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In this article, we highlight three points. First, we counter Grant and Lebo’s claim that the error correction

model (ECM) cannot be applied to stationary data. We maintain that when data are properly stationary, the

ECM is an entirely appropriate model. We clarify that for a model to be properly stationary, it must be

balanced. Second, we contend that while fractional integration techniques can be useful, they also have

important weaknesses, especially when applied to many time series typical in political science. We also

highlight two related but often ignored complications in time series: low power and overfitting. We argue

that the statistical tests used in time-series analyses have little power to detect differences in many of the

sample sizes typical in political science. Moreover, given the small sample sizes, many analysts overfit their

time-series models. Overfitting occurs when a statical model describes random error or noise instead of the

underlying relationship. We argue that the results in the Grant and Lebo replications could easily be a

function of overfitting.

The goal of applied time-series analysts is to estimate relationships among variables whose
behaviors evolve over time and use those estimates both to test hypotheses and to infer interesting
features of the relationships in the short and long run. Studies of presidential approval, inequality,
and macroeconomic indicators rely on the tools of time-series analysis. In a time-series analysis, the
choice of the statistical model depends critically on the temporal properties of the data. In theory,
the choice is clear-cut. Traditionally, the analyst faced a dichotomous choice. If the data are
stationary, a number of time-series regression models can be applied in a straightforward
manner. If the data are integrated but jointly stationary, cointegration techniques must be used.
More recent work adds a third option: if the data are fractionally integrated but jointly of a lower
order of integration, fractional cointegration methods apply. As such, an important part of a time-
series analysis is the diagnosis and classification of time series. The analyst must be able to classify
time series as either stationary, integrated, or fractionally integrated before more standard
statistical modeling can be done.

The difficulty is that classification of time series into these three types is often not
straightforward. Grant and Lebo’s basic argument revolves around this choice. Essentially they
argue that error correction models can only be applied to integrated outcomes, and that many
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analysts have incorrectly treated fractionally integrated time series as stationary. These mistakes
have led to serious inferential errors. Their final conclusion essentially amounts to a call for most
political time-series models to be treated as fractionally integrated.

In this essay, we highlight three points. First, we counter Grant and Lebo’s claim that the error
correction model (ECM) cannot be applied to stationary data. We highlight that much of the
evidence in their article is based on the use of imbalanced equations. We maintain that when
data are properly stationary, the ECM is an entirely appropriate model. Next, we contend that
while fractional integration techniques can be fruitfully applied, they also have important
weaknesses, especially when applied to many time series typical in political science. Finally, we
bring attention to two related but often ignored complications in time series: low power and
overfitting. The statistical tests used to diagnose the properties of time series have weak power
to detect differences in many of the sample sizes typical in political science. Moreover, given the
small sample sizes, many analysts overfit their time-series models. Overfitting occurs when a statical
model describes random error or noise instead of the underlying relationship. Given the short
length of many time series and the surfeit of parameters used in many models, we argue that
overfitting is a very real danger. We end with some suggestions for applied analysis of time-
series data.

1 Modeling Time-Series Relationships

In this section, we review the models appropriate for the three types of time series. The goal in any
time-series analysis is to model the equilibrium relationship between X and Y, that is, to model the
behavior of some Y which is tied to X over time. Here, we review how such an equilibrium
relationship may be modeled with each of the three types of time-series data.

1.1 Stationary Time Series

When a time series is judged to be stationary, the most common method of analysis relies on linear
regression models. De Boef and Keele (2008) outlined a set of regression-based models that may be
applied to stationary data and weakly exogenous time series. In this case, the generalized error
correction model (GECM), the autoregressive distributed lag (ADL) model, or appropriately
restricted versions of these regression models are all reliable tools for inference. Each will
capture the essential features of the short and long-run relationships. The (bivariate) ADL
model is given by

Yt ¼ �0 þ �1Yt�1 þ �0Xt þ �1Xt�1 þ �t: ð1Þ

The short-run effects are given by the �, the long-run effect is given by �0þ�1
1��1

, the long-run

equilibrium is calculated as �0
1��1
þ

�0þ�1
1��1

EðXÞ, and the error correction rate is given by �1 � 1.

