f *+

In other words, after cyclem0, only walks that are at least as good as the
best found walk up to now get a positive incrementDtkl

~s!+ For positive cost
functions, for example, ws~ f0, + + + , fS! may be chosen asws~ f0, + + + , fS! 5
10fs if fs # f * andws~ f0, + + + , fS! 5 0 otherwise+ Note thatws is allowed to
depend on the “history”~the cycles 1, + + + , n 2 1!, and hence, in particular,
on the valuef *+

Condition 1 is identical to condition~a! in @13# + As stated there, this condition
does not imply an essential restriction, since the main purpose of the parametersa
andb is not to “shape” trail levels and attractiveness values~this could be done by
other means!, but to have easy control over their impact relative to each other; so we
may fix one of these two parameters as long as the other remains free+

Condition 2 is a weaker form of condition~c! in @13# ~condition~b! in @13# is the
uniqueness condition which we can drop in the present article!+ The reader should
note that Condition 2 can easily be satisfied by arbitrarily slight changes of the
attractiveness values: For eachfeasiblecontinuation~k, l ! of a partial walku with
hkl~u! 5 0, replacehkl~u! 5 0 by hkl~u! 5 d with a smalld . 0+ Let us remark that
as long as global optimization is intended, it makes sense anyway not to exclude any
feasible continuation of a partial walk a priori+ Although not very restrictive, con-
dition 2 is essential because otherwise it may happen that a specific arc belonging to
the optimal walk is inaccessible for the agents, just because of an unlucky choice of
the attractiveness values+

Condition 3, finally, relaxes condition~d! in @13# + It says that after a certain
cyclem0 ~in @13# ,m051 was required!, a rewarding strategy similar to “global-best”
~see Gambardella and Dorigo@11# ! is followed: Only the best walks up to now are
rewarded; walks that are dominated by another already traversed walk do not get
trail level increments anymore+

Our main result is the following+

Theorem 3.1: Let conditions 1–3 be satisfied and let Pw~n! denote the probability,
computed from (1), that a fixed agent As traverses the walk w in cycle n. Then, the
following two assertions are valid:
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1. For eache . 0 and for fixed parametersr andb, it can be achieved by the
choice of a sufficiently large number S of agents that for an integer N~e!,
with a probability larger or equal to12 e, there is an optimal walk w* such
that Pw* ~n! $ 1 2 e for all n $ N~e!.

2. For eache . 0 and for fixed parameters S andb, it can be achieved by the
choice of an evaporation factorr sufficiently close to zero that for an integer
N~e!, with a probability larger or equal to12 e, there is an optimal walk w*

such that Pw* ~n! $ 1 2 e for all n $ N~e!.

The assertion of Theorem 3+1 only makes sense if the valuesPw~n! are consid-
ered as random variables themselves~instead of deterministic probabilities of ran-
dom events!+ In order to fix a probability space where the valuesPw~n! can be given
this interpretation,we represent the process induced by the GBAS algorithm in terms
of a stochastic process in discrete time, the final part of which~the cyclesm0,m1, + + + !
will turn out as aMarkov process~see, e+g+, @10# !+ The states of the stochastic pro-
cess are the triples

~ st~n!, uw~n!, f *~n!! ~n 5 1,2, + + + !,

where

• st~n! is the vector of the trail levelstkl~n! for all arcs~k, l ! during cyclen
• uw~n! is the vector of the walksw~s!~n! ~s51, + + + ,S! of the agentsA1, + + + ,AS

in cyclen
• f *~n! is the best found cost value corresponding to the walk of any agent in

one of the cycles 1, + + + , n 2 1+ For cyclen 5 1, we setf *~1! 5`+

Proposition 3.1: For n 5 m0,m0 1 1, + + + , the state variables~ st~n!, uw~n!, f *~n!!
form a Markov process.

The proof is a repetition of the proof of Proposition 4+1 in @13# , applied to the
cyclesm0,m0 1 1, + + + .

Remark 3.1:In the considered stochastic process, the numberspkl~n,u! defined by
~1! are functions ofst~n! and therefore also functions of the states of the process in
the cycles 1, + + + , n21 ~respectively, only of cyclen21, if n . m0!+ In particular, the
numberspkl~n,u! arerandom variables+ From this point of view, their interpretation
as probabilities is only an indirect one: By the state transition rule of the considered
stochastic process, they determine the distribution of the vectoruw~n! of the walks in
cyclen+

In the extension of@13# , the following abbreviations will be used:

• W *5 $w1
*, + + + ,wR

*% denotes the set ofreachableoptimal walks in the sense of
condition 2+

• L~w! denotes the length~number of arcs! of walk w+
• IP is written for the probability measure on the stochastic process defined

earlier+
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• En
~s!~w! denotes the event thatw~s!~n! 5 w ~i+e+, the event that agentAs tra-

verses walkw in cyclen!+
• Bn is the event thatw~s!~n! Ó W * for all s5 1, + + + ,S~the event that no agent

traverses an optimal walk in cyclen!+
• Fn is an abbreviation forB1 ∧{{{∧ Bn21 ∧ ¬ Bn ~i+e+, for the event that at least

one optimal walk is traversed by at least one agent in cyclen, but by no agent
in the cycles 1, + + + , n 2 1!+ Obviously, the eventsF1,F2, + + + are mutually
exclusive+

