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Abstract

Asymptotics deviation probabilities of the sum Sn = X1 + · · · + Xn of independent and
identically distributed real-valued random variables have been extensively investigated,
in particular when X1 is not exponentially integrable. For instance, Nagaev (1969a,
1969b) formulated exact asymptotics results for P(Sn > xn) with xn → ∞ when X1
has a semiexponential distribution. In the same setting, Brosset et al. (2020) derived
deviation results at logarithmic scale with shorter proofs relying on classical tools of
large-deviation theory and making the rate function at the transition explicit. In this
paper we exhibit the same asymptotic behavior for triangular arrays of semiexponentially
distributed random variables.
Keywords: Large deviations; triangular array; semiexponential distribution; Weibull-like
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1. Introduction

Moderate and large deviations of the sum of independent and identically distributed (i.i.d.)
real-valued random variables have been investigated since the beginning of the 20th century.
Kinchin [13] in 1929 was the first to give a result on large deviations of the sum of i.i.d.
Bernoulli-distributed random variables. In 1933 Smirnov [23] improved this result, and in 1938
Cramér [5] gave a generalization to sums of i.i.d. random variables satisfying the eponymous
Cramér condition which requires the Laplace transform of the common distribution of the
random variables to be finite in a neighborhood of zero. Cramér’s result was extended by Feller
[8] to sequences of not necessarily identically distributed random variables under restrictive
conditions (Feller considered only random variables taking values in bounded intervals), thus
Cramér’s result does not follow from Feller’s result. A strengthening of Cramér’s theorem was
given by Petrov [20] together with a generalization to the case of non-identically distributed
random variables. Improvements of Petrov’s result can be found in [21]. Deviations for sums
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of heavy-tailed i.i.d. random variables were studied by several authors: an early result appears
in [15], and more recent references are [2, 3, 7, 16].

In [17, 18], A. V. Nagaev studied the case where the commom distribution of the i.i.d.
random variables is absolutely continuous with respect to the Lebesgue measure with den-
sity p(t) ∼ exp

{− |t|1−ε
}

as |t| → ∞, with ε ∈ (0, 1). He distinguished five exact-asymptotics
results corresponding to five types of deviation speeds. These results were generalized in
[19] to the case where the tail writes as exp

{−t1−εL(t)
}
, where ε ∈ (0, 1) and L is a suit-

ably slowly varying function at infinity. Such results can also be found in [2, 3]. In [4],
the authors considered the following setting. Let ε ∈ (0, 1) and let X be a Weibull-like (or
semiexponential, or stretched exponential) random variable, i.e. there exists q > 0 such that
log P(X � x) ∼ −qx1−ε as x → ∞. Assume also that there exists γ > 0 such that E[|X|2+γ ] <

∞. For all n ∈N
∗, let X1, X2, . . ., Xn be i.i.d. copies of X and set Sn = X1 + · · · + Xn. The

asymptotic behavior of the large-deviation probability P(Sn � xn) is given for any positive
sequence xn � n1/2. According to the asymptotics of xn, three types of behavior emerge for
log P(Sn � xn):

• Maximal jump range [4, Theorem 1]: When xn � n1/(1+ε), log P(Sn � xn) ∼
log P( max (X1, . . . , Xn) � xn).

• Gaussian range: [4, Theorem 2]: When n1/2 � xn � n1/(1+ε), log P(Sn � xn) ∼ log (1 −
φ(n−1/2xn)), φ being the cumulative distribution function of the standard Gaussian law.

• Transition: [4, Theorem 3]: The case xn = �
(
n1/(1+ε)

)
appears to be an interpolation

between the Gaussian range and the maximal jump range.

The main contribution of the present paper is a generalization to triangular arrays of the
results in [4, 17, 18]. Such a setting appears naturally in some combinatorial problems, such as
those presented in [12], including hashing with linear probing. Since the 1980s, laws of large
numbers have been established for triangular arrays [9–11]. Lindeberg’s condition is standard
for the central limit theorem to hold for triangular arrays [1, Theorem 27.2]. Dealing with tri-
angular arrays of light-tailed random variables, the Gärtner–Ellis theorem provides moderate-
and large-deviation results. Deviations for sums of heavy-tailed i.i.d. random variables have
been studied by several authors [2–4, 15, 17–19], and a good survey can be found in [16].
Here, we focus on the particular case of semiexponential tails (treated in [2–4, 17, 18] for
sums of i.i.d. random variables), generalizing the results to triangular arrays. See [14] for an
application to hashing with linear probing.

The paper is organized as follows. In Section 2 we state the main results, the proofs of
which can be found in Section 3. The assumptions are discussed in Section 4. Section 5 is
devoted to the study of the model of a truncated random variable which is a natural model
of a triangular array. This kind of model appears in many proofs of large deviations. Indeed,
when dealing with a random variable, the Laplace transform of which is not finite, a classical
approach consists in truncating the random variable and letting the truncation go to infinity. In
this model we exhibit various rate functions, especially non-convex ones.

2. Main results

In the following, for any sequences (xn)n � 1 and (yn)n � 1, it will be more convenient to
write xn � yn for xn = O(yn) as n → ∞. For all n � 1, let Yn be a centered real-valued random
variable, and let Nn be a natural number. We assume that Nn → ∞ as n → ∞. For all n � 1,
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let
(
Yn,i
)

1 � i � Nn
be a family of i.i.d. random variables distributed as Yn. Define, for all k ∈

[[1, Nn]], Tn,k :=∑k
i=1 Yn,i. To lighten the notation, let Tn := Tn,Nn .

Theorem 2.1. (Maximal jump range.) Let ε ∈ (0, 1), q > 0, and α > 1/(1 + ε). Assume that:

(H1) For all sequences (yn)n � 1 such that Nαε
n � yn � Nα

n , log P(Yn � yn) ∼
n→∞ −qy1−ε

n .

(H2) E
[
Y2

n

]= o
(

Nα(1+ε)−1
n

)
as n → ∞.

Then, for all y � 0,

lim
n→∞

1

Nα(1−ε)
n

log P(Tn � Nα
n y) = −qy1−ε.

In this paper we have chosen to make explicit the deviations in terms of powers of Nn,
as is now standard in large-deviation theory. Nevertheless, as in [4, 17, 18], the proof of
Theorem 2.1 immediately adapts to show that log P(Tn � xn) ∼

n→∞ −qx1−ε
n as soon as xn �

N1/(1+ε)
n , assuming that E

[
Y2

n

]= o
(
x1+ε

n /Nn
)

as n → ∞ and that there exists δ > 0 such
that, for all sequences (yn)n � 1 such that xε

n � yn � xn(1 + δ), log P(Yn � yn) ∼
n→∞ −qy1−ε

n .

Theorems 2.2 and 2.3 adapt analogously.

Theorem 2.2. (Gaussian range.) Let ε ∈ (0, 1), q > 0, σ > 0, and 1
2 < α < 1/(1 + ε). Suppose

that (H1) holds together with:

(H2′) E
[
Y2

n

] −→
n→∞ σ 2.

