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IMPLEMENTATION-NEUTRAL
CAUSATION

STEPHEN F. LEROY∗

Abstract: The most basic question one can ask of a model is ‘What is
the effect on variable y2 of variable y1?’ Causation is ‘implementation
neutral’ when all interventions on external variables that lead to a given
change in y1 have the same effect on y2, so that the effect of y1 on y2 is
defined unambiguously. Familiar ideas of causal analysis do not apply when
causation is implementation neutral. For example, a cause variable cannot
be linked to an effect variable by both a direct path and a distinct indirect
path. Discussion of empirical aspects of implementation neutrality leads to
further unexpected results, such as that if one variable causes another the
coefficient representing that causal link is always identified.

Keywords: causation, implementation neutrality, Cowles, Simon, interven-
tions

The most basic question one can ask of a model is ‘According to the model,
what is the effect on variable y2 of an intervention on variable y1?,’ where
y1 and y2 are two variables determined by the model. Two answers are
possible. The first involves observing that many possible interventions on
the model’s external variables could have led to the assumed change in
y1, and in general the effects of these interventions on y2 are different.
Therefore the question ‘What is the effect of y1 on y2?’ does not have an
unambiguous answer: the information given about the intervention – its
effect on y1 – is insufficient to characterize its effect on y2.

The second answer is that even though the intervention is not
completely characterized for the reason just noted, all interventions
consistent with the assumed change in y1 may map onto the same change
in y2. In that case the question ‘What is the effect of y1 on y2?’ has a well-
defined answer. In linear systems, to which our attention will be restricted
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122 STEPHEN F. LEROY

in this paper, the effect is captured by a single constant, here labelled a21.

This coefficient gives the effect on y2 of a unit change of y1, regardless of
what intervention on the external variables caused the change in y1.

If, as in the second case above, the effect of a change in y1 on y2 is
independent of how the change in y1 is implemented – in other words,
independent of the specific interventions on the external variables that
determine the assumed change in y1 – we will say that the causation
of y2 by y1 is implementation neutral, and will write y1 ⇒ y2. Hereafter
implementation-neutral causation is abbreviated IN-causation, so that
y1 IN-causes y2 in the specified circumstance. If the implementation
neutrality condition fails we will say that y1 causes y2, but does not IN-
cause y2. In that case different interventions on the determinants of y1
have different effects on y2, implying that we cannot characterize the
effect of y1 on y2 without knowing more about the intervention. ‘Knowing
more about the intervention’ amounts to redirecting the discussion from
the causal relation between y1 and y2 to the causal relation between the
determinants of y1 and y2.

If we know only that y1 causes y2 – that is, if we do not have
implementation neutrality – we know that interventions that affect y1 also
affect y2, but we cannot identify a unique coefficient that gives the effect
of y1 on y2. For many – arguably, most – scientific purposes it is useful to
have implementation neutrality, so as to know that the effect of y1 on y2
does not depend on what caused the change in y1.

It is not necessarily essential that the causation represented in a
model be implementation neutral. However, in interpreting the model it
is necessary to know whether a particular causal link is implementation
neutral. If so one can make quantitative statements about causality: ‘The
training programme results in an 11 per cent increase in employment
probability’. Here the subtext is that this is so regardless of the fact
that different trainee candidates do or do not enter the programme
for different reasons. In the absence of implementation neutrality the
associated statement is ‘The extent to which the training programme
affects a worker’s employment probability depends on his individual
circumstances, so that the effect of training on the employment probability
depends on why he enrolled’, for example. Obviously the first answer is
preferable when it is available, so it is important to know when a model
supports that answer.

Use of diagrammatical methods in causal analysis has become
widespread in recent years, due to work by Spirtes et al. (1993), Hausman
(1998), Pearl (2001), Woodward (2003), Cartwright (2007) and others.
These authors do not include implementation neutrality in their definition
of causation (at least not explicitly; see discussion below). As we will see,
implementation-neutral causation is antisymmetric, so it can be used to
define directed acyclic diagrams of the type in common use. Therefore one
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IMPLEMENTATION-NEUTRAL CAUSATION 123

has the option of imposing implementation neutrality in the derivation of
directed acyclic diagrams and comparing the causal diagrams so derived
with diagrams obtained under characterizations of causation that do not
impose implementation neutrality.

1. CHARACTERIZATION OF IN-CAUSATION

A distinction that is central in any model that deals with issues of
causation is that between internal and external variables. Internal variables
are those determined by the model, while external variables are those taken
as given; that is, determined outside the model.1 We will use y to denote
internal variables and x to denote external variables.

All changes in solution values of internal variables are assumed
to be attributable to interventions on external variables, as opposed
to alterations of equations. Implementing this attribution requires the
analyst to be explicit about which hypothetical alterations in the model
are permitted and which are ruled out, a specification that is essential
in inquiries dealing with causation. Of course, the analyst can always
model a shift in any of the equations of the model simply by specifying
that the relevant equation includes an external shift variable. In that case
the shift variable is a cause of any internal variable that depends on it.
Doing so is not the same as converting one of the internal variables to an
external variable, which constitutes an alteration of the model, and which,
as discussed below, we will avoid.

External variables are assumed to be variation free: that is, the analyst
is free to alter them independently. Independent variation corresponds
to the assumption that by definition external variables are not linked by
functional relations; otherwise they would be classified as internal.

