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The concept of generalized order statistics was introduced as a unified approach to a
variety of models of ordered random variables. The purpose of this article is to
establish the usual stochastic and the likelihood ratio orderings of conditional
distributions of generalized order statistics from one sample or two samples,
strengthening and generalizing the main results in Khaledi and Shaked [15], and
Li and Zhao [17]. Some applications of the main results are also given.

1. INTRODUCTION

Let Xi., < X5, < --- < X,., denote the ordinary order statistics of independent and
identically distributed (i.i.d.) random variables X, X5, ..., X,. Asadi and Bairamov
[1] explored the properties of E[X,,., — y| X,., >y] for r=1,...,n — 1 and each
v, and obtained

[E[anlznfl _y|X1:nfl > y] S [E[Xn:n _y|X1:n > y] (11)
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and
E[Xpn — y1Xrn > 3] < E[Xpn — ¥1Xr—120 > ¥ 1.2)
for2<r<nandy € R. Li and Zhao [17] proved that
(Xon = YXrn > 3] <ir [Xon = Y Xr—10 > ] 1.3

for 1< r<s<nandy €& R, generalizing (1.2), where <;. denotes the likelihood
ratio order (the formal definitions of some stochastic orders that are mentioned in
this section can be found in Section 2).

Let V1., <Y,,<---<Y,, denote the ordinary order statistics of other i.i.d.
random variables Y;, Y»,...,Y,. Recently, Khaledi and Shaked [15] and Li and
Zhao [17] proved that if X; <, Y;, then

[Xs:n - y|Xr:n > )’} Ssl [Ys:n _ylyr:n > )’] fOI'y € R (14)

whenever 1 < r < s < n. Khaledi and Shojaei [16] established the analogous result of
(1.4) for record values. More precisely, let {X; ), n > 1} denote the record values of a
sequence {X,, n > 1} of i.i.d. random variables with a continuous distribution func-
tion F, where L(1) =1 and

L(n) = inf{i: X; > X;u_1),i > L(n — 1)} forn >2

are record times. Similarly, let {Yjs,), n > 1} denote the record values based on
another sequence of i.i.d. random variables {Y,,, n > 1} with a continuous distribution
function G. Khaledi and Shojaei [16] proved that if X; <, Y, then

[Xr) = Y1 Xeon > V] <st Yues) — Y| ¥mey >y fory € R

whenever s > r > 1.

Note that the ordinary order statistics and record values are two special models of
generalized order statistics (GOSs). The purpose of this article is to establish some
results on stochastic comparisons of conditional distributions of GOSs with respect to
the usual stochastic and the likelihood ratio orders, strengthening and generalizing
(1.4) and (1.5). The main results of this article are given in Section 3. In Section 2 we
recall the definitions of GOSs and of some stochastic orders and give some useful
lemmas that will be used in Section 3. Some applications of the main results are
presented in Section 4.

2. PRELIMINARIES

2.1. Generalized Order Statistics
We first give the definition of GOSs following Kamps [10, 11].
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DeriNITION 2.1: Letn €N, k> 0, and my, ..., m,_ € R be parameters such that

n—1
yrn:k+2(m]+1)>07 i’:l,...,n—l,
j=r

and let m = (my, ..., m,_y) if n > 2 (1 arbitrary if n = 1). If the random variables
Uiy ¥ =1, ..., n, possess a joint density of the form

n—1
fU(l.nﬁx.k)s“'-,Uln.nﬁLk)(ul7 cosly) =k <H yjﬂ) <
=1

on the cone 0 < uy <up < -+ <u, <1 of R", then they are called uniform GOSs.
Now, let F be an arbitrary distribution function. The random variables

n—

1
(1— u»’"f) (1 — !
1

i=

X(r,n,ﬁz,k) = Fﬁl(U(r,n,rh,k)% r= 17 s I
are called the GOSs based on F, where
F ) = sup{x: F(x) <u} foru € (0,1).

In the particular case my=---=m,_=m, the above random variables
are denoted by Uiy a0d X pmiy, ¥ = 1,..., 1, respectively.