• A is an abbreviation forF1 ∨ F2 ∨ {{{ ~i+e+, for the event that there is ann and
an s such thatw~s!~n! [ W * ; the event that at least one optimal walk is
traversed by at least one agent in some cycle!+

Moreover, the notation~k, l ! [ wwill be used for the assertion that arc~k, l ! lies
on the walkw, and a walkw shall sometimes also be denoted by the sequence of
nodes lying on it+

Because of the definition ofW * and the fact that there are only finitely many
arcs~k, l ! and only finitely many partial walksu, we have

g 5 min$@hkl ~u!# b 6w* [ W *, ~k, l ! [ w*, u partial walk onw* % . 0 (7)

and

G 5 max$@hkl ~u!# b 6~k, l !arc, u partial walk% , `+

Multiplying all attractiveness valueshkl~u! by a fixed constant does not change the
transition probabilities~1!+ So, it can be assumed without loss of generality that the
valueshkl~u! are normalized in such a way thatG 5 1; that is,

@hkl ~u!# b # 1 (8)

for all arcs~k, l ! and all partial walksu+
Lemma 3+1 is an extension of Lemma 4+1 in @13# +

Lemma 3.1: For each n$ 1, the conditional probability, given arbitrary events in
cycle1, + + + , n21, that event¬Bn occurs is larger or equal to12 ~12cn21p!S, where
c 5 ~12 r!L0, p5 ~g06A6!L0, and L0 5 min$L~w*!6w* [ W *%.

Proof: Let w* [ W * be a fixed walk of lengthL0+We want to determine a lower
bound for the probability that in cyclen, there is at least one agent who traversesw*,
given arbitrary events in the cycles before+ SinceDtkl $ 0 andr . 0, ~5! implies

tkl ~n 1 1! $ ~12 r!tkl ~n! (9)

in the caseC . 0, and again because ofr . 0, this holds also in the caseC 5 0+
Repeated application of~9! yields

tkl ~n! $ ~12 r!n21tkl ~1!+ (10)
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This estimate holds independently of the events in previous cycles+ Because of~8!
and(~k, l ! tkl ~n! 5 1,

(
rÓu, ~k, r ![A

tkr ~n!@hkr ~u!# b # (
rÓu, ~k, r ![A

tkr ~n! # 1+

Therefore, the transition probabilitiespkl~n,u! given by~1! satisfy, for a nodel with
l Ó u, the inequality

pkl ~n,u! 5
tkl ~n!@hkl ~u!# b

(
rÓu, ~k, r ![A

tkr ~n!@hkr ~u!# b
$ tkl ~n!@hkl ~u!# b+ (11)

Let w*5 ~v0, + + + , vL0
!+ Then, by ~11!, ~7!, and~10!,

IP~En
~s!~w* !! 5 )

i50

L021

pvi vi11
~n, ~v0, + + + , vi !! $ )

i50

L021

tvi vi11
~n!@hvi vi11

~v0, + + + , vi !# b

$ gL0 )
i50

L021

tvi vi11
~n!

$ gL0 )
i50

L021

~12 r!n21tvi vi11
~1!

5 gL0~12 r!L0~n21! )
~k, l ![w*

tkl ~1!

5 gL0~12 r!L0~n21! ~106A6!L0

5 cn21p+

Because the walks of theSagents are independent, this implies

IP~Bn! # IP~¬En
~1!~w* ! ∧ {{{ ∧ ¬En

~S!~w* !! # ~12 cn21p!S,

which yields the assertion+ n

In the following lemmas,we consider the stochastic process defined above con-
ditioned on the eventFm, that is, on the event that cyclem is the first cycle where an
optimal walk is traversed+ The conditional probability of an event, givenFm, will be
denoted in the usual way by IP$event6Fm% + For the formulation of the lemmas, it is
convenient to introduce some additional definitions:

Definition 3.1: We distinguish two possiblecycle types: cycle n is called a B-cycle
if event Bn occurs (no agent traverses an optimal walk in cycle n), and it is called a
¬B-cycle if event¬Bn occurs (if at least some agent traverses an optimal walk in
cycle n).

Anepochis a sequence of consecutive cycles after cycle m1 5 max~m0,m! (cycle
m being the first¬B-cycle) with the property that all of these consecutive cycles are
B-cycles, except the last, which is a¬B–cycle.

A period is a sequence of a fixed number of consecutive epochs. (The number of
epochs contained in a period will be determined later.)
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During a fixed epoch, the trail levels remain constant, because at the end of a
B-cycle after cyclem1 5 max~m0,m!, the valueC is set equal to zero in view of
condition 3, so no change takes place+Only after the last cycle of an epoch, the trail
levels change+ Therefore, we may consider the cycles of an epoch as independent
trials~with identical success probabilities! to produce the event¬Bn+As soon as¬Bn

occurs, the epoch ends+ The distribution of the states during an epoch depends on
previous epochs only via the trail levels at the beginning of the epoch+Moreover, the
probability of any event in the last cycle of an epoch is identical to theconditional
probability of this event in a fixed cyclen of the current epoch~i+e+, in a cycle with
the trail levels valid in this epoch!, given the event¬Bn+

Definition 3.2: Therelative trail levelckl~n! of an arc~k, l ! is defined by

ckl ~n! 5
tkl ~n!