The solution form of a model expresses each internal variable as a
function of the set of external variables that determine it.2 We will refer
to the set of external variables that determine any internal variable as its
external set, and will denote the external set for yi as E(yi ). In examples we

1 In the earlier literature the terms ‘endogenous’ and ‘exogenous’ were often used in place
of ‘internal’ and ‘external’. The earlier usage is consistent with the etymology of the terms,
but econometricians have implemented a change in their meaning (see Granger 1995). To
avoid ambiguity, economists now use ‘internal’ and ‘external’ when the earlier meaning is
intended, as here.

For discussion of various definitions of exogeneity and endogeneity see Leamer (1985).
For a statement of the definition of exogeneity currently favoured by econometricians see
Engle et al. (1983).

2 We thus distinguish between the solution form and the reduced form, in which current-
date internal variables are expressed as functions of lagged internal variables and external
variables. In static models the solution form and reduced form coincide.
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124 STEPHEN F. LEROY

will adopt the convention that the external set for any internal variable
consists of at least two external variables.3

There is no difficulty in defining causation when the cause variable
is external: x1 causes y1 whenever x1 is in the external set for y1. In that
case, by virtue of linearity, a unique constant b11 gives the effect of a unit
change in x1 on y1 for any values of the external variables. If x1 is not in
the external set for y1 the former does not cause the latter.

The ambiguity comes up when the cause variable is internal,
because then an assumed change in the cause variable could come from
interventions on any or all of the variables in its external set, and in
general the effect on y2 of the interventions of the external variables of
y1 is different for each possible set of interventions. This is so even if all
the contemplated interventions on external variables are restricted to have
the same effect on y1. Given this ambiguity, we cannot associate causation
with a single number giving the effect of y1 on y2: the intervention is not
described with sufficient detail to generate a clear characterization of the
effect.

However, consider a special case in which two conditions are satisfied.
These conditions involve two internal variables, y1 and y2, their external
sets E(y1) and E(y2), and the functions relating the former to the latter.
The first is the subset condition, which requires that the external set for
y1 be a proper subset of that of y2. The subset condition guarantees that
any external variable that affects y1 also affects y2, but not vice versa.
Hoover (2001) in particular emphasized this condition, which assures the
antisymmetry of causation.4 If the subset condition is satisfied we will say
that y1 causes y2, and will write y1 → y2.

3 Otherwise the internal variable is a rescaling of the external variable (assuming linearity);
a model containing an internal variable the external set of which consists of one external
variable can be simplified by deleting the internal variable.

Also, we will assume below that internal variables are observable and external variables
are not. Allowing equations in which the external set of some internal variable consists
of a single variable would raise the question whether that variable is observable or
unobservable.

4 In this paper the subset condition is a condition we impose on models to assure that
causation is antisymmetric. Hausman (1998: ch. 4) had a different take on what we call
the subset condition. Hausman’s independence condition states that ‘if a causes b . . . , then b
has a cause that is distinct from a and not causally connected to a’. Hausman appears to
view the independence condition, not as an assumption in a model, but as a proposition
about the world that may or may not be true: ‘As a metaphysical claim about patterns of
lawlike connections found in nature, [the independence condition] seems incredible, and
its truth miraculous’ (1998: 64).

However, he went on to consider another possible interpretation, that the failure of the
independence condition implies only that there may exist lawlike relations in the world
that are not specifically causal relations. This is so because causality inherently involves
antisymmetry, and antisymmetry may not occur if the independence condition fails. This
latter interpretation is closer to the position taken here.
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The second is the sufficiency condition (the definition of which
presumes satisfaction of the subset condition). The sufficiency condition
states that the map from E(y2) to y2 can be expressed as two functions.
The first is the composition of a function from E(y1) to y1 and a function
from y1 to y2, while the second is a function from E(y2) − E(y1) to y2.

If such functions exist then y1 is a sufficient statistic for E(y1) for the
purpose of determining y2, meaning that for the purpose of determining
y2 an intervention on any or all of the variables in E(y1) is adequately
characterized by the resulting induced change in y1. If y1 → y2 and in
addition the sufficiency condition is satisfied, we will say that y1 IN-causes
y2, and will write y1 ⇒ y2.

The theme of this paper is that for evaluation of the magni-
tude of causal effects one is interested primarily in IN-causation
(requiring satisfaction of both the subset and the sufficiency condi-
tions), not just causation (requiring satisfaction of only the subset
condition).

In the IN-causal form of a model the equations are written so as to
reflect the model’s IN-causal structure. Starting from the solution form of
the model and having in hand a set of restrictions on the parameters of that
model, one can readily derive its IN-causal form. First one derives the IN-
causal ordering, which consists of determining for each i and j whether or
not we have that yi is a parent of yj .

5 In the IN-causal form of the model,
as in the solution form, each equation has one of the internal variables
on the left-hand side. The equation for each internal variable yj that has
no internal variables as causal parents coincides with the corresponding
equation in the solution form of the model (that is, consists of a map
from E(yj ) to yj ). The causal form for internal variables yj that have one
or more internal variables as causal parents consists of a map from the
parent, or from each of the parents, to yj , plus a map to yj from the
elements of E(yj ) that are not in the external sets of any of the parents
of yj .

