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The concept of generalized order statistics was introduced as a unified approach to a
variety of models of ordered random variables. The purpose of this article is to
establish the usual stochastic and the likelihood ratio orderings of conditional
distributions of generalized order statistics from one sample or two samples,
strengthening and generalizing the main results in Khaledi and Shaked [15], and
Li and Zhao [17]. Some applications of the main results are also given.

1. INTRODUCTION

Let X1:n � X2:n � � � � � Xn:n denote the ordinary order statistics of independent and
identically distributed (i.i.d.) random variables X1, X2, . . . , Xn. Asadi and Bairamov
[1] explored the properties of E[Xn:n 2 yj Xr:n . y] for r ¼ 1, . . . , n 2 1 and each
y, and obtained

E½Xn�1:n�1 � yjX1:n�1 . y� � E½Xn:n � yjX1:n . y� (1:1)
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and

E½Xn:n � yjXr:n . y� � E½Xn:n � yjXr�1:n . y� (1:2)

for 2 � r , n and y [ <. Li and Zhao [17] proved that

½Xs:n � yjXr:n . y� �lr ½Xs:n � yjXr�1:n . y� (1:3)

for 1, r , s � n and y [ <, generalizing (1.2), where �lr denotes the likelihood
ratio order (the formal definitions of some stochastic orders that are mentioned in
this section can be found in Section 2).

Let Y1:n � Y2:n � � � � � Yn:n denote the ordinary order statistics of other i.i.d.
random variables Y1, Y2, . . . , Yn. Recently, Khaledi and Shaked [15] and Li and
Zhao [17] proved that if X1 �hr Y1, then

½Xs:n � yjXr:n . y� �st ½Ys:n � yjYr:n . y� for y [ < (1:4)

whenever 1 � r � s � n. Khaledi and Shojaei [16] established the analogous result of
(1.4) for record values. More precisely, let fXL(n), n � 1g denote the record values of a
sequence fXn, n � 1g of i.i.d. random variables with a continuous distribution func-
tion F, where L(1) ¼ 1 and

L(n) ¼ inffi : Xi . XL(n�1); i . L(n� 1)g for n � 2

are record times. Similarly, let fYM(n), n � 1g denote the record values based on
another sequence of i.i.d. random variables fYn, n � 1gwith a continuous distribution
function G. Khaledi and Shojaei [16] proved that if X1 �hr Y1, then

½XL(s) � yjXL(r) . y� �st ½YM(s) � yjYM(r) . y� for y [ <

whenever s � r � 1.
Note that the ordinary order statistics and record values are two special models of

generalized order statistics (GOSs). The purpose of this article is to establish some
results on stochastic comparisons of conditional distributions of GOSs with respect to
the usual stochastic and the likelihood ratio orders, strengthening and generalizing
(1.4) and (1.5). The main results of this article are given in Section 3. In Section 2 we
recall the definitions of GOSs and of some stochastic orders and give some useful
lemmas that will be used in Section 3. Some applications of the main results are
presented in Section 4.

2. PRELIMINARIES

2.1. Generalized Order Statistics

We first give the definition of GOSs following Kamps [10, 11].
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DEFINITION 2.1: Let n [ N, k . 0, and m1, . . . , mn21 [ < be parameters such that

gr;n ¼ k þ
Xn�1

j¼r

(mj þ 1) . 0; r ¼ 1; . . . ; n� 1;

and let m̃ ¼ (m1, . . . , mn21) if n � 2 (m̃ arbitrary if n ¼ 1). If the random variables
U(r,n,m̃,k), r ¼ 1, . . . , n, possess a joint density of the form

fU(1;n;~m;k);...;U(n;n;~m;k) (u1; . . . ; un) ¼ k
Yn�1

j¼1

gj;n

 ! Yn�1

i¼1

(1� ui)
mi

 !
(1� un)k�1

on the cone 0 � u1 � u2 � � � � � un , 1 of <n, then they are called uniform GOSs.
Now, let F be an arbitrary distribution function. The random variables

X(r;n;~m;k) ¼ F�1(U(r;n;~m;k)); r ¼ 1; . . . ; n;

are called the GOSs based on F, where

F�1(u) ¼ supfx : F(x) � ug for u [ (0; 1):

In the particular case m1 ¼ � � � ¼ mn21 ¼ m, the above random variables
are denoted by U(r,n,m,k) and X(r,n,m,k), r ¼ 1, . . . , n, respectively.