(
~k, r ![A

tkr ~n!
+

Note that the sum here is overall arcs~k, r ! with k as the start node, including those
with r [ u.

In view of ~1!, ~7!, and~8!, for each arc~k, l ! on a walkw* [ W * with partial
walk uw* ~k! up to nodek,

pkl ~n,uw* ~k!! $
tkl ~n!g

(
rÓu, ~k, r ![A

tkr ~n!1
$ g

tkl ~n!

(
~k, r ![A

tkr ~n!
5 gckl ~n!+ (12)

Definition 3.3: Theimpact valueC~w*! of a walk w* is the product of the relative
trail levels of its arcs:

C~w* ! 5 )
~k, l ![w*

ckl ~n!+

As a consequence of~12!, we obtain the following relation between the proba-
bility of a walk w* [ W * to be traversed, and its impact value:

Pw* ~n! 5 )
~k, l ![w*

pkl ~n,uw* ~k!! $ gL~w* ! C~w* ! (13)

for eachw* [ W *+
For n $ m1 5 max~m0,m!, it will be convenient to consider, in parallel to the

trail level update mechanism~5!, a slightly different alternative way of updating the
trail levels, defined by

Itkl ~m1! 5 tkl ~m1!,

Itkl ~n 1 1! 5 Itkl ~n! 1
r

12 r
Dtkl ~n $ m1!+ (14)
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The right-hand side of~14! is equal to the trail level that would have been obtained
by the original update rule,multiplied by the factor 10~12 r!+ Furthermore, if an arc
~k, l ! is not rewarded~i+e+, if Dtkl 5 0!, then its trail level remains constant instead of
being subject to evaporation, so we may call this variant anevaporationlesstrail
level update+ It is clear that the sum of trail levels computed in this way is no longer
equal to unity; instead, it is multiplied by the factor 10~1 2 r! in each¬B–cycle+
However, the computation of the probabilitiespkl~n,u! can be based as well on the
values Itkl~n! instead of the valuestkl~n!, yielding the same results, since, by the
denominator of~1!, the factor 10~12 r! cancels+ Thus, both alternatives of the trail
level update are equivalent+ Also, the computation of the relative trail levelckl~n!
and of the impact valueC~w*! can be based on the valuesItkl~n! instead of the values
tkl~n! with the same result+

We call the numbersItkl~n! thegross trail levels+With their help,Definition 3+4,
which is crucial for our proof, can be given+

Let us label the epochs after cyclem1 by h51,2, + + + + In epochh,walk wj
*[ W *

~1# j # R! obtains a certain nonnegative gross level incrementpj ~h! for each of its
arcs according to the evaporationless trail level update rule described earlier+ Note
that this increment is the same for each arc ofwj

*, but, of course, an arc~k, l ! can
possibly obtain such increments from different~rewarded! walks on which it lies+
Now, let

Ij ~h! 5 (
h '51

h

pj ~h
' !

be the total gross level increment an arc ofwj
* has obtained in the epochs 1, + + + , h due

to the rewards for walkwj
*+ ~If the arc belongs also to other walks onW *, it may have

obtained additional total gross level increments from these other walks+Walks not
contained inW *, however, are no longer rewarded after cyclem1+!

Definition 3.4: By thechampionof epoch h, we understand a walk wn
* [ W * for

whichIn~h!5max$Ij ~h!61# j # R%. (If there is more than one wj
*withIj ~h!5max,

the champion may be chosen arbitrarily from these walks.) By the champion of a
period, we understand the champion of the first epoch of this period.

It is now possible to show the following basic lower bound estimation+

Lemma 3.2: Conditional on event Fm, the champion wn
* of an epoch h after cycle

m1 5 max~m0,m! always has a probability Pwn
*~n! $ µ0 . 0 to be traversed by a

fixed agent As, where the number µ0 only depends ong, R,r, m1, and the structure
of the construction graph.

Proof: We start the proof with the following observation: Let c . 0, 0 , j #
x # 1, 0 # y # 1, and

f ~a! 5
x 1 a

x 1 y 1 ca
~a $ 0!+
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Then, there is a numberµ5µ~c,j! . 0 such thatf ~a! $ µ for all a$ 0+This is easily
verified by distinguishing the two casesa # 20c anda . 20c: In the first case, we
obtainf ~a! $ j04, whereas in the second case, f ~a! $ 102c+ So, the assertion holds
with

µ 5 minSj

4
,

1

2c
D+ (15)