In the linear setting assumed here the equations of the causal form can
be written in the form

yj ⇐ a ji yi + b jk xk .(1)

Here yi is the (single, in this case) internal variable that is a parent of
yj , and xk is an external variable (again, single) that is the only element
of E(yj ) − E(yi ). The cases in which yj has more than one parent, or
in which E(yj ) − E(yi ) contains more than one external variable, are
handled by expanding (1) appropriately. Note our substitution of ⇐

5 External (internal) variable x1 (y1) is an ancestor of internal variable y2 if x1 ⇒ y2 (y1 ⇒ y2).
It is a parent of y2 if it is an ancestor and in addition there is no internal variable y3 such
that x1 ⇒ y3 ⇒ y2 (y1 ⇒ y3 ⇒ y2).
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for =; since IN-causation is irreflexive and antisymmetric it is inappro-
priate to use the equality relation in writing the causal form of a model,
as many analysts have observed. Also, it is convenient to have notation
that distinguishes the causal form of a model (⇐) from its structural
form (=).

In models that are structural (in the sense that every internal variable
is written as a function of the other internal variables and a subset of
the external variables) it may or may not be true that the IN-causal
form coincides with the structural form. To determine whether a given
structural model can be interpreted as an IN-causal model the analyst (1)
computes the solution form of the model, (2) determines its IN-causal
ordering by checking whether for all i , j the conditions for yi to be a
parent of yj are satisfied, and (3) constructs the indicated causal form.
If one ends with the same model that one began with, causation in the
assumed structural model is implementation-neutral. In that case for
each equation each right-hand side variable IN-causes the left-hand side
variable. If not, one cannot necessarily interpret parameters of structural
models as measuring IN-causation. For example, a structural model with
simultaneous blocks can obviously not be interpreted as a model in causal
form due to the antisymmetry of causation.

One can represent the causal form of a model by a causal diagram.
For variables yi without internal variables as IN-parents this consists of
arrows drawn to yi from each element of E(yi ), as in a diagram of the
solution form. For variables with internal IN-parents the arrows run to yj

from the IN-parent(s) of yj , and also to yj from each variable that is an
element of the external set of yj but is not in the external sets of any of its
IN-parents. Thus the IN-causal diagram corresponds exactly to the model
written in IN-causal form.

Observe that under our characterization the IN-causal form does not
include as arguments internal variables that are ancestors of some internal
variable when these are not also parents. The corresponding convention
applies to causal diagrams: no arrow directly connects variables with
their ancestors when these are not direct parents. If, contrary to this
specification, y1 were entered as a separate cause for y3 in a causal
model that has y1 ⇒ y2 and also y2 ⇒ y3 the effect would be to link each
element of E(y1) to y3 via both the direct effect a31 and the indirect effect
a32a21. But we have a31 = a32a21, so the outcome would be a doubling
of the coefficients linking elements of E(y1) with y3. This is an obvious
error.

The argument just stated implies that an internal variable never
has both an indirect IN-causal effect on another variable via an
IN-causal chain involving one or more third variables, and also a
distinct direct IN-causal effect; rather, the direct effect is always the
composition of the indirect effects. In section 3 we will point out that a
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different formalization of causation, that of Simon, does not share this
property.

Examples will make these results clear.

1.1. Examples

Consider the following model written in solution form:

y1 = b11x1 + b12x2(2)

y2 = b21x1 + b22x2 + b23x3.(3)

The external sets for y1 and y2 are E(y1) = {x1, x2} and E(y2) = {x1, x2, x3}.
The former is a proper subset of the latter, so the subset condition is
satisfied, and we have y1 → y2.

Without parameter restrictions the sufficiency condition for y1 ⇒ y2 is
not satisfied. However, if the condition

b21/b11 = b22/b12(4)

obtains the sufficiency condition is satisfied. In that case we can define a21
by

a21 ≡ b21/b11 = b22/b12,(5)

allowing replacement of (3) with

y2 = a21 y1 + b23x3.(6)

We have y1 ⇒ y2.

The IN-causal form of the model is

y1 ⇐ b11x1 + b12x2(7)

y2 ⇐ a21 y1 + b23x3.(8)

The argument just presented implies that in the structural model

y1 = b11x1 + b12x2(9)

y2 = a21 y1 + b23x3(10)

the coefficient a21 represents IN-causation. This is so because its structural
form (9)–(10) coincides with its IN-causal form (7)–(8).

The upper panel of Figure 1 shows the causal diagram of the model
under discussion if the restriction (4) is satisfied; the lower panel shows
the causal diagram if the restriction is not satisfied.

As observed above, one can equally well begin by specifying a model
in IN-causal form, as in (7)–(8). Using (2) to eliminate y1 in (6) results in

y2 = a21b11x1 + a21b12x2 + b23x3.(11)
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x1 x2 x3

y1 y2

x1 x2 x3

y1 y2

FIGURE 1. Upper panel: y1 causes y2. Lower panel: y1 does not cause y2 due to
failure of the sufficiency condition

Comparing this equation with the solution equation (3) for y2 results in
a21b11 = b21 and a21b12 = b22, agreeing with (5). Thus writing a model in
IN-causal form is equivalent to assuming the parameter restrictions on
the solution form associated with the assumed causal ordering.

One cannot write down an arbitrary structural model and then
interpret that model as if it were in IN-causal form. Some models that
are acceptable as structural models are inadmissible as IN-causal models.
For example, consider the model

y1 = a12 y2 + b11x1(12)

y2 = a21 y1 + b22x2(13)

y3 = a31 y1 + a32 y2 + b33x3.(14)

This is an acceptable block-recursive structural model, but not an
acceptable IN-causal model because it contains both y1 ⇒ y2 and y2 ⇒ y1,
violating the antisymmetry of IN-causation. The conclusion is that the
model (12)–(14) is not in fact an IN-causal model.

