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On long-wave propagation over a
fluid-mud seabed
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Using the Boussinesq approximation, a set of depth-integrated wave equations for
long-wave propagation over a mud bed is derived. The wave motions above the mud
bed are assumed to be irrotational and the mud bed is modelled as a highly viscous
fluid. The pressure and velocity are required to be continuous across the water–
mud interface. The resulting governing equations are differential–integral equations
in terms of the depth-integrated horizontal velocity and the free-surface displacement.
The effects of the mud bed appear in the continuity equation in the form of a
time integral of weighted divergence of the depth-averaged velocity. Damping rates
for periodic waves and solitary waves are calculated. For the solitary wave case,
the velocity profiles in the water column and the mud bed at different phases are
discussed. The effects of the viscous boundary layer above the mud–water interface
are also examined.

1. Introduction
Most studies of wave–seabed interactions have focused on wave propagation over

non-cohesive sediments (i.e. a sandy bed) (e.g. Liu 1973). Wave attenuation due to
percolation in a sandy bed tends to be relatively minor in comparison with other
dissipative mechanisms, such as bottom roughness and wave breaking. On the other
hand, it is well known that damping of ocean waves can be considerable, if the seabed
consists of cohesive sediments. Gade (1958) reported that there is a location in the
Gulf of Mexico, called the Mud Hole, where the attenuation of ocean waves due to the
mud bed is so great that fishing boats use it as an emergency harbour during storms.
Similar mud beds have been reported in many coasts, rivers and estuaries around the
world (Healy, Wang & Healy 2002). The dynamic behaviour of cohesive sediments is
complex. Many constitutive models have been suggested, including the viscous fluid
(Dalrymple & Liu 1978), visco-elastic (MacPherson 1980) and poro-elastic models
(Yamamoto et al. 1978). Wen & Liu (1998) classified the applicability of these models
based on soil properties. It is clear that because of the great complexity and variety
of mud rheology, no single model can describe the entire spectrum of the mud bed
responses. On the other hand, each model has its own range of validity and it is
worthwhile pursuing a deeper understanding of each one. In this paper, we shall
focus on the mud layer that can be modelled as a highly viscous fluid.

Within the framework of linear periodic wave theory, many researchers have
investigated the effects of a viscous fluid-mud bed on wave propagation (e.g. Gade
1958; Dalrymple & Liu 1978; Ng 2000). However, seabed effects become more
significant as water waves propagate into shallow water where the wave system is
better described by Boussinesq-type wave equations (e.g. Peregrine 1972). Therefore, it
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is the objective of this paper to derive a set of Boussinesq-type equations for weakly
nonlinear and weakly dispersive waves with the effects of viscous fluid-mud bed
considered. The perturbation approach presented in Liu & Orfila (2004) is adopted
in the present study. In the fluid–mud system, we consider the mud viscosity to be
several orders of magnitude larger than that of water. Furthermore, we assume that the
thickness of the mud bed is very thin so that the pressure is vertically uniform within
the mud bed. The leading-order water–mud interfacial conditions are the continuity
of the vertical velocity component and the free shear stress condition. A set of depth-
integrated continuity and momentum equations is derived. The leading-order effects
of a mud bed on the transient long wave appear in the continuity equation in the
form of a time integral of weighted divergence of the depth-averaged acceleration.
These equations can be used as a base for a large-scale wave propagation model with
the effects of mud bed considered. The results for damping rates of periodic waves
and solitary waves are also presented. As expected, the wave attenuation due to the
mud bed is much more significant than the damping caused by the viscous effects of
water. In the case of a solitary wave, the details of the horizontal velocity profiles in
the entire water column and the mud bed are discussed.

2. Formulation
Consider a wavetrain with the surface displacement ζ ′(x ′, y ′, t ′) propagating in a

constant water depth, h′. The viscous fluid-mud bed has a thickness, d ′. The wave
motions are characterized by the typical wave amplitude, a′

0, the horizontal length
scale, l′

o, which is related to the magnitude of wavelength, and the time scale, l′
o/

√
gh′.