Now, consider a fixed arc~k, l ! contained in the championwn
* and its “sister

arcs” ~k, r ! sharing with~k, l ! the start nodek+ Let xkl and xkr be the gross trail
levels of~k, l ! and~k, r !, respectively, in cyclem1+ Let a 5 In~h!+ In epochh, the
gross trail level of~k, l ! has increased at least to the valuexkl 1 a and at most
to the valuexkl 1 Ra, compared to cyclem1+ ~Note that~k, l ! may be contained
in several optimal—and therefore possibly rewarded—walks+! The gross trail
level of an arc~k, r ! ~r Þ l !, however, has increased at most to the valuexkr 1
~R 2 1!a, sinceIj ~h! # a for all j Þ n, and ~k, r ! Ó wn

*+
Denoting byd the maximal outdegree of a node in the construction graph, we

conclude that the relative trail level~which is identical to the relative gross trail
level! of arc~k, l ! in epochh is larger than or equal to

xkl 1 a

xkl 1 Ra1 (
r

xkr 1 ~d 2 1!~R2 1!a
$

xkl 1 a

xkl 1 (
r

xkr 1 dRa
,

where the sum(r xkr is over all “sister arcs”~k, r ! of ~k, l !+ Hence, the impact value
C~wn

*! of the championwn
* in epochh is larger than or equal to

)
~k, l ![wn

*

xkl 1 a

xkl 1 (
r

xkr 1 dRa
+

Applying the observation at the beginning of the proof withx 5 xkl [ @j,1# ~j will
be determined later!, y 5 (r xkr [ @0,1# , andc 5 dR. 0 yields the existence of a
numberµ . 0, depending only ond, R, and a lower boundj 5 j~m1! . 0 of the
~gross! trail levels in cyclem1, such that the impact valueC~wn

*! of the champion is
bounded below byµL~wn

*! + ~Let us emphasize thatm is independent of the epoch;
which walk is the champion, however, depends on the epoch+! By ~15!, µ , 1, and,
hence, by ~13!,

Pwn
*~n! $ gL~wn

*! C~wn
*! $ gL~wn

*!µL~wn
*! $ gLµL

with

L 5 max$L~w* !6w* [ W * %+ (16)
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All that remains to show is that a lower boundj 5 j~m1! . 0, depending only onr,
m1, and the structure of the construction graph, can be found for the~gross! trail
levels in cyclem1+ This, however, follows by Eq+ ~10! from

tkl ~m1! $ ~12 r!m121tkl ~1! 5 ~12 r!m12106A6+ n

Corollary 3.1: Conditional on event Fm, the probability that in the final cycle of
a fixed epoch after cycle m1 5 max~m0,m!, the champion wn

* , but no other optimal
walk that is traversed by an agent, is larger or equal to µ0

S(with µ0 from Lemma 3.2).
This holds independently of arbitrary events in epochs before the considered epoch.

Proof: Because an epoch consists of independent trials until event¬Bn occurs, the
probability we ask for is

IP$no agent traverses a walkw* [ W * \$wn
*%6¬Bn ∧ Fm%

$ IP$no agent traverses a walkw* [ W * \$wn
*% ∧ ¬Bn6Fm%

$ IP$all agents traversewn
* 6Fm% 5 @Pwn

*~n!# S $ µ0
S+

If we condition on certain events in previous epochs, these events can enter into the
probability computation only via the trail levels at the beginning of the given epoch+
The above estimation, however, holds independently of the specific values of these
trail levels+ n

Remark 3.2:From the definition of the champion of an epoch, it follows that if wn
*

is the champion of epochh andwn
* is the only optimal walk traversed by an agent in

epochh, thenwn
* is also the champion of epochh 1 1+

Remark 3+2 implies that whenever the championwn
* of a period~cf+ Definition

3+4! is the only traversed walk in all epochs of this period, thenwn
* is also the cham-

pion ofeach epochof the considered period+ Then, by Lemma 3+2, in each cyclen of
this period, the variablePwn

*~n! is larger than or equal toµ0+

Lemma 3.3: For a fixed n$ m1, let w* [ W *, p1 5 Pw* ~n!, and

Tp2 5 (
w[W * \$w* %

Pw~n!+

Then, if p1 $ 102, the probability that in the final cycle of the epoch containing
cycle n, walk w* is the only walk traversed by an agent and is larger than or
equal to1 2 2S Tp2.

Proof: The considered probability is

IP$no agent traverses a walkw [ W * \$w* %6¬Bn ∧ Fm%

5
IP$no agent traverses a walkw [ W * \$w* % ∧ ¬Bn6Fm%

IP~¬Bn!
+
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The denominator of the last expression is equal to 12 IP~Bn! 512 ~12 p1 2 Tp2!S+
By elementary probabilistic calculations, one finds that the nominator of the expres-
sion is equal to

~12 Tp2!SF12 S12
p1

12 Tp2
DSG 5 ~12 Tp2!S 2 ~12 p1 2 Tp2!S+

Thus, the probability that in the final cycle, w* is not the only traversed walk is

12
~12 Tp2!S 2 ~12 p1 2 Tp2!S

12 ~12 p1 2 Tp2!S 5
12 ~12 Tp2!S

12 ~12 p1 2 Tp2!S

# 2@12 ~12 Tp2!S# # 2S Tp2

since 12 p1 2 Tp2 # 102 for p1 $ 102, and~12 x!n $ 1 2 nx for 0 , x , 1+ n

Now, consider a fixed period+ Let wn
* be the champion of this period~i+e+, the

champion of its first epoch!+ For abbreviation, we use the following notation:

• H @k# is the event that in thekth epoch of the given period, walk wn
* is the only

traversed optimal walk+
• C @k# is the event thatwn

* is the champion of thekth epochof the given period+

Lemma 3.4: For a fixed period after cycle m1 and for each K[ IN,

IP~H @1# ∧ {{{ ∧ H @K # 6C @1# ! $ µ0
SK

with the number µ0 of Lemma 3.2.