Generically (that is, barring coefficient restrictions), the IN-causal
form of the model (12)–(14) is

y1 ⇐ b11x1 + b12x2(15)

y2 ⇐ b21x1 + b22x2(16)

y3 ⇐ b31x1 + b32x2 + b34x4 + b33x3,(17)

coinciding with the solution form. The causal ordering is empty (in the
sense that none of the internal variables IN-cause any other internal
variables). Therefore if one begins with a model like (12)–(14) that is not
interpretable as an IN-causal model one cannot view all the coefficients ai j

of that model as measuring IN-causal effects, although some may do so.
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The causal form of any model is recursive by construction. It might
be thought that the converse is also true, so that all structural models that
are recursive (which the model (12)–(14) is not) would qualify as causal
models. This is not so. Triangular models provide a counterexample when
they have more than two internal variables. For example, consider the
structural model

y1 = b11x1 + b12x2(18)

y2 = a21 y1 + b23x3(19)

y3 = a31 y1 + a32 y2 + b34x4.(20)

This model does not have the IN-causal representation

y1 ⇐ b11x1 + b12x2(21)

y2 ⇐ a21 y1 + b23x3(22)

y3 ⇐ a31 y1 + a32 y2 + b34x4.(23)

This is so because the purported cause variable y1 is not a parent of the
effect variable y3 (although it is an ancestor), contrary to the requirement
assumed for construction of IN-causal models. The model (18)–(20) can
be interpreted as a causal model only under restrictions on the structural
coefficients (for example, a31 = 0 or a32 = 0). In the absence of such restric-
tions a model like (18)–(20) has a causal ordering consisting only of y1 ⇒
y2, plus the equations relating internal variables to their external sets.

As another way to establish the same point, suppose that we have
y1 ⇒ y2 and y2 ⇒ y3. Then implementation neutrality implies that the
total effect of an intervention �y1 of y1 on y3 equals a32a21�y1, and this
is so regardless of which element of E(y1) caused the change in y1. This is
the total effect of y1 on y2 implied by the causal ordering, and it coincides
with the indirect effect. There is no distinct direct effect.

2. CRITIQUES OF IMPLEMENTATION NEUTRALITY

Philosophers sometimes reject this focus on settings in which causation is
implementation neutral. For example, Cartwright (2007: 246) states that
‘[w]e must be careful ... not to be misled by [LeRoy’s] own use of the
language of ‘causal order’ to suppose it tells us whether and how much
one quantity causally contributes to another’. Why are we misled by this
supposition? How much one variable causally contributes to another is
exactly what IN-causation tells us, and is exactly what we want to know.
And what meaning can we attach to a purported measure of the effects
of an intervention on an internal variable if the model is such that the
causation is not implementation neutral, so that that measure is not well
defined? In that case there is no alternative to redirecting the analysis to
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implementation-specific interventions on the external variables, avoiding
reference to the intermediate variable – the purported cause – which in
fact plays no role in the causation.

It is not difficult to find passages in the philosophy literature where
the idea of implementation neutrality is implicitly introduced. Further,
it is not unusual to find use of the term ‘causation’ reserved to settings
in which implementation neutrality is satisfied. For example, Woodward
(2007) listed ‘invariance’ among the requirements for causation: the
effect of the cause variable on the effect variable should be invariant to
interventions on other variables. He observed that ‘[o]ne condition for a
successful intervention is that the intervention I on X [the cause variable]
with respect to Y should not cause Y via a route that does not go through
X, and that I should be independent of any variable Z that causes Y
but not through a route that goes through I and X’. If one reads I as
consisting of a variable in the external set of X, then Woodward’s criterion
for a ‘successful intervention’ corresponds to that for our implementation-
neutral causation.

Woodward gave an example. Suppose that patients are treated or
not treated for a medical condition based on a randomized assignment
mechanism such as a coin toss. So stated, the assignment mechanism
is an IN-cause (assuming that the treatment is effective) of remission of
the condition. But suppose that another doctor influences the outcome of
the coin toss using a magnet, and does so to ensure that patients with
a strong immune system get the treatment. This alteration invalidates
implementation neutrality. In our terminology the state of the patient’s
immune system is an external variable for the use of the magnet, and the
external set for the use of the magnet is a proper subset of the external set
of the variable representing the assignment mechanism. The sufficiency
condition for causation of the remission variable by the assignment
variable is not satisfied. This is so because the variable representing the
strength of the immune condition also affects the remission variable via a
direct path.

Critics of the analysis of causation presented here express the view
that the conception of IN-causation here unnecessarily departs from
the ordinary-language usage of ‘causation’. The opposite is the case.
Under the ordinary-language usage of ‘causation’, in settings where the
conditions for IN-causation fail the answer to the question ‘What is the
effect of y1 on y2?’ would be ‘It depends on what causes the variation in
y1’. This coincides exactly with the usage prescribed in this paper.

3. COMPARISON WITH SIMON

It is instructive to compare the representation of causation just presented
to that of Simon’s classic (1953) paper.
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Simon characterized a structural model as a partially ordered
set of self-contained sub-models, with some (or all) of the internal
variables determined in each sub-model. Each sub-model contains the
internal variables determined in that sub-model and, except for the
lowest-ordered sub-models, also some or all of the internal variables
determined in lower-ordered sub-models. Triangular models, in which
each sub-model consists of a single equation, are the most extreme
special case. In triangular models a complete ordering is defined on
the internal variables, with the explanatory internal variables for each
internal variable consisting of internal variables that are lower in the
ordering.