The following dimensionless variables are introduced:

(x, y) = (x ′, y ′)/l′
o, z = z′/h′, t = t ′

√
gh′/l′

o,

ζ = ζ ′/a′
0, p = p′/ρwga′

0,

(u, v) = (u′, v′)/ε
√

gh′, w = w′µ/ε
√

gh′,

⎫⎪⎬
⎪⎭ (2.1)

in which p′ denotes the pressure, (u′, v′) the horizontal fluid velocity components in
the (x ′, y ′)-directions, w′ the vertical fluid velocity component in the z′-direction, ρw

the fluid density, and g the gravitational acceleration. Two dimensionless parameters

ε = a′
0/h′, µ = h′/l′

o, (2.2)

have been introduced to measure the relative importance of the nonlinearity and the
frequency dispersion.

We assume that the viscosity of water is much smaller than that of the viscous
fluid mud so that the viscosity of the water can be ignored. However, the viscous
effects of water will be discussed in Appendix A. In terms of velocity potential, Φ ,
the continuity equation for wave motions can be expressed as

µ2∇2Φ +
∂2Φ

∂z2
= 0, −1 < z < εζ. (2.3)

The dynamic and kinematic free-surface boundary conditions require

µ2

(
∂Φ

∂t
+ ζ

)
+

1

2
ε

[
µ2|∇Φ|2 +

(
∂Φ

∂z

)2
]

= 0, z = εζ, (2.4)

µ2

[
∂ζ

∂t
+ ε∇Φ · ∇ζ

]
=

∂Φ

∂z
, z = εζ, (2.5)

in which the atmospheric pressure has been assumed to be zero.
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Long-wave propagation over a fluid-mud seabed 469

On the other hand, viscous effects dominate in the mud bed. We further assume
that the mud layer is very thin and is of the same order of magnitude as the viscous
mud boundary layer. Hence, in the mud bed, the dimensionless mud flow velocity
components are re-scaled as

(um, vm) = (u′
m, v′

m)/ε
√

gh′, wm = w′
m/αε

√
gh′, (2.6)

in which

α2 =
νm

l′
o

√
gh′ , (2.7)

with νm being the kinematic viscosity of the viscous mud, can be viewed as the inverse
of a Reynolds number. The order of magnitude of the boundary-layer thickness δ′

m

can be expressed as O(αl′
o). Furthermore the displacement of the water–mud interface

is much smaller than that of the free surface (see Appendix B) and can be considered
as a horizontal surface, z = −1, for the present study. Thus, the model equations for
the mud flows can be expressed as

∇ · um +
∂wm

∂η
= 0, −(µ/α)d � η � 0, (2.8)

∂um

∂t
= −γ ∇p +

∂2um

∂η2
, −(µ/α)d � η � 0, (2.9)

in which

η =
z + 1

α/µ
(2.10)

is the stretched vertical coordinate and γ = ρw/ρm is the density ratio with ρm being
the density of viscous mud.

Along the water-mud interface, the pressure is continuous. Furthermore, the
continuity of the vertical velocity is required, i.e.

∂Φ

∂z
= αµwm, η = 0. (2.11)

Since we have assumed that the water viscosity is negligible, the tangential stress
components vanish along the water-mud interface. Thus,

∂um

∂η
= 0, η = 0. (2.12)

We remark here that if the effect of water viscosity, νw , is not entirely ignored, the
shear stress above the water-mud interface is of O(

√
νw), which is much smaller than

that of the induced flow in the mud bed, which is O(
√

νm). More discussion on the
effects of water viscosity can be found in Appendix A. Along the bottom of the mud
bed, z = −(1 + d) or η = −(µ/α)d = −d , the no-slip condition is imposed, i.e.

um = 0, wm = 0, η = −d. (2.13)

We reiterate that the approach for the mud flow analysis requires O(d ′) ∼ O(δ′
m)

with δ′
m being the boundary-layer thickness of the mud bed. This also implies that

O(d) ∼ O(α/µ) or O(d) ∼ O(1).

