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Abstract  In this paper the authors consider the weighted estimates for the Calder6n commutator
defined by

/ Po(As 2, y) [1521 (A4 (@) — A;(y)

Cm+1,4(a1, .., am; f)(z) = p.v. . (x — y)m+2 f()dy,

with Py(4;z,y) = A(z) — A(y) — A'(y)(z —y) and A’ € BMO(R). Dominating this operator by
multi(sub)linear sparse operators, the authors establish the weighted bounds from LP1(R,wq) X --- X
LPm+1(Rywm41) to LP(R,vg), with pi,...,pm+1 € (1,00), 1/p=1/p1+ -+ 1/pm+1, and @ =
(Wi, ..., Wmt1) € Aﬁ(Rm+1). The authors also obtain the weighted weak type endpoint estimates for
C'm+l,A~

Keywords: Calderén commutator; weighted inequality; multilinear singular integral operator; sparse
operator; multiple weight
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1. Introduction

As is well known, the Calderén commutator arose in the study of the L?(R) boundedness
for the Cauchy integral along Lipschitz curves. Let Aq,..., A,, be functions defined on
R such that a; = A} € L% (R). Define the mth-order commutator of Calderén by

x 7Aj
y))mﬂ WD) ¢y, (1.1)

By the T'(1) theorem and the Calderén—Zygmund theory, we know that for all p € (1, c0),

m—l AJ’
Cm+1(ar, ... am; f)(z) :/RH]_ ((a: _(

ICms1(ass - ami e S T laillce@lfllze @)

J=1
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and Cp,41 is bounded from L*(R) x --- x L>(R) x L'(R) to L'*°(R). For the case of
m = 1, it is known that Cs is bounded from L?(R) x L4(R) to L"(R) provided that p,q €
(1,00) and r € (1/2,00) with 1/r =1/p+ 1/q; moreover, it is bounded from LP(R) x
LY(R) to L™ (R) if min{p, ¢} = 1; see [2, 3] for details. By establishing the weak type
endpoint estimates for multilinear singular integral operators with non-smooth kernels,
and reducing the operator C,,41 to a suitable multilinear singular integral with non-
smooth kernel, Duong et al. [7] proved the following theorem.

Theorem 1.1. Let m € N, p1,...,pm41 € [1,00) and p € [1/(m + 1),00) with 1/p =
1/p1+ -+ 1/pms1. Then

ICms1(as, - am; Pllroe@ S T lailoes @l flloms @)-

j=1

Moreover, if mini<;j<m+1p; > 1, then
m
ICmt1(a, ... a’myf ”LP H IajHLPJ'(R)||f||LPm+1(]R)-

Considerable attention has also been paid to the weighted estimates for C,11.
Duong et al. [6] proved that if p1,...,pm+1 € (1,00), p € (1/(m+1),00) with 1/p =
1/p1+ -+ 1/pm+1, then for w e A,(R), Cpy1 is bounded from LPY(R,w) x --- %
Lpm+1(R,w) to LP(R,w); where A,(R™) denotes the weight function class of Mucken-
houpt; see [9] for definitions and properties of A,(R™). Grafakos et al. [10] considered
the weighted estimates with the following multiple A5 weights, introduced by Lerner
et al. [23].

Definition 1.2. Let m € N, wy, ..., w,, be weights, p1,...,pm € [1,00), p € [1/m, o)
with 1/p=1/p1+---+1/pm. Set W= (wy,...,wy), P=(p1,....,pm) and vg =
I, wk/p’c We say that @ € As(R™") if the Az(R™") constant of u, defined by

i, = gop (g oo 1T (g [ i yar) ™"

is finite, where, for r € [1,00), " =r/(r — 1); when p, =1, (1/|Q)| f —1/ Pr— 1))1/1% is
understood as (infg wy) ™!

Grafakos et al. [10] proved that if pi,..., pmy1 € [1,00) and p € [1/(m + 1),00)
with 1/p=1/p1+ -+ 1/pmy1, @ = (w1,..., W, Wyt1) € Aﬁ(Rm“), then Cp,41 is
bounded from LP*(R,w;) x -+ x LP"+1 (R, wp,q1) to L (R,vg), and if mini<j<mi
pj > 1, Crpyq is bounded from LP*(R,wy) X -+ x LPm+1 (R, wy,41) to LP(R,vg). Fairly
recently, by dominating multilinear singular integral operators by sparse operators, Chen
and Hu [4] improved the result of Grafakos et al. in [10], and obtained the following
quantitative weighted bounds for C,, 1.
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Theorem 1.3. Let m € N, p1,...,pm41 € (1, ) andp €(1/(m+1),00) with 1/p =

1/p1++1/pm+17 @:<w17~--;wm+1) ﬁ( Theﬂ
ICrmt1(at, - am; f)llr@ws)
_max{1,p} /p,....pr, 1 1/P}
S @y, o H ;[ 7s (&) 1 | 2omtt (R s)- (1.2)
J=1

We remark that the study of quantitative weighted bounds for classical operators in
harmonic analysis was begun by Buckley [1] and then continued by many other authors;
see [17-19, 21,22, 24,26, 27] and references therein.