(H2+) There exists γ ∈ (0, 1] such that E
[ |Yn|2+γ

]= o
(

Nγ (1−α)
n

)
as n → ∞.

Then, for all y � 0,

lim
n→∞

1

N2α−1
n

log P(Tn � Nα
n y) = − y2

2σ 2
.

Theorem 2.3. (Transition.) Let ε ∈ (0, 1), q > 0, σ > 0, and α = 1/(1 + ε). Suppose that (H1),
(H2′), and (H2+) hold. Then, for all y � 0,

lim
n→∞

1

N2α−1
n

log P(Tn � Nα
n y) = − inf

0 � t � 1

{
q(1 − t)1−εy1−ε + t2y2

2σ 2

}
=: − I(y).

Notice that the speed of deviation is continuous in α since, at the transition (α =
1/(1 + ε)), 2α − 1 = α(1 − ε). Moreover, let us make explicit the rate function I. Let f (t) :=
q(1 − t)1−εy1−ε + t2y2/(2σ 2). An easy computation shows that, if y � y0 := ((1 − ε2)(1 +
1/ε)εqσ 2)1/(1+ε), f is increasing and its minimum y2/(2σ 2) is attained at t = 1. If y > y0, f
has two local minima, at t(y) and at 1; the former corresponds to the smaller of the two roots
in [0, 1] of the equation f ′(t) = 0, which is equivalent to

t(1 − t)ε = (1 − ε)qσ 2

y1+ε
.

https://doi.org/10.1017/jpr.2021.58 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.58


402 T. KLEIN ET AL.

If y0 < y � y1 := (1 + ε)
(
qσ 2/(2ε)ε

)1/(1+ε)
, then f (t(y)) � f (1); if y > y1, f (t(y)) < f (1). As

a consequence, for all y � 0,

I(y) =
{ y2

2σ 2 if y � y1,

q(1 − t(y))1−εy1−ε + t(y)2y2

2σ 2 if y > y1.

Remark 2.1. Consider the following generalization of (H1). Let L be a slowly varying function
and assume that:

(H1′) For all sequences (yn)n � 1 such that Nαε
n /L(Nα

n ) � yn � Nα
n , log P(Yn � yn) ∼

−L(yn)y1−ε
n .

Then, the proof of Theorem 2.1 (resp. Theorem 2.2) immediately adapts to show that if
Assumptions (H1′) and (H2) (resp. (H1′), (H2′), and (H2+)) hold, then, for all y � 0,

lim
n→∞

1

L(Nα
n )Nα(1−ε)

n

log P(Tn � Nα
n y) = −y1−ε.

(resp. the conclusion of Theorem 2.2 holds). However, Theorem 2.3 requires additional
assumptions on L to handle such a generalization of (H1).

3. Proofs

3.1. Preliminary known results

First, we present a classical result, known as the principle of the largest term. The proof is
standard (see, e.g., [6, Lemma 1.2.15]).

Lemma 3.1. (Principle of the largest term) Let (vn)n � 1 be a positive sequence diverging to
∞, let r be a positive integer, and, for i ∈ [[1, r]], let (an,i)n � 1 be a sequence of non-negative
numbers. Then,

lim sup
n→∞

1

vn
log

(
r∑

i=1

an,i

)
= max

i=1,...,r

(
lim sup

n→∞
1

vn
log an,i

)
.

The next theorem is a unilateral version of the Gärtner–Ellis theorem, which was proved
in [22].

Theorem 3.1. (Unilateral Gärtner–Ellis theorem) Let (Zn)n � 1 be a sequence of real-valued
random variables, and let (vn)n � 1 be a positive sequence diverging to ∞. Suppose that there
exists a differentiable function 	 defined on R+ such that 	′ is a (increasing) bijective function
from R+ to R+ and, for all λ � 0,

1

vn
log E

[
evnλZn

] −→
n→∞ 	(λ).

Then, for all z � 0,

− inf
t>z

	∗(t) � lim inf
n→∞

1

vn
log P(Zn > z) � lim sup

n→∞
1

vn
log P(Zn � z) � − inf

t � z
	∗(t),

where, for all t � 0, 	∗(t) := sup{λt − 	(λ); λ � 0}.
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The proofs of Theorems 2.1, 2.2, and 2.3 are adaptations of those in [4] to the case of
triangular arrays. We decided to detail these proofs here to introduce Sections 4 and 5, where
the proofs are mainly sketched.

3.2. Proof of Theorem 2 (Maximal jump range)

Assume that Theorem 2.1 has been proved for y > 0. Then, the case y = 0 follows by
monotony. Indeed, for all y > 0,

0 � lim inf
n→∞

1

Nα(1−ε)
n

log P(Tn � 0) � lim
n→∞

1

Nα(1−ε)
n

log P(Tn � Nα
n y) = −qy1−ε −→

y→0
0.

From now on, we assume that y > 0. First, we define

P(Tn � Nα
n y) = P(Tn � Nα

n y; for all i ∈ [[1, Nn]], Yn,i < Nα
n y)

+ P(Tn � Nα
n y; there exists i ∈ [[1, Nn]] such that Yn,i � Nα

n y)

=: Pn + Rn..

Theorem 2.1 is a direct consequence of Lemmas 3.1, 3.2, and 3.3.

Lemma 3.2. Under (H1) and (H2), for α > 1
2 and y > 0,

lim
n→∞

1

Nα(1−ε)
n

log Rn = −qy1−ε.

Proof of Lemma 3.2. Using (H1),

lim sup
n→∞

1

Nα(1−ε)
n

log Rn � lim
n→∞

1

Nα(1−ε)
n

log (NnP(Yn � Nα
n y)) = −qy1−ε.

Let us prove the converse inequality. Let δ > 0. We have Rn � P
(
Tn � Nα

n y, Yn,1 � Nα
n y
)

� P
(
Tn,Nn−1 � −Nα

n δ
)
P(Yn � Nα

n (y + δ)). By Chebyshev’s inequality, observe that

P(Tn,Nn−1 � −Nn
αδ) � 1 − Var(Yn)

N2α−1
n δ2

→ 1,

using (H2). Finally, by (H1), we get

lim inf
n→∞

1

Nα(1−ε)
n

log Rn � lim
n→∞

1

Nα(1−ε)
n

log P(Yn � Nα
n (y + δ)) = −q(y + δ)1−ε.

We conclude by letting δ → 0. �
Lemma 3.3. Under (H1) and (H2), for α > 1/(1 + ε) and y > 0,

lim sup
n→∞

1

Nα(1−ε)
n

log Pn � −qy1−ε.

Proof of Lemma 3.3. For all q′ ∈ (0, q), we have

Pn =E
[
1Tn � Nα

n y1∀i∈[[1,Nn]],Yn,i<Nα
n y
]

� exp
{
−q′(Nα

n y)1−ε
}
E

[
exp

{
q′

(Nα
n y)ε

Yn

}
1Yn<Nα

n y

]Nn

,
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using the inequality 1x � 0 � ex for the first indicator function above. If we prove

that E

[
exp

{
q′

(Nα
n y)ε Yn

}
1Yn<Nα

n y

]
� 1 + o

(
Nα(1−ε)−1

n

)
, then log Pn � −q′(Nα

n y)1−ε +
o
(

Nα(1−ε)
n

)
and the conclusion follows by letting q′ → q. Write

E

[
exp

{
q′

(Nα
n y)ε

Yn

}
1Yn<Nα

n y

]
=E

[
exp

{
q′

(Nα
n y)ε

Yn

}
1Yn<Nαε

n

]

+E

[
exp

{
q′

(Nα
n y)ε

Yn

}
1Nαε

n � Yn<Nα
n y

]
.