Choosing the parameters appropriately, several other models of ordered random vari-
ables are seen to be particular cases. One can refer to Kamps [11] for ordinary order
statistics, k-record values, sequential order statistics, and Pfeifer’s records, to Cramer
and Kamps [5] for progressive type II censored order statistics, and to Belzunce,
Mercader, and Ruiz [4] for order statistics under multivariate imperfect repair.

Throughout this article, we consider the special case of GOSs with m; =--- =
m,—1 = m, in which the marginal distribution and density functions of the rth
GOS have closed forms. If F is absolutely continuous with density function f, then
the marginal density function of the rth GOS, X(r, n, m, k), based on F is given by

Frtenmo@) = b FES (), @1
where

Drams) = A = 3] wE O, @2)
and

r
Cr—1n = H Yins Ynn = k
J=1

(see Lemma 3.3 in Kamps [11]). Here, the function §,: [0, 1) — R, m € R, is
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defined by
1
1—(1 = m-+1 -1
—log(1 — x), m=—1.
It is easy to see that
Yen =k+ 0 —r(m+1), r=1,...,n, 2.3)

and that g,,,(x) is nonnegative and increasing in x € [0, 1) for each m € R.

Recently, several articles have dealt with stochastic comparisons of (unconditional)
GOSs and their spacings, among which are Belzunce, Mercader, and Ruiz [4],
Khaledi [14], and Hu and Zhuang [7-9].

2.2. Stochastic Orders

We recall the definitions of three stochastic orders that will be useful in this article.
Throughout, the terms “increasing” and “decreasing” mean “nondecreasing” and
“nonincreasing”, respectively. a/0 is understood to be +oo whenever a > 0. For
any distribution function F, F =1 — F denotes its survival function.

DErINITION 2.2: Let X and Y be two random variables with respective distribution
Sunctions F and G. We say that X is smaller than Y

e in the usual stochastic order, denoted by X < Y, if F(t) < G(¢t) for all t
e in the hazard rate order, denoted by X <y, Y, if G(t)/F(t) is increasing in t
e in the likelihood ratio order, denoted by X <, Y, if X and Y have respective
density functions (or mass functions) f and g, and if g(t)/f(t) is increasing
int
The relationships among these orders are shown in the following diagram (see
Shaked and Shanthikumar [20] and Miiller and Stoyan [19]):

X<pY=X<pV=X<,Y.

We will write F <, Gif X <, Y, where < is <y, <y or <.

2.3. Some Useful Lemmas

To prove the main results in the next section, we will need the following lemmas. The
first lemma states that under suitable restrictions on the parameters of GOSs, the
conditional distribution of one GOS given another lower indexed one based on a con-
tinuous distribution has the same distribution as some GOSs based on the truncated
parent distribution. We denote by [Y]A] any random variable whose distribution is
the conditional distribution of Y given event A.
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Lemma 2.1: (Keseling [13], Hu and Zhuang [8]): Let X i), ¥ = 1, ..., n, be GOSs
based on a continuous distribution function F. For each u € Supp(F), the support of
F, denote

F(max{u + x,u})

Fux)=1- o

forx € RA. 2.4
Then

st
Xotp—tnmp = Xo—tnmboXo—1nmp = ] =X0, 0 i1 mpys

wherep > 1,2<r<n—p+1, X(”p,n,,+1,m,k) is a GOS based on F,, and 2 means
equal in distribution.

The second lemma is the special case of Corollary 3.2 of Hu and Zhuang [7] with
all m; equal.

Lemma 2.2: Let {Xqpmpyy ¥ =1, ....0} and {Ygump» r=1,...,n} be the GOSs
based on distribution functions F and G, respectively, withm > —1. If F <y, G, then

Xonmpy <te Yo' mpy wheneverr' —r > max{0,n" — n}.

The next lemma follows from Corollary 3.2 of Hu and Zhuang [7] and from a proof
similar to that of Lemma 2.3 in Hu and Zhuang [9].