Observe that (1.2) also holds if maxj<j<m, p; = oo but p € (1/(m + 1), 00) (in this case,
||| Lo (R,w;) should be replaced by [|a; || o (&) and w; should be replaced by 1 if p; = oo).
A natural question is whether a result similar to (1.2) holds true when a; € BMO(R) for
some 1 < j < m. In this paper, we consider the operator defined by

Cerl,A(al, sy O f)(.’E)
Pa(As, ) T, (A (&) — A,(3)
—pv. / e F(y)dy, (1.3)

with Po(A;2,y) = A(z) — A(y) — A'(y)(x — y) and A’ € BMO(R). If a = A’ € LY(R) for
some ¢ € [1, 0], then
Cerl,A(ala ceey Qs f)(x) = Cm+2(a17 <oy, A f)(l’) - Cm+1(a’13 ceey G, G,f)(l')

When ai,...,a, € L®(R), it is obvious that [[7",(A;(z) — A;(y))(z —y)~" " is a
Calderén—Zygmund kernel. Repeating the argument in [5], we know that for any p €
(17 00)7

1Cmt1,4(ar, - s am; f)lle®) S 1A IBMo®) H @l oo @) 1 l| 2o m)- (1.4)
j=1

Moreover, the results in [14] imply that for each A > 0,

Hex € R:Cimar,a(ar, - am:; [)(@) > A} Saroam /R ‘f(;” log (e+ f(;”)dx

Operators like C,, 41,4 with a; € L%(R) were introduced by Cohen [5], and then con-
sidered by Hofmann [11] and other authors; see also [12-14] and the related references
therein.

Our main purpose in this paper is to establish the weighted bound similar to (1.2) for
the operator Cp,4+1,4 in (1.3). For a weight u € A (R™) = Up>14,(R™), [u]a_,, the Ay
constant of u, is defined by

[u]a, = sup /M uxo)(
Qcrr u(Q
Recall that for pi,...,pm € [1,00), @ = (wy,...,wn) € Ag(R™") if and only if vg €

App(R™) and w; Vet e 4 p, (R"); see [23] for details. Our main result can be stated
as follows.
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Theorem 1.4. LetmeN, p1,...,pm41 € [1,00),p € [1/(m+1),00) with1/p=1/p1 +
+ 1/pm+1, ’IT] = (’LUl, . .,wm+1) S AP‘(Rm+1)7 A/ S BMO(R) Wlth ||A/||BMO(R) =1.

(i) If mini<j<m41p; > 1, then

(L0 /PP /P =1
IComt1,a(a1s -y ams Olor@wa) S (@4, e e P

m
X ||fHme+1 (]R,wm+1) H ||a’j||ij (]R,wj)'
Jj=1

(ii) If p1 = -+ = pmy1 = 1, then for each X > 0,

va({z €R: |Copt1,a(a1, ... am; [)(@)] > A})
|a; (y; la;(y;)| 1/(m+1)
(H/ Alf(mil) e+m w;(y;)dy;

/(m+1)
f W)l f W)l '
x (/R)@/(er)bg(e"" W)wm+l(y)dy :

Remark 1.5. To prove Theorem 1.4, we will employ a suitable variant of the ideas of
Lerner [21] (see also [4,25] in the case of multilinear operators), to dominate C,,+1,4 by
multilinear sparse operators. This argument needs certain weak type endpoint estimates
for the grand maximal operator of Cp,41,4. Although Ka(z;31,. .., Ym+1), the kernel of
the multilinear singular integral operator C,,41,4, satisfies the non-smooth kernel condi-
tions on the variable yi, ...,y as in [7], we do not know if KA (z;91,...,Ym+1) €njoys
a similar condition on the variable y,,+1. Our argument is a modification of the proof
of [7, Theorem 1.1}, based on a local estimate (see Lemma 2.5 below), and involves the
combination of sharp function estimates and the argument used in [7].

In what follows, C' always denotes a positive constant that is independent of the main
parameters involved but whose value may differ from line to line. We write A < B to
denote that there exists a positive constant C' such that A < C'B. Furthermore, we write
A <, B to denote that there exists a positive constant C' depending only on p such that
A < CB. Subscripted constants such as C; do not change in different occurrences. For any
set £ C R™, xg denotes its characteristic function. For a cube @ C R™ (interval I C R)
and A € (0,00), we use AQ to denote the cube with the same centre as ) and whose side
length is A times that of Q). For a local function f on R and an interval I, we use (f)r to
denote the mean value of f on I, that is, (f); = [I|™! [} f(y)dy.

2. An endpoint estimate

This section is devoted to an endpoint estimate for C,,41,4. We begin with a preliminary
lemma.
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Lemma 2.1. Let A be a function on R™ with derivatives of order one in L1(R™) for
some q € (n,o00]. Then

1 1/q
A@) ~ A6 S o= ol o [ IVAGIE:)
12| Jry
where IY is the cube centred at x and having side length 2|z — y|.

For the proof of Lemma 2.1, see [5].
For v € [0,00) and a cube @ C R™, let || - || (10g )7, be the Luxemburg norm defined by

f||L(1ogL)v,Qinf{>\>0: ﬁ @log"’ <e+|f()\y)|)dy§1}.
Q

Define the maximal operator My (1o )+ by

Mp(og Ly f(x) = ZUP I £l 2.(og L),
ST

Obviously, M, (og £yo is just the Hardy—Littlewood maximal operator M. It is well known
that My (1og ) is bounded on LP(R"™) for all p € (1,00), and for A > 0,

{2 € R : My og 1)+ f(z) > A} < / @ log” <e + 'f(;)') da. (2.1)

n

Let s € (0,1/2) and Mg’s be the John—Strémberg sharp maximal operator defined by
M of (@) = sup inf inf{t > 0: {y € Q: |fw) = > #}] < sl
Sz ¢

where the supremum is taken over all cubes containing x. This operator was introduced
by John [20] and recovered by Stromberg in [30].