A simple linear transformation shows that the model in equation (1) is exactly equivalent to the
GECM model given by

�Yt ¼ �0 þ �
�
1Yt�1 þ �

�
0�Xt þ �

�
1Xt�1 þ et: ð2Þ

The GECM estimates changes in Y as a function of lagged values of X and Y, which capture the

long-run relationship (
��1
��
1
), and changes in X, which capture short-run dynamics. The error

correction rate is given by ��1. The equivalence of the two models ensures that the short- and

long-run effects, as well as the equilibrium relationship and error correction rates, will be the
same as those given for the ADL. Standard limiting distributions apply to hypothesis tests on all
quantities.

Grant and Lebo maintain that the ECM has pathologies particular to it that do not exist in the
ADL model. However, the long-established isomorphism between the GECM and ADL, and
restricted versions of each, means the GECM and ADL offer the same information and suffer
the same problems (Beck 1991; Bannerjee et al. 1993; Hendry 1995; Davidson and MacKinnon
1993). Again, we maintain that the equivalence is mathematical fact and the two models lead to the
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same results under the stated assumptions. As we highlight below, problems can arise when there is
overfitting or unbalanced equations, but these problems apply equally to the ADL and ECM.1

1.2 Integrated and Jointly Cointegrated Time Series

In contrast to the case where all variables are stationary, if pre-testing leads the analyst to conclude
the data are individually integrated and jointly cointegrated, the long-run relationship must be
captured in an error correction model. The existence of a long-run relationship among integrated
variables implies cointegration and a valid error correction representation. In turn, cointegration
among integrated variables implies a long-run relationship that can be captured in an error
correction model. Typically textbooks lay out the Engle-Granger two-step method or the
Johansen reduced rank regression model for estimating the long- and short-run dynamics, but
other options are also available (see Bannerjee et al. 1993).

Political scientists typically adopt the Engle-Granger two-step method in which the long-run
relationship is estimated in step one. In step two the lagged (stationary) residuals from this equation
enter the second-stage error correction model. It is easily seen that all variables in the second-stage
regression are stationary in this case such that standard limiting distributions apply to all
coefficients. However, as long as the dependent variable is in first differences, lagging the right-
hand-side variables has the same effect as including a cointegrated set of regressors, provided they
are either individually or jointly I(0). It is irrelevant whether the transformation is actually carried
out in step one because any linear combination of the variables contains the same information.
However, standard distribution theory applies only to test statistics on individual coefficients and
any subset of coefficients that are jointly stationary (Bannerjee et al. 1993). We maintain that this
part of time-series analysis is the least controversial outside of the fact that there tend to be few
truly integrated time series in political science.

1.3 Fractionally Integrated and (Fractionally) Cointegrated Time Series

An integrated time series is memoryless. Exogenous shocks do not wear off. For a stationary series,
exogenous shocks change the level of the series, but the series then returns to its mean level. A key
question is the rate at which the series returns to its mean. In time-series parlance, the rate at which
a series returns to its mean after an exogenous shock is referred to as decay. If we assume Yt follows
an AR(1) process, we can use the following model:

Yt ¼ �0 þ �1Yt�1 þ et: ð3Þ

Here, the parameter for the lag of Y, �1, dictates the rate of decay for any shocks to Yt. Specifically,
the model assumes that shocks decay at a geometric rate. Under a model of fractional integration,
shocks decay at a much slower, hyperbolic rate. Specifically, the model of fractional white noise
(ARFIMA(0,d,0)) can be represented by an infinite-order autoregressive model:

Yt ¼
X1
k¼0

pkYt�k þ et; ð4Þ

where the weights are obtained from the binomial expansion such that for a given lag k, the weights
are given by ckd�1 where c is a constant. If data are fractionally integrated and jointly (fractionally)
cointegrated, fractional cointegration captures the long-run relationship between the variables.
While we can estimate the long-run relationship with these models, short-run effects, dynamic
multipliers, long-run equilibria, and error correction coefficients are largely uninterpretable. The
fractionally differenced dependent variable does not have a natural interpretation, such that linking
estimates from fractionally cointegrated models back to our theory is difficult.

1See the appendix for a summary of simulations demonstrating that estimates from the GECM have the usual desirable
properties and that t-tests follow the standard t-distribution when the data are stationary. See the replication files for
the simulation code (Keele, Linn, and Clayton 2016).
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Thus far we have laid out the basic trichotomy of time-series analysis. Once the analyst decides
which form of analysis is appropriate, he or she can simply pick from the above menu of models. As
we highlight below, best practice is more complex.