Choosing the parameters appropriately, several other models of ordered random vari-
ables are seen to be particular cases. One can refer to Kamps [11] for ordinary order
statistics, k-record values, sequential order statistics, and Pfeifer’s records, to Cramer
and Kamps [5] for progressive type II censored order statistics, and to Belzunce,
Mercader, and Ruiz [4] for order statistics under multivariate imperfect repair.

Throughout this article, we consider the special case of GOSs with m1 ¼ � � � ¼
mn21 ¼ m, in which the marginal distribution and density functions of the r th
GOS have closed forms. If F is absolutely continuous with density function f, then
the marginal density function of the rth GOS, X(r, n, m, k), based on F is given by

fX(r;n;m;k)(x) ¼ fr;n;m;k(F(x)) f (x); (2:1)

where

fr;n;m;k(u) ¼ cr�1;n

(r � 1)!
(1� u)gr;n�1½dm(u)�r�1; u [ (0; 1); (2:2)

and

cr�1;n ¼
Yr

j¼1

gj;n; gn;n ¼ k

(see Lemma 3.3 in Kamps [11]). Here, the function dm: [0, 1)! <, m [ <, is
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defined by

dm(x) ¼
1

(mþ 1)
½1� (1� x)mþ1�; m = �1

� log(1� x); m ¼ �1:

8<
:

It is easy to see that

gr;n ¼ k þ (n� r)(mþ 1); r ¼ 1; . . . ; n; (2:3)

and that gm(x) is nonnegative and increasing in x [ [0, 1) for each m [ <.
Recently, several articles have dealt with stochastic comparisons of (unconditional)

GOSs and their spacings, among which are Belzunce, Mercader, and Ruiz [4],
Khaledi [14], and Hu and Zhuang [7–9].

2.2. Stochastic Orders

We recall the definitions of three stochastic orders that will be useful in this article.
Throughout, the terms “increasing” and “decreasing” mean “nondecreasing” and
“nonincreasing”, respectively. a/0 is understood to be þ1 whenever a . 0. For
any distribution function F, F̄ ¼ 1 2 F denotes its survival function.

DEFINITION 2.2: Let X and Y be two random variables with respective distribution
functions F and G. We say that X is smaller than Y

† in the usual stochastic order, denoted by X �st Y, if F̄(t) � Ḡ(t) for all t
† in the hazard rate order, denoted by X �hr Y, if Ḡ(t)/F̄(t) is increasing in t
† in the likelihood ratio order, denoted by X �lr Y, if X and Y have respective

density functions (or mass functions) f and g, and if g(t)/f (t) is increasing
in t

The relationships among these orders are shown in the following diagram (see
Shaked and Shanthikumar [20] and Müller and Stoyan [19]):

X �lr Y)X �hr Y)X �st Y :

We will write F �
*

G if X �
*

Y, where �
*

is �st, �hr or �lr.

2.3. Some Useful Lemmas

To prove the main results in the next section, we will need the following lemmas. The
first lemma states that under suitable restrictions on the parameters of GOSs, the
conditional distribution of one GOS given another lower indexed one based on a con-
tinuous distribution has the same distribution as some GOSs based on the truncated
parent distribution. We denote by [YjA] any random variable whose distribution is
the conditional distribution of Y given event A.
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LEMMA 2.1: (Keseling [13], Hu and Zhuang [8]): Let X(r,n,m,k), r ¼ 1, . . . , n, be GOSs
based on a continuous distribution function F. For each u [ Supp(F ), the support of
F, denote

Fu(x) ¼ 1�
�F(maxfuþ x; ug)

�F(u)
for x [ <: (2:4)

Then

½X(rþp�1;n;m;k) � X(r�1;n;m;k)jX(r�1;n;m;k) ¼ u� ¼st
Xu

(p;n�rþ1;m;k);

where p � 1, 2 � r � n 2 p þ 1, X( p,n2rþ1,m,k)
u is a GOS based on Fu, and ¼st

means
equal in distribution.

The second lemma is the special case of Corollary 3.2 of Hu and Zhuang [7] with
all mi equal.

LEMMA 2.2: Let fX(r,n,m,k), r ¼ 1, . . . , ng and fY(r,n,m,k), r ¼ 1, . . . , ng be the GOSs
based on distribution functions F and G, respectively, with m � 21. If F �hr G, then

X(r;n;m;k) �hr Y(r0;n0;m;k) whenever r0 � r � maxf0; n0 � ng:

The next lemma follows from Corollary 3.2 of Hu and Zhuang [7] and from a proof
similar to that of Lemma 2.3 in Hu and Zhuang [9].