Lemma 2.2. Let ® be a increasing function on [0, 00) which satisfies the doubling
condition that

D(2t) < CP(t), te][0,00).
Then there exists a constant so € (0,1/2), such that for any s € (0, sol,

sup@(\)[{z € R" : |h(z)] > A} SsupP(N\)[{z € R™: Mg’sh(x) > A},
A>0 A>0

provided that

sup @(\)[{x € R" : |h(z)| > A}| < o0.
A>0

This lemma can be proved by repeating the proof of [15, Theorem 2.1]. We omit the
details for brevity.
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Lemma 2.3. Let R > 1. There exists a constant C(n, R) such that for all open sets
Q CR"™, Q can be decomposed as 2 = U;Q;, where {Q;} is a sequence of cubes with
disjoint interiors, and

(i)
dist(Q;, R"\Q)

5R <
- diam@;

< 15R,

(i) 225 xrq, (#) < Cn,rxa(2).

For the proof of Lemma 2.3, see [29, p. 256].
We return to Cy,4+1. As was proved in [7], C,,41 can be rewritten as the multilinear
singular integral operator

Cot1(ar, .- am; f)(x)

m
= K(z;y1,- s Ymta H fYm41)dy - dym1,

]Rm+l
where
(_1)me(y,n+1 a:) m

mtl H X(x/\ym+1,x\/ym+1)(yj) (2.2)

K(nyl,u'amerl):(x_y—_H)
m j=1

e is the characteristic function of [0,00), & A Ymy1 = min{x, ymi1} and 2V Y1 =
max{z, Ym1}. Obviously, for x,y1,...,¥ms1 € R,
1
1 I
(X7 e =)™

Lemma 2.4. Let K be the same as in (2.2). Then for x,2’,yi,...,Yym+1 € R with
12‘5[5 — .’1?I| < min1§j§m+1 |.T — yj|,

|K(x;y17~~‘7ym+1)‘ S; (23)

|z — |

(an+1 | Dm-‘rQ'

|K (2591, Yms1) *K(ﬂﬂl;ylw--’ymﬂ)\ N

For the proof of Lemma 2.4, see [16].

Lemma 2.5. Let A be a function on R such that A’ € BMO(R), a1, ...,a,, € L*(R).
Then for 7 € (0,1/(m + 2)) and any interval I C R,

1 . 1/7 m
(i [ emsratons om0 @) & Iflesrar [[bar 20
j=1
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Proof. For a fixed interval I C R, let ¢ € C§°(R) such that 0 < o(y) <1, ¢(y) =1
for y € I, suppp C 2I and [|¢|| @) S [I]71. Set

Ar(y) = Ay) — (A)1y, A% (y) = (Ar(y) — Ar(yo))e(y)
with yo € 37\21I, and let a¥(y) = (A¥)(y). Applying Lemma 2.1, we know that
|Ar(y) — Ar(yo)| < 1.

Thus for y € I,

201 % (14160 = Arton)]  140) = (41 xar v
S (L+1A(y) — (A1) xar (y)-
This in turn implies that
la®ll L@y S 1A IBMo) 1,
and by the generalization of Holder’s inequality (see [28, p. 64]),
la¥ Fxrllor@y S Il iog .1

Forj =1,...,m,let A?(2) = (A;(2) — Aj(yo))¢p(2) and af () = (AY)'(2). It then follows
that

laf o) < / la;(2)] dz.
471

For y € I, write

C’m,—‘,—lA Ay, ... am7fXI)( )

(A% (y 2))(A¥(y) — AP (=
- [ M) = O =D ),

0 () e) d:

:Cm+2(a17'~'a Ay s G anI)( )+Cm+1(a’fa"'7a1f1;a(pfxl)(y)'

/H“ (y) — A7 (2))
W—2

Theorem 1.1 tells us that C,, o is bounded from L*(R) x --- x L'(R) to L'/ (m+2):o(R).
As in the proof of Kolmogorov’s inequality, we can deduce that for 7 € (0,1/(m + 2)),

1 - 1/7
(m/‘Cm+2(af,-~-7afma“”;f><1)(y) dy)

m
S ZHHa“"IILl X lo @ lla? o S (D ][ asha

J=1
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On the other hand, since C,,+1 is bounded from L'(R) x ... x L}(R) to LY/ (m+1):o(RR),
we then know that for ¢ € (0,1/(m + 1)),

1/s m
1 S —m—1
(I|/I\Cm+1(af,---,af@;a“"fo)(yﬂ dy) S T el @lla® £xr il ey

j=1
m
S lzogzor [T {lasl)ar-
j=1
Combining the last two estimates yields (2.4). (]

We now rewrite Cy,41,4 as the multilinear singular integral operator

Cm—‘rl,A(ala sy s f)(l’)

= Ka(ziy1,. .o, Ymt1) H a; (Y;) f Wm41)dyr - .- dYm1,

m
Rm+1 o1

where

Py(A;2,Ymy1)

Ka(x;y1, - Ymt+1) = K591, .-, Um 2.5
(x5 +1) (x5 +1) = (2.5)
with K (2;y1,...,Ym+1) defined by (2.2). Obviously,
1
|KA(w;y17"'aym+1)| S m+2|P2(A§5571/m+1)|~ (26)