Under Simon’s definition of causation y1 causes y2 if y1 enters the sub-
model that determines y2, and is determined in a lower-order sub-model.
Thus for Simon causation is determined from a model’s structural form.
The fact that a model’s IN-causal form may differ from its structural form
(as in the model (18)–(20)) implies that causation under Simon’s definition
differs from IN-causation, which is determined from the solution form.
The easiest way to verify this difference is to note that Simon’s definition
of causation allows indirect and direct causation to coexist (again, as in the
model (18)–(20)), whereas under IN-causation this cannot occur, as noted
above.

An internal variable y1 causes y2 in Simon’s sense if and only if
our subset condition is satisfied. However, Simon did not go on to
consider implementation neutrality. Instead he implicitly defined the
intervention associated with causation to be conditional on the values of
the explanatory variables other than the cause variable in the structural
equation determining the effect variable. The intervention so defined
can readily be translated into the implied intervention on the variables
in the external set for the cause variable. This intervention will involve
linear restrictions on the intervention in the external variables, so that
some external variables are treated as causing other supposedly external
variables. This dependence implies a violation of the variation-free
condition, and therefore raises the question of what meaning can be
attached to causation so defined.

Simon’s definition of causation differs from that analysed here in
settings where the modeller is willing to specify a structural model that
is distinct from the associated solution form, and only in such settings.
Defining causation in reference to the structural model is justified, if at all,
only insofar as the analyst believes that the structural form is somehow
superior to the solution form, in that it contains information that is lost
in passing to the solution form. The Cowles economists clearly believed
that this was the case, but they never succeeded in articulating clearly
what this information is. It is difficult to see why performing arithmetic
operations in order to pass from the structural form to the solution form
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should affect a model’s interpretation to the point where causation has a
different interpretation in the two cases.

Recognizing this, contemporary economic theorists typically do not
specify a structural form distinct from the solution form. Thus the
characterization of IN-causation as defined here, being based on the
solution form, is consistent with current practice in a way that Simon’s
treatment of causation is not.

4. EMPIRICAL ASPECTS OF CAUSATION

Up to this point we have considered models in which variables are
specified as to their status as internal or external. We have not specified
which variables are observable or what we are assuming about the
probability distributions of unobserved external variables. That we could
postpone discussion of observability to this point reflects the fact that,
for any pair of internal variables, the existence or non-existence of IN-
causation depends only on whether the conditions for implementation
neutrality are satisfied. It does not depend on which variables are
observable or what is assumed about those that are not. However,
without specifying which variables are observable and characterizing
the probability distribution of unobserved external variables there is
no way to estimate IN-causal coefficients empirically: the correlations
among internal variables implied by the model’s causal structure cannot
be disentangled from those induced by correlations among unobserved
external variables.

The most direct way to launch an investigation of the empirical
aspects of causation is to specify, first, that external variables are
unobservable and internal variables are observable. This specification
covers most of the cases of interest. Second, it is assumed that the
external variables are statistically independent random variables. This
assumption implies that whatever correlations exist among the model’s
internal variables are generated by the equations of the model, not by
uninterpreted correlations among external variables. An analyst who is
uncomfortable with the assumption that the external variables x1 and x2 in
two equations are independent can replace x2 with x2 + λx1, which allows
for correlation even if x1 and x2 are independent. Of course, adopting
such flexible specifications results in sparse causal orderings. As always,
the analyst must deal with a tradeoff between how general a model’s
specification is and how rich its empirical implications are.

The assumptions just listed imply that if we have y1 ⇒ y2 the IN-
causal coefficient measuring the effect of y1 on y2 is identified (apart
from special cases in which observability is limited, as discussed below),
and can be estimated consistently using a least-squares regression of y2
on y1. This is so because the external variable(s) in E(y2) − E(y1) – the
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constituent(s) of the error term in the regression – is (are) independent
of E(y1), and therefore of y1 itself. Therefore the conditions for the
Gauss–Markov theorem of linear regression are satisfied and least-squares
regression coefficients provide optimal estimators.

The contrapositive of this statement is that the existence of
econometric problems in the estimation of a parameter implies that the
parameter is not one associated with IN-causation. For example, consider
the system

y1 = b11x1 + b12x2(24)

y2 = a21 y1 + b21x1(25)

y3 = b32x2 + b33x3.(26)

Here the external variables x1, x2 and x3 are assumed to be independently
distributed. Analysis of the solution form of this model reveals that
the population parameter a21 does not equal cov(y2, y1)/var (y1), the
population regression coefficient of y2 on y1. This is so because y1 and x1
are correlated due to the presence of x1 in the external set for y1. Therefore
a21 is not estimated consistently by least squares on (25). Further, if y3 and
(26) are dropped from the model, then a21 is not even identified. This can
be seen by inspection of the solution form of the model (24)–(25).

However, in the presence of y3 and (26) we have a21 = cov(y2, y3)/
cov(y1, y3), implying that a21 is identified and can be estimated consistently
by taking y3 as an instrument. Here we make use of the fact that y3 is
correlated with y1, due to the common presence of x2 in their external sets,
but not with x1.