Proof: The considered probability is equal to

IP~H @1# 6C @1# !IP~H @2# 6H @1# ∧ C @1# !{{{{{IP~H @K # 6H @1# ∧ {{{ ∧ H @K21# ∧ C @1# !+

Remark 3+2 states thatC @k# ∧ H @k# n C @k11# + By repeated application, we obtain

H @1# ∧ {{{ ∧ H @k21# ∧ C @1# n C @k#,

so

H @1# ∧ {{{ ∧ H @k21# ∧ C @1# ∧ C @k# m H @1# ∧ {{{ ∧ H @k21# ∧ C @1#+

Therefore, by the Corollary to Lemma 3+2,

IP~H @k# 6H @1# ∧ {{{ ∧ H @k21# ∧ C @1# !

5 IP~H @k# 6~H @1# ∧ {{{ ∧ H @k21# ∧ C @1# ! ∧ C @k# ! $ µ0
S,

which completes the proof+ n
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Lemma 3.5: Let T ~n,w*, e! denote the assertion

*tkl ~n! 2
1

L~w* ! * , e ∀~k, l ! [ w* ∧ tkl ~n! , L~w* !e ∀~k, l ! Ó w*+

Then, to eache . 0 and m[ IN,

IP$∃n $ m1,w* [ W * : T ~n,w*, e!6Fm% $ 1 2 e,

where m1 5 max~m0,m!.

Proof: Let e . 0 andm [ IN be fixed+We constructs~e! periods after cyclem1,
each period consisting ofK~e! epochs+ The numberss~e! andK~e! will be deter-
mined later+At the beginning of each period, its champion is determined+According
to Lemma 3+4, for each considered period, the champion of this period is, with a
probability larger or equal toµ0

SK~e! , the only traversed optimal walk in the entire
period+ This estimation holds independently of what has happened in the previous
periods+ Again, by considering conditional probabilities~as in the proof of Lemma
3+4!, one obtains the result that among thes~e! successive periods, there is with a
probability larger or equal to

12 @12 µ0
SK~e!# s~e! (17)

at least one period with the property that its champion is in allK~e! epochs of this
period the only traversed optimal walk+ Because of 12 µ0

SK~e! , 1, it is possible to
choose the numbers~e! ~to the givene, r, S, andK~e!! large enough that

@12 µ0
SK~e!# s~e! , e,

such that the expression~17! gets larger or equal to 12 e+ In other words, with a
probability $1 2 e ~conditional onFm!, there is a period containing only epochs
where one and the same walk, sayw*, is rewarded+

We show now that at the end of this period,

*tkl ~n! 2
1

L~w* ! * , e for all ~k, l ! [ w*

holds, provided thatK~e! is sufficiently large+ It is easy to verify from~4!–~6!
~cf+ @13, proof of Lemma 4+2# ! that in the case where only walkw* is rewarded in
cyclen,

tkl ~n 1 1! 2
1

L~w* !
5 ~12 r!Stkl ~n! 2

1

L~w* !
D for ~k, l ! [ w* ; (18)

that is, the distance betweentkl and 10L~w*! is reduced to a portion of 12 r of the
former distance+ChoosingK~e! large enough that~12 r!K~e! , e effects, therefore,
a reduction of the distance betweentkl~n! and 10L~w*! to a value less than or equal
to e+
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The assertiontkl~n! , L~w*!e for all ~k, l ! Ó w* follows immediately because
the sum of all trail levelstkl~n! is unity+ n

Lemma 3.6: Let L be given by (16) and suppose that for some w* [ W * and some
n [ IN, we have

tkl ~n! $
1

2L
for all ~k, l ! [ w*+

Furthermore, let

D 5 2Ld0g (19)

with d 5 maximal outdegree of a node in the construction graph, and suppose

tmax 5 max$tkr ~n!6k [ w*, r Ó w* % # 10D+ (20)

Then, the probability that a fixed agent traverses some walk different from w* is less
than or equal to LDtmax.