2.1. Boundary-layer solution inside the mud bed

In this section, we focus on the flow inside the mud bed. Denoting the horizontal
velocity at the water-mud interface as

ub(x, t) = ∇Φ(x, z = −1, t), (2.14)
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the horizontal gradient of the dynamic pressure inside the mud bed can be
approximated as

∂ub

∂t
= −∇p. (2.15)

Substituting the above equation into (2.9), we obtain

∂um

∂t
= γ

∂ub

∂t
+

∂2um

∂η2
, −d � η � 0. (2.16)

Introducing a new variable

vm = um − γ ub, (2.17)

the boundary-value problem for the boundary-layer mud flow can be expressed in
terms of vm as

∂vm

∂t
=

∂2vm

∂η2
, −d � η � 0, (2.18)

with the following boundary conditions:

∂vm

∂η
= 0, η = 0, (2.19)

and

vm = −γ ub, η = −d. (2.20)

The analytical solution for the two-point boundary-value problem can be obtained
straightforwardly as

vm(x, η, t) = −γ

∫ t

0

∂ub

∂τ
erfc

[
η + d√
4(t − τ )

]
dτ

−γ

∞∑
n=1

(−1)n
∫ t

0

∂ub

∂τ

[
−erfc

(
−η + (2n − 1)d√

4(t − τ )

)
+ erfc

(
η + (2n + 1)d√

4(t − τ )

)]
dτ.

(2.21)

From the continuity equation, (2.8), the vertical velocity component can be
calculated by integration,

wm(x, η, t) = −
∫ η

−d

∇ · (vm + γ ub) dη′. (2.22)

On the mud–water interface, η = 0, the vertical velocity component becomes

wm(x, 0, t) = −γ

{
d∇ · ub −

∫ t

0

∂∇ · ub

∂τ
I (t − τ ) dτ

}
, (2.23)

where

I (t − τ ) =

√
4(t − τ )

π

{
1 − exp

[
−d

2

4(t − τ )

]}
+ derfc

(
d√

4(t − τ )

)

−
∞∑

n=1

(−1)n

{√
4(t − τ )

π

[
−3exp

(
− (2nd)2

4(t − τ )

)
+

1∑
m=−1

exp

(
− ((2n + m)d)2

4(t − τ )

)]

+ d

[
2nerfc

(
2nd√

4(t − τ )

)
+

1∑
m=−1

(−1)m(2n − m)erfc

(
(2n − m)d√

4(t − τ )

)]}
. (2.24)
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Figure 1. Horizontal velocity inside the mud bed at different phases under a solitary wave.
(a) ub = 0.25 during the acceleration phase; (b) ub = 0.75 during the acceleration phase;
(c) ub = 0.25 during the deceleration phase; (d) ub = 0.01 during the deceleration phase.
(γ = 0.85, ε = µ2 = 0.1, α = 0.01, d = 5, x0 = −50.)

The shear stress at the bottom of the mud bed (η = −d) is defined as

τmb =
∂um

∂η
, η = −d, (2.25)

and can be calculated by using (2.17) and (2.21). Thus,

τmb =
γ√
π

∫ t

0

∂ub

∂τ

1√
t − τ

[
1 + 2

∞∑
n=1

(−1)nexp

(
(nd)2

t − τ

)]
dτ. (2.26)

As an example, we calculate the horizontal velocity component within the mud
layer under a solitary wave loading. In other words, the horizontal velocity above the
water-mud interface, ub, (2.14), is prescribed by the solitary wave solution as

ub(x, t) = sech2

[
1

µ

√
3ε

4
(x − xo − Ct)