Lemma 2.3 Let {Xqpmpyy F=1,....0} and {Ygmp» r=1,...,n} be the GOSs
based on distribution functions F and G with k > 1 and m > —1, and denote by
A(x) and n(x) the hazard rate functions of F and G, respectively. If

F <G form>0, 2.5
and if
nx) . . .
F <y, G and m is increasing inxform € [—1,0), (2.6)
X
then

(i) 8,,(G(x))/8,,(F(x)) is increasing in x € R
(i) X(r, n, m, k) <y, Y(r', 0’, m, k) whenever r' — r > max{0, n’ — n}.

It is well known that the usual stochastic order is closed under increasing transform-
ations. From Theorem 3.1 of Hu and Zhuang [7] and Theorem 3.1 of Belzunce,
Mercader, and Ruiz [4], we obtain the following lemma.
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Lemma 2.4: Let {Xgnmi» F=1, ..., 0} and {Y i T =1, ..., n} be the GOSs

based on distribution functions F and G, respectively, withm > —1. If F < G, then
Xonmpy <st Yo' wmpy wheneverr' —r > max{0,n' — n}.

The last lemma, which is due to Misra and van der Meulen [18], is useful in estab-
lishing the monotonicity of a fraction with its numerator and denominator being
integrals or summations.

LeEmMA 2.5: Let O be a subset of the real line R and let W be a variable having a
distribution function belonging to the family P= {H(-|0), 6 € O}, which satisfies
that

H(-|0)) <g H(:|6;) whenever 0,6, € Oand 6, < 6,.

Let W(w, 0) be a real-valued function defined on R x O. If V(w, 0) is increasing in
(w, 0), then E[W(W, 0)] is increasing in 6.

3. MAIN RESULTS

Throughout this section, let {X¢ s, ¥ =1, ..., 0} and {Yoymu r=1,...,0'} be
the GOSs based on distribution functions F and G, respectively. We will investigate
conditions on F and G and on parameters (r, s, n, r’, s, n’, m, k) such that

[X(S,n,m,k) - y|X(r,n,m,k) > )’] Sst [Slr} [Y(s’,'l’,m,k) - y|Y(r’,n’.m,k) > y} for y € R.

3.1. Usual Stochastic Ordering

Our first result generalizes (1.4) and (1.5) to GOSs in the more general form.

THEOREM 3.1: If m > —1 and k> 0 and if F <y, G, then

[X(s.n,ka) - y|X(r,n,m,k) > y] Sst [Y(S:nflnk) - y|Y(1'ﬁi1£m,k) > )’] fory € R (31)

whenever s >rand s’ — s > r' — r > max{0, ' — n}.

Proor: Let X and Y be two random variables with distribution functions F and G,
respectively. For each u € R, let X(—,,—,mx denote the (s — rth GOS based
on the same distribution function F, as [X — u|X > u]. Similarly, let Y v —ymp)
denote the (s' — r/)th GOS based on the same distribution function G, as
[Y—ulY>u]. Fix a y € R. Consider now two families of random variables
{T1(0), 6 € R} and {T»(0), 6 € R} such that, for all 6 € R,

Ti(0) = X0 i +0—Y
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and
T>(0) = Y(.os’—r’,n’—r’,mﬁk) +6—y.

Define two random variables ®; and ®, such that

01 = [Xirnmio| Xermmp) > Y]
and
2 S:[ [Y(r’,n’,m.k)|Y(r’,n’,m,k) > y]a

where {©;, ©,} are independent of {T;(6), 6 € R, i =1, 2}. Let Fy, denote the
distribution function of a random variable W. By Lemma 2.1, we get that for
x € R, and s >,

P[X(S,H,WLJ{) -y > x;X(r,n,m,k) > y]
PXenmi > )]

P[X(x.,n,m,k) -y > -x|X(r,n,m.k) > y] —

1 00
- PIX —y > x|X = u|dF
H:D[X(nn,m,k) > y] Jy [ (s,n,m.,k) y xl (r,n,m.k) M] X(,y,,.,,,‘k)(u)