Proof: By assumption and by definition ofpkl~n,u!, the probability that a fixed
agent located at nodek of w* does not proceed to the successor nodel of k onw*, but
to another noder, is less than or equal to

d
tmax1

~10~2L!!g
5 Dtmax+

Hence, the probability that a walk different fromw* is traversed, is less than or
equal to

12 )
~k, l ![w*

~12 Dtmax! 5 12 ~12 Dtmax!
L # 1 2 ~12 LDtmax!

because of~12 x!n $ 1 2 nx for 0 , x , 1+ n

Lemma 3.7: Let T ~n,w*, e! be defined as in Lemma 3.5. Then, for alle . 0 and
m [ IN, there is an N[ IN such that

IP$∃w* [ W * ∀n' $ N : T ~n',w*, e!6Fm% $ e+

Proof: We start by showing that for alle . 0 andm [ IN,

IP$∃n $ m, w* [ W * ∀n' $ n : T ~n',w*, e!6Fm% $ e+ (21)

First, to the givene . 0, a number Ie . 0 is determined as follows+ For fixedr,

lim
dr0

F12 expS2
2d

r
DG 5 0+

Thus, a d . 0 ~depending one andr! can be found such that 12 exp~22d0r! #
e02+Without loss of generality, let d # 102+ Now, for L given by~16! andD given
by ~19!, we set
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Ie 5 minH e

2
,

1

2L
,

d

2SL2D
J +

Replacinge by Ie in Lemma 3+5,we obtain that with a probability~conditional onFm!
larger or equal to 12 Ie $ 1 2 e02, a cyclen $ m1 and a walkw* [ W * exist, such
thatT ~n,w*, Ie! holds, that is, such that

*tkl ~n! 2
1

L~w* ! * , Ie for all ~k, l ! [ w*

and

tkl ~n! , L~w* ! Ie for all ~k, l ! Ó w*+ (22)

Let us suppose thatT ~n,w*, Ie! holds indeed+ Then, in particular,

tkl ~n! $
1

L~w* !
2 Ie $

1

L
2 Ie $

1

2L
for all ~k, l ! [ w*

and

tkl ~n! # L Ie #
d

2SLD
,

1

D
for all ~k, l ! Ó w* ;

hence the conditions of Lemma 3+6 are satisfied+ It follows that

p1 5 Pw* ~n! $ 1 2 LDtmax+

Thus, because of~22!,

p1 $ 12 ~LD!L~w* ! Ie $ 1 2 L2D Ie $ 1 2
d

2S
.

1

2
+ (23)

Let us now consider the epoch containing cyclen ~we call it epoch 0! and the
epochs after this epoch, which we label byl 5 1,2, + + + in this proof+ ~The reader
should be aware of the different labeling in this proof, in Definition 3+4, and in
Lemma 3+4+! Similarly as in Lemma 3+4, let H denote the event that in a considered
epoch, walk w* is the only traversed walk+ For each epochl, we ask for the condi-
tional probability of the eventH, given that eventH has occurred in all previous
epochs 1, + + + ,l 2 1+ To estimate this probability, we apply Lemma 3+6 each time+
Since on the condition thatH has occurred in all previous epochs, the trail levels of
arcs~k, l ! Ó w* have decreased geometrically with factor 12 r, we have

tmax
@l# 5 ~12 r!ltmax

@0# ,

wheretmax is given by~20! and the indices in brackets refer to the epoch numbers+
Because, on the other hand, on the condition thatH has occurred in all previous
epochs, levels on arcs~k, l ! [ w* have approached the value 10L~w*! ~see~18!!, the
conditiontkl~n! $ 102L for ~k, l ! [ w* of Lemma 3+6 remains always satisfied+
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Moreover, the probabilityPw* ~n! of a traversal ofw* cannot decrease at the end of
an epoch where eventH occurs, as is easily seen by considering the gross trail levels
introduced before Definition 3+4, so ~23! implies alsop1

@l#
$ p1

@0# . 102 for all l
~again, the indices in brackets refer to the epoch numbers!+Applying Lemma 3+6,we
obtain the following: The probability that a fixed agent traverses some walk differ-
ent fromw* in epochl, given eventH has occurred in the epochs 1, + + + ,l 21, is less
than or equal to

LDtmax
@l# 5 LD~12 r!ltmax

@0# + (24)

In particular, the probability Tp2 of traversing anoptimalwalk different fromw* in a
cycle of epochl is then less than or equal to the expression in~24!+

Now, let us apply Lemma 3+3+ As verified earlier, the conditionp1 $ 102 is
satisfied+ Therefore, using ~22!, we conclude that the conditional probabilityq@l#

that in the final cycle of epochl,walk w* is not the only traversed walk, given event
H has occurred in the previous epochs 1, + + + ,l 2 1, and is less than or equal to

2SLD~12 r!ltmax
@0#

# 2SLD~12 r!lL Ie

# 2SL2D~12 r!l
d

2SL2D
5 ~12 r!ld+

As a consequence, the probability that there is an epochl where the event¬H
occurs is

12 )
l51

`

~12 q@l# ! # 12 )
l51

`

~12 ~12 r!ld!+

Because~12 r!ld # d # 102 and log~12 x! $ 22x for x # 102,

log )
l51

`

~12 ~12 r!ld! $ 22 (
l51

`

~12 r!ld $ 2
2d

r

and, therefore,

12 )
l51

`

~12 q@l# ! # 1 2expS2
2d

r
D #

e

2
+

Thus, conditional onT ~n,w*, Ie!, with a probability of at least 12 e02, eventH
occurs inall epochs 1,2, + + + +As a consequence of Lemma 3+5, the probability~con-
ditional onFm! for the existence of ann with T ~n,w*, e! is larger than or equal to
12 Ie $ 12 e02+ Therefore, the probability forT ~n,w*, e! andeventH in all epochs
following cyclen is larger than or equal to~12e02!2 $12e,which proves assertion
~21!, since the occurrence ofH in an epoch leavesT ~n,w*, Ie! satisfied after the
current trail level update+