]
, (2.27)

where xo is the initial position of the wave crest and C =
√

1 + ε is the dimensionless
celerity. In figure 1, profiles of the horizontal velocity in the mud bed are shown at
four different phases and the following parameters have been used: γ = 0.85, ε =
µ2 = 0.1, α = 0.01, d = 5, x0 = −50. Panels (a) and (b) represent the phases when
the mud–water interface velocity accelerates toward its maximum velocity under the
wave crest. The velocity is in the same direction as the wave propagation in the entire
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–(x – x0 –Ct)

Figure 2. Time history of the bottom shear stress in the mud bed, τmb , under a solitary
wave. Positive (x − x0 − Ct) represents the accelerating phase while the negative portion is the
decelerating phase. Parameters are same as in figure 1.

mud bed. From the momentum equation in the horizontal direction, the horizontal
pressure gradient is always balanced by the bottom shear stress in the mud bed,
τmb. Once the wave crest passes, the mud–water interface velocity starts to decelerate
and the horizontal pressure gradient reverses direction. Consequently, the bottom
shear stress in the mud bed must change sign too. Therefore, near the bottom of the
mud bed the velocity also reverses direction, while the velocity near the mud–water
interface is still in the same direction as wave propagation (see panel c). As the
mud–water layer slows down further, the horizontal velocity in the entire mud layer
moves in the opposite direction to the wave propagation (see panel d). The above
discussion can be better understood from figure 2, which shows the time history of
the bottom shear stress in the mud bed, τmb. The features shown in these two figures
are very similar to those observed in the bottom boundary-layer flow under a solitary
wave without a mud bed (Liu, Park & Cowen 2007). More discussion on this topic is
given in Appendix A.

3. Boussinesq-type equations
In this section, we present simplified governing equations for the irrotational flow

by adopting the Boussinesq approximation, i.e. O(ε) ∼ O(µ2). We further assume that
O(α) ∼ O(µ4). Following Liu & Orfila’s (2004) approach, we expand the potential
function as a power series in the vertical coordinate,

Φ(x, z, t) =

∞∑
n=0

(z + 1)nφn(x, t). (3.1)

Substituting the expansion into the Laplace equation, (2.3), and the water–mud
interfacial condition, (2.11), we obtain the following recursive relation:

φn+2 =
−µ2∇2φn

(n + 1)(n + 2)
, n = 0, 1, 2, . . . , (3.2)
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with

φ1 = αµwm(x, 0, t), (3.3)

in which wm is given in (2.23).
Using the recursive relation in the expansion, we obtain the potential function

truncated up to O(µ5):

Φ = φ0 + (z + 1)φ1 − µ2

2
(z + 1)2∇2φ0 +

µ4

24
(z + 1)4∇2∇2φ0 + O(µ6). (3.4)

Defining the horizontal velocity at the water–mud interface and the total water depth
as

ub = ∇φ0, H = 1 + εζ, (3.5)

the kinematic free-surface boundary condition, (2.5), becomes

1

ε

∂H

∂t
+ ∇ ·

[(
H + γ

α

µ
d

)
ub

]
− µ2

6
∇2∇ · ub − γ

α

µ

∫ t

0

∂∇ · ub

∂τ
I (t − τ )dτ = O(µ4), (3.6)

where I (t − τ ) is given in (2.24). We reiterate that the Boussinesq assumption, i.e.
O(µ2) ∼ O(ε), and the assumptions that O(α) ∼ O(µ4) and O(d) ∼ O(1) have been
employed.

Similarly, the dynamic free-surface boundary condition, (2.4), can be expressed in
terms of H and ub as

∂ub

∂t
+ εub · ∇ub +

1

ε
∇H − µ2

2

∂

∂t
(∇∇ · ub) = O(µ4). (3.7)

Equations (3.6) and (3.7) constitute the Boussinesq equations in terms of the water–
mud interface velocity, ub, and the total depth, H , including consideration of the
effects of a viscous fluid-mud bed.