LEMMA 2.3: Let fX(r,n,m,k), r ¼ 1, . . . , ng and fY(r,n,m,k), r ¼ 1, . . . , ng be the GOSs
based on distribution functions F and G with k � 1 and m � 21, and denote by
l(x) and h(x) the hazard rate functions of F and G, respectively. If

F �lr G for m � 0; (2:5)

and if

F �hr G and
h(x)
l(x)

is increasing in x for m [ ½�1; 0); (2:6)

then

(i) dm(G(x))/dm(F(x)) is increasing in x [ <
(ii) X(r, n, m, k) �lr Y(r 0, n0, m, k) whenever r0 2 r � maxf0, n0 2 ng.

It is well known that the usual stochastic order is closed under increasing transform-
ations. From Theorem 3.1 of Hu and Zhuang [7] and Theorem 3.1 of Belzunce,
Mercader, and Ruiz [4], we obtain the following lemma.
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LEMMA 2.4: Let fX(r,n,m,k), r ¼ 1, . . . , ng and fY(r,n,m,k), r ¼ 1, . . . , ng be the GOSs
based on distribution functions F and G, respectively, with m � 21. If F �st G, then

X(r;n;m;k) �st Y(r0;n0;m;k) whenever r0 � r � maxf0; n0 � ng:

The last lemma, which is due to Misra and van der Meulen [18], is useful in estab-
lishing the monotonicity of a fraction with its numerator and denominator being
integrals or summations.

LEMMA 2.5: Let Q be a subset of the real line < and let W be a variable having a
distribution function belonging to the family P ¼ fH(.ju), u [ Qg, which satisfies
that

H(�ju1) �st H(�ju2) whenever u1; u2 [ Q and u1 , u2:

Let C(w, u) be a real-valued function defined on < � Q. If C(w, u) is increasing in
(w, u), then Eu[C(W, u)] is increasing in u.

3. MAIN RESULTS

Throughout this section, let fX(r,n,m,k), r ¼ 1, . . . , ng and fY(r,n0,m,k), r ¼ 1, . . . , n0g be
the GOSs based on distribution functions F and G, respectively. We will investigate
conditions on F and G and on parameters (r, s, n, r 0, s0, n0, m, k) such that

½X(s;n;m;k) � yjX(r;n;m;k) . y� �st ½�lr� ½Y(s0;n0;m;k) � yjY(r0;n0;m;k) . y� for y [ <:

3.1. Usual Stochastic Ordering

Our first result generalizes (1.4) and (1.5) to GOSs in the more general form.

THEOREM 3.1: If m � 21 and k . 0 and if F �hr G, then

½X(s;n;m;k) � yjX(r;n;m;k) . y� �st ½Y(s0;n0;m;k) � yjY(r0;n0;m;k) . y� for y [ < (3:1)

whenever s . r and s0 2 s � r0 2 r � maxf0, n0 2 ng.

PROOF: Let X and Y be two random variables with distribution functions F and G,
respectively. For each u [ <, let X(s2r,n2r,m,k)

u denote the (s 2 r)th GOS based
on the same distribution function Fu as [X 2 ujX . u]. Similarly, let Yu

(s02r0,n02r0,m,k)

denote the (s0 2 r0)th GOS based on the same distribution function Gu as
[Y 2 ujY . u]. Fix a y [ <. Consider now two families of random variables
fT1(u), u [ <g and fT2(u), u [ <g such that, for all u [ <,

T1(u) ¼ Xu
(s�r;n�r;m;k) þ u� y
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and

T2(u) ¼ Yu
(s0�r 0;n0�r 0;m;k) þ u� y:

Define two random variables Q1 and Q2 such that

Q1¼
st ½X(r;n;m;k)jX(r;n;m;k) . y�

and

Q2¼
st ½Y(r 0;n0;m;k)jY(r 0;n0;m;k) . y�;

where fQ1, Q2g are independent of fTi(u), u [ <, i ¼ 1, 2g. Let FW denote the
distribution function of a random variable W. By Lemma 2.1, we get that for
x [ <þ and s . r,

P½X(s;n;m;k) � y . xjX(r;n;m;k) . y� ¼ P½X(s;n;m;k) � y . x;X(r;n;m;k) . y�
P½X(r;n;m;k) . y�

¼ 1
P½X(r;n;m;k) . y�

ð1

y
P½X(s;n;m;k) � y . xjX(r;n;m;k) ¼ u� dFX(r;n;m;k) (u)

¼ 1
P½X(r;n;m;k) . y�

ð1

y
P½Xu

(s�r;n�r;m;k) þ u� y . x� dFX(r;n;m;k) (u)

¼
ð1

�1

P½T1(u) . x� dFQ1 (u)