First, using the fact that, for all x < q′y−ε, ex � 1 + x + 1
2 eq′y−ε

x2, and (H2), we get

E

[
exp

{
q′

(Nα
n y)ε

Yn

}
1Yn<Nαε

n

]
� E

[(
1 + q′

(Nα
n y)ε

Yn + (q′)2eq′y−ε

2(Nα
n y)2ε

Y2
n

)
1Yn<Nαε

n

]

� 1 + (q′)2eq′y−ε

2
· E
[
Y2

n

]
(Nα

n y)2ε

= 1 + o(Nα(1−ε)−1
n ),

the second inequality stemming from the following lemma.

Lemma 3.4. Under (H1), for all y > 0, for all q′ < q there exists n0(q′) � 1 such that, for all
n � n0(q′) and for all u ∈ [Nαε

n , Nα
n y
]
, log P(Yn � u) � −q′u1−ε.

Proof of Lemma 3.4. By contraposition, if the conclusion of the lemma is false, we can
construct a sequence (un)n � 1 such that, for all n � 1, un ∈ [Nαε

n , Nα
n y
]

and log P(Yn � un) >

−q′u1−ε
n , whence (H1) is not satisfied. �

Secondly, integrating by parts (Lebesgue–Stieljes version), we get

E

[
exp

{
q′

(Nα
n y)ε

Yn

}
1Nαε

n � Yn<Nα
n y

]
=
∫ Nα

n y

Nαε
n

exp

{
q′

(Nα
n y)ε

u

}
P(Yn ∈ du)

= −
[

exp

{
q′

(Nα
n y)ε

u

}
P(Yn � u)

]Nα
n y

Nαε
n

+ q′

(Nα
n y)ε

∫ Nα
n y

Nαε
n

exp

{
q′

(Nα
n y)ε

u

}
P(Yn � u) du

� eq′y−ε

P(Yn � Nαε
n ) + q′

(Nα
n y)ε

∫ Nα
n y

Nαε
n

exp

{
q′

(Nα
n y)ε

u − q′′u1−ε

}
du

� (1 + q′(Nα
n y)1−ε)eq′y−ε−q′′Nαε(1−ε)

n

= o
(
Nα(1−ε)−1

n

)
for n large enough, using (H1) and Lemma 3.4 with q′′ ∈ (q′, q

)
, and taking the supremum of

u �→ q′(Nα
n y)−εu − q′′u1−ε over

[
Nαε

n , Nα
n y
]
. The proof of Lemma 3.3 is now complete. �

3.3. Proof of Theorems 2.2 (Gaussian range) and 2.3 (Transition)

The conclusions of Theorems 2.2 and 2.3 follow from Lemmas 3.5, 3.6, and 3.9 below,
and the principle of the largest term (Lemma 3.1): Lemma 3.5 (resp. Lemma 3.6) provides the
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leading term in Theorem 2.2 (resp. in Theorem 2.3), and Lemma 3.9 bounds the remaining
terms. The structure of the proof follows [4].

Let us fix y > 0. The result for y = 0 follows by monotony (see the beginning of the proof
of Theorem 2.1).

3.3.1. Principal estimates For all m ∈ [[0, Nn]], we define

�n,m = P
(
Tn � Nα

n y;

for all i ∈ [[1, m]], Yn,i � Nαε
n ; for all i ∈ [[m + 1, Nn]], Yn,i < Nαε

n

)
, (3.1)

so that

P(Tn � Nα
n y) =

Nn∑
m=0

(
Nn

m

)
�n,m. (3.2)

Lemma 3.5. Under (H1), (H2′), and (H2+), for 1
2 < α � 1/(1 + ε) and y > 0,

lim
n→∞

1

N2α−1
n

log �n,0 = − y2

2σ 2
.

Proof of Lemma 3.5. For all n � 1, we introduce the variable Y<
n distributed as L(Yn | Yn <

Nαε
n ). Let T<

n =∑Nn
i=1 Y<

n,i, where the Y<
n,i are independent random variables distributed as Y<

n .
Then �n,0 = P(T<

n � Nα
n y)P(Yn < Nαε

n )Nn . On the one hand, P(Yn < Nαε
n )Nn → 1 by (H1). On

the other hand, in order to apply the unilateral version of the Gärtner–Ellis theorem (Theorem
3.1), we compute, for u � 0,

	n(u) = 1

N2α−1
n

log E

[
exp

{
u

Nα
n

T<
n

}]

= N2(1−α)
n log E

[
exp

{
u

N1−α
n

Yn

}
1Yn<Nαε

n

]
− N2(1−α)

n log P(Yn < Nαε
n ). (3.3)

By (H1), the second term above goes to 0. As for the first term, for γ ∈ (0, 1) given by (H2+),
there exists a constant c > 0 such that, for all t � u,

∣∣et − 1 − t − t2/2
∣∣ � c |t|2+γ , whence

∣∣∣∣∣
(

exp

{
u

N1−α
n

Yn

}
− 1 − u

N1−α
n

Yn − u2

2N2(1−α)
n

Y2
n

)
1Yn<Nαε

n

∣∣∣∣∣
� cu2+γ

N(2+γ )(1−α)
n

|Yn|2+γ , (3.4)

since α(1 + ε) � 1. Now,∣∣∣∣E
[

exp

{
u

N1−α
n

Yn

}
1Yn<Nαε

n

]
− exp

{
u2σ 2

2N2(1−α)
n

}∣∣∣∣
�
∣∣∣∣∣E
[(

exp

{
u

N1−α
n

Yn

}
− 1 − u

N1−α
n

Yn − u2

2N2(1−α)
n

Y2
n

)
1Yn<Nαε

n

]∣∣∣∣∣
+
∣∣∣∣∣E
[(

1 + u

N1−α
n

Yn + u2

2N2(1−α)
n

Y2
n

)
1Yn<Nαε

n

]
−
(

1 + u2
E
[
Y2

n

]
2N2(1−α)

n

)∣∣∣∣∣
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+
∣∣∣∣∣
(

1 + u2
E[Y2

n ]

2N2(1−α)
n

)
− exp

{
u2σ 2

2N2(1−α)
n

}∣∣∣∣∣
=
∣∣∣∣∣E
[(

1 + u

N1−α
n

Yn + u2

2N2(1−α)
n

Y2
n

)
1Yn � Nαε

n

]∣∣∣∣∣+ o(N−2(1−α)
n ), (3.5)

using (3.4), (H2+), the fact that E[Yn] = 0, a Taylor expansion of order 2 of the exponential
function, and (H2′). Finally, for n large enough, applying Hölder’s inequality,∣∣∣∣∣E
[(

1 + u

N1−α
n

Yn + u2

2N2(1−α)
n

Y2
n

)
1Yn � Nαε

n

]∣∣∣∣∣ � E
[
Y2

n 1Yn � Nαε
n

]
� E

[ |Yn|2+γ
]2/(2+γ )

P
(
Yn � Nαε

n

)γ /(2+γ )

= o
(
N−2(1−α)

n

)
(3.6)

as a consequence of (H1) and (H2+). Combining (3.3), (3.5), and (3.6), we get

	n(u) −→
n→∞

u2σ 2

2
=: 	(u),

and the proof of Lemma 3.5 follows from the fact that 	∗(y) = y2/(2σ 2). �
Lemma 3.6. Under (H1), (H2′), and (H2+), for α = 1/(1 + ε) and y > 0,

lim inf
n→∞

1

N2α−1
n

log �n,1 � −I(y).