The result that the least-squares estimate of a21 is not estimated
consistently by least squares reflects the fact that y1 does not IN-cause
y2, a fact that is also easily verified directly from the definition of IN-
causation. Thus the inconsistency of the least-squares estimate of a21 via
a regression of y2 on y1 does not contradict our assertion that coefficients
associated with IN-causal orderings are identified and estimable by least
squares.

The finding that IN-causal coefficients are always identified differs
from the conclusion of the Cowles economists. The reason for the
difference is that, as noted, the Cowles economists used a different
conception of causation – one that does not include implementation
neutrality – than that we focus on here. Parameters that are causal
in the Cowles sense may or may not be identified and may or may
not correspond to coefficients associated with IN-causation. Here our
attention is restricted to the smaller set of coefficients that are IN-causal.

The result that causal coefficients are always identified should not be
taken to imply that identification is not a major problem in the analysis of
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causation. Obviously, there exist coefficients associated with IN-causation
only when the associated variables are in fact IN-causally ordered, and
whether two variables are IN-causally ordered depends on the coefficients
that link observed internal variables to unobserved external variables.
These coefficients, in contrast to those linking observed internal variables
that are known (or assumed) to be causally ordered, are generally not
identified. Therefore there may be no way to directly test models that
make particular specifications of causation.

Under causation as characterized here, as with other definitions of
causation, the restrictions justifying an assumed causal ordering can
in principle be tested indirectly by identifying pairs of variables that
are or are not statistically independent according to the model, and
then determining whether these independence implications are satisfied
empirically. We now consider whether powerful empirical tests of causal
models along these lines are likely to be available. It appears that they are
not: only in special cases is it possible to characterize independence or the
lack thereof among internal variables as testable implications of IN-causal
models.

Among the few results that are available is the obvious fact that
any two internal variables for which the external sets are disjoint are
statistically independent. As an implication, if an internal variable has two
ancestors, then either the two are statistically independent or one ancestor
causes the other. To see this, suppose that y1 ⇒ y3 and y2 ⇒ y3, so that
y3 has ancestors y1 and y2. If E(y1) and E(y2) are disjoint, then y1 and y2
are statistically independent. Suppose instead that E(y1) and E(y2) have
a non-empty intersection that contains external variable x. Then because
(1) x ∈ E(y1), and (2) E(y1) is a proper subset of E(y3), there exists a path
from x to y3 that includes y1. Similarly, there exists a path from x to y3 that
includes y2. These must be the same path, since if the path included y1
but not y2 then y2 could not be a sufficient statistic for E(y2), contradicting
y2 ⇒ y3. Thus there is a single path connecting x and y3, and that path
includes both y1 and y2. This can occur only if y1 ⇒ y2 or y2 ⇒ y1.

Past this there are not many results available about correlation of
variables in causal models. Assume that y1 and y2 have y3 as a common
ancestor. If also y1 ⇒ y2, then we have y3 ⇒ y1 ⇒ y2. In that case we have
that all pairs of these three variables are correlated since their external sets
have a non-empty intersection (consisting of the external set for y3). If,
on the other hand, y1 � y2 the causal coefficient associated with y1 ⇒ y2
is not defined. In the absence of IN-causation, no inference about the
correlation among variables is possible.

Despite the foregoing discussion, it happens that some of the
techniques of diagrammatical analysis developed in the causation
literature do carry over in the present setting. For example, it is shown in
the received literature that if two internal variables are connected only by
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x1 x2 x3 x4

y1 y2

y3 y4

FIGURE 2. Paths connecting y1 and y2 are blocked by colliders y3 and y4

paths that are ‘blocked’ because each contains a ‘collider’ (a variable with
incoming arrows from both directions), those variables are independent.
That result appears to carry over here. An example will demonstrate this.

4.1. Example

Consider the following model:

y1 = x1 + x2(27)

y2 = x3 + x4(28)

y3 = x1 + x2 + x3 + x4(29)

y4 = x1 + x2 − x3 − x4(30)

(note that here we have supplied specific coefficient values as well as
external sets). The causal form of this model is

y1 ⇐ x1 + x2(31)

y2 ⇐ x3 + x4(32)

y3 ⇐ y1 + y2(33)

y4 ⇐ y1 − y2,(34)

with Figure 2 as its causal diagram. Here y1 and y2 are statistically
independent due to the fact that their external sets are disjoint. We have
that y1 and y2 are parents of y3 (and also of y4), so the result illustrates the
general fact noted above that if any internal variable has more than one
ancestor, either these are independent or one ancestor causes the other.

This independence result can be generated using the diagrammatical
techniques developed by Pearl and others for analysis of causation in
settings where implementation neutrality is not imposed. In the example
there exist two paths from y1 to y2, but both are blocked by the colliders y3
and y4. Therefore these paths do not transmit association. Independence
of y1 and y2 results. Note that here the diagrammatical analysis applies
by virtue of the assumption that the external variables are independently
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distributed. The result suggests that even though the conditions for
causation analysed here are different from those in the received literature,
at least some of the diagrammatical techniques for analysis of causation
carry over. This is a topic that deserves further study.

The independence result does not extend to the children y3 and y4
except in special situations. For example, if the xi are normally distributed
and all have the same variance, y3 and y4 are independent. However, if x1
and x2 have higher (lower) variance than x3 and x4, then y3 and y4 will be
positively (negatively) correlated.