¼ P½T1(Q1) . x�; (3:2)

which means that

½X(s;n;m;k) � yjX(r;n;m;k) . y� ¼st
T1(Q1): (3:3)

Similarly,

½Y(s0;n0;m;k) � yjY(r 0;n0;m;k) . y� ¼st
T2(Q2): (3:4)

By Theorem 1.A.11 of Shaked and Shanthikumar [20], we see that

½Y jY . u� �st ½YjY . u 0� whenever u � u 0;

which implies, by Lemma 2.4, that

Yu
(s0�r0;n0�r0;m;k) þ u �st Yu 0

(s0�r0;n0�r0;m;k) þ u 0 whenever u � u 0:

Here, we use the observation that Yu
(s02r0, n02r0,m,k) þ u is the (s0 2 r0)th GOS based the

distribution function of [YjY.u]. Thus,

T2(u) �st T2(u 0) whenever u � u 0: (3:5)

ORDERING CONDITIONAL DISTRIBUTIONS 407

https://doi.org/10.1017/S0269964807000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964807000046


By Lemma 2.2, F �hr G implies that X(r,n,m,k) �hr Y(r 0,n0,m,k) and, hence,

Q1 �st Q2 whenever r0 � r and r 0 � r � n0 � n: (3:6)

On the other hand, F �hr G is equivalent to [X 2 ujX . u] �st [Y 2 ujY . u] for all
u [ <, which, by Lemma 2.4, implies that

Xu
(s�r;n�r;m;k) �st Yu

(s0�r0;n0�r0;m;k) whenever s0 � r0 � s� r . 0

and s0 � s � n0 � n

and, hence

T1ðuÞ �st T2ðuÞ whenever s0 � r 0 � s� r . 0 and s0 � s � n0 � n (3:7)

for all u [ <. By Theorems 1.A.3(d) and 1.A.6 of Shaked and Shanthikumar [20], it
follows from (3.5)–(3.7) that

T1(Q1) �st T2(Q1) �st T2(Q2) (3:8)

whenever s . r and s0 2 s � r 0 2 r � maxf0, n0 2 ng. The desired result now
follows from (3.3), (3.4), and (3.8). B

3.2. Likelihood Ratio Ordering

In this subsection, we first investigate conditions on the parameters that enable one to
compare GOSs based on the same distribution and then based on two different
distributions.

THEOREM 3.2: If m � 21 and k � 1 and if F is absolutely continuous, then

½X(s;n;m;k) � yjX(r;n;m;k) . y� �lr ½X(s0;n0;m;k) � yjX(r0;n0;m;k) . y� for y [ < (3:9)

whenever s . r and s 0 2 s ¼ r 0 2 r � maxf0, n0 2 ng.

PROOF: We use the same notations as in the proof of Theorem 3.1. For any random
variable W, denote by fW the density function of W. Suppose that s . r and s0 2 s ¼
r 0 2 r � maxf0, n0 2 ng. To prove (3.9), it suffices to verify that

D1(u) ;
f½X(s0 ;n0 ;m;k)�yjX(r0 ;n0 ;m;k).y�(u)

f½X(s;n;m;k)�yjX(r;n;m;k).y�(u)
is increasing in u [ <þ:

From (3.2), we get that

D1(u) ¼ P½X(r;n;m;k) . y�
P½X(r 0;n0;m;k) . y�

Ð1

y fXu
(s0�r 0 ;n0�r 0 ;m;k)

þu(uþ y)fX(r 0 ;n0 ;m;k)
(u) duÐ1

y fXu
(s�r;n�r;m;k)þu(uþ y)fX(r;n;m;k) (u) du

¼ P½X(r;n;m;k) . y�
P½X(r 0;n0;m;k) . y� Eu½C1(U; u)�; (3:10)
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where

C1(u; u) ¼
fXu

(s0�r 0 ;n0�r 0 ;m;k)
þu(uþ y)fX(r 0 ;n 0 ;m;k)

(u)

fXu
(s�r;n�r;m;k)þu(uþ y)fX(r;n;m;k) (u)

for u � y;

and the random variable U has a distribution function belonging to the family P ¼
fH(.ju), u [ <þg with corresponding densities given by

h(uju) ¼ d(u) fXu
(s�r;n�r;m;k)þu(uþ y) fX(r;n;m;k) (u) for u � y;

here, d(u) is the normalizing constant.