Proof of Lemma 3.6. Remember that for α = 1/(1 + ε) we have 2α − 1 = α(1 − ε). So, for
all t ∈ (0, 1),

1

N2α−1
n

log �n,1 � 1

N2α−1
n

log P
(
Tn,Nn−1 � Nα

n ty; for all i ∈ [[1, Nn − 1]], Yn,i < Nαε
n

)
+ 1

N2α−1
n

log P
(
Nα

n (1 − t)y � Y<
n , Nn < Nα

n y
)

−→
n→∞ − t2y2

2σ 2
− q(1 − t)1−εy1−ε,

by Lemma 3.5 (applied to the array (Yn,i)1 � i � Nn−1) and by (H1). Optimizing in t ∈ (0, 1)

provides the conclusion. �
3.3.2. Two uniform bounds

Lemma 3.7. Under (H2′) and (H2+), for all δ ∈ (0, 1) and y > 0, there exists n(δ, y) � 1 such
that, for all n � n(δ, y), for all m ∈ [[0, Nn]], for all u ∈ [0, Nα

n y
]
,

log P(Tn,m � u; for all i ∈ [[1, m]], Yn,i < Nαε
n ) � − (1 − δ)u2

2Nnσ 2
.

Proof of Lemma 3.7. Using the fact that 1t � 0 � et, for all λ > 0,

P
(
Tn,m � u; for all i ∈ [[1, m]], Yn,i < Nαε

n

)
� e−λu

E
[
eλYn 1Yn<Nαε

n

]m.
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For γ ∈ (0, 1) given by (H2+), there exists c(y) > 0 such that, for all s � yσ−2, we have es �
1 + s + 1

2 s2 + c(y)|s|2+γ . Hence, for λ := u(Nnσ
2)−1 � N−αε

n yσ−2,

E
[
eλYn1Yn<Nαε

n

]
� 1 + λ2

2
E
[
Y2

n

]+ c(y)λ2+γ
E
[ |Yn|2+γ

]= 1 + λ2σ 2

2
(1 + δn),

where

δn :=
(
E
[
Y2

n

]
σ 2

− 1

)
+ 2c(y)λγ

σ 2
E
[ |Yn|2+γ

]
.

By (H2′), the first term in δn goes to 0 as n → ∞. Moreover, λ � Nα−1
n yσ−2 so, using (H2+),

we obtain that, for n � n(δ, y) large enough, |δn| � δ. Finally, since m � Nn, we have, for
n � n(δ, y),

log P(Tn,m � u; for all i ∈ [[1, m]], Yn,i < Nαε
n )

� −λu + Nnλ
2σ 2

2
(1 + δ) = − (1 − δ)u2

2Nnσ 2
. �

Lemma 3.8. Under (H1), for all δ ∈ (0, 1) and y > 0, there exists n(δ, y) � 1 such that, for all
n � n(δ, y), for all m ∈ [[1, Nn]], for all u ∈ [0, Nα

n y
]
, log P(Tn,m � u; for all i ∈ [[1, m]], Yn,i �

Nαε
n ) � −(1 − δ)q

(
u1−ε + (m − 1)(1 − 2−ε)Nαε(1−ε)

n
)
.

Proof of Lemma 3.8. Let q′ be such that (1 − δ)q < q′ < q. First, we establish that there
exists n0(δ) such that, for all n � n0(δ),

P
(
Tn,m � u; for all i ∈ [[1, m]], Yn,i � Nαε

n

)
(3.7)

�

⎧⎨
⎩

exp
[
− q′mNαε(1−ε)

n

]
if u < mNαε

n ,

(um + m) exp
[
− q′

((
u − (m − 1)Nαε

n

)1−ε + (m − 1)Nαε(1−ε)
n

)]
if mNαε

n � u � Nα
n y.

The result is trivial for u < mNαε
n or m = 1, using Lemma 3.4. Now, we suppose u � mNαε

n
and m � 2. We have

P(Tn,m � u; for all i ∈ [[1, m]], Yn,i � Nαε
n )

� P(Tn,m � u; for all i ∈ [[1, m]], Nαε
n � Yn,i < u)

+ P(there exists i0 ∈ [[1, m]] such that Yn,i0 � u − (m − 1)Nαε
n ;

for all i ∈ [[1, m]], Yn,i � Nαε
n ).

First,

P(there exists i0 ∈[[1, m]] such that Yn,i0 � u; for all i ∈ [[1, m]], Yn,i � Nαε
n )

� mP(Yn � u − (m − 1)Nαε
n )P(Yn � Nαε

n )m−1

� m exp
[−q′((u − (m − 1)Nαε

n )1−ε + (m − 1)Nαε(1−ε)
n

)]
(3.8)

as soon as n � n1(δ) � n0(δ), where n1(δ) is the integer n0(q′) given by Lemma 3.4 (remem-
ber that Nαε

n � mNαε
n � u � Nα

n y). Secondly, denoting by ai integers and q” a number such
that q′ < q′′ < q,
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P(Tn,m � u; for all i ∈ [[1, m]], Nαε
n � Yn,i < u − (m − 1)Nαε

n )

=
∫

∀i,Nαε
n � ui<u

1u1+···+um � u

m∏
i=1

P(Yn ∈ dui)

�
∑

∀i,�Nαε
n 
� ai � �u


1a1+···+am � u

m∏
i=1

P(ai − 1 < Yn � ai)

�
∑

∀i,�Nαε
n 
� ai � �u


1a1+···+am � u

m∏
i=1

e−q′′(ai−1)1−ε

�
∫

∀i,Nαε
n � ui<u+2

1u1+···+um � u

m∏
i=1

e−q′′(ui−2)1−ε

dui

�
∫

∀i,Nαε
n � ui<u+2

u1+···+um � u

e
−q′
(

u1−ε
1 +···+u1−ε

m

)
du1 · · · dum,

as soon as n is large enough (n � n2(δ) � n1(δ)) so that, for all v � Nαε
n , q′′(v − 2)1−ε �

q′v1−ε. Now, the function sm : (u1, . . . , um) �→ u1−ε
1 + · · · + u1−ε

m is concave, so sm reaches its
minimum on the domain of integration at the points where all the ui equal Nαε

n , except one
equal to u − (m − 1)Nαε

n . Therefore,

P(Tn,m � u, for all i ∈ [[1, m]], Yn,i � Nαε
n )

� um exp
[−q′((u − (m − 1)Nαε

n )1−ε + (m − 1)Nαε(1−ε)
n

)]
. (3.9)

Equations (3.8) and (3.9) yield (3.7).

