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Abstract

Previous fMRI research has found altered brain response after total sleep deprivation (TSD), with TSD effects
moderated by task difficulty. Specific models of the impact of sleep deprivation and task difficulty on brain
response have yet to be developed. Differences in networks of fMRI measured brain response during verbal
encoding in sleep deprived and well-rested individuals were examined with structural equation modeling (SEM).
During fMRI scanning, 23 healthy volunteers memorized words either easy or difficult to recall, 12 (well-rested)
and 36 hours (sleep deprived) after awaking. A priori models that linked specified regions of interest were
evaluated, with the focus on the extent to which two left parietal regions interacted with the left inferior frontal
gyrus (Model 1) or with the right inferior frontal gyrus (Model 2). Task difficulty, not TSD, determined which
model fit the brain response data; Model 2 fit best for hard words before and after TSD, whereas Model 1 fit best
for easy words. TSD altered the patterns of interaction within each of the best fitting models: prefrontal interactions
with the left inferior parietal lobe were diminished and intra-parietal interactions increased. Sleep deprivation and
item difficulty produce different effects on brain networks involved in verbal learning. (JINS, 2006, 12, 591–597.)
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INTRODUCTION

Increased fMRI brain response can be observed after total
sleep deprivation (TSD) (Drummond et al., 2000; Drum-
mond & Brown, 2001), especially when difficult items are
studied (Drummond et al., 2004; Drummond et al., 2005).
Previously, we argued that the interaction of sleep depriva-
tion with task difficulty supported the prediction of the com-
pensatory recruitment hypothesis, which states that task
demands influence the magnitude and location of altered
brain activation after TSD (Drummond et al., 2000; Drum-
mond & Brown, 2001). Specifically, more difficult ver-
sions of tasks elicited the increased activation after TSD,
relative to when subjects were well-rested (WR). These
increases manifested as significant activation in brain areas

not normally associated with performance of that task and
as increased magnitude of response in brain regions that are
typically responsible for task performance. In contrast, eas-
ier versions of the same tasks showed equivalent activation
while WR and after TSD. This conclusion depended on the
absence of within-region differences between the WR and
TSD conditions. The conclusion drawn from these various
studies is the brain will show an increased response to dif-
ficult task demands following TSD (relative to WR) but a
similar response to easy task demands. An alternative expla-
nation, though, to the idea that isolated brain regions will or
will not show increased activation with TSD is that sleep
deprivation might affect the interactions among brain regions
involved with task performance.

The studies cited earlier suggest an interaction between
sleep deprivation and task difficulty, but it is as yet unclear
what the unique contributions of these two factors are in
producing an increased fMRI response. Sleep deprivation
may make complex tasks more difficult to perform, as
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reflected in impaired performance on measures of mental
arithmetic, logical reasoning, sustained attention, and short-
term recognition memory after sleep deprivation (Rogers
et al., 2003). Moreover, increasing task complexity has been
found to increase fMRI response in well-rested individuals
(Drummond et al., 2003). Thus sleep deprivation might be
associated with increased brain activation simply because
sleep deprivation makes a task more difficult. If this is the
case, it implies that the neural response to increasing diffi-
culty involves the same brain networks as those altered by
sleep deprivation.

These assumptions cannot be tested using standard uni-
variate models of functional brain analysis (Frackowiak et al.,
1997) and require an understanding of how different brain
areas interact to perform the task (Luria, 1966; McIntosh,
1998, 2004). By examining networks of activation instead
of isolated regions of interest (ROI)s, a more complete
account of the impact of TSD and task difficulty on brain
function can be formulated. In this study, we use structural
equation modeling (SEM) to examine how networks of fMRI
brain response during a verbal encoding task differ as a
function of TSD and task difficulty. SEM is a well docu-
mented and verified technique that allows for such a priori
model specification along with measures of overall model
fit (Kline, 2005; Loehlin, 2004).

To test whether the brain regions interact differently or
merely respond differently in isolation following sleep depri-
vation, and to investigate the impact of task difficulty, we
developed two contrasting networks of brain activity dur-
ing verbal learning.