In formulation~21!, the numbern still depends on the random influence, which
we may denote byv+ However, in order to prove the lemma, we would needn
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outsideof IP, such that it depends one andm but not onv+ This can be achieved as
follows+ Let us always assume thatFm holds+According to the proof of Lemma 3+5,
n is bounded above by the total numberZ of cycles between the first cycle and the
end of the considered sequence ofs~e! periods, each consisting ofK~e! epochs+ Z
is almost surely finite, since the probability of the occurrence of a¬B-cycle is larger
than some strictly positive constant by Lemma 3+2+ Thus, Z can be considered as a
finite discrete random variable~whose distribution, of course, depends onm!+ Con-
sequently, for any givene . 0 andm [ IN, there must be an integerN5 N~e! such
that Z # N with probability ~conditional onFm! of at least 12 e02+ Let us now
replace in~21! the numbere by e02 and use the relationn 5 n~v! # Z+We obtain

12
e

2
# IP$∃n [ $m1, + + + ,Z%, w* [ W * ∀n' $ n : T ~n',w*, e!6Fm%

# IP$∃n [ $m1, + + + ,Z%, w* [ W * ∀n' $ n : T ~n',w*, e! ∧ Z # N6Fm%

1 IP$Z . N6Fm%

# IP$∃n [ $m1, + + + ,Z%, w* [ W * ∀n' $ n : T ~n',w*, e! ∧ Z # N6Fm%

1
e

2
+

Subtractinge02 on both sides yields

IP$∃n [ $m1, + + + ,Z%, w* [ W * ∀n' $ n : T ~n',w*, e! ∧ Z # N6Fm% $ 1 2 e

and, hence,

IP$∃w* [ W * ∀n' $ N : T ~n',w*, e!6Fm%

$ IP$∃n [ $m1, + + + ,Z%, w* [ W * ∀n' $ n : T ~n',w*, e! ∧ Z # N6Fm%

$ 1 2 e,

which gives the assertion of the lemma+ n

Corollary 3.2: With Pw* ~n! denoting the probability that a fixed agent traverses
walk w* in cycle n, the following assertion holds4: For eache . 0 and m[ IN, there
is an N[ IN such that

IP$∃w* [ W * ∀n' $ N :Pw* ~n
' ! $ 1 2 e 6Fm% $ 1 2 e+

Proof: We replacee by Ie in Lemma 3+7 and set~with L given by~16!!

Ie 5 minS 1

2L
,

ge

2dL3D , e+

4As to the interpretation ofPw* ~n! as a random variable, see Remark 3+1+
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By Lemma 3+7, to a given Ie . 0 andm [ IN, there exists anN [ IN such that with
a probability~conditional onFm! larger than or equal to 12 Ie,

∃w* [ W * ∀n' $ N : T ~n',w*, Ie!+

AssumeT ~n',w*, Ie!+ Then,

tkl ~n
' ! # L~w* ! Ie # L Ie # ge02dL2 ∀~k, l ! Ó w*

and

tkl ~n
' ! $ 10L~w* ! 2 Ie $ 102L ∀~k, l ! [ w*,

as earlier+ Hence, we conclude the following in a way analogous to the proof of
Lemma 3+6+The probability that a fixed agent proceeds from a nodek[ w* to a node
r Ó w* is smaller than or equal to

d{
ge02dL2

~102L!g
5

e

L
+

As a consequence, the probability that walkw* is traversed by the considered agent
is larger than or equal to

~12 e0L!L~w* ! $ ~12 e0L!L $ 1 2 e+ n

After these preparations, we are now in the position to prove the main theorem+

Proof of Theorem 3.1: By Lemma 3+1,

IP~B1 ∧ {{{ ∧ Bn! 5 IP~B1!IP~B26B1!{{{{{IP~Bn6B1 ∧ {{{ ∧ Bn21!

# ~12 p!S~12 cp!S{{{~12 cn21p!S

5 F)
i51

n

~12 ci21p!GS

+

Let us set

w~ p,c,S! 5 F)
i51

`

~12 ci21p!GS

+

SinceA 5 ¬~B1 ∧ B2 ∧ {{{!, we get

IP~A! 5 12 lim
nr`

IP~B1 ∧ {{{ ∧ Bn! $ 1 2 lim
nr`

F)
i51

n

~12 ci21p!GS

5 1 2 w~ p,c,S!+
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It is easy to see that by choosingSsufficiently large or by choosingr sufficiently
small, it can be achieved thatw~ p,c,S! gets arbitrarily small+ Hence, by an appro-
priate choice ofSor r, we can achieve that IP~A! $ 1 2 e04+ Since