(X5 | —w5)

Lemma 2.6. Let ¢ € C*°(R) be even, 0 < ¢ <1, ¢(0) =0 and supp¢ C [—1,1]. Set
(I)(t) = d)/(t)a (I)t(y) = tilq)(‘r/t) and kt(xvy) = (I)t(m - y)X(ac,oo)(y) FOI‘j = ]-7 s, MMy, set

K,jAt(xv Yty 7y7n) = KA(x;yla e Y152 Y541 - 7y7n+1)kt(z7yj) dz.
R'Vl

Then for j =1,...,m, Z,y1,...,Ym+1 € R and t > 0 with 2t < |z — y;],

[Ka(syn, s Yms1) = Ko (@391, Y1)

< |P(A 7, ymia)| ¢(|ym+1 Z/j|>
~ 12 .
( ZL:Jrll T = yk|)m t

Proof. We only consider 7 = 1. Write
KA(J;’ Yiye 7ym+1) - K}l,t(l‘;yh e ay’m+l)
(C)meWm ) Py (A5, Yy

(T = Y1) (2 = Ym+1)

X (X(i/\ym+17$\/ym+1)(y1) _/

— 00

) m
H X(ZAYm+1,2VYm41) (yj)
j=2

Y1

Mmoo avomsn (22 — 1) dz).
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From the proof of [7, Theorem 4.1], we find that when |z — y1| > 2t,

Y1

‘X(a:/\ymﬂ,x\/ymﬂ)(yl) - / X($/\y7n+17x\/ym+1)(z)kt (Z - y) dz

— 00
y —‘rliyl
5()(| m >.

Note that
(K a(z; 91, Yme1) — K (391, ymg1)| # 0

only if |# — Ym41| > maxi<p<m |z — yx|. Our desired conclusion then follows directly. O

Remark 2.7. We do not know if Ka(z;y1,...,Ym+1) enjoys the properties in
Lemma 2.6 concerning the variable y,,1.

We now recall the approximation to the identity introduced by Duong and McIntosh [8].

Definition 2.8. A family of operators {D;}+~¢ is said to be an approximation to the
identity in R if, for every ¢ > 0, D; can be represented by the kernel a; in the following
sense: for every function u € LP(R) with p € [1,00] and almost every x € R,

Dtu(x):/Rat(x»y)U(y) dya

and the kernel a; satisfies that for all z,y € R and ¢ > 0,

la(z, )| < he(,y) = t—l/sh<lwﬂ—/sy|>7

where s > 0 is a constant and h is a positive, bounded and decreasing function such that
for some constant 7 > 0,

lim r'*7h(r) = 0.

T—00

Lemma 2.9. Let A be a function on R such that A" € BMO(R), q1, ..., Gm+1 € [1,00).
Suppose that for some 8 € [0,00), Cpyt1,4 satisfies the estimate that

{x € R:|[Cmyr.a(a1,...,am; f)(x)] > 1}

<Y N0l g + / (@)l Tog® (e + | f(a)]) d
j=1

Then for p; € [1,¢;),j=1,...,m,

Hz € R:[Crnt1,a(ar, ... am; f)(x)] > 1}

Y Nl gy + / (@) Togmss (e + | f()]) da,
j=1

where ﬁqm+1 = if g1 € (1,00) and 5Q"m,+1 = max{1, B} if gm41 = 1.
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Proof. We employ the ideas in [7], together with some modifications. First, we prove
that

Hz € R:|Crnt, A(al,...,am;f)(a:)| > 1}

Sl @ + ||aJ||LqJ ") ()
®) R

To do this, we apply Lemma 2.3 to the set
Q={xeR: M(|la1|"*)(x) > 1},

it log?(e+ () do. (27)

and obtain a sequence of intervals {I;} with disjoint interiors, such that Q = U1,
1

L]

and Y, xar, (z) S xa(x). Let Dy be the integral operator defined by

/ktajy dy7

with k; the same as in Lemma 2.6. Then {D;};~¢ is an approximation to the identity in
the sense of Definition 2.8. Set

aj(z) = ar(z z)xr\0(7), ZDmb

|ax (z)[" dz S 1,

and

ai(x) =Y (0 () — Dyp, bl (),

1
with b (y) = a1(y)xz, (). Obviously, [|ai]|r= ) < 1. Our hypothesis states that

{2 €R: [Coy1,(ak, . ams (@) > 1}
S a2, gy +Z||aj||w o+ [ T@I log e+ /(@) do

On the other hand, as was pointed out in [8, p. 241], we know that

1/q1
lollzo =) < H doxn| S (Zi@) S o 153%-
! l

La1(R)

Thus,
|{.’L' eR: ‘Cm+1,A<a€7' . ,am,f)((lf)| > 1}‘

S a1 gy + D a1 @y + / [ @)% 10g? (e 4 | fonir () da
j=2

m
S a7 gy + 3 Nl 1%, g + / [Fon @)[9 5 108 (0 + [ 1 () dev
j=2
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Our proof for (2.7) is now reduced to proving

|{£L' eER: |Cm+1,A(a%7'--aamvf)( )‘ > 1}| S Hallle

3l + [ V@
]:

Tmt1 logqu+l (e + [fms1()|) da, (2.8)

where Gy, ., = 0 if gy € (1,00) and By, ,, = 1 if g1 = L.
We now prove (2.8). Let = U;161;. Tt is obvious that

|Q| S ”a‘lHLm
For each x € R\(), by Lemma 2.6, we can write

|Cm+1 A(a?aaﬂa e am7f)(x)|

|Po(A, 2, Ym1)] [Ym+1 — y1l\
<
Z/ erl |x_y |)m+2¢ |Il| |b1(y1)|

m+1

X H |aJ(yJ)Hf(ym+1)‘ dyy ... dym_H,
j=2

Observe that

/I 16 (1) dyn < |0,
1

and for x € R\ﬁ,

1 m
m-+2 H |aj(yj)| dyQ cee dym

/Rm_l (ZmH Yr!) j=2
H Maj(x

N
|x - ym+1

Let
\P2(A;90,ym+1)|
E(z) = I, /—fym Ay |-
0= [ R o)l v
We then have
Cnt1.a(ad,az, ..., am, f)(z H
Set,
Ar(y) = A(y) — (A . (2.9)

It is easy to verify that for all y, z € R,

Py(Asy, 2) = Pa(Arsy, 2).
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A straightforward computation involving Lemma 2.1 shows that for y,,+1 € 41,

Az () = AL (Yma1)] S |2 = yma[(L+ [(A) 1, — (A) ).
Thus,

Py(A; 2, ym dz
/NMd <Z/ (k + A (yms1) — (A1)
R\Q 26,

|5U_ym+1“3 |x_ym+1|2
SO A+ 1A (Ymrr) — (A) 1))

This, via the generalization of Holder’s inequality, yields

[ B ) ayas < 5 [ 114G — 4l ay
R\Q J4I,

\x —yP3 41,
S zog Loag, -

Combining the estimates above then yields
/}M2 E(z)dz $ ) |0l fllziogran S Y Il + /R | (y)[log(e + [ f(y)]) dy,
l 1

since
1

il /., |f(y)[log(e + | f(y)]) dy;

[fll2rog Lan S 1+
see [28, p. 69]. Thus,

‘{.’E eR: |Cm+1,A(a:1;7a2"'aamaf)(x” > 1}|

S+ e € R: Maj(a) > )|+ [{o e R\D: E(x) > 1}

S il + [ B)ds
JZZ; L% (R) Re\G

S ol o)+ 2 1l + [ 7@l og(e+ @) do
j=2

This establishes (2.8) for the case of ¢,,+1 = 1. For the case of g, +1 € (1,00), it follows
from Holder’s inequality that
1/qm+1
i ay)

ST IBIIF L 1og an S Z |- Vann ( /
! 4l
<Z‘Il|+2/ |Qm+1 dy

Thus, inequality (2.8) still holds for ¢;,+1 € (1, 00).
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With the estimate (2.7) in hand, applying the argument above to as (fixing the
exponents P1,qs, ..., Gm, qmﬂ)7 we can prove that

|{]" cR: |Cm+1,A(a17 .. aa/mvf)(x” > 1}'
2
<3 5% ) + Z o5 sy + [ [0 g (o |f(0)) o
7j=1

Repeating this procedure m times then leads to our desired conclusion. 0

Lemma 2.10. Let A be a function on R such that A’ € BMO(R). Then for s € (0,1/2),
M} (Crgr,a(ar, . am: ))(@) € Mpiog L f(x H Maj(x (2.10)

provided that aq,...,a; are bounded functions with compact supports.

Proof. Without loss of generality, we may assume that [|A’||gmor) = 1. Let 2 € R,
I C R be an interval containing x. Decompose f as

F) = FWxear(v) + F@)xmear (v) = f1(y) + (),
and for j=1,...,m

)

a;j(y) = a;j(y)xear (y) + a;(y)xr\6a1(y) = a; () + a3 (Z/)

By estimate (1.4), we know that |C,ui1.4(a1, ..., am, f?)(2)| < oo for almost every z € R
and we can choose some z; € 31\2I such that |Cpyi1 a(a1,...,am, f?)(zr)| < co. For
6 € (0,1), write

07 et a(an s D) = ot a(ar v ) ) dy
S [1Cnsatan e /W) dy
30 e atat iz P

T / Cosra(@s - 025 S2)(y) = Consra(as a2 F2)(w1)[° dy
= T+ T +111,

where A = {(i1,...,im) : i1,...,0m € {1,2}, min; i; = 1}. It follows from Lemma 2.5 that
11/6 < MLlogLf HMCL]

We turn our attention to the term III. Let A; be defined as in (2.9). Apply-
ing Lemma 2.1 and the John-Nirenberg inequality, we can verify that if y € I, and
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z € 4H1\4'T with I € N, then

[P2(Ary, 2)| S (14 [A(2) = (A)1])ly — =] (2.11)
This, along with another application of Lemma 2.1, gives us that for y € I and z,,41 €
41*%1]’\4“’7
Py(Any, zmy1)  Po(Arzr, 2myn)
|y - Zm+1| |1'I - Zm+1|
A Ar(x 1 1
l 1(y) = Ar(er)] + P2 (Ar; 21, Zmy1)] -
ly — 2m+1] |zr = 2mt1l |y — Zmal
< (U A () — (A ) 2L (2.12)

|21 — Zm1]

We now deduce from Lemma 2.4 and (2.11) that

/ . |K(y;21,---,2m+1) *K($1;21a~~~72m+1)|
RWL

|P2(Alay7z +1 ‘ .
= 2 :| IT 13zl f (zmin)ldz ... dzmia
m j=1

oo m 1
< 127 _— (2 dzs
Ng ]1;[1<|4ZI| /4[I|aj(zj)| ZJ)