2 Complexity in the Statistical Analysis of Time Series

2.1 Unbalanced Time-Series Regressions

Stable long-run relationships in turn imply balanced equations. Each of the three cases above
involves balanced regressions. However, no regression model is appropriate when the orders of
integration are mixed because no long-run relationship can exist when the equation is unbalanced.
The intuition is simple: stable/stochastically bounded variables cannot cause (or be caused by) the
path of a stochastically unbounded variable; the time series must eventually diverge by larger and
larger amounts.2 Instead, the data must be transformed to ensure the left and right-hand sides of
the models are of equal orders of integration.

Much applied work estimates long-run relationships with little attention to the underlying
dynamic properties of the time series (or their joint properties) and the existence of equation
balance implied by the specified dynamic relationship. In fact, applied work citing De Boef and
Keele (2008) has been used to justify the GECM writ large. While it is true that the GECM can be
used to estimate long-run relationships between stationary series and between integrated and jointly
cointegrated time series, such a strategy invites spurious inferences when the regressand and
regressors are unbalanced.

Grant and Lebo spend extensive time demonstrating that the GECM performs poorly in a set of
cases, most of which deal explicitly with unbalanced equations: explosive dependent variables and
integrated or stationary regressors, integrated dependent variables and stationary regressors,
stationary dependent variables and integrated regressors. These results emphasize the
inapplicability of error correction models, but for the same reason they condemn regression
models generally in these cases: No regression model will produce reliable inferences when the
order of integration on the left- and right-hand side of our equation are different such that no
long-run relationship exists between the regressand and regressors.

2.2 Error Correction Rates, Balance, and Long-Run Relationships

Estimates from an ECM provide some evidence not only about the nature of the long-run
relationship specified but also about the appropriateness of the ECM and the likelihood that the
equation is balanced. Recall that the error correction rate gives us the rate at which Yt changes to
restore the long-run equilibrium between it and Xt. Assume Xt and Yt are out of equilibrium and
call the equilibrium error e. If at time t – 1, e is positive, the value of Yt is too high (above its
equilibrium value), Yt must adjust downward at time t. Similarly, if e is negative, Yt must adjust
upward at time t. Thus, the movement in Yt is in the opposite direction of the disequilibrium. This
implies that the error correction coefficient must be negative for the long-run equilibrium to be
restored.

Estimated error correction rates may take on a range of values. See Table 1. Typically, error
correction rates lie between 0 and �1.0. In this case, the long-run equilibrium is restored gradually.
Estimated error correction coefficients nearer to �1.0 imply a quick return to the long-run
equilibrium; those closer to 0 imply a slower return. Error correction rates may also lie strictly
between �1.0 and �2.0. Just as with negative autocorrelation, in this scenario the approach to
equilibrium is oscillating, as Yt corrects more than 100% of the equilibrium error in the succeeding
period but will slowly return to equilibrium as the overcorrection lessens after each time period.
This situation is, however, very rare. If an analyst estimates an error correction rate in this range, he

2Hypothesis tests on the model coefficients will not follow standard distribution theory in this case, but that point is
trivial given that the regression model is nonsensical.
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should consider whether such a scenario makes sense or whether some form of misspecification is
likely driving the result.

Error correction coefficients outside this range or close to the bounds are often a sign of model
misspecification. A positive error correction rate indicates a lack of stability in the model. The
model does not converge to a long-run equilibrium. The implied coefficient on lagged Yt in the
ADL is greater than 1.0 (��1 þ 1:0 > 1:0). Here, it is immediately obvious that the Yt process is
explosive and no long-run equilibrium exists. Positive estimates of ��1 likely occur because the
equation is imbalanced but may occur because the equation properly specified contains unmodeled
dynamics, likely a structural break (or breaks). If the time series are all integrated, a second,
unmodeled cointegrating relationship may exist, producing a positive error correction rate.

Consider an estimated error correction rate in the GECM equal to �1.0. Such an estimate
implies Yt adjusts immediately and completely to any shocks in Xt and thus all the dynamic
effects of Xt translate to a new equilibrium value of Yt immediately (at whatever lag they enter
the model).3 In other words, the Yt process is not dynamic. Yt is white noise. (Estimation of the
ADL would present the analyst with the corroborating evidence that the coefficient on lagged Yt is
0.) In this case, although the data are stationary, neither a GECM nor an ADL model should be
specified. Any equilibrium relationship is driven solely by the independent variables.