1 Jw
= PX“,, ,.0+u—y>xldFy,,, ()
P[X(nn,m,k) > y] y [ ¢ ' ) } X( "

= r P[T1(u) > x] dFe, (1)

= P[T1(01) > x, 3.2)

which means that

[X(s,n,m,k) - y‘X(r,n,m,k) > y] §:t Tl (®l) (33)
Similarly,

[Y(s’,n’,m,k) - y|Y(r’,n’,m,k) > y] S:t TZ(G)Z) (34)
By Theorem 1.A.11 of Shaked and Shanthikumar [20], we see that

[Y]Y > 6] <y [Y|Y > 6'] whenever 0 < €',

which implies, by Lemma 2.4, that

YH

(s'—r".n'—r' ;mk)

+ 60 <y Yz:,ﬂ_n,,r,‘m_k) + 6" whenever 6 < 6'.

Here, we use the observation that Yiy s 4 + 0is the (s — #/)th GOS based the
distribution function of [Y|Y> 6]. Thus,

T>(0) <« T»(8") whenever § < 6. 3.5)
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By Lemma 2.2, F' <y, G implies that X, i) <nr Yon'mi and, hence,
0, <40, whenever? > randr’' —r>n —n. 3.6)

On the other hand, F <y, G is equivalent to [X — 0|X > 0] <y [Y — 6|Y > 6] for all
6 € R, which, by Lemma 2.4, implies that

XC i <t Yo_p—pmiy  Whenevers' —r' >s—r>0
ands' —s>n' —n
and, hence
Ti1(0) <4 T»(0) whenever s —r'>s—r>0ands —s>n'"—n 3.7

for all # € R. By Theorems 1.A.3(d) and 1.A.6 of Shaked and Shanthikumar [20], it
follows from (3.5)—(3.7) that

T1(0)) <4 T5(01) <4 T2(0,) (3.8)

whenever s >r and s’ — s> — r>max{0, n’ — n}. The desired result now
follows from (3.3), (3.4), and (3.8). |

3.2. Likelihood Ratio Ordering

In this subsection, we first investigate conditions on the parameters that enable one to
compare GOSs based on the same distribution and then based on two different
distributions.

THEOREM 3.2: If m > —1 and k > 1 and if F is absolutely continuous, then
[X(s,n,m,k) _y‘X(r,n,m,k) > y] Slr [X(s’,n’,m,k) - y‘X(r’,n’,m,k) > y] fory € R (39)
whenever s >rand s’ —s=r" —r > max{0, ' — n}.

Proor: We use the same notations as in the proof of Theorem 3.1. For any random
variable W, denote by fy the density function of W. Suppose that s > rand s’ — s =
r’ — r>max{0, n’ — n}. To prove (3.9), it suffices to verify that

_ f[ o oy =Xt iy > (0)

A(0) = is increasing in 0 € RK,.
f[X(.\-,u,m.k) VX m oy >Y] (6)

From (3.2), we get that
|]:D[)((r,n,m,k) > )’] f)’ fXK;’—z’,n’—r'.m.k)+u(0 + yyx(»".n’.»YX-k>(u) du
P[X(r/’n/ﬂl,k) > y] J:VOO fx(u.;—r.n—r.m,k)-'—u(e + y)fxlr.rx.mk)(u) du

IP[X(V n,m.k) > y]
— _Benmb Z I pony (U, )], (3.10)
PX¢ wmin > 3] o1, )

A(0) =
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where

V1 0 Txes O X0 (@) foru >
u, ) = it oru >y,
1 O V@)

(s—r,n—r,m.k)

and the random variable U has a distribution function belonging to the family P =
{H(:|0), 6 € R} with corresponding densities given by

h(u|0) = d(6) fx: +u(0 +Y) fx iy (@) fOru > y;

(s—r,n—rm.k)
here, d(0) is the normalizing constant.
For any u’ > u >y, by Theorem 1.C.17 of Shaked and Shanthikumar [20], we get
that
XIX > u] < [X|X > u].