1
X (Wﬂ » |A" (zmt1) — (A1) f ()] d2m+1)

MLlogLf HMCL]

On the other hand, we obtain from (2.12) and the size condition (2.3) that

Py(Ary, zme1)  Po(Anor, 2ma1)
|y - Zm+1| |iL’] - Zm+1|

/ . |K(x1;z1,...,zm+1)|’
Rm

< [T 13 GHIF? (zman) [ der -+ demyr S Mpiogof (@ HM%
j=1

Therefore, for each y € I,
|Cm+17A(a1a sy Gy fQ)( ) - Cm-ﬁ-l,A(a’l, sy s fQ)(xI)l

< MLlogLf HMG,J (213)

which shows that
1Y% S Mpiog 1f (@ H Ma(
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It remains to estimate II. For simplicity, we assume that for some lp € N, iy =--- =
1, =1 and [;,41 = -+ = iy, = 2. Observe that for y € I,

|Pa(AL; Y, 2my1)]
/]R\64I |y — Zmgr | (D) (mt1=l0)+1 |/ (zms1) ] dzmsa

oo

1
s (@F[1]) @D/ (m—To+1) /4k1(k + 1A (zm+1) — (AVIDIf (1) Azt
k=3

< ||t/ tmA1=lo) ppp log Lf ()

and

1 —lo/(m+1-1
/R\w 7D Ty 19 ()l dzg S 17 My @),
This in turn implies that for each y € I,

|Cm+17A(aila'~-aairrzn; 2)(y)|
l m
ST/ e 1 [ 1) .-
o1 Jear R\6a1 |y — 25|t/ mA1=lo

=gl JR\64I
|P2(A1;y7 Z)|
8 /]R\64I |y — 2|(m+D/(m+1-lo)+1 7= d=

m

< MLlogLf(x)HMaj(I)' (2.14)
j=1
Therefore,
Y% S Mpiogf (@) [ ] Maj ().
j=1
Combining the estimates for I, IT and IIT leads to (2.10). O

We are now ready to establish the main result in this section.
Theorem 2.11. Let A be a function on R such that A’ € BMO(R). Then

Hz € R:[Crmg1,a(@1, ... am; f)(z)] > 1}]

SZHajHLl(R)+/R\f(y)|10g(e+lf(y)l)dy- (2.15)
j=1
Proof. Without loss of generality, we may assume that aq,...,a,, are bounded

functions with compact supports. Let q1,...,¢m+1,¢ € (1,00) with 1/g=1/¢1 +--- +
1/Gm-+1. Recalling that Cp, 41,4 is bounded from L*°(R) x --- x L>(R) x L?(R) to L(R)
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(see [14]), we then know that

Sup A|{w € R ¢ [Crrg1,a (a1, oo ) (@) > N S 1712y T Nl 1%y < o

A>0 j=1

This, along with Lemmas 2.2 and 2.10, leads to

ICms1.a(a1, .. s ams )l poce @y S I Fpomer @) [ lailzo @)- (2.16)
j=1

Now let 71 € [1,q1),...,"m € [1,¢m) and 1/r =1/r1 + -4+ 1/rp + 1/¢m41. Invoking
Lemma 2.9, we deduce from (2.16) that

o € R [Copralar. s ams N@] > DS Nagle, g + 1712550 -
j=1

This, via homogeneity, shows that Cp,41,4 is bounded from L™ (R) x --- x L™ (R) x
Lim+1(R) to L™*°(R).

We now prove that for pi,...,pm € (1,00), and p € (1/(m+1),1) such that 1/p =
pi+-+1/pm +1,

Hz € R:[Crgr,a(ar, .. am; f)(x)| > 1}

<3 Nagll%s gy + / (@) log(e + | f(2)]) da. (2.17)
j=1

To this end, we choose q1, ... ¢m+1 € (1,00) suchthat 1/¢ = 1/¢1 + -+ 1/¢m4+1 < 1, and

pi€Lq1),...,p5 € [1,gm), p* € (0,1) such that 1/p* =1/p + -+ +1/p;, +1/qm4
and p* < p. Recall that Cy,41 4 is bounded from LP1(R) x --- x LPm(R) x LI+ (R) to
LP">°(R). Thus,

* . . N 2
N Hz €R:Cmy1,a(ar, - am; ()] > A} S H1 II%IILP;.(R)HfIILq,,m(R).
j=

Let ¢(t) = t?log™'(e +¢~P). A trivial computation gives us that

supp(A){z € R+ |Cooy1,a(a1, ... am; f)(z)] > A}
A>0

< sup Ap*|{$ eR: \Cm+1,A(al,~~~,am§f)($)| > )\}|
o<1

+sup Nz €R:[Cryr,alar, ... am; [)(@)] > A}
>1

m m
SN W amsr zy T NIl e ® 1 1Z2 ) T sz ry < o0
j=1 j=1
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This, via Lemmas 2.2 and 2.10 and estimate (2.1), tells us that

Hz € R:[Crng1,4(a1, .- am; f)(z)] > 1}

SAde (ZH%R Maj(x >>Ap/pf}|+|{xeR:MuogLf<x>>AP}I)
A>0

S Y 03l ) + [ @) logte+ |7z} do
j=1 R

and then establishes (2.17).
Finally, by (2.17) and invoking Lemma 2.9 m times, we obtain the estimate (2.15).
This completes the proof of Theorem 2.11. O

3. Proof of Theorem 1.4

Let S be a family of cubes and n € (0,1). We say that S is an 7-sparse family if, for
each fixed @Q € S, there exists a measurable subset Eg C @ such that |Eg| > 7|Q| and
the sets Eg are pairwise disjoint. A sparse family is called simply sparse if n = 1/2. For
a fixed cube @, denote by D(Q) the set of dyadic cubes with respect to @, that is, the
cubes from D(Q) are formed by repeated subdivision of @) and each of descendants into
2™ congruent subcubes.