The conclusion of Lemma 3.8 for u < mNαε
n stems from (3.7) and the following easy

inequality: for all m � 1, m1−ε + (m − 1)(1 − 2−ε) � m. As for u � mNαε
n , we notice

that the function g(u) := −u1−ε + (u − (m − 1)Nαε
n )1−ε + (m − 1)Nαε(1−ε)

n is increasing on[
mNαε

n , ∞) and g(mNαε
n ) = Nαε(1−ε)

n m(1 − m−ε) � Nαε(1−ε)
n (m − 1)(1 − 2−ε), so, using (3.7)

and the fact that, for m � 1, um + m � (u + 1)m,

P(Tn,m � u, for all i ∈ [[1, m]], Yn,i � Nαε
n )

� (u + 1)m exp
[−q′(u1−ε + (m − 1)(1 − 2−ε)Nαε(1−ε)

n

)]
� exp

[−(1 − δ)q
(
u1−ε + (m − 1)(1 − 2−ε)Nαε(1−ε)

n

)]
as soon as

log (u + 1) � log (Nα
n y + 1)

� 1

2
(q′ − (1 − δ)q)(1 − 2−ε)Nαε(1−ε)

n

� m − 1

m
(q′ − (1 − δ)q)(1 − 2−ε)Nαε(1−ε)

n ,

i.e. for n � n(δ, y) � n2(δ). �
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3.3.3. Upper bound for the sum of the �n,m Using the uniform bounds of Lemmas 3.7 and 3.8,
we are able to bound above the remaining term

∑n
m=1

(n
m

)
�n,m.

Lemma 3.9. Assume (H1), (H2′), and (H2+). If 1
2 < α < 1/(1 + ε), then, for all y > 0,

lim sup
n→∞

1

N2α−1
n

log
n∑

m=1

(
n

m

)
�n,m � − y

2σ 2
.

If α = 1/(1 + ε), then, for all y > 0,

lim sup
n→∞

1

N2α−1
n

log
n∑

m=1

(
n

m

)
�n,m � −I(y).

Proof of Lemma 3.9. Fix some integer r � 1. Noticing that

{
(a, b) ∈ (R+)2

∣∣∣ a + b � 1
}

⊂
r⋃

k=1

{
(a, b) ∈ (R+)2

∣∣∣ a � k − 1

r
, b � 1 − k

r

}
,

we have, for all m ∈ [[1, Nn]],

�n,m = P
(
Tn � Nα

n y; for all i ∈ [[1, m]], Yn,i � Nαε
n ;

for all i ∈ [[m + 1, Nn]], Yn,i < Nαε
n

)
�

r∑
k=1

P

(
Tn,Nn−m � k − 1

r
Nα

n y; for all i ∈ [[1, n − m]], Yn,i < Nαε
n

)

× P

(
Tn,m �

(
1 − k

r

)
Nα

n y; for all i ∈ [[1, m]], Yn,i � Nαε
n

)

�
r∑

k=1

exp

[
−(1 − δ)

(
(k − 1)2(Nα

n y)2

2Nnσ 2r2

+ q
((

1 − k

r

)
Nα

n y
)1−ε + q(m − 1)(1 − 2−ε)Nαε(1−ε)

n

)]
,

for n large enough, applying Lemmas 3.7 and 3.8. Hence,

log
Nn∑

m=1

(
Nn

m

)
�n,m � log

r∑
k=1

exp

[
−(1 − δ)

(
N2α−1

n
((k − 1)/r)2y2

2σ 2

+ qNα(1−ε)
n

((
1 − k

r

)
y
)1−ε

)]

+ log
Nn∑

m=1

(
Nn

m

)
e−(1−δ)q(m−1)(1−2−ε)Nαε(1−ε)

n ,

where the latter sum is bounded.
For α ∈ ( 1

2 , 1/(1 + ε)
)
, we have 2α − 1 < α(1 − ε). Therefore, applying the principle of the

largest term (Lemma 3.1), we get

lim sup
n→∞

1

N2α−1
n

log
Nn∑

m=1

(
Nn

m

)
�n,m � −(1 − δ)

( r − 1

r

)2 1

2σ 2
,
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so, letting r → ∞ and δ → 0,

lim sup
n→∞

1

N2α−1
n

log
Nn∑

m=1

(
Nn

m

)
�n,m � − 1

2σ 2
.

For α = 1/(1 + ε), remember that 2α − 1 = α(1 − ε). Therefore, applying the principle of
the largest term (Lemma 3.1), we get

lim sup
n→∞

1

N2α−1
n

log
Nn∑

m=1

(
Nn

m

)
�n,m � −(1 − δ)

r
min
k=1

((
k − 1

r

)2 y2

2σ 2
+ q

(
1 − k

r

)1−ε

y1−ε

)
,

so, letting r → ∞ and δ → 0,

lim sup
n→∞

1

N2α−1
n

log
Nn∑

m=1

(
Nn

m

)
�n,m � − min

t∈[0,1]

(
t2y2

2σ 2
+ q(1 − t)1−εy1−ε

)
= −I(y). �

Remark 3.1. Notice that, using the contraction principle, we can show that, for all fixed m, if
α ∈ ( 1

2 , 1/(1 + ε)
)
, then

lim
n→∞

1

N2α−1
n

log �n,m = − y2

2σ 2
, ;

and if α = 1/(1 + ε), then

lim
n→∞

1

N2α−1
n

log �n,m = −I(y).

4. About the assumptions

Looking into the proof of Theorem 2.1, one can see that Assumption (H1) can be weakened
and we may only assume the two conditions that follow.

Theorem 4.1. The conclusion of Theorem 2.1 holds under (H2) and:

(H1a) For all yn = �(Nα
n ), log P(Yn � yn) ∼

n→∞ −qy1−ε
n .

(H1b) For all Nαε
n � yn � Nα

n , lim sup
n→∞

y−(1−ε)
n log P(Yn � yn) � −q.

Lemma 4.1. (H1a) is equivalent to:

(H1a′) For all y > 0, log P(Yn � Nα
n y) ∼

n→∞ −q(Nα
n y)1−ε.

Proof of Lemma 4.1. If Nα
n c1 � yn � Nα

n c2, then −qc2 � N−α(1−ε)
n log P(Yn � yn) �

−qc1. First, extract a convergent subsequence; then, again extract a subsequence such that
N−α

n yn is convergent and use (H1a) to show that N−α(1−ε)
n log P(Yn � yn) is convergent. �

The following lemma is straightforward.