Then the conditions in Lemma 2.3 are all satisfied since the failure rate of [X|X > u] is
given by Arxjx=.1(x) = A(x)1 4>}, where 1, is the indicator function of set A. Observe
that X5, — rmk + u is the (s — r)th GOS based on distribution function Fiy|x=,.
Thus, by Lemma 2.3(ii), we have

XL[

(s—r,n—rmk

< X( g U forud' >u>y,
which implies that

/’l(l/l,‘ 0) _ fXEv/fr.n—r,m‘k)+ul(0 + y) fX(rJt.m.k)(u/)
+u(0 + y) fX(r.n,nLk)(u)

h(u|0) — fx
is increasing in 6 € R ; that is, H(-|0) <,, H(:|0") whenever 0 <6 < 0’ and, hence,

(s—r,n—rmk)

H(-|6) <q H(-|0") whenever0 < < 6’ (3.11)
Again, from Lemma 2.3(ii), it follows that
X(usfr,nfr,m,k) +u Slr Xéi"fr’,n’fr’,m,k) +u foru Z Vs

which implies that W (u, 6) is increasing in # € R, foreach u > y. On the other hand,
from (2.1)—(2.3), we get that

W (u, ) = Lt i (s—r—DIr— 1!

Cs—r—1n—rCr—1n (sl —r - 1)'(7" — l)'

F(max{y + 0,u})] ™" Yornr _ B 3
e F Yl = Ve 8m F r'—r
[ F(u) [F ) (8 (F(u))]

Gyt G-ty (s —r—=DI(r—1)!
B Cs—r—1n—r Cr—1n (sl —r’ = 1)'(rl — 1)'

X [F(max{y + 0, M})}(n/iniy+sxm+l)[8171(F(M))]/7r7
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which is increasing in u € [y, + o0) for each § € R, since s’ —s=r'—r>
max{0, n’ — n} and §,,(F(u)) is increasing in u.

Therefore, applying Lemma 2.5 in (3.10) yields that A;(6) is increasing in 6 € R,
This completes the proof. ]

It is still unknown whether, under the same conditions as in Theorem 3.2,

[X(s,n,m.k) - y|X(r,nA,m,k) > y] Slr [X(s-&-l,n,m.k) - y|X(r,n,m,k) > y]

and

[X(.s,n,l11,k) - y|X(r+1,nﬁm,k) > )’} Slr [X(s,nJ?z,k) - y|X(r.n,m,k) > y]

hold for 1< r <s <n and any y.

If, instead, F is not assumed to be absolutely continuous in Theorem 3.2, we
can prove the following theorem by using the fact that the hazard rate order is
closed under increasing transforms (see Theorem 1.B.2 of Shaked and
Shanthikumar [20]).

THEOREM 3.3: If m > —1 and k > 1, then
[X(x,n,m,k) - le(r,n,m,k) > y] Shr [X(s’,n’,m,k) - y‘X(r’,n’,m,k) > y} fOI‘ y € R

whenever s >rand s’ — s =r1" —r > max{0, n’ — n}.

Now, we turn to consider stochastic comparisons of GOSs based on two different
distributions.

THEOREM 3.4: Ifm > —1 and k > 1 and if conditions (2.5) and (2.6) are satisfied, then
[X(rJrl‘n,m.,k) - y|X(r,n,m,k) > )’] Slr [Y(r+l,n,m,k) - y‘Y(r,n,m,k) > y] (312)
fory€ Randr=1,...,n— 1.

Proor: We use the same notations as in the proof of Theorem 3.1. Let fand g denote
the density functions of F' and G, respectively, and denote by fy, or gy the density
function of any random variable W. Fix an r, 1 < r < n. To prove (3.12), it suffices
to verify that

- 16
Ay(0) = EYirs1mm y\Y(,_,,_,,,Yk)>)]( )

is increasing in 6 € R, .
f[X(r+ Ly =YX nmp) > (0)

From (3.2), we get that

PIX¢-nmp >

Eo[Wa(U, 6)], 313
P omm > ] o[ ¥2(U, 0)] (3.13)
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where

+u(0+ y)gylr_njn.k) (u)
+u(0+ y)fX(,-,,l,m.m (u)

u
L T—

8
Wy (u, 6) = 7
e

(1.n—r,mk)

foru>y

and U has a distribution function belonging to the family P = {H(-|0), 6 € R},
defined in the proof of Theorem 3.2, with s = r + 1. This means that (3.11) holds.