For any u0 . u � y, by Theorem 1.C.17 of Shaked and Shanthikumar [20], we get
that

½XjX . u� �lr ½XjX . u0�:

Then the conditions in Lemma 2.3 are all satisfied since the failure rate of [XjX . u] is
given by l[XjX.u](x) ¼ l(x)1fx�ug, where 1A is the indicator function of set A. Observe
that X(s2r,n2r,m,k)

u þ u is the (s 2 r)th GOS based on distribution function F[XjX.u].
Thus, by Lemma 2.3(ii), we have

Xu
(s�r;n�r;m;k) þ u �lr Xu0

(s�r;n�r;m;k) þ u0 for u0 . u � y;

which implies that

h(u0ju)
h(uju)

¼
fXu0

(s�r;n�r;m;k)þu0 (uþ y)

fXu
(s�r;n�r;m;k)þu(uþ y)

fX(r;n;m;k) (u
0)

fX(r;n;m;k) (u)

is increasing in u [ <þ; that is, H(.ju) �lr H(.ju 0) whenever 0 �u , u 0 and, hence,

H(�ju) �st H(�ju 0) whenever 0 � u , u 0: (3:11)

Again, from Lemma 2.3(ii), it follows that

Xu
(s�r;n�r;m;k) þ u �lr Xu

(s0�r0;n0�r0;m;k) þ u for u � y;

which implies that C1(u, u) is increasing in u [ <þ for each u � y. On the other hand,
from (2.1)–(2.3), we get that

C1(u; u) ¼ cs0�r0�1;n0�r0 cr0�1;n0

cs�r�1;n�r cr�1;n

(s� r � 1)!(r � 1)!
(s0 � r0 � 1)!(r0 � 1)!

�
�F(maxfyþ u; ug)

�F(u)

� �gs0�r0 ;n0�r0�gs�r;n�r

½�F(u)�gr0 ;n0 �gr;n ½dm(F(u))�r
0�r

¼ cs0�r 0�1;n0�r0 cr0�1;n0

cs�r�1;n�r cr�1;n

(s� r � 1)!(r � 1)!
(s0 � r 0 � 1)!(r0 � 1)!

� ½�F(maxfyþ u; ug)�(n
0�n�s0þs)(mþ1)½dm(F(u))�r

0�r;
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which is increasing in u [ [ y, þ1) for each u [ <þ since s0 2 s ¼ r 0 2 r �
maxf0, n0 2 ng and dm(F(u)) is increasing in u.

Therefore, applying Lemma 2.5 in (3.10) yields that D1(u) is increasing in u [ <þ.
This completes the proof. B

It is still unknown whether, under the same conditions as in Theorem 3.2,

½X(s;n;m;k) � yjX(r;n;m;k) . y� �lr ½X(sþ1;n;m;k) � yjX(r;n;m;k) . y�

and

½X(s;n;m;k) � yjX(rþ1;n;m;k) . y� �lr ½X(s;n;m;k) � yjX(r;n;m;k) . y�

hold for 1� r , s , n and any y.
If, instead, F is not assumed to be absolutely continuous in Theorem 3.2, we

can prove the following theorem by using the fact that the hazard rate order is
closed under increasing transforms (see Theorem 1.B.2 of Shaked and
Shanthikumar [20]).

THEOREM 3.3: If m � 21 and k � 1, then

½X(s;n;m;k) � yjX(r;n;m;k) . y� �hr ½X(s0;n0;m;k) � yjX(r0;n0;m;k) . y� for y [ <

whenever s . r and s0 2 s ¼ r 0 2 r � maxf0, n0 2 ng.

Now, we turn to consider stochastic comparisons of GOSs based on two different
distributions.

THEOREM 3.4: If m � 21 and k � 1 and if conditions (2.5) and (2.6) are satisfied, then

½X(rþ1;n;m;k) � yjX(r;n;m;k) . y� �lr ½Y(rþ1;n;m;k) � yjY(r;n;m;k) . y� (3:12)

for y [ < and r ¼ 1, . . . , n 2 1.

PROOF: We use the same notations as in the proof of Theorem 3.1. Let f and g denote
the density functions of F and G, respectively, and denote by fW or gW the density
function of any random variable W. Fix an r, 1 � r , n. To prove (3.12), it suffices
to verify that

D2(u) ;
g½Y(rþ1;n;m;k)�yjY(r;n;m;k).y�(u)

f½X(rþ1;n;m;k)�yjX(r;n;m;k).y�(u)
is increasing in u [ <þ:

From (3.2), we get that

D2(u) ¼ P½X(r;n;m;k) . y�
P½Y(r;n;m;k) . y� Eu½C2(U; u)�; (3:13)
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where

C2(u; u) ¼
gYu

(1;n�r;m;k)þu(uþ y)gY(r;n;m;k) (u)

fXu
(1;n�r;m;k)þu(uþ y) fX(r;n;m;k) (u)

for u � y

and U has a distribution function belonging to the family P ¼ fH(.ju), u [ <þg,
defined in the proof of Theorem 3.2, with s ¼ r þ 1. This means that (3.11) holds.