For constants f(3i,..., 0, € [0,00), let G = (B1y.--,Bm). Associated with the sparse
family S and ﬁ, we define sparse operator Am;S,L(log L)d by

m

'AmSL(logL (fl""’fm Z I_IHJCJ||L(1OgL)/j ,QXQ( )

QeS j=1

Lemma 3.1. Let p1,...,pm € (1,00), p € (0,00) such that 1/p=1/p1 + -+ 1/pm,
and @ = (wi,...,wy) € Ag(R™). Set 0; = w; “1/@i= et S be a sparse family. Then
for ﬂla"'aﬂm € [0,00),

—amax{1, yeesDr /. ,6’
1A s 20g 7 (Fro - o Pl gy S (@] C0 /et /23 H 1% Nl e oy )-
Jj=1

If we Ay 1(R™), then
Vﬁ,({x eR™: -Am.g L(logL)f;(fl’ B fm)(x) > 1})

m

H (/ () log (1 + Ifg(yg)l)wg(yj)dyg>l/m,

with 8] = 370, |85

For the proof of Lemma 3.1, see [4].
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In the following, we say that U is an m-sublinear operator if U satisfies that for each
1 with 1 <7 <m,

U(fla"'?fil +fi27f’i+17"'afm)(x) S U(flﬁ"'7f’i17.fi+1)' af’m)(x)
+U(f17"'7fi27fi+1a"'afm)(x>7
and for any t € C,

‘U(flv"'atfilafi+17"'7fm)(x)‘ = ‘tHU(flvu~5filafi+17"'7fm)(x)‘-

For an m-sublinear operator U and x € N, let M, be the corresponding grand maximal
operator, defined by

MZ(flv .o 7fm)(x) = ggp ||U(f17 ceey fm) - U(leQ"'v o wmeQ’“)HLOC(Q),

with Q" = 3%Q. This operator was introduced by Lerner [21] and plays an important
role in the proof of weighted estimates for singular integral operators; see [4, 24, 25].

Lemma 3.2. Let m,x € N, U be an m-sublinear operator and M¢; the corresponding
grand maximal operator. Suppose that U is bounded from L% (R™) x --- x L™ (R™) to
L%>°(R™) for some qi,...,qm € (1,00) and q € (1/m,00) with 1/qg=1/q1 + -+ 1/qm.
Then for bounded functions f1, ..., fm, cube Qo C R™, and almost every x € Qq,

U(fixas: - Fmxay) @) S T @)+ MG (fixag, - fmxag) (@),
j=1

For the proof of Lemma 3.2, see [4, 25].
The following theorem is an extension of [21, Theorem 4.2], and will be useful in the
proof of Theorem 1.4.

Theorem 3.3. Let 31,...,0, € [0,00), kK,m € N, U be an m-sublinear operator and
MG be the corresponding grand maximal operator. Suppose that U is bounded from
LB (R"™) x -+ x Lt (R™) to LT°(R™) for some qi,...,qm € (1,00) and g € (1/m, o0)
with 1/g=1/q1 + - -+ 4+ 1/q,n, and satisfies that

H{x € R" : MG (f1,.. .y fm)(x) > 1}

<ai > [ 1htlos” o+ 11y (w)) dus
j=17R"

Then for bounded functions f1, ..., f,, with compact supports, there exists a 1/(21 - 35™)-
sparse family S such that for almost every z € R™,

U Fd @) S 3 TL i pgon s X (@)-

QeS j=1

Proof. We employ the argument used in [21], together with suitable modifications;
see also [4,25]. As in [4, 25], it suffices to prove that for each cube Qg C R™, there exist
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pairwise disjoint cubes {P;} C D(Qo) such that >, |P;[ < 11Qo| and for almost every
LS Q07

\U(fixqs, - - fmxqs) () |xqo (%)

< CH I1fill Lgog y2: 5 + Z U(fixpp, - fmxps) (@) Ixp, (2)- (3.1)

=1

To prove this, let C; > 1 (to be chosen later) and
E= {x €Qo:lfi(@)- fnl(2) > C2 I] ||fi||L(1ogL)m,Qg}
i=1

U {CU € Qo : My (fixqs,---» fmXxqy)(x) > Co H ||fi||L(logL)ﬂi,QS} :

i=1
Our assumption implies that

Hl‘ € Qo : My (fixqs, - fmxas)(x) > Co H |fi||L(logL)5i,Q6”}‘

i=1

C1 Z/ |f1 vi) logﬁi ot M a;
i
|fz |L(108, L)Pi,Qf ||fi||L(logL)51‘,7Qg
71|Q0|7
2

since

/ Mlogﬂi (e—l— M) dy; <1Qg]-

5 1fill Laog L)o@ I fill Laog )2 5
If we choose Oy large enough, our assumption then says that |E| < |Qo|/(2"72). Applying

the Calderén—Zygmund decomposition to xz on Qg at level 1/(2"*1), we then obtain a
family of pairwise disjoint cubes {P;} such that