Suppose that conditions (2.5) and (2.6) are satisfied. It is well known that if ' <, G
and 7(x)/A(x) is increasing in x, then F <, G (Belzunce, Lillo, Ruiz, and Shaked
[3, Lemma 3]) which implies that [X|X > u] <, [Y|Y > u] for each u. From
Lemma 2.3(ii), it follows that

Xinrmp + 1 < ¥

n—ramgy) T U for each u.

Hence, W, (u, 6) is increasing in 6 for each u > y.

It remains to prove that W,(u, 6) is increasing in u € [y, +o0) for each 6 € R,.
First, observe that the support of U is in [y, y + 0) since the density function
h(u|6) = 0 for u >y + 6. Thus, we have to verify that W(u, 6) is increasing in u
€ [y, y+ 60) foreach 6 € R,. From (2.1)—(2.3), we get that

W (u, 0)

G+ 0>/G(u>] Yo le(y + 6)/Gw) {G(u)] er [am(Gw»] 0]
|F(y+ 6)/F(u) fo+ 0)/F@w) [Fu) Su(Fw)|  f(u)

_[Go+ 0)} Tl gy 4 6) {G(u)} " {sm(G(u))} ! gw) G4
FO+6) fo+0Fw] [8,F@)]  fw '
_[Gu+ 0)} e g+ ) {c}w)} " {sm(cw»] ! G 315
[FO+6) fOo+0[Fw]  [8.Fu)] AW '

for u € [y, y + 6). Note that the likelihood ratio order is stronger than the hazard rate
order. For m > 0, it follows from (2.5), (3.14), and Lemma 2.3(i) that W»(u, 6) is increas-
inginu € [y,y + 6)foreach § € R,.Form € [—1,0), it follows from (2.6), (3.15) and
Lemma 2.3(i) that W(u, 6) is increasing inu € [y, y + 6) foreach 6 € R,.
Therefore, applying Lemma 2.5 in (3.13) yields that A,(6) is increasing in 6 € R,
This completes the proof. |

An immediate consequence of Theorems 3.2 and 3.4 is the following:
THEOREM 3.5: Ifm > —1andk > 1 and if conditions (2.5) and (2.6) are satisfied, then
[X(rJrlJl,m,k) - y|X(r,n,m,k) > y] Slr [Y(r’+l,n’.m,k) - y‘Y(r"n’,m.,k) > y]

fory € R whenever r' — r > max{0, n’ — n}.
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4. APPLICATIONS

In this section, some applications of the main results in Section 3 are presented.

4.1. Ordinary Order Statistics

For a collection {X;, X5,...,X,} of iid. random variables with a common
distribution function F, the ordinary order statistics Xi., < X, <---<X,.,
correspond to the GOSs based on F with parameters k=1 and m;=---=
m,,—1 = 0. From Theorems 3.1-3.5, we have the following two corollaries.

CoroLLARY 4.1: Let {X,, n > 1} and {Y,, n > 1} be two sequences of i.i.d. random
variables.

@ If Xy < Yy, then
[Xs:n - yIX,-:n > y} <st [Ys’:n’ - y|Yr’:n’ > Y} fory € R
whenever s >rand s’ — s > r’ — r > max{0, n’ — n}.
) If Xy < Yy, then
Xrttn = YXrn > V] Sie [Yoirw = Y[Ypw >3] fory € R
whenever r' — r > max{0, n’ — n}.

Theorem 2.1 of Khaledi and Shaked [15] and Theorem 3.1 of Li and Zhao [17]
are the special case of Corollary 4.1(a) with s =" and r =r".