If the error correction coefficient is less than �2.0, no equilibrium could exist among the
untransformed variables. The implication is that the underlying Yt series is explosive. Such a
scenario could also arise if a negatively autocorrelated Yt contains a structural break, if the data
contain Autoregressive conditional heteroskedasticity (ARCH) effects, or if some other form of
misspecification exists.

Finally, an error correction coefficient equal to 0 implies that Y adjusts so slowly to shocks that it
does not ever reach an equilibrium. This signals misspecification of a different sort. It could occur
because Yt is a unit root process and not cointegrated with Xt but may also indicate unmodeled
dynamics in Yt due to a structural break or simply that the time series was not observed long
enough to witness a return to equilibrium. Therefore, when analysts use a GECM or an ADL, they
should take note of estimated values of ��1 or �1 that are close to the bounds or exceed the bounds
implied by the model, as this is evidence of a misspecified dynamic model.

2.3 Fractional Integration

Fractional integration techniques present their own set of challenges. Above, we discussed the
problem of interpretability. Here, we discuss the interwoven issues of estimation and inference of
fractional dynamics in a single time series. Strictly speaking, the distinction between Fractionally
Integrated (FI) and stationary time series is an empirical one that can be arbitrated with data. The
difficulty is that time-series modeling is bedeviled with such questions. Integrated time series are
said to be memoryless to distinguish them from either stationary or fractionally integrated time
series. However, a voluminous amount of ink has been spilled on the subtleties of testing whether a

Table 1 Error correction rates and long-run equilibria

��1 �1 Diagnosis

0 > ��1 > �1:0 0 < �1 < 1:0 Steady return to long run-equilibrium.
�2:0 < ��1 < �1:0 �1:0 < �1 < 0 Oscillating return to long-run equilibrium.
��1 > 0 �1 > 1:0 Y is explosive, no long-run equilibrium exists.

��1 ¼ 0 �1 ¼ 1:0 Y is integrated, no long-run equilibrium exists.
��1 < �2:0 �1 < �1:0 Y is explosive, no long-run equilibrium exists.

3If none of the independent variables in the model are significant, unmodelled shocks are immediately incorporated into
future values of Y (this is Grant and Lebo’s case 3).
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series is integrated or not. And as we will show below, these subtleties extend to fractional

integration.
The general ARFIMA(p, d, q) model is given by

1�
Xp
i¼1

�iL
i

 !
1� Lð Þ

dYt ¼ 1þ
Xq
i¼1

yiLi

 !
et; ð5Þ

where p refers to the number of autoregressive parameters, �, q refers to the number of moving

average parameters, �, and d is the fractional differencing parameter. Fractional integration would

appear to offer a complete framework for thinking about time series. It can accommodate short-run

dynamics in the form of autoregressive and moving average parameters and long-run dynamics in a

fractional differencing parameter, d.4

Of course, in order to use this model, we must be able to reliably estimate the d parameter that

describes the level of fractional integration, possibly along with � and �. A considerable body of

research suggests this may not be the case in a wide variety of circumstances. In particular when

samples are small to medium in size, and when the process includes short-run dynamics,

particularly of unknown order, estimation of d can be highly uncertain. The Stata manual on

the ARFIMA command, for example, warns against fitting a 3-parameter ARFIMA model

within an empirical example with 372 observations, saying this is a very complex dynamic model

(StataCorp., 2013). Moreover, a three parameter model is a model with an AR parameter, an MA

parameter, and a d parameter. No independent variables are included in this model.
Many authors point to cases in which tests suggest the data is fractionally integrated when it is

not (Engle and Smith 1999; Granger and Hyung 1999; Diebold and Inoue 2001). The presence of

outliers or structural breaks can produce time series that mimic ARFIMA processes, as can time

series that are simple non-linear transformations of underlying short memory variables. Bhardwaj

and Swanson (2006) demonstrate that even absent these concerns, spurious long memory often

arises in a number of statistical tests of short memory. They also show that standard short memory

tests will provide evidence for long memory even in cases where predictions from a number of

ARFIMA model estimators of d fare worse than those from the more standard AR, MA, ARMA,

and related models (Bhardwaj and Swanson 2006). In fact, Granger (1999) notes that ARFIMA

models may well fall into an “empty box” because these models have stochastic properties that do

not mimic the properties of much of the data to which they have been, or are likely to be, applied.