Traditionally, Boussinesq equations are expressed in terms of the depth-averaged
horizontal velocity. By definition, the depth-averaged velocity is given as

u =
1

H

∫ εζ

−1

∇Φ dz = ub − µ2

6
H 2∇2ub + O(µ4). (3.8)

Substituting the above equation into (3.6) and (3.7), we obtain

1

ε

∂H

∂t
+ ∇ ·

[(
H + γ

α

µ
d

)
u
]

− γ
α

µ

∫ t

0

∂∇ · u
∂τ

I (t − τ ) dτ = O(µ4), (3.9)

∂u
∂t

+ εu · ∇u +
1

ε
∇H − µ2

3
∇∇ ·

(
∂u
∂t

)
= O(µ4). (3.10)

If the effects of the viscous mud bed are ignored, i.e. α → 0 and d = 0, (3.9) and (3.10)
reduce to the conventional Boussinesq equations. It is clear that the leading-order
effects of the mud bed appear in the mass balance in the water column and mud
layer.

3.1. One-dimensional cases

To illustrate that the viscous damping of simple harmonic waves and solitary waves
can be calculated by the present formulation, we consider one-dimensional problems
in this section. Thus, the continuity and momentum equations become

∂ζ

∂t
+

∂

∂x

[(
1 + εζ + γ

α

µ
d

)
u

]
− γ

α

µ

∫ t

0

∂2u

∂x∂τ
I (t − τ ) dτ = 0, (3.11)
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∂u

∂t
+ εu

∂u

∂x
+

∂ζ

∂x
− µ2

3

∂3u

∂x2∂t
= 0. (3.12)

3.1.1. Viscous damping of progressive linear long waves

For linear progressive waves, (3.11) and (3.12) can be further simplified to

∂ζ

∂t
+

(
1 + γ

α

µ
d

)
∂u

∂x
− γ

α

µ

∫ t

0

∂2u

∂x∂τ
I (t − τ ) dτ = 0, (3.13)

∂u

∂t
+

∂ζ

∂x
= 0. (3.14)

Introducing the moving coordinates

σ = x − t, ξ =

(
α

µ

)
t, (3.15)

into (3.13) and (3.14) and summing the resulting equations, we obtain

∂ζ

∂ξ
= −γ

2

[
d

∂ζ

∂σ
+

∫ t

0

∂2ζ

∂σ 2
I (t − τ ) dτ

]
. (3.16)

Note that ζ = u has been used as a leading-order approximation. Because of the
viscous damping, the free-surface displacement can be represented as

ζ = a(ξ )eiσ . (3.17)

Substituting the solution form, (3.17), into (3.16), we obtain

∂a

∂ξ
= −γ

2

[
id −

∫ ∞

0

eiqI (q) dq

]
a(ξ ). (3.18)

Introducing

a = a0e
iβξ , β = βr + iβi, (3.19)

where βi denotes the damping rate, into (3.18), we find

βr = −γ

2

[
d −

∫ ∞

0

sinq I (q) dq

]
, (3.20)

βi = −γ

2

∫ ∞

0

cosq I (q) dq. (3.21)

In figure 3 the damping rate, βi , is plotted as a function of the dimensionless
thickness of mud bed for γ = 0.85 and 0.9. The solution agrees with that obtained
by MacPherson (1980). However, differences between two models appear for large d

values. This is because of the thin mud layer assumption employed in the present
theory. This figure also shows that the heavier mud, which has a stronger inertia, has
less impact on wave damping.

3.1.2. Viscous damping of solitary waves

A similar analysis can be carried out for calculating the viscous damping of
a solitary wave. Following the approach outlined in the previous section, we can
combine (3.11) and (3.12) in the moving frame, σ = x − t , as

∂ζ

∂ξ
+

3

2
ζ

∂ζ

∂σ
+

1

6

µ2

ε

∂3ζ

∂σ 3
= − γα

2µε

[
d

∂ζ

∂σ
+

∫ t

0

∂2ζ

∂σ 2
I (t − τ ) dτ

]
, (3.22)
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0 0.5 1.0 1.5 2.0 2.5