CoroLLARY 4.2: Let {X,,, n > 1} be a sequence of i.i.d. random variables. Then the
following hold:
(@ [Xgn — y|Xr:n >y < Xy — y‘Xﬂ:n’ >yl for yE R whenever s > r and
s'—s>r"—r>max{0,n — n}.
(b) [Xgn — y|Xr:n > )’] e Xy — y|X/:n’ > y] for yE R whenever s > r and
s —s=r"—r>max{0, n’ — n}.
(©) [Xen — y|Xr:n >y <i [ Xy — y|Xr’:n’ >yl for yE R whenever s > r and
s —s=r"—r>max{0,n’ — n} if X| has an absolutely continuous distri-
bution. In particular, for y € R and s > r, we have

[Xs:n - ler:n > y] Slr [Xerlzn - y|Xr+l:n > y],
[Xs:n - ler:n > y] glr [Xs:nfl - y|Xr:n71 > y]a

and

[Xv:n _y|Xr:n > y] Slr [XY+1:n+1 - ler+1:n+l > y]
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4.2. Record Values

Record values based on a sequence of i.i.d. random variables are another particular
model of GOSs with k=1 and m; = —1 for each i. For this model, we have the
following corollary.

COROLLARY 4.3: Let { Xy, n > 1} and {Ypmy, n > 1} be record values based on
two sequences of ii.d. random variables with respective distribution functions
F and G and denote by A(x) and m(x) the hazard rate functions of F and G,
respectively.

(@) If F <y G, then

Xy — YIXio > Y] <st Ymesy — Y Ymcy > )

fory € R whenever s >rands —s>r' —r>0.
(D) If F <y G and m(x)/\(x) is increasing in x, then

Xro+1) — Y Xy > ] <ic Ymer+1) — y[Ymer >yl

fory € R whenever r' > r.
(¢) If F is absolutely continuous, then

Xeorip) — ¥IXLy > Y] Sie Xegpy) — yIXLery) > Y]
fory € R whenever p > 1 and r' > 1.

Theorem 2.3 of Khaledi and Shojaei [16] is the special case of Corollary 4.3(a)
with s =s" and r=1r'.

Notice that the epoch times of a nonhomogeneous Poisson process with intensity
function A(f) are the record values of a sequence of i.i.d. nonnegative random vari-
ables with the hazard rate being A(f), where

00

J AMu) du = oo for allr € R,
13

Therefore, Corollary 4.3 can be interpreted in terms of epoch times of nonhomoge-
neous Poisson processes.

4.3. Progressive Type Il Censored Order Statistics

In a progressive type II censoring scheme, N units are placed on a lifetime test. The
failure times are described by i.i.d. random variables with a common distribution F. A
number n (n < N) of units are observed to fail. A predetermined number R; of surviv-
ing units at the time of the ith failure are randomly selected and removed from further
testing. Thus, > ', R; units are progressively censored; hence, N=n > 7| R;. Then
observed failure times are called progressive type II censored order statistics based on
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F, denoted by XE,,)N < Xgn,N << XE,LN, where R= (R, ..., R,). Progressive
type II censored order statistics based on F correspond to the GOSs based on F
with parameters k=R, + 1 and m; = R; for i=1,...,n — 1. For details on the

model of progressive type II censoring, we refer to Balakrishnan and Aggarwala
[2] and Cramer and Kamps [5].

For progressive type II censored order statistics, we have the following corollary.
COROLLARY 4.4: Let {XF,n ... Xnun} and {YR, n, ... . YR, N} be respective pro-

gressive type Il censored order statistics based on F and G with a common
censoring policy Rwith Ry = -+ =R,,_;.

(@) IfF<G,s>rands —s>r' —r>0, then
[Xgnv YIXR N > <ot Y0 —IYE an >y fory € R
b) If F<y.Gand r' > r, then
XX = VX Ry =0 <ie [V —MIYE, > ] fory € R
(¢) If F is absolutely continuous and r' > r, then

[XipnN y‘XBn,N y] <11' [Xr+pnN y|le’1nN > y] fOi"y ER.