1Pl < [PNE[< 3 \le

2n+1

and |E\ U; P;j| = 0. It then follows that >, |P;] < 11Qo| and P; N E€ # ). Therefore,

m
NU(fixqss - fmXag) — U(fixpg,- -, meP;)HLw(Pj) <y H Ifill Ltog )7 5 - (3-2)

i=1
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Note that
\U(fixqss - fmxas) (@) Ixqo (@)
<|U(fixqss - - -5 fmxas) (@)X qo\u, P, () + Z U(fixps, - fmxpr)(@)xp; (2)
j

+ Z IU(fixag, - - fmxag) = Ulfixps, - fmxer)l L= p;) xp, (@). (3.3)

Inequality (3.1) now follows from (3.2), (3.3) and Lemma 3.2 immediately. This completes
the proof of Theorem 3.3. O

For s € (0,00), let M be the maximal operator defined by
M f(z) = (M(|f")(@)"/>.
It was proved in [13, p. 651] that for s € (0,1) and A > 0,

H{z € R™ : Moh(z) > A} SA™H sup  t|{z € R™: |h(x)| > t}]. (3.4)
t>2-1/s)\

Proof of Theorem 1.4. By Lemma 3.1, Theorem 3.3 and (2.16), it suffices to prove
that the grand maximal operator /\/l?zm+1 , satisfies that

{r e R: MG . (a1, am; () > 1}
<3 ol + / F@)og(e + | £(3)]) dy. (3.5)
j=1

We assume that || A||[gyoer) = 1 for simplicity.
Let x € R and I be an interval containing x. For j = 1,...,m, set

a;(y) = a;(y)x271(y), a?(y) = a;(y)xm\271(¥)-

Also, let

') = fWxerr(y), () = F@)xr\2m (v)-
Set

A = {(il, Ce ,im+1) 1 ’Lm+1 € {1 2} 1< <m+1 Z] = 271<jnéi1IvlL+1ij = 1}

Let Ar(y) be the same as in (2.9). For each fixed £ € I and z € 2I\3/21, write
ICrnt1,4(a1, -y am; f)(§) = C1,a(a1xzrr, - -+ amXarrs fxzrr)(§)]
< Cmr1,a, (0T, aps [2)(€) = Cngr,a, (ad, -y anys £2)(2)]
+ Contr.a, (a2, a2 2)(2)]
+ Y [Cmra (et ks ()

(i150ensim )EAL

= D1(§, 2) + Da(2) + D3(§).
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As in the estimate (2.13), we know that for each z € 21\3/21,
Di(&,2) SMpwgrf(z HM%
We turn our attention to D3. We claim that for each y € 21,

> Cmgrar(al, . ams )W) S Mpog L f (= HM% (3.6)

To see this, we consider the following two cases.

Case 1. iy, = 1. In this case, maxi<i<m tx = 2. We only consider the case where
i1 ="+ =1lm_1 =1and i, = 2. It follows from the size condition (2.6) that in this case

: |am (2)]
Crn+1:4,(al, ..., :;;‘, < / a;(y;)| dy; / — _dz
| +1;Ar\%1 ‘ H | VALY ‘ J R\27T |I*Z|m+2
< / P Ar )] .
271

Let g € (1,00). Another application of Lemma 2.1 shows that for y € 2I and z € I,

1
A1) = Ar)] 5 1z = (110w 1) <11

and in this case,
[Po(Ar; 2,9)| S (1 +]A" = (A')r]).

We thus get
‘Cm-‘rl;AI(a‘ilv""aigL; )( )| S MLlOgLf HMaJ
Case 2. i,,11 = 2. As in the estimates (2.14), we also have that

Conr,alal, . .oaly, ()| S Mpiog of(a HMa]

Our argument for the above three cases leads to (3.6).
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As to the term Dy, we have by inequality (3.6) that for each z € 21,
Da(2) < [Convr,a(a1s -y ams £)(2)] + [Cntr,alat, - - angs f1)(2)]
Y Casnalal. . alps fr)(E)

(31,50 sim ) EAL

S |Cm+1;A(a%a e 7‘171713 fl>(2)‘ + |Cm+1;A(a1» o am; £)(2)]

+MLlogLf HMG,]

We can now conclude the proof of Theorem 1.4. Estimates for Dy, Dy and Ds, via
Lemma 2.5, tell us that for any 7 € (0,1/(m + 2)),

551611; |Cm+1,A(ala-~ amvf)(g) m+1 A(alv"wa}n;fl)(f”

1 1/7
< MLlogLf HMaj (|21| /2] |Cm+1,A(a17-‘-7am;f)(z)|‘rdz>

1 B 1/7
" (|21| / Consalal, . b (2] dz)

<ML10gLf HMQJ (Cm+1,A(a17"'aam;f))(x),
which implies that

MngrLA(ala”-vam;f)( ) S MpiogLf(z HMaJ

+ M‘r(cm+1;A(a17 cam; [))(@). (3.7)
Applying inequality (3.4) and Theorem 2.11, we obtain that
Hz € R: M- (Coyr,a(an, - am; f))(z) > 1}
< sup sl/(m+1)\{m ER:|Cryr,alar, ... am; f)(x)] > s}

822—1/(7n+1)r

<SS ol + / F@)og(e + | £(3)]) dy. (3.8)
j=1 R

Combining estimates (3.7) and (3.8) yields (3.5) and completes the proof of Theorem 1.4.
U
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