Lemma 4.2. (H1b) is equivalent to the conclusion of Lemma 3.4:

(H1b′) For all y > 0, for all q′ < q, there exists n0 such that for all n � n0 and for all u ∈[
Nαε

n , Nα
n y
]
, log P(Yn � u) � −q′u1−ε.

https://doi.org/10.1017/jpr.2021.58 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.58


Large-deviation results for triangular arrays of semiexponential random variables 411

Theorem 4.2. The conclusion of Theorem 2.1 holds under (H1a), (H1b), and

E
[ |Yn|2+γ

]
/E
[ |Yn|2

]1+γ /2 = o
(
Nγ /2

n

)
as n → ∞.

Proof of Theorem 4.2. The only modification in the proof is the minoration of Rn:
Rn � P

(
Tn,Nn−1 � 0

)
P(Yn � Nα

n y). Now Lyapunov’s theorem [1, Theorem 27.3] applies, so
P
(
Tn,Nn−1 � 0

)→ 1
2 as n → ∞. �

As for Theorem 2.2, Assumption (H1) can be weakened and we may only assume (H1b),
or even the following weaker assumption.

Theorem 4.3. The conclusion of Theorem 2.2 holds under (H2′), (H2+), and:

(H1c) For all y > 0 there exists q > 0 and n0 such that, for all n � n0 and for all u ∈[
Nαε

n , Nα
n y
]
, log P(Yn � u) � −qu1−ε.

Finally, in Theorem 2.3, Assumption (H1) can be weakened and we may only assume (H1a)
and (H1b).

5. Application: Truncated random variable

Let us consider a centered real-valued random variable Y , admitting a finite moment of order
2 + γ for some γ > 0. Set σ 2 :=E

[
Y2
]
. Now, let β > 0 and c > 0. For all n � 1, let us intro-

duce the truncated random variable Yn defined by L(Yn) =L
(

Y | Y < Nβ
n c
)

. Such truncated

random variables naturally appear in proofs of large-deviation results. For all n � 1, let Nn be a
natural number. We assume that Nn → ∞ as n → ∞. For all n � 1, let

(
Yn,i
)

1 � i � Nn
be a fam-

ily of i.i.d. random variables distributed as Yn. Define, for all k ∈ [[1, Nn]], Tn,k :=∑k
i=1 Yn,i,

and let Tn := Tn,Nn .
If Y has a light-tailed distribution, i.e. 	Y (λ) := log E

[
eλY
]
< ∞ for some λ > 0, then (the

unilateral version of) the Gärtner–Ellis theorem (Theorem 3.1) applies: if α ∈ (1/2, 1), then

lim
n→∞

1

N2α−1
n

log P(Tn � Nα
n y) = − y2

2σ 2
,

and if α = 1, then

lim
n→∞

1

Nn
log P(Tn � Nα

n y) = −	∗
Y (y) = − sup

λ� 0
{λy − 	Y (λ)}.

Note that we recover the same asymptotics as for the non-truncated random variable Y . In other
words, the truncation does not affect the deviation behavior.

Now we consider the case where log P(Y � y) ∼ −qy1−ε for some q > 0 and ε ∈ (0, 1). In
this case, the Gärtner–Ellis theorem does not apply directly; indeed, the Gärtner–Ellis theorem
always provides a convex rate function (	∗ in Theorem 3.1) but, as can be seen in Figures 1 to
3, some of the rate functions obtained are not convex. Observe that, as soon as yn → ∞,

lim sup
n→∞

1

y1−ε
n

log P(Yn � yn) = lim sup
n→∞

1

y1−ε
n

(
log P

(
yn � Y < Nβ

n c
)− log P

(
Y < Nβ

n c
))

� −q,
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FIGURE 1. Representation of the rate functions. Here, q = 1, σ 2 = 2, ε = 1/2, and c = 1. Left: Gaussian
range. The typical event corresponds to the case where all the random variables are small but their sum
has a Gaussian contribution. Center: Maximal jump range. The typical event corresponds to the case
where one random variable contributes to the total sum (Nα

n y), regardless of the others. We recover the
random variable tail. Right: Truncated maximal jump range. The typical event corresponds to the case

where Nα−β
n y/c variables take the saturation value Nβ

n c, regardless of the others.

so (H1b) is satisfied. If, moreover, yn � Nβ
n c′ with c′ < c, then log P(Yn � yn) ∼

−qy1−ε
n , so (H1) is satisfied for α < β. In addition, E[Yn], E

[
(Yn −E[Yn])2

]−E
[
Y2
]
, and

E
[ |Yn −E[Yn]|2+γ

]−E
[
Y2+γ

]
are exponentially decreasing to zero. Therefore, (H2′) and

(H2+) are satisfied, and our Theorems 2.1, 2.2, 2.3, and 4.3 directly apply (to Yn −E[Yn]) for
α < max (β, 1/(1 + ε)).

For α � max (β, 1/(1 + ε)), the proofs easily adapt to cover all cases. To expose the results,
we separate the three cases β > 1/(1 + ε), β < 1/(1 + ε), and β = 1/(1 + ε). We provide the
graphs of the exhibited rate functions (Figures 1 and 3) and a synthetic diagram (Figure 4).

5.1. Case β>1/(1 + ε)

5.1.1. Gaussian range When α < 1/(1 + ε) Theorem 2.2 applies and, for all y � 0,

lim
n→∞

1

N2α−1
n

log P(Tn � Nα
n y) = − y2

2σ 2
.

5.1.2. Transition 1 When α = 1/(1 + ε) Theorem 2.3 applies and, for all y � 0,

lim
n→∞

1

N2α−1
n

log P(Tn � Nα
n y) = −I1(y) := −I(y) = − inf

0 � t � 1

{
q(1 − t)1−εy1−ε + t2y2

2σ 2

}
.

5.1.3. Maximal jump range When 1/(1 + ε) < α < β Theorem 2.1 applies and, for all y � 0,

lim
n→∞

1

Nα(1−ε)
n

log P(Tn � Nα
n y) = −qy1−ε.

5.1.4. Transition 2 When α = β, for all y � 0,

lim
n→∞

1

Nα(1−ε)
n

log P(Tn � Nα
n y) = −I2(c, y) := −q

(
�y/c� c1−ε + (y − �y/c� c)1−ε

)
.
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FIGURE 2. Representation of the rate functions. Here, q = 1, σ 2 = 1, ε = 1/2, and c = 1. Left: Transition
1. The typical event corresponds to the case where one random variable is large (Nα

n (1 − t(y))y) and
the sum of the others has a Gaussian contribution (two competing terms). Center: Transition 2. The
typical event corresponds to the case where �y/c� random variables take the saturation value Nβ

n c and
one completes to get the total sum. Right: Transition 3. The typical event corresponds to the case where
some random variables (a number of order N1−β(1+ε)

n ) take the saturation value Nβ
n c, and the sum of the

others has a Gaussian contribution (two competing terms).

Observe that I2 is continuous on (0, ∞) × [0, ∞). For all t > 0,

�n,0 = P
(
Tn � Nα

n y; for all i ∈ [[1, Nn]], Yn,i < Nαε
n

)
� e−tyNα(1−ε)

n E
[
etN−αε

n Yn1Yn<Nαε
n

]Nn

= e−tyNα(1−ε)
n (1+o(1)),

(see the proof of Theorem 2.1). Therefore, letting t → ∞, Lemma 3.5 updates into

1

Nα(1−ε)
n

log �n,0 −→
n→∞ −∞.