Suppose that conditions (2.5) and (2.6) are satisfied. It is well known that if F �hr G
and h(x)/l(x) is increasing in x, then F �lr G (Belzunce, Lillo, Ruiz, and Shaked
[3, Lemma 3]) which implies that [XjX . u] �lr [YjY . u] for each u. From
Lemma 2.3(ii), it follows that

Xu
(1;n�r;m;k) þ u �lr Yu

(1;n�r;m;k) þ u for each u:

Hence, C2(u, u) is increasing in u for each u � y.
It remains to prove that C2(u, u) is increasing in u [ [ y, þ1) for each u [ <þ.

First, observe that the support of U is in [ y, y þ u) since the density function
h(uju) ¼ 0 for u . y þ u. Thus, we have to verify that C2(u, u) is increasing in u
[ [ y, y þ u) for each u [ <þ. From (2.1)–(2.3), we get that

C2(u; u) ¼
�G(yþ u)=�G(u)
�F(yþ u)=�F(u)

� �g1;n�r�1g(yþ u)=�G(u)
f (yþ u)=�F(u)

�G(u)
�F(u)

� �gr;n�1
dm(G(u))
dm(F(u))

� �r�1 g(u)
f (u)

¼
�G(yþ u)
�F(yþ u)

� �g1;n�r�1 g(yþ u)
f (yþ u)

�G(u)
�F(u)

� �m
dm(G(u))
dm(F(u))

� �r�1 g(u)
f (u)

(3:14)

¼
�G(yþ u)
�F(yþ u)

� �g1;n�r�1 g(yþ u)
f (yþ u)

�G(u)
�F(u)

� �mþ1
dm(G(u))
dm(F(u))

� �r�1
h(u)
l(u)

(3:15)

for u [ [ y, y þ u). Note that the likelihood ratio order is stronger than the hazard rate
order. For m � 0, it follows from (2.5), (3.14), and Lemma 2.3(i) thatC2(u, u) is increas-
ing in u [ [ y, y þ u) for each u [<þ. For m [ [21, 0), it follows from (2.6), (3.15) and
Lemma 2.3(i) that C2(u, u) is increasing in u [ [ y, y þ u) for each u [ <þ.

Therefore, applying Lemma 2.5 in (3.13) yields that D2(u) is increasing in u [ <þ.
This completes the proof. B

An immediate consequence of Theorems 3.2 and 3.4 is the following:

THEOREM 3.5: If m � 21 and k � 1 and if conditions (2.5) and (2.6) are satisfied, then

½X(rþ1;n;m;k) � yjX(r;n;m;k) . y� �lr ½Y(r0þ1;n0;m;k) � yjY(r0;n0;m;k) . y�

for y [ < whenever r 0 2 r � maxf0, n0 2 ng.
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4. APPLICATIONS

In this section, some applications of the main results in Section 3 are presented.

4.1. Ordinary Order Statistics

For a collection fX1, X2, . . . , Xng of i.i.d. random variables with a common
distribution function F, the ordinary order statistics X1:n � X2:n � � � � � Xn:n

correspond to the GOSs based on F with parameters k ¼ 1 and m1 ¼ � � � ¼
mn21 ¼ 0. From Theorems 3.1–3.5, we have the following two corollaries.

COROLLARY 4.1: Let fXn, n � 1g and fYn, n � 1g be two sequences of i.i.d. random
variables.

(a) If X1 �hr Y1, then

½Xs:n � yjXr:n . y� �st ½Ys0:n0 � yjYr0:n0 . y� for y [ <

whenever s . r and s0 2 s � r 0 2 r � maxf0, n0 2 ng.
(b) If X1 �lr Y1, then

½Xrþ1:n � yjXr:n . y� �lr ½Yr0þ1:n0 � yjYr0:n0 . y� for y [ <

whenever r 0 2 r � maxf0, n0 2 ng.

Theorem 2.1 of Khaledi and Shaked [15] and Theorem 3.1 of Li and Zhao [17]
are the special case of Corollary 4.1(a) with s ¼ s0 and r ¼ r 0.

COROLLARY 4.2: Let fXn, n � 1g be a sequence of i.i.d. random variables. Then the
following hold:

(a) [Xs:n 2 yjXr:n . y] �st [Xs0:n0 2 yjXr0:n0 . y] for y [ < whenever s . r and
s0 2 s � r 0 2 r � maxf0, n0 2 ng.