In some circumstances ARFIMA models offer superior predictions to alternative models about half

the time, but only when sample sizes are large and forecast horizons long (Bhardwaj and Swanson

2006).
Here, we illustrate the difficulty of drawing inferences about the existence and degree of

fractional integration using simulations. We analyze the properties of the exact maximum

likelihood estimate (Sowell 1992), the default estimator in Stata and the popular R package

ARFIMA, and that recommended by Lebo, Walker, and D Clarke (2000) and Veenstra (2013).5

We simulate the ARFIMA process given in equation (5) for samples of size 50, 100, 250, 500,

1000, and 1500. We allow for a range of dynamics, including ARFIMA(0,d,0), ARFIMA(1,d,0),

ARFIMA(0,d,1), and ARFIMA(1,d,1) processes. The autoregressive parameter, �, is set to 0.60,

the moving average parameter, �, is set to 0.60 in the AR and MA models, respectively, while �
¼ 0:50 and y ¼ 0:30 in the combined ARMA models. d takes on the values 0 (no fractional

integration), 0.20, 0.40, 0.45, and 0.80. In the latter case, the data is integer differenced before

simulation and estimation so that d¼�0.20 in the transformed data. We estimate the ARFIMA

process under the optimal, but unrealistic assumption that the order of the short-run dynamics is

4See Baillie (1996) for a survey of methods for long memory data.
5While the most commonly used estimators are asymptotically equivalent, their performance can differ markedly in small
to medium size samples. Other estimators often used are the Whittle likelihood (Robinson 1995) and the modified
profile likelihood (An and Bloomfield 1993). Evidence suggests the exact MLE is not a panacea (Hauser 1999).
Specifically, the modified profile likelihood dominates the exact MLE, which is biased downward, in small samples,
especially when long- and short-run dynamics both characterize the data-generating process.
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known.6 The difficulty of selecting the right model of short-run dynamics further complicates the
estimation of d; uncertainty over the proper short-run dynamic model increases our uncertainty
over the estimate of d and thus our confidence that the selected model mimics the data-generating
process.

The results from the simulations are presented in Fig. 1. For the sake of clarity, we only present a
subset of the results.7 The rows show the results from the ARFIMA(0,d,0), ARFIMA(1,d,0), and
ARFIMA(0,d,1) models. The value of the fractional differencing parameter (d) varies across the
columns of the array. Results are presented for the fractional parameters d ¼ 0.2, d ¼ 0.4, and
d¼ 0.8. Three sample sizes are presented: t¼ 100 (dashed line), t¼ 250 (solid line), and t¼ 1000
(dotted line). The solid vertical line in each plot represents the true value of d.

There is a considerable amount of uncertainty in the estimates of d. Consistent with Hauser
(1999), the estimator produces downwardly biased estimates of d across all models. In particular,
performance is poor when t¼ 100 and t¼ 250 and is worse when the data-generating process
contains short-run dynamics. The estimator has particular difficulty distinguishing long-run from
short-run dynamics. In some cases estimates range across almost all possible values of d. For d¼ 0.2
and t¼ 100, estimates range from �0.18 to 0.36 in the ARFIMA(0,d,0) model. This range increases
to [�0.46, 0.33] in the ARFIMA(1,d,0) model and to [�0.80, 0.30] in the ARFIMA(0,d,1) model.8

This uncertainty may lead to misdiagnosis of d in small to medium samples.
This poor performance may also lead to overdiagnosis of fractional integration, causing analysts

to fractionally difference short memory data. Table 2 summarizes a series of simulations that
illustrate this point. Columns one and two show the models and sample sizes. Column three
shows the average estimates of d for each model-sample combination, and column four shows

n = 100

n =250

n = 1000

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

d = .2                                                            d = .4                                                       d = .8
A

R
FI

M
A

(0
,d

,1
)  

   
 A

R
FI

M
A

(1
,d

,0
)  

   
A

R
FI

M
A

(0
,d

,0
)

Estimated Distribution of d

Fig. 1 Distributions of Estimates for d.
Each panel shows the distribution of the exact maximum likelihood estimates of d from the simulations for
samples of size t ¼ 100 (dashed line), t¼ 250 (solid line), and t¼ 1000 (dotted line). The solid vertical line in
each plot represents the true value of d. Details of the simulations are given in the text.