For all fixed m � �y/c� + 1, let c′ < c be such that
⌊

y/c′⌋+ 1 � m. Then, �n,m �
P
(
for all i ∈ [[1,

⌊
y/c′⌋]], Yn,i � Nα

n c′;
[
Yn,�y/c′� + 1

]
� Nα

n (y − ⌊y/c′⌋ c′)
)
, so

lim inf
n→∞

1

Nα(1−ε)
n

log �n,m � −I2(c′, y).

Letting c′ → c, Lemma 3.6 updates into: for all m � �y/c� + 1,

lim inf
n→∞

1

Nα(1−ε)
n

log �n,m � −I2(c, y),

which provides a lower bound for the sum of the �n,m. To upper bound the sum of the �n,m,
Lemma 3.7 still applies. Lemma 3.8 (more precisely (3.7)) adapts as follows: for all δ ∈ (0, 1),
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FIGURE 3. Representation of the rate functions. Here, q = 1, σ 2 = 1, and ε = 1/2 (so c0 = 1). Left:
Transition 1, for c � c0 (here, c = 0.7). The typical event corresponds to the case where k3(c, y) variables
take the saturation value Nβc, and the sum of the others has a Gaussian contribution. Right: Transition
1, for c > c0 (here, c = 2). The typical event corresponds to the case where k2(c, y) variables take the

saturation value Nβc, one is also large
(

Nβ
n (1 − t(y − k2(c, y)c))(y − k2(c, y)c)

)
, and the sum of the others

has a Gaussian contribution.

FIGURE 4. Speed and rate function diagram.
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there exists n(δ) � 1 such that, for all n � n(δ), for all m � 1, for all u ∈ [0, Nα
n y
]
,

log P(Tn,m � u; for all i ∈ [[1, m]], Yn,i � Nαε
n )

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−q′mNαε(1−ε)
n if u < mNαε

n ,

−q′(l(Nα
n c + 2)1−ε + (u − l(Nα

n c + 2))1−ε

+(m − l − (m − l)1−ε)Nαε(1−ε)
n

)
if mNαε

n � u < mNα
n c,

−∞ if mNα
n c � u

=: − M(n, m, u),

with

l =
⌊

u − mNαε
n

Nα
n c + 2 − Nαε

n

⌋
.

Here, following the proof of Lemma 3.8, the concave function sm : (u1, . . . , um) �→ u1−ε
1 +

· · · + u1−ε
m attains its minimum on the domain of integration at the points with all coordi-

nates equal to Nαε
n , except for l coordinates equal to Nα

n c + 2 and one coordinate equal to
u − l(Nα

n c + 2) − (m − l − 1)Nαε
n . Finally, Lemma 3.9 adapts as follows: for α(1 − ε)2 < γ <

α(1 − ε),

lim sup
n→∞

1

Nα(1−ε)
n

log
Nn∑

m=1

(
Nn

m

)
�n,m

� lim sup
n→∞

1

Nα(1−ε)
n

log
r∑

k=1

Nn∑
m=1

exp

[
−(1 − δ)N2α−1

n
(k − 1)2y2

2σ 2r2
− M(n, m, (1 − k/r)Nα

n y)

]

= lim sup
n→∞

1

Nα(1−ε)
n

log
Nn∑

m=1

exp

[
−M(n, m, (1 − 1/r)Nα

n y)

]
,

since 2α − 1 > α(1 − ε) and, for n large enough,

1

Nα(1−ε)
n

log
∑

m>Nγ
n

exp
[−M(n, m, (1 − 1/r)Nα

n y)
]

� 1

Nα(1−ε)
n

log
∑

m>Nγ
n

exp
[−q′(m − l − (m − l)1−ε)Nαε(1−ε)

n

]

� 1

Nα(1−ε)
n

log
∑

m>Nγ
n

exp
[
−q

2
mNαε(1−ε)

n

]

� −q

4
Nγ−α(1−ε)2

n

−→
n→∞ −∞.
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Now, for m � Nγ
n ,

M(n, m,(1 − 1/r)Nα
n y)

� Nα(1−ε)
n (1 − δ)q

(
�(1 − 1/r)y/c� c1−ε + ((1 − 1/r)y − �(1 − 1/r)y/c� c)1−ε

)
+ Nαε(1−ε)

n (1 − δ)q(m − �y/c� − m1−ε)

� Nα(1−ε)
n (1 − δ)I2(c, (1 − 1/r)y) + Nαε(1−ε)

n (1 − δ)q(m − �y/c� − m1−ε).

Eventually,

lim sup
n→∞

1

Nα(1−ε)
n

log
Nn∑

m=1

(
Nn

m

)
�n,m

� −(1 − δ)I2(c, (1 − 1/r)y)

+ lim sup
n→∞

1

Nα(1−ε)
n

log
∑

m � Nγ
n

exp

[
−(1 − δ)q(m − �y/c� − m1−ε)Nαε(1−ε)

n

]

= −(1 − δ)I2(c, (1 − 1/r)y),

since the latter series is convergent. The result follows letting r → ∞ and δ → 0.

5.1.5. Truncated maximal jump range When β < α < β + 1 and y � 0, or α = β + 1 and
y < c, the proof of Theorem 2.1 adapts and provides

lim
n→∞

1

Nα−βε
n

log P(Tn � Nα
n y) = −qyc−ε.

The upper bound stems from

P(Tn � Nα
n y) � e−qyc−εNα−βε

n E

[
eyc−εN−βε

n Yn
(
1

Yn<Nβε
n

+ 1
Nβε

n � Yn<Nβ
n c

)]Nn

and the same lines as in the proof of Theorem 2.1. As for the lower bound, we write, for c′ < c,

log P(Tn � Nα
n y) � log P(for all i ∈ [[1, �Nα−β

n y/c′
]], Yn,i � Nβ
n c′)

∼ −Nα−β
n y(c′)−1q(Nβ

n c′)1−ε

= −Nα−βε
n qy(c′)−ε,

and we recover the upper bound when c′ → c.

5.1.6. Trivial case When α = β + 1 and y � c, or α > β + 1, we obviously have
P(Tn � Nα

n y) = 0.

5.2. Case β = 1/(1 + ε)

Here, Theorem 2.2 applies for α < 1/(1 + ε). The notable fact is that the Gaussian range is
extended: it spreads up to α < 1 − βε.

5.2.1. Gaussian range When α < 1 − βε the proof of Theorem 2.2 adapts and, for all y � 0,

lim
n→∞

1

N2α−1
n

log P(Tn � Nα
n y) = − y2

2σ 2
.
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As we said, the result for α < 1/(1 + ε) is a consequence of Theorem 2.2. Now, suppose
β < 1/(1 + ε) � α < 1 − βε. Here, we adapt the decomposition (3.1) and (3.2) as

P(Tn � Nα
n y) =

Nn∑
m=0

(
Nn

m

)
�n,m,

where, for all m ∈ [[0, Nn]],

�n,m = P
(
Tn � Nα

n y; for all i ∈ [[1, m]], Yn,i � Nβε
n ; for all i ∈ [[m + 1, Nn]], Yn,i < Nβε

n

)
.