5. CONDITIONING ON INTERNAL VARIABLES

The result in the preceding section that the coefficient associated with any
causal relation is identified and can be estimated consistently using least
squares depends critically on the underlying assumption that external
variables are independently distributed and internal variables are fully
observable. If some internal variable yi is observed only when it lies in a
certain region, the distribution for the external variables that is relevant
for determining the identifiability of causal coefficients is that conditional
on this restriction, not the unconditional distribution.

The joint distribution of the external variables conditional on yi

will generally display statistical dependence even if the unconditional
distribution of the external variables incorporates independence. This
situation will not affect the causal ordering of the variables, but it
does invalidate the result that the coefficients associated with the causal
ordering can be estimated consistently by least squares. This is so because
failure of independence in the external variables implies that the error
term covaries with the explanatory variable in the relevant regression,
inducing bias and inconsistency.

As an extreme case, suppose that the analyst only has data in which yi

takes on a single value, for some i. Obviously the coefficient associated
with yi ⇒ yj or yj ⇒ yi for some yj is not identified, there being no
variation in the observed values of the cause variable in one case or the
effect variable in the other. A more common situation occurs when the
data for yi are truncated, as by yi ≥ 0. In that case the sample regression
coefficient associated with yj ⇒ yk is not a consistent estimate of the
associated causal coefficient if either yj or yk has an external set that
overlaps with that of yi . This is so because if yi is subject to a restriction like
yi ≥ 0 the relevant joint distribution of the external variables in E(yi ) is that
conditional on yi ≥ 0, and this does not generally have any independence
property.

Berkson’s Paradox illustrates this. Suppose, following Elwert (2013),
that movie actors become famous if they are good looking or can act
well, or both. Assume, probably realistically, that being good looking and
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being a good actor are independently distributed. If the analyst has a
data set consisting only of actors who are famous, then any actor in that
set who is not good looking must be a good actor, since otherwise he
would not be famous. Thus in the data set of famous actors there will be a
negative correlation between being good looking and being a good actor,
even though by assumption there is no such correlation in the general
population. Any statistical exercise that makes no allowance for this effect
will be biased.

We will not discuss statistical procedures to deal with this problem
since the problem does not directly involve causal issues. The point here
is only to demonstrate that the attractive statistical properties of least
squares in estimating causal coefficients do not apply universally when
data on internal variables are not fully observed.

6. COMPARISON WITH ‘FIXING’

The analysis of IN-causation outlined in this paper differs in major
respects from what is found in the causation literature. Most important,
interventions here consist exclusively of hypothetical alterations in the
assumed values of external variables. In contrast, the usual treatment in
the literature (based on Haavelmo 1943; Strotz and Wold 1960) involves
modelling policy interventions on, say, y1 by deleting from the model the
equation determining y1 and replacing it with the specification that y1 is
external.

This practice of ‘fixing’ internal variables and deleting equations
when analysing interventions seems misdirected. It violates the autonomy
assumption (which consists of the assertion that the model equations are
invariant to assumed interventions). It does not make sense to claim to
analyse interventions using a model if doing so involves changing the
model to accommodate the intervention. Fixing corresponds to measuring
a person’s height using a yardstick that expands or shrinks according to
the height being measured.

Fixing internal variables involves a troubling inconsistency between
how model solutions are generated in the routine operation of the model
– via realizations of external variables – and how they are modelled
under a policy intervention – via relabelling internal variables as external
and suppressing equations. What is it about policy interventions that
motivates this difference in treatment? We are not told. As suggested
above, it seems simpler and more satisfactory to be consistent about
carrying over the attribution of assumed interventions on internal
variables to underlying changes in the external variables that determine
them, and thereby to avoid altering the equations of the model.

Besides this, there are several major problems with modelling
interventions by fixing internal variables. Most obviously, doing so
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applies only in recursive systems, since in the presence of simultaneity
y1 is determined jointly with other variables in a group of several or many
equations. In that case there does not exist any obvious way to identify
which equations are to be deleted. In contrast, our analysis of IN-causation
applies in non-recursive models, although of course IN-causal relations
among internal variables are likely to be sparse in models with large
simultaneous blocks.

The Haavelmo–Strotz–Wold procedure assumes that causal models
are modular, meaning that causal relations can be modified individually
without invalidating the other equations of the model (modularity has
been discussed widely in the philosophical literature on causation; see,
for example, Cartwright (2007) and the works cited there). Under our
treatment, in contrast, the question of modularity does not come up
because we are not modifying the model.

Modelling interventions by respecifying internal variables as external
implies that causation is treated as if it were implementation neutral
whether or not this treatment is justified. If implementation neutrality fails
coefficients will be interpreted as IN-causal when they do not support
that interpretation. It is far from clear why one would want to take this
route. In general the answer to the question ‘What is the effect of y1
on y2?’ is properly viewed as possibly, but not necessarily, depending
on what brings about the change in y1. The model encodes exactly this
information in the equations determining y1. Therefore the analyst can
determine whether the question of causation has an unambiguous answer.

7. APPLICATION: GRANGER CAUSATION6

Granger (1969) proposed a definition of causation that can be
implemented empirically without relying on theoretical restrictions: a
stochastic process (that is, sequence of random variables) y1 = {y1t}
Granger-causes another process y2 if the optimal prediction of future values
of y2 based on past values of y2 alone can be improved by including
current and lagged values of y1 as explanatory variables. It is asserted
that if y1 does not Granger-cause y2, then y2t can be treated as strictly
exogenous with respect to y1t , so that correlations between the two can
be interpreted as reflecting the causal effect of y2 on y1. The problem here
is to determine the relation between Granger-causation and IN-causation
as defined in this paper.