6The sample mean is used as the estimate of the true mean (which is zero). The log likelihood is given by

‘ðyjẐÞ ¼ �1=2½Tlogð2pÞ þ logjV̂j þ ðy� X�̂Þ0V̂
�1
ðy� X�̂Þ�; ð6Þ

where V is the variance-covariance matrix. See Sowell (1992) for details. The models are estimated with the number of
starting values set to twice the number of estimated parameters (other than the constant). The AIC is used to select the
estimate when the likelihood surface has multiple modes.

7The remaining results are summarized in the appendix.
8The ARFIMA(1,d,1) results reported in the appendix show that estimates of d continue to deteriorate as models become
more complex. Even with large samples t¼ 1000 and t¼ 1, 500 MLE produces very poor estimates of d.
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the rate at which each of the models produced estimates of d reliably (95%) different from zero
when d¼ 0.

The results presented in Table 2 are consistent with the simulations presented in Fig 1. The
estimates are negatively biased; this bias is larger in small samples. The quality of the estimates
deteriorate further when the data-generating process contains short-run dynamics. The percentages
in column four show that the risk of incorrectly rejecting the null that d¼ 0 is unacceptably high
across all of the models, and is particularly pronounced in the more complex models. One commits
type-I error more than one-third of the time in the ARFIMA(1,d,0) and ARFIMA(0,d,1) models
when t¼ 250, and more than half the time in the ARFMA(1,d,1) model with the same sample size.
This is a concern since samples of 250 observations or less are common in political science.

3 Tests, Power, and Overfitting

We end with two interrelated points: one about the power of statistical tests and one about
overfitting. Selecting the correct time-series model depends on a series of statistical tests that
diagnose the autoregressive properties of the data. Then, once the model is fit, the residuals
should be tested for signs of temporal dependency. When model residuals are auto-correlated,
this is a clear sign of incorrectly modeled dynamics. The basic difficulty is that both types of
tests have little power given the length of the typical time series in political science. Table 3 lists
the length of the time series in the five applications considered by Grant and Lebo. The longest time
series there is 60 time periods. This should give us pause, considering some of the simulation
evidence in the literature.

Keele and Kelly (2006) compared the performance of lagged dependent variable (LDV) models
as compared to alternative ARMA specifications. One of their conclusions was that problems with
LDV models could be detected through testing the residuals for autocorrelation. They then
conducted a series of simulations to understand the power of such tests. That is, they sought to
understand how long a time series needed to be before one could reliably detect autocorrelation in
the residuals of regression models with LDVs. The results are instructive given that they found one
needed sample sizes of between 250 and 500 observations before these tests had much power.

That implies that for all five articles replicated by Grant and Lebo, one cannot expect to have
much power to detect autocorrelation in the residuals. Of course, tests for FI should generally be
subject to the same constraints. Grant and Lebo note in a footnote that one needs at least 64
observations to reliably estimate the d parameter. First, that number appears to be too low relative
to our simulations. More to the point, that implies that FI techniques also cannot be reliably used
in any of these empirical applications. This highlights the difficulties of using time-series data with
small samples. The statistical tests needed to perform critical model diagnostics have a low power.

Table 2 Estimation of d

Model t Mean Rejection rate (%)

100 �0.032 11
ARFIMA(0,d,0) 250 �0.017 9

1,000 �0.004 13

100 �0.199 32
ARFIMA(1,d,0) 250 �0.121 34

1,000 �0.073 21

100 �0.227 16
ARFIMA(0,d,1) 250 �0.132 34

1000 �0.019 12

100 �0.530 69
ARFIMA(1,d,1) 250 �0.316 53

1000 �0.056 27

Column 3 gives the mean exact maximum likelihood estimate of d for different sample sizes and different
data-generating processes, when true d¼ 0. Column 4 reports the rejection rate on the null hypothesis.
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Overfitting is another problem that complicates time-series analysis in political science.
Overfitting occurs when a statistical model describes random error or noise instead of the
underlying relationship. In the statistics literature, the rule of thumb is that one should fit one
parameter for each 10 observations when the data are independent and identically distributed (IID)
(Babyak 2004). When there is not enough information in the data, the model can be tuned to fit
random patterns in the data instead of to the conditional expectation which is generally of interest
in applied statistical analysis. The likelihood of finding spurious relationships is quite high when
models are overfit (Babyak 2004).