(
n51

`

IP~Fn! 5 IP~F1 ∨ F2 ∨ {{{! 5 IP~A! # 1,

there is an integerk 5 k~e! such that

(
n5k11

`

IP~Fn! ,
e

4
,

so

IP~F1 ∨ {{{ ∨ Fk! 5 (
n51

k

IP~Fn! 5 IP~A! 2 (
n5k11

`

IP~Fn! $ S12
e

4D2
e

4
5 1 2

e

2
+

Let us replacee by Ie 5 e02 in the Corollary 3+2 to Lemma 3+7+ Then, for each
m [ IN, there must be an integerN 5 N~e,m! such that

IP$∃w* [ W * ∀n' $ N~e,m! :Pw* ~n
' ! $ 1 2 e 6Fm% $ 1 2

e

2
+

Let N~e! 5 max$N~e,m!61 # m# k% + Then, also,

IP$∃w* [ W * ∀n' $ N~e! :Pw* ~n
' ! $ 1 2 e 6Fm% $ 1 2

e

2

for all m# k+ Consequently,

IP$∃w* [ W * ∀n $ N~e! :Pw* ~n! $ 1 2 e%

5 (
m51

k

IP$∃w* [ W * ∀n $ N~e! :Pw* ~n! $ 1 2 e 6Fm% IP~Fm!

1 IP$∃w* [ W * ∀n $ N~e! :Pw* ~n! $ 1 2 e 6 ¬ ~F1 ∨ {{{ ∨ Fk!%

3 IP~¬~F1 ∨ {{{ ∨ Fk!!

$ (
m51

k

IP$∃w* [ W * ∀n $ N~e! :Pw* ~n! $ 1 2 e 6Fm% IP~Fm!

$ S12
e

2D (
m51

k

IP~Fm!

$ S12
e

2D
2

$ 12 e+

This proves the theorem+ n
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Corollary 3.3: Let Pn denote the probability that a fixed agent traverses an opti-
mal walk in cycle n. Then, for eache . 0, it can be achieved by choosing S suffi-
ciently large or by choosingr sufficiently small that for an integer N~e!,

Pn $ 12 e for all n $ N~e!+

Proof: Replacinge by Ie andN~e! by EN~ Ie! in Theorem 3+1, we obtain

∀ Ie . 0 ∃S~ Ie!, EN~ Ie! : IP$∃w* [ W * ∀n $ EN~ Ie! :Pw* ~n! $ 1 2 Ie% $ 1 2 Ie (25)

and an analogous assertion whereS~ Ie! is replaced byr~ Ie!+ From ~25!, the weaker
assertion

∀ Ie . 0∃S~ Ie!, EN~ Ie!∀n $ EN~ Ie! : IP$∃w* [ W * :Pw* ~n! $ 1 2 Ie% $ 1 2 Ie (26)

follows ~and analogously forr~ Ie!!+ Let us consider agentAs+ Then,

Pn 5 (
j51

R

IP~En
~s!~wj

*!! $ (
j51

R

IP~En
~s!~wj

*! ∧ Pwj
*~n! $ 1 2 Ie!

5 (
j51

R

IP~Pwj
*~n! $ 1 2 Ie!IP~En

~s!~wj
*!6Pwj

*~n! $ 1 2 Ie!

$ ~12 Ie! (
j51

R

IP~Pwj
*~n! $ 1 2 Ie!

$ ~12 Ie! IP$∃wj
* [ W * :Pwj

*~n! $ 1 2 Ie%+

By ~26!, the last expression is, for n $ EN~ Ie!, larger than or equal to~1 2 Ie!2 $
1 2 2 Ie+ Setting Ie 5 e02 and EN~ Ie! 5 N~2 Ie! 5 N~e! completes the proof+ n

Remark 3.3:Corollary 3+3 is distinctly weaker than Theorem 3+1 because it does not
make an assertion on the “persistence” of one optimal walk which finally survives+
The special caseR5 1 of the corollary is the main result~Theorem 4+1! of @13# +

4. CONCLUSIONS

We have shown that the convergence result demonstrated in@13# for the graph-based
ant system algorithm also holds on essentially relaxed conditions+ Our estimations
are coarse and based on worst cases, so they are not suitable at all for deriving
assertions on the~average! convergence speed or on appropriate parameter values
for either the number of agents or the evaporation factor+ This aspect has been dis-
cussed in@13# in more detail+ It is hoped that future investigations will produce
results concerning the interesting questions mentioned+Another open problem is the
convergence behavior of ant-system-type heuristics under completely different trail
level update strategies from the one considered here+We conjecture that in the final
phase, a strategy resembling “global-best”mustbe applied to prevent premature
convergence to a suboptimal solution~in a similar way as in simulated annealing, the
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reduction of the temperature parameter, is essential for convergence to the optimal
solution!, but it seems too early to give a definite answer to this question+

Of course, it would be desirable to have convergence with probability exactly 1
and not only with a probability larger than or equal to 12 e+ In @14# , almost sure
convergence results are shown for suitably modified trail update schemes in the
framework of a simplified GBAS variant+ It is possible that by using such modified
update rules also the results in the present article, for the “complete” GBAS algo-
rithm might be sharpened to obtain convergence with probability 1+
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