(b) [Xs:n 2 yjXr:n . y] �hr [Xs0:n0 2 yjXr0:n0 . y] for y [ < whenever s . r and
s0 2 s ¼ r 0 2 r � maxf0, n0 2 ng.

(c) [Xs:n 2 yjXr:n . y] �lr [Xs0:n0 2 yjXr0:n0 . y] for y [ < whenever s . r and
s0 2 s ¼ r 0 2 r � maxf0, n0 2 ng if X1 has an absolutely continuous distri-
bution. In particular, for y [ < and s � r, we have

½Xs:n � yjXr:n . y� �lr ½Xsþ1:n � yjXrþ1:n . y�;
½Xs:n � yjXr:n . y� �lr ½Xs:n�1 � yjXr:n�1 . y�;

and

½Xs:n � yjXr:n . y� �lr ½Xsþ1:nþ1 � yjXrþ1:nþ1 . y�:
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4.2. Record Values

Record values based on a sequence of i.i.d. random variables are another particular
model of GOSs with k ¼ 1 and mi ¼ 21 for each i. For this model, we have the
following corollary.

COROLLARY 4.3: Let fXL(n), n � 1g and fYM(n), n � 1g be record values based on
two sequences of i.i.d. random variables with respective distribution functions
F and G and denote by l(x) and h(x) the hazard rate functions of F and G,
respectively.

(a) If F �hr G, then

½XL(s) � yjXL(r) . y� �st ½YM(s0) � yjYM(r0) . y�

for y [ < whenever s . r and s0 2 s � r 0 2 r � 0.
(b) If F �hr G and h(x)/l(x) is increasing in x, then

½XL(rþ1) � yjXL(r) . y� �lr ½YM(r0þ1) � yjYM(r0) . y�

for y [ < whenever r 0 � r.
(c) If F is absolutely continuous, then

½XL(rþp) � yjXL(r) . y� �lr ½XL(r0þp) � yjXL(r0) . y�

for y [ < whenever p � 1 and r 0 � 1.

Theorem 2.3 of Khaledi and Shojaei [16] is the special case of Corollary 4.3(a)
with s ¼ s0 and r ¼ r 0.

Notice that the epoch times of a nonhomogeneous Poisson process with intensity
function l(t) are the record values of a sequence of i.i.d. nonnegative random vari-
ables with the hazard rate being l(t), whereð1

t
l(u) du ¼ 1 for all t [ <þ:

Therefore, Corollary 4.3 can be interpreted in terms of epoch times of nonhomoge-
neous Poisson processes.

4.3. Progressive Type II Censored Order Statistics

In a progressive type II censoring scheme, N units are placed on a lifetime test. The
failure times are described by i.i.d. random variables with a common distribution F. A
number n (n � N ) of units are observed to fail. A predetermined number Ri of surviv-
ing units at the time of the ith failure are randomly selected and removed from further
testing. Thus,

P
i¼1
n Ri units are progressively censored; hence, N ¼ n

P
i¼1
n Ri. The n

observed failure times are called progressive type II censored order statistics based on
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F, denoted by X1:n,N
R � X2:n,N

R � � � � � Xn:n,N
R , where R ¼ (R1, . . . , Rn). Progressive

type II censored order statistics based on F correspond to the GOSs based on F
with parameters k ¼ Rn þ 1 and mi ¼ Ri for i ¼ 1, . . . , n 2 1. For details on the
model of progressive type II censoring, we refer to Balakrishnan and Aggarwala
[2] and Cramer and Kamps [5].

For progressive type II censored order statistics, we have the following corollary.

COROLLARY 4.4: Let fX1:n,N
R , . . . , Xn:n,N

R g and fY1:n,N
R , . . . ,Yn:n,N

R g be respective pro-
gressive type II censored order statistics based on F and G with a common
censoring policy R with R1 ¼ � � � ¼ Rn21.

(a) If F �hr G, s . r and s0 2 s � r 0 2 r � 0, then

½XR
s:n;N � yjXR

r:n;N . y� �st ½YR
s0:n;N � yjYR

r0:n;N . y� for y [ <:

(b) If F �lr G and r 0 � r, then

½XR
rþ1:n;N � yjXR

r:n;N . y� �lr ½YR
r0þ1:n;N � yjYR

r0:n;N . y� for y [ <:

(c) If F is absolutely continuous and r 0 . r, then

½XR
rþp:n;N � yjXR

r:n;N . y� �lr ½XR
r0þp:n;N � yjYR

r0:n;N . y� for y [ <:

4.4. Bounds on Mean Residual Life Functions

First, we state a lemma that will be used in the sequel.