Let’s consider the possibility of overfitting in the applied examplies in Grant and Lebo. For
Volscho and Kelly, N¼ 60 and k¼ 10. If we apply the rule of thumb, that would imply a maximum
of 6 parameters if the data were IID. Another way to think about their model is that it is equivalent
to fitting 10 separate models with a single predictor each with a sample size of 6. However, the rule
above assumes we have IID data. With time-series data, there is considerably less information
present. This means the rule of thumb for time-series data understates the possibility of overfitting.
It is quite possible that many of the results in those models could be a function of overfitting. In
fact, we believe that many of issues that arise in the Grant and Lebo reanalysis are a function of
overfitting, where the data are being fit to different random patterns, and thus the results are
unstable.

In general, time-series analysis must take seriously that in many instances what can be learned
from the data is quite limited. When sample sizes are small, overfitting is possible and diagnostic
tests have little power to detect violations of basic assumptions. The conclusion we should draw is
that time-series analysts need to use great caution and provide limited interpretations of their
results when sample sizes are small.

4 Discussion

Applied time-series analysis depends on the diagnosis and classification of time series and the
selection of appropriate models. This essay highlights three points relevant to this endeavor.
First, error correction models can be applied to stationary and non-stationary data alike, but
the equations must be balanced. The misspecifications highlighted by Grant and Lebo apply to
cases where this condition is not met. Second, we demonstrate the shortcomings of fractional
integration techniques for most political science applications. Finally, we bring attention to two
problems endemic to time-series analyses in political science—low power and overfitting. While
most of this essay has been devoted to a discussion of when analysts should be cautious in the
application of different time-series models, we would like to conclude by offering analysts advice on
how to proceed.

The first step in any time-series analysis is the diagnosis of the individual time series. Analysts
must classify time series as stationary, integrated, or fractionally integrated. If all the series are
stationary, one can use autoregressive distributed lag and error correction models or appropriately
restricted versions of these regression models. Following De Boef and Keele (2008), one can use a
general to specific modeling strategy to determine which restrictions, if any, are appropriate and use
the results to calculate other quantities of interest.

Table 3 Comparison of observations to parameters in Grant and Lebo

replications

Article Time periods
Number of
parameters

Casillas, Enns, Wohlfarth 45 7

Ura and Ellis 36 11
Sanchez et al. 60 11
Kelly and Enns 54 8

Volscho and Kelly 60 10
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If one or more time series is judged to be integrated, alternative models may be necessary. If one
finds that one series is integrated and the remaining series are stationary, or finds that two series are

integrated but not integrated of the same order, one should transform the integrated variables and
use an ADL or GECM. If one finds that two series are integrated and integrated of the same order,
one should test whether the series are cointegrated. If the series are cointegrated, cointegration
techniques are appropriate. One can apply either the Engle-Granger two-step method or Johansen

reduced rank regression model to estimate the cointegrating relationship. Of course, other
stationary variables can be included in these models. These variables will not be part of the
cointegrating relationship but can impinge on the relationship. If the series are not cointegrated,
the variables can be transformed and conventional models can be applied.

Finally, analysts may find that some series are fractionally integrated. If two series are
fractionally integrated but not fractionally integrated of the same order, the series should be

fractionally differenced and conventional time-series regression models can be applied. If two
series are fractionally integrated of the same order, one should test whether the series are
fractionally cointegrated. Like standard cointegration procedures, one only needs to use a

fractional error correction model if they find that two fractionally integrated series are fractionally
integrated of the same order and jointly stationary. Otherwise the variables can be fractionally
differenced and the analyst can use an ADL or a GECM. As we have highlighted, distinguishing
between stationary and fractionally integrated series is not easy, and the procedures conventionally

used to identify whether series are fractionally integrated may not perform well given the sample
sizes common in political science. Finally, analysts should take care not to overfit the data. Analysts
should not fit more than one parameter per 10 observations, and may want to err on the side of not
more than one parameter per 20 observations.
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