0.1
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_
d

βi ←γ = 0.85

γ = 0.9→ 

Figure 3. Damping rate of small-amplitude periodic waves with different γ . The solid lines
represent the present solution and the dashed lines denote the result by MacPherson (1980).

in which the slow time variable is defined as ξ = εt . Without the damping effect, i.e.
α → 0 and d = 0, the solitary wave solution can be written as

ζ = a(ξ )sech2

[√
3a

2

(
σ − a

2
ξ
)]

. (3.23)

Thus, in considering a viscous mud bed, we introduce the perturbation solution as
follows (Liu & Orfila 2004; Mei, Stiassnie & Yue 2005):

ζ = ζ0(ρ, ξ ) + δζ1(ρ, ξ ) + · · · , (3.24)

where

ρ = σ − 1

2δ

∫ ξ

a(ξ ′) dξ ′, ξ = δξ, δ =
α

µε
. (3.25)

Substituting of (3.24) into (3.22) and collecting terms at different orders, we obtain
the following equations for the first two orders in δ:

L0ζ0 =
∂

∂ρ

[
−a

2
+

3

4
ζ0 +

1

6

µ2

ε

∂2

∂ρ2

]
ζ0 = 0, (3.26)

L1ζ1 =
∂

∂ρ

[
−a

2
+

3

2
ζ0 +

1

6

µ2

ε

∂2

∂ρ2

]
ζ1 = −γ

2

[
d

∂ζ0

∂ρ
+

∫ t

0

∂2ζ0

∂ρ2
I (t − τ ) dτ

]
− ∂ζ0

∂ξ
,

(3.27)

where L0 and L1 are adjoint operators of each other (Ott & Sudan 1970), i.e.∫ ∞

−∞
(ζ0L1ζ1 − ζ1L0ζ0) dρ = 0. (3.28)

Clearly the solution for the leading-order equation is just the solitary wave solution,

ζ0 = a(ξ )sech2

[√
3a

2
ρ

]
. (3.29)
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Figure 4. Wave amplitude, a, as a function of time, ξ . The dotted line denotes the viscous
damping caused by the bottom boundary layer including consideration of only water viscosity
(Liu & Orfila 2004)(LO). Other curves represent the damping rates induced by the mud bed
with different thickness. Solid lines are for γ = 0.85 and dashed lines γ = 0.9. To compare
LO with the current study, νm/νw = 103 has been used in the computations.

Equation (3.28) provides a solvability condition for ζ1∫ ∞

−∞
ζ0

{
∂ζ0

∂ξ
+

γ

2

[
d

∂ζ0

∂ρ
+

∫ t

0

∂2ζ0

∂ρ2
I (t − τ ) dτ

]}
dρ = 0. (3.30)

The items in the integrand of the above integral can be expressed explicitly as

−∂ζ0

∂ξ
= −da

dξ
sech2

(√
3a

2
ρ

) [
1 −

√
3a

2
ρtanh

(√
3a

2
ρ

)]
,

∂ζ0

∂ρ
= −a

√
3asech2

(√
3a

2
ρ

)
tanh

(√
3a

2
ρ

)
,

∂2ζ0

∂ρ2
= −3a2

2
sech4

(√
3a

2
ρ

)[
2 − cosh(

√
3aρ)

]
.

Thus, substituting the above expressions and (3.29) into the solvability condition,
(3.30), we find

da

dξ
=

√
3

2
γ a3/2

∫ ∞

−∞

∫ ∞

0

sech2(R)sech4(R + S) [2 − cosh2(R + S)] I

(
2S√
3a

)
dR dS.

(3.31)

The above equation can be integrated numerically to find the time variation of solitary
wave amplitudes for a prescribed set of wave data.