Lemma 3.5 works for α < 1 − βε, adapting the proof with L(Y<
n ) =L(Yn

∣∣ Yn < Nβε
n
)
. To

upper bound the sum of the �n,m, Lemma 3.7 still applies. Lemma 3.8 (more precisely (3.7))
adapts as follows: for all δ ∈ (0, 1), there exists n(δ) � 1 such that, for all n � n(δ), for all
m � 1, for all u ∈ [0, Nα

n y
]
,

log P(Tn,m � u; for alli ∈ [[1, m]], Yn,i � Nβε
n )

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−q′mNβε(1−ε)
n if u < mNβε

n ,

−q′(l(Nβ
n c + 2

)1−ε + (u − l
(
Nβ

n c + 2
))1−ε

+(m − l − (m − l)1−ε)Nβε(1−ε)
n

)
if mNβε

n � u < mNβ
n c,

−∞ if mNβ
n c � u

=: − M(n, m, u),

with

l =
⌊

u − mNβε
n

Nβ
n c + 2 − Nβε

n

⌋
.

Here, following the proof of Lemma 3.8, the concave function sm : (u1, . . . , um) �→ u1−ε
1 +

· · · + u1−ε
m reaches its minimum on the domain of integration at the points with all coordi-

nates equal to Nβε
n , except for l coordinates equal to Nβ

n c + 2 and one coordinate equal to
u − l

(
Nβ

n c + 2
)− (m − l − 1)Nβε

n . Finally, Lemma 3.9 adapts as follows: for 2α − 1 − βε(1 −
ε) < γ < α − βε (note that 2α − 1 < α − βε),

lim sup
n→∞

1

N2α−1
n

log
Nn∑

m=1

(
Nn

m

)
�n,m

� lim sup
n→∞

1

N2α−1
n

log
r∑

k=1

exp

[
−(1 − δ)

(
N2α−1

n
((k − 1)/r)2y2

2σ 2

)]

×
Nn∑

m=1

e−M(n,m,(1−k/r)Nα
n y).

For k � r − 1 and n large enough,

1

N2α−1
n

log
∑

m>Nγ
n

e−M(n,m,(1−k/r)Nα
n y)

� 1

N2α−1
n

log
∑

m>Nγ
n

exp
[−q′(m − l − (m − l)1−ε)Nβε(1−ε)

n

]
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� 1

N2α−1
n

log
∑

m>Nγ
n

exp
[
−q

2
mNβε(1−ε)

n

]

� −q

4
Nγ−(2α−1−βε(1−ε))

n

−→
n→∞ −∞

and

1

N2α−1
n

log
∑

m � Nγ
n

e−M(n,m,(1−k/r)Nα
n y)

� −(1 − δ)qNα−βε−(2α−1)
n �y/(rc)� c1−ε

+ 1

N2α−1
n

log
∑

m � Nγ
n

exp
[−(1 − δ)q(m − l − (m − l)1−ε)Nβε(1−ε)

n

]
−→
n→∞ −∞,

since the latter series is convergent. Eventually,

lim sup
n→∞

1

N2α−1
n

log
Nn∑

m=1

(
Nn

m

)
�n,m

� −(1 − δ)
(1 − 1/r)2y2

2σ 2
+ lim sup

n→∞
1

N2α−1
n

log
Nn∑

m=1

e−q′mNβε(1−ε)
n

= −(1 − δ)
(1 − 1/r)2y2

2σ 2
,

since the latter series is convergent. The result follows letting r → ∞ and δ → 0.

5.2.2. Transition 3 When α = 1 − βε the proof of Theorem 2.3 adapts and, for all y � 0,

lim
n→∞

1

N2α−1
n

log P(Tn � Nα
n y) = −I3(c, y) := − inf

0 � t � 1

{
q(1 − t)yc−ε + t2y2

2σ 2

}

= −
{

y2

2σ 2 if y � y3(c),
qy
cε − q2σ 2

2c2ε if y > y3(c),

with y3(c) := qσ 2c−ε.

5.2.3. Truncated maximal jump range When 1 − βε < α < 1 + β and y � 0, or α = 1 + β and
y < c, as before, the proof of Theorem 2.1 adapts and

lim
n→∞

1

Nα−βε
n

log P(Tn � Nα
n y) = −qyc−ε.

5.2.4. Trivial case When α = β + 1 and y � c, or α > β + 1, we obviously have
P(Tn � Nα

n y) = 0.
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5.3. Case β = 1/(1 + ε)

5.3.1. Gaussian range When α < 1/(1 + ε) = β Theorem 2.2 applies and, for all y � 0,

lim
n→∞

1

N2α−1
n

log P(Tn � Nα
n y) = − y2

2σ 2
.

5.3.2. Transition T0 As in Section 2 after the statement of Theorem 2.3, we define t(y) and y1
for the function f (t) = q(1 − t)1−εy1−ε + t2y2/(2σ 2). Define t̃(y) := 1 for y < y1 and t̃(y) := t(y)
for y � y1, and notice that t̃ is decreasing on

[
y1, ∞) (and t̃(y) → 0 as y → ∞). Set c0 :=

(1 − t̃(y1))y1 = (2εqσ 2)1/(1+ε).
When α = 1/(1 + ε) = β and c � c0, then

lim
n→∞

1

N2α−1
n

log P(Tn � Nα
n y) = −qk0,1(c, y)c1−ε + (y − k0,1(c, y)c)2

2σ 2
=: − I0,1(c, y),

where

k0,1(c, y) := max

(⌊
y − y0,1(c)

c

⌋
+ 1, 0

)
, and y0,1(c) := c

2
+ qσ 2c−ε

(y0,1(c) is the unique solution in y of y2 − (y − c)2 = 2σ 2qc1−ε).
When α = 1/(1 + ε) = β and c � c0, then

lim
n→∞

1

N2α−1
n

log P(Tn � Nα
n y) = −qk0,2(c, y)c1−ε + I(y − k0,2(c, y)c) =: − I0,2(c, y),

where

k0,2(c, y) := max

(⌊
y − y0,2(c)

c

⌋
+ 1, 0

)
, and y0,2(c) := c + (1 − ε)qσ 2c−ε

(y0,2(c) is the unique solution in y of (1 − t̃(y))y = c).
We remark that, for all c < c0, y0,1(c) > y1, so the Gaussian range in the truncated case is

extended compared with the range in the non-truncated case (where it stops at y1). Moreover,
y0,1(c0) = y1 = y0,2(c0) and I0,1(c0, ·) = I0,2(c0, ·) (since I1(y) = y2/(2σ 2) for y � y1).

5.3.3. Truncated maximal jump range When 1/(1 + ε) = β < α < β + 1 and y � 0, or α =
1 + β and y < c, as before, the proof of Theorem 2.1 adapts and

lim
n→∞

1

Nα−βε
n

log P(Tn � Nα
n y) = −qyc−ε.

5.3.4. Trivial case When α = β + 1 and y � c, or α > β + 1, we obviously have
P(Tn � Nα

n y) = 0.
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