As a model of WR performance during verbal learning,
we hypothesized a network of activation where the left infe-
rior frontal gyrus (LIFG) mediates the left superior parietal
lobe (LSPL) and the left inferior parietal lobe (LIPL) as
illustrated by Model 1 in Figure 1. In contrast, if the right
prefrontal area becomes more active in the verbal learning
network during TSD, as shown in previous studies, then it
should play a more prominent role in influencing the two
left parietal areas, as shown by Model 2 in Figure 1. The
structural equation models, which represent these net-
works, were designed to be recursive in order to ensure

greater model stability and parsimony, and thus bidirec-
tional connections were not introduced. In addition to being
consistent with previous imaging findings in sleep depriva-
tion (Drummond et al., 2000; Drummond & Brown, 2001;
Drummond et al., 2005), these models are consistent with
cognitive neuroscience theories (Cabeza & Nyberg, 2000;
Clark & Wagner, 2003; Smith & Jonides, 1998). In partic-
ular, in well-rested states, the IFG is associated with mon-
itoring and control, whereas the parietal areas are associated
with phonological processing and short-term memory store
(Cabeza & Nyberg, 2000; Clark & Wagner, 2003; Smith &
Jonides, 1998). Moreover, TSD often produces increased
activation in the bilateral parietal lobes and inferior frontal
gyri, with the parietal regions being associated with better
recall performance (Drummond et al., 2000). As mentioned
earlier, increased brain response in the inferior frontal and
parietal cortices during TSD has been found to be greatest
when memorizing difficult words (Drummond et al., 2005).

Contrasting a priori networks of brain response allowed
us to test several hypotheses: (1) TSD will coherently alter
the pattern of regional co-activation rather than produce a
less coherent pattern. If TSD results in less coherent pat-
terns of activation (because only single regions are affected
and0or TSD reduces the interactivity of these regions), then
we would expect poorer model fits with TSD in comparison
with the WR condition, regardless of the underlying model;
(2) TSD will increase the moderating impact of some brain
areas, while lessening the importance of other areas. In
particular, the RIFG will modulate parietal lobe activity
only after TSD, whereas the modulatory effects of the LIFG
will decrease with TSD; (3) Given the role of task difficulty
in previous research, it is hypothesized that the effects of
task difficulty will be to accentuate the differences pro-
duced by TSD (Drummond et al., 2005). Specifically, the
pattern observed in hypothesis 2 should produce a better fit
after TSD when individuals encoded hard words compared
with easy words.

METHODS

Participants

Twenty-three individuals participated in this study (11F;
age5 24.26 4.8 years; education515.261.5 years). The
study was approved by the local Institutional Review Board
(the UCSD Human Research Protection Program), and it
was completed in accordance with the guidelines of the
Helsinki Declaration. All subjects provided written informed
consent. Subjects were medically healthy, free of current
and past psychiatric disorders, had no family history of
mood or psychotic disorders, did not use nicotine in any
amount, and were no more than moderate caffeine users
(,400 mg0day). Polysomnography was used to rule out
sleep disorders. Subjects reported habitually sleeping 7 to
9 hours per night between the hours of 22:00 and 08:00.

Fig. 1. A priori models testing the effects of sleep deprivation.
LIFG: left inferior frontal gyrus, RIFG: right inferior frontal gyrus,
LIPL: left inferior parietal lobe, LSPL: left superior parietal lobe.
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Experimental Periods

After two nights of sleeping in the laboratory on their habit-
ual schedule, subjects were studied with functional mag-
netic resonance imaging (fMRI) twice, both at the same
time of day: once 12 hours after waking from a normal
night of sleep in the laboratory and once after 36 hours of
no sleep (i.e., TSD). During each fMRI scan, subjects per-
formed a verbal encoding task. Whereas a fixed order of
scan session raises the possibility of order effects in the
data, we have evaluated this possibility in the past and have
found no evidence for such in this task (Drummond et al.,
2000; Drummond et al., 2005).

Experimental Task

Stimuli were presented visually on a screen at the foot of
the MRI bed that subjects viewed through a mirror fitted to
the head coil. The alternating block design task consisted of
two visually identical parts. During the entire task, subjects
saw nouns presented one at a time, each for 4s followed by
1s of a fixation asterisk. For the baseline blocks, subjects
were instructed to press a button on a hand held button box
(Current Designs, Philadelphia) to indicate whether the word
was printed in all capital or all lowercase letters. They were
instructed to not memorize these words. Subjects were
instructed to actively memorize the words presented during
the memorization blocks, and they knew they would be
tested on these words afterwards. After completion of the
entire scanning session, subjects were given a free recall
and recognition memory test. Unknown to the subjects, half
of the memorization blocks contained words that are easy
to learn, based on recallability norms, and half contained
words that are hard to learn (Christian et al., 1978). A dif-
ferent word list was used for each administration (versions
balanced across sessions), with lists matched for recallabil-
ity, word length, concreteness, and imagery. Previous pilot
studies showed that the versions provided similar recall rates
in well-rested subjects. A block design was selected for this
study to maintain consistency with previous studies. In addi-
tion, because the goal was to detect overall differences
between groups in different conditions, a block design
allowed maximum statistical power (Friston et al., 1999).
However, because of the use of this design, distinctions
cannot be made between words that were later successfully
encoded and words that were not. Thus, it is not clear to
what extent changes in brain response would be driven exclu-
sively by the successful encoding of words. An event related
design would more effectively address that issue (Chee et al.,
2003).

fMRI Data Acquisition

Data were acquired with a GE 3T scanner. Functional images
consisted of 120 gradient echo, echoplanar, images (EPI)
(TR: 2.5s, TE: 35 ms, FOV: 250 mm, 64 3 64 matrix,
3.91 mm3 3.91 mm in-plane resolution) of 32 4 mm axial

slices covering the whole brain and measuring the blood
oxygenation level dependent (BOLD) signal. The EPI images
were aligned with high-resolution anatomical images
(FSPGR: 1 mm3 resolution). The task contained 6 memo-
rization and 7 baseline blocks. Each block started with direc-
tional prompts for 2.5 s and lasted a total of 22.5 s, and
contained four nouns. Three images collected at the begin-
ning of each run were omitted from the analysis. The entire
task lasted 300 s.

Data Analysis

fMRI data were processed with AFNI software (Cox, 1996).
After motion coregistration, individual time-course BOLD
signal data were fit to a design matrix using the general
linear model (GLM). Parameters estimated from the design
matrix represented the constant, linear drift, 6 motion cor-
rection parameters, and two reference functions. The refer-
ence functions were representations of the task design
(baseline vs. easy words and baseline vs. hard words) con-
volved with an idealized hemodynamic response function
(Ward, 2002). The fit of the design matrix to the EPI time
series produced an amplitude value for each reference func-
tion. The amplitude represented the mean difference in local
scanner units between the learning and baseline conditions
over the time series weighted by the hemodynamic response
function. Data sets were then smoothed with a Gaussian
filter of 4.0 mm full-width-half-maximum and transformed
to standard atlas coordinates (Talairach & Tournoux, 1988).
We used a 3-step procedure to identify the relevant activa-
tions for analysis. In the first step, we defined a set of
hypothesis-driven search regions (Eyler Zorrilla et al., 2003)
based on the areas we expected to be critical for task per-
formance either well-rested or following sleep deprivation.
These search regions are based on our previous reports and
were identical to those used in a recent manuscript we pub-
lished with this task (Drummond et al., 2005). In the sec-
ond step, we identified significant clusters of activation at
the group level for each of the two difficulty types within
these search regions. Clusters of activation were identified
as areas containing at least 9 contiguous voxels (576 mm3 )
from areas activated at the p � .05 level from the group
analyses. This value produced a False Detection Rate of .05
against the population of detected clusters of any size. These
clusters became the relevant functional ROIs used to extract
data from each individual subject. Finally, we identified the
peak activation within the significant clusters of each ROI
for each individual. It is this peak value that subsequently
went into the SEM analysis. This process produced a peak
value within each of the specified search regions for each
individual in each of the 4 conditions: (1) WR Easy: encod-
ing easy words while WR, (2) WR Hard: encoding hard
words while WR, (3) TSD Easy: encoding easy words after
TSD, and (4) TSD Hard: encoding hard words after TSD.

Covariation matrices were calculated from the peak val-
ues and were used as the target data for structural equation
models. Mx software was used to perform the structural
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equation modeling (Neale, 2003). We assessed model fit
with the Root Mean Square Error of Approximation
(RMSEA) measure, as well as Akaike’s Information Crite-
rion (AIC) (Browne & Cudeck, 1993). RMSEA does not
assume a centralized chi-square distribution and neither AIC
nor RMSEA assume the presence of a perfect fitting “true”
model. RMSEA indicates overall model fit given the vari-
ability in the data, the parsimony of the model, and the
number of subjects. It ranges from 0.0 to 1.0, with values
below .05 indicating an excellent model fit and ..1 indi-
cating a poor model fit (Browne & Cudeck, 1993). AIC
places more value on parsimony and is one of the most
commonly used fit statistics in the SEM literature. Smaller
values indicate better fits, although the primary interpreta-
tion of the AIC index is through model comparison as
opposed to absolute values (Burnham & Anderson, 1998).

RESULTS

A General Linear