Figure 4 displays the numerical results of (3.31) for different mud bed thickness. A
forward differencing scheme is used to evaluate the derivative on the left-hand side
of (3.31). For the integration on the right-hand side, an adaptive quadrature method
with tolerance of 10−8 is employed. Clearly, it shows again that the heavier mud has
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less impact on the wave damping. To demonstrate the significant damping effect of
viscous mud, we compare the present results with Liu & Orfila (2004) in which they
consider only the water viscosity in the bottom boundary layer. A viscosity ratio
νm/νw = 103 is used in the computations.

4. Concluding remarks
A set of two-dimensional depth-averaged continuity and momentum equations

including consideration of the effects of a viscous fluid-mud bed has been derived,
(3.9) and (3.10). The leading-order effects of the mud bed appear in the continuity
equation in a form of convolution integral. These equations can also be expressed in
terms of the velocity at the water–mud interface, (3.6) and (3.7). The effects of water
viscosity are discussed in Appendix A.

The new equations have been employed to obtain the damping rates of periodic
waves and solitary waves. While the damping rate for periodic waves agrees with the
existing theory, the damping rate for solitary waves is new. The detailed velocity field
as well as the damping rate for a solitary wave will be verified by an experimental
study similar to those presented in Liu et al. (2006, 2007).

This work was supported by the Physical Oceanography Program of National
Science Foundation and the Coastal Geosciences Program of the Office of Naval
Research.

Appendix A. Boundary-layer modification above the water–mud interface
The water viscosity has been neglected in the main part of the papers. However,

we can include its effect by adding a boundary layer above the water–mud interface.
Following Liu & Orfila’s (2004) analysis, we introduce the following perturbation
expansions for the velocity field inside this interfacial boundary layer:

u = ∇Φ(x, z, t) + ur
0(x, z, t) + α1ur

1(x, z, t) + · · · , (A 1)

w =
∂Φ

∂z
+ α1µwr

1 + · · · , (A 2)

in which

α2
1 =

νw

l′
o

√
gh′ . (A 3)

We note that the thickness of the interfacial boundary layer is O(α1) and is much
smaller than O(α) (i.e. the boundary-layer thickness of the mud bed), therefore
inclusion of the interfacial boundary layer will not change the analysis presented in
this paper. We introduce the stretched coordinate for the boundary layer

η =
z + 1

α1/µ
. (A 4)

The leading-order continuity equation and the horizontal momentum equation for
the rotational velocity in the interfacial boundary layer become

∇ · ur
0 +

∂wr
1

∂η
= 0, (A 5)

∂ur
0

∂t
+ ε

[
ur

0 · ∇ur
0 + wr

1

∂ur
0

∂η

]
=

∂2ur
0

∂η2
. (A 6)
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The no-slip conditions on the water–mud interface require that the rotational
velocity satisfies the following boundary conditions:

ur
0 = −∇Φ + um,

∂Φ

∂z
= −α1µwr

1 + αµwm, η = 0. (A 7)

At the outer edge of the interfacial boundary layer, η → ∞, both horizontal and
vertical rotational velocity components vanish,

ur
0, wr

1 → 0, η → ∞. (A 8)

We remark here that the horizontal mud flow velocity at the water–mud interface,
um, is related to ∇Φ(x, z = −1, t) = ub and is given in (2.17) and (2.21).

To find the boundary-layer solution for a general transient wave, the boundary-layer
equation, (A 6), is linearized:

∂ur
0

∂t
=

∂2ur
0

∂η2
. (A 9)

The analytical solution can be found as (Liu & Orfila 2004)

ur
0(x, η, t) = − η√

4π

∫ t

0

[ub − um]√
(t − τ )3

e−η2/4(t−τ ) dτ, (A 10)

which is of the same order of magnitude as the irrotational velocity and the mud
flow velocity. From the continuity equation, (A 5), the vertical rotational velocity
component can be obtained by integration,

wr
1(x, η, t) = −

∫ ∞

η

dη′ η′

2
√

π

∫ t

0

∇2Φ(x, z = −1, τ ) − ∇ · um√
(t − τ )3

e−η′2/4(t−τ ) dτ. (A 11)

At the water–mud interface, the vertical rotational velocity becomes

wr
1(x, 0, t) =

1√
π

∫ t

0

∇2Φ(x, z = −1, τ ) − ∇ · um√
(t − τ )3

dτ. (A 12)

The existence of this rotational vertical velocity component requires a further
correction to the irrotational velocity potential in order to satisfy the continuity
of vertical velocity along the water–mud interface, (A 7). However, we reiterate here
that since the viscosity of water is much smaller than the viscosity of the mud bed, i.e.
α1 << α, the vertical velocity of the mud flow is much stronger than the contribution
induced by the interfacial boundary layer (see (A 7)). Finally, we note that the shear
stress is scaled by the square root of the viscosity. Since νm >> νw , to the leading-
order the continuity of shear stress at the water–mud interface still yields the same
boundary condition as shown in (2.12).

Figure 5 shows profiles of the horizontal velocity component under a solitary
wave with the leading-order interfacial boundary layer correction. The continuity of
the horizontal velocity component along the water–mud interface is now satisfied.
The panels on the left present the velocity profiles in the entire mud bed and a
portion of the water column above, while the panels on the right show the details
in the vicinity of the water–mud interface. Similarly to figure 1, four different phases
are shown. Panels (a) and (b) represent the phases when the velocity in the water
column is accelerating toward its maximum velocity under the wave crest. During
the acceleration phase, the velocity in the entire column moves in the same direction
as wave propagation. The magnitude of the velocity inside the mud bed is smaller
because of the stronger viscous effects. Once the wave crest has passed, the water
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Figure 5. Horizontal velocity components at different phases including consideration of the
interfacial boundary layer. The left column shows the velocity profiles in the entire mud bed
and a portion of the water column above, while the right column presents the velocity profiles
in the vicinity of the interface between the water and mud bed. The phase of each case is
the same as in figure 1. In (a) and (b) the wave is accelerating toward the wave crest; (c)
and (d) the deceleration phases. νm/νw = 103 is used and other parameters are the same as in
figure 1.

particles start to decelerate above the water–mud interface, while the horizontal
pressure gradient reverses direction. Consequently, near the water–mud interface and
the bottom of the mud bed the velocity also reverses direction such that the frictional
stresses at the water–mud interface and the bottom of the mud bed respectively can
counter-balance the pressure gradient (see panel c). As the wave slows down further,
the horizontal velocity in the entire mud bed moves in the opposite direction to the
wave propagation and pulls the velocity inside the interfacial boundary layer with
it (see panel d). We note that a small overshoot appears in the interfacial boundary
layer, which is expected because of the force balance between the pressure gradient
and the shear stress along the water–mud interface.

Appendix B. The order of magnitude of the interfacial displacement
In the present study, the interfacial displacement is neglected, i.e. all interfacial

conditions are applied on the still water–mud interface, η = 0. The justification for
this simplification is given here.

For a fully nonlinear problem, the interfacial conditions should be applied at the
actual water–mud interface z = −1 + εζm, with ζm being the interfacial displacement.
However, in our present analysis we are interested in long waves with a thin mud
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bed. Under these conditions, we can show that the interfacial displacement can be
neglected.

The continuity equations for the water column above the mud bed and for the mud
column can be expressed in terms of depth-averaged velocities as

∂

∂t
(ζ − ζm) + ∇ · [(1 + ε(ζ − ζm)u] = 0, (B 1)

∂ζm

∂t
+ ∇ · [(d + εζm)um] = 0. (B 2)

Both equations are exact. For long waves we anticipate that O(u) ∼ O(um). Let
K = ζm/ζ , denoting the ratio between interfacial displacement and the free-surface
displacement. Equations (B 1) and (B 2) can be combined to be(

− d

K
+ d + 1

)
∇ · um = 0. (B 3)

Therefore,

K =
d

d + 1
. (B 4)

Since we have also assumed that the mud bed thickness is comparable with the mud
boundary-layer thickness,

K = ζm/ζ ∼ d << 1. (B 5)
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