LEMMA 4.1: Let fZ(i,n,m,k)
l , i ¼ 1, . . . , ng be GOSs based on exponential distribution

with hazard rate l. Then, for 1 � r , s � n and m = 21,

E½Zl
(s;n;m;k) � yjZl

(r;n;m;k) . y� ¼ 1
l

Xs�r

i¼1

1
gi;n�r

þ

Pr
i¼1

ai;rg
�2
i;n e�lgi;ny

Pr
i¼1

ai;rg
�1
i;n e�lgi;ny

; (4:1)

where gi,n is defined in (2.3) and

ai;r ¼
Yr

j¼1;j=i

1
gj;n � gi;n

for i ¼ 1; . . . ; r: (4:2)
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PROOF: From (3.2), it follows that

E½Zl
(s;n;m;k) � yjZl

(r;n;m;k) . y�

¼
ð1

0
P½Zl

(s;n;m;k) � y . xjZl
(r;n;m;k) . y� dx

¼
ð1

y

ð1

0
P½Zl

(s�r;n�r;m;k) þ u� y . x� dx

� � fZl
(r;n;m;k)

(u)

FZl
(r;n;m;k)

(y)
du

¼
ð1

y
E½Zl

(s�r;n�r;m;k)� þ u� y
� � fZl

(r;n;m;k)
(u)

FZl
(r;n;m;k)

(y)
du

¼ E½Zl
(s�r;n�r;m;k)� þ E½Zl

(r;n;m;k) � yjZl
(r;n;m;k) . y�; (4:3)

where the second equality follows from the fact that [Z 2 ujZ . u] and Z are identi-
cally distributed if Z is exponential random variable.

The first term in (4.3) can be written as

E½Zl
(s�r;n�r;m;k)� ¼

Xs�r

j¼1

1
lgj;n�r

; (4:4)

since Z(s2r,n2r,m,k)
l ¼st P

j¼1
s2r Zj

0, and Zj
0’s are independent exponential random vari-

ables with Zj
0 having hazard rate lgj,n2r (see Cramer and Kamps [6, Theorem 3.1]

and Hu and Zhuang [7, Lemma 2.1]).
The second term in (4.3) can be written as

E½Zl
(r;n;m;k) � yjZl

(r;n;m;k) . y� ¼
ð1

0

P½Zl
(r;n;m;k) . xþ y�

P½Zl
(r;n;m;k) . y� dx

¼
ð1

0

Pr
i¼1

ai;rg
�1
i;n e�lgi;n(xþy)

Pr
i¼1

ai;rg
�1
i;n e�lgi;ny

dx

¼

Pr
i¼1

ai;rg
�2
i;n l

�1e�lgi;ny

Pr
i¼1

ai;rg
�1
i;n e�lgi;ny

; (4:5)

where ai,r ¼
Q

j¼1,j=i
r (gj,n 2 gi,n)21 for i ¼ 1, . . . , r (see Eq. (5) in Kamps and

Cramer [12]).
Now, substituting (4.4) and (4.5) into (4.3), the required result follows. B

If the hazard rate function l(x) of a distribution function F is bounded from
above or from below, then the next result enables us to obtain a computable
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lower bound or upper bound on the mean residual life function of GOSs based
on F.

THEOREM 4.1: Let fX(r,n,m,k), r ¼ 1, . . . , ng be the GOSs based on distribution func-
tion F with corresponding hazard rate l(x), where m . 21. Let lL � l(x) � lU for
some positive constants lL and lU, and for all x. Then

1
lU

Xs�r

i¼1

1
gi;n�r

þ

Pr
i¼1

ai;rg
�2
i;n e�lUgi;ny

Pr
i¼1

ai;rg
�1
i;n e�lUgi;ny

� E½Xl
(s;n;m;k) � yjXl

(r;n;m;k) . y�

� 1
lL

Xs�r

i¼1

1
gi;n�r

þ

Pr
i¼1

ai;rg
�2
i;n e�lLgi;ny

Pr
i¼1

ai;rg
�1
i;n e�lLgi;ny

;

where gj,n and ai,r are defined in (2.3) and (4.2), respectively.

PROOF: Let fZ(i,n,m,k)
lU , i ¼ 1, . . . , ng and fZ(i,n,m,k)

lL , i ¼ 1, . . . , ng be GOSs based
on exponential distributions with hazard rates lU and lL, respectively. Then,
using lL � l(x) � lU for all x, the desired result follows from Theorem 3.1 and
Lemma 4.1. B
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