Analysts recognized immediately that Granger-causation is not the
same as causation as that term is used in ordinary discussion. For example,
Granger pointed out that under the definition just stated cattle stamping

6 This section draws heavily on Cooley and LeRoy (1985), although some of the discussion
there is altered to accommodate the treatment here of causality.
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their hooves before an earthquake implies that the cattle Granger-cause
the earthquake. Granger termed such cases ‘spurious causation’, implying
that the question of how to define causation that is not spurious remained
open.

To determine the relation between Granger causation and IN-
causation, we formulate a two-variable vector autoregression generating
the values of the money stock m = {mt} and gross domestic product y =
{yt} (note that henceforth in this section we use y to denote GDP, not to
represent a general internal variable as above):

mt = amy yt + bmmmt−1 + bmy yt−1 + x1t(35)

yt = aymmt + bymmt−1 + byy yt−1 + x2t.(36)

Here the external variables x1t and x2t are independent of each other,
and are independent over time. The reduced form corresponding to this
system is

mt = cmmmt−1 + cmy yt−1 + u1t(37)

yt = cymmt−1 + cyy yt−1 + u2t.(38)

GDP fails to Granger-cause the money stock if

cmy = amybyy + bmy

1 − amyaym
= 0.(39)

The money stock is strictly exogenous with respect to GDP if amy = bmy = 0.

Strict exogeneity implies that GDP shocks do not feed back into the
equation determining money, either currently or with a lag. From (39)
Granger non-causation is a necessary condition for strict exogeneity, but
not a sufficient condition.

We wish to know what parameter restrictions are necessary for mt ⇒
yt. To determine this we first write the solution form of the model under
the assumption that mt is strictly exogenous:

mt = x1t + bmmx1,t−1 + ...(40)

yt = aymx1t + (aymbmm + bym)x1,t−1 + x2t + byyx2,t−1 + ...(41)

IN-causation requires that the ratio of the coefficients of x1t in determining
mt and yt equal the corresponding ratio for x1,t−1:

1
aym

= bmm

aymbmm + bym
.(42)

Here the reasoning is exactly the same as in section 1.1. This equality is
satisfied if and only if bym = 0.

Thus even strict exogeneity of m is not a sufficient condition for
interpreting the coefficient of mt in equation (36) for yt as the causal
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coefficient associated with mt ⇒ yt. This is so because if bym 
= 0 the lagged
values of x1 – the external variables that determine yt through their effect
on mt – also affect yt via mt−1. Thus we have a failure of implementation
neutrality: if bym 
= 0 characterizing an intervention as a hypothesized
change in mt does not give enough information about the intervention
to determine the resulting change in yt. Avoiding this outcome requires
imposing the implementation-neutrality condition bym = 0 in addition to
the strict exogeneity of m, so as to shut down mt−1 as a determinant of yt.

We see that to make the transition from Granger-noncausation to IN-
causation, one has to make two further restrictions on the model (35)–
(36), beyond cmy = 0. The first is that cmy = 0 must be strengthened to
amy = bmy = 0. Analysts aware of the distinction between strict exogeneity
and Granger non-causality frequently state that cmy = 0 is consistent with
amy = bmy = 0, but then incorrectly go on to treat ‘is consistent with’ as
having the same meaning as ‘implies’. Second, as we have just seen
implementation neutrality requires that one rule out mt−1 as an argument
in the equation for yt.

The conclusion is that Granger causation is a specialized – and, to
be sure, a very useful – form of forecastability, but it cannot be directly
interpreted as having anything to do with IN-causation.

It may be that we are being too narrow in trying to relate Granger-
causation to causation between current values of m and y as defined here.
The definition of causation here relates a single cause variable and a single
effect variable at the same date, whereas Granger causation involves the
stochastic processes m and y. The suggestion is that a more general notion
of causation is required. If so, the task at hand for proponents of Granger
causation would seem to be to propose a more general characterization of
(true) causation and then relate Granger causation to that.

8. CONCLUSION

In this paper we distinguish between two conceptions of causation, one
a restricted version of the other. As is conventional, we use the term
‘causation’ if any intervention that produces a change in the cause variable
also produces a change in the effect variable. We direct attention to a
stronger meaning for causation: IN-causation. One variable IN-causes
another if, in addition to causing the other in the above sense, it is
the case that all interventions that produce a given change in the cause
variable induce the same change in the effect variable. If both conditions
are satisfied the answer to the question ‘What is the effect of a change
in y1 on y2?’ does not depend on what caused the assumed change in
y1. This, as argued above, captures what scientists want to know when
they investigate questions dealing with causation. If the conditions for
IN-causation are not satisfied one cannot identify a single number that
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measures the effect of y1 on y2. In that case one can only discuss the effects
of changes in the determinants of y1 on y2, which is unambiguous.

The question of how to implement the definition of causation
proposed here is a difficult one. At a minimum, the analysis here can
play the role of raising questions about discussions of causation that
use purported measures of causal magnitudes which make no attempt
to justify the implicit assumption of implementation neutrality. On a
more ambitious level, the results here may provide guidance on how to
justify identifying particular model parameters with causation in applied
models. The underlying idea is to encourage clear communication about
what exactly is involved in causal assertions. A great deal remains to be
done.
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