4.4. Bounds on Mean Residual Life Functions

First, we state a lemma that will be used in the sequel.

Lemma 4.1: Let {Z iy i =1, ...,n} be GOSs based on exponential distribution
with hazard rate \. Then, for | <r<s<nandm # —1,

<

e Min
N 1 s—r 1 Z:l i ’71 n
ﬂE[Z(s,n,m,k) y‘ (r,n,m,k) > y] - XZ + r ’ 4.1
=1 Yin—r Z airfyflg*/\?’i.ny
= I lin
where vy, , is defined in (2.3) and
r 1 .
aj, = H — fori=1,...,r 4.2

j=tjzi Yin = Yin
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Proor: From (3.2), it follows that

A A
[E[Z(Sﬁym,k) - y|Z(r,n,m.k) > y]

_ A A
- 0 IP[Z(SJ!,m,k) -y > x|Z(r,n,m,k) > y] dx

o ()

= (Jm Pz, +u—y>x]dx) fz(’"mk’ du
’ 0 (s—r,n—r,m.k) FZ" (y)

(r,n,m.k)

o ()

Iz
— [Ez)\ —— _i_u_y)_(»/xmk) dl/t
s ( [ (s— k)] FZA (y)

(rn,m.k)

[E[Z()‘v rn— rmk)]+[E[ (r,n,m.k) y| (r,n,m.k) y] (43)
where the second equality follows from the fact that [Z — u|Z > u] and Z are identi-
cally distributed if Z is exponential random variable.

The first term in (4.3) can be written as

s—r 1
[E[Zé —rn— rmk)} ’ (44)
Zl AYjn-r

since Z(y = k) = E | Z/, and Z/’s are independent exponential random vari-
ables with Z having hazard rate Avy;,—, (see Cramer and Kamps [6, Theorem 3.1]
and Hu and Zhuang [7, Lemma 2.1]).

The second term in (4.3) can be written as

© P[ZA > x+)]
E Z)\ _ Z,\ > _ J (r,n,m,k) d
[ (r,n,m,k) y| (r,n,m.k) y] 0 [FD[Z(r?n,m’k) > y] X

,
—1 = Ay, (x+
00 Z AirYin € HinltY)

=1
= J — dx
0 —1 ,—\y;
Z Ajr 7[,;1 e it

-
2y —1 Ay v
> Cli,r%,nz A LMy
i=1
== , 4.5)
Z ahr'yznlef/\%,ny
i=1

where a;, = [[j=1j2: (Vjin — 'y,;n)*1 fori=1,...,r (see Eq. (5) in Kamps and
Cramer [12]).
Now, substituting (4.4) and (4.5) into (4.3), the required result follows. [ ]

If the hazard rate function A(x) of a distribution function F' is bounded from
above or from below, then the next result enables us to obtain a computable
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lower bound or upper bound on the mean residual life function of GOSs based
on F.

TueoreM 4.1: Let {X¢pmuy ¥ =1,...,n} be the GOSs based on distribution func-
tion F with corresponding hazard rate A(x), where m > —1. Let A\ < A(x) < Ay for
some positive constants Ay, and Ay, and for all x. Then

r
I T W
1 &= 1 Z ai,ryi,n e Uind
. +i:l
Ay Yi :
i=1

A
< [E[Xév,n.m,k) - y|X(r.n,m,k) > y]

,
S, B S
i=1
+

r )
n—r aj, »yl*nl e—/\lf)’i.n)’
=1

1

1 s—r
= )\_L,:Z] Yi,

i=

where vy, ,, and a;, are defined in (2.3) and (4.2), respectively.

Proor: Let {Z8%mu i=1,...,n} and {Zmu, i=1,...,n} be GOSs based
on exponential distributions with hazard rates Ay and A;, respectively. Then,
using Az < A(x) < Ay for all x, the desired result follows from Theorem 3.1 and
Lemma 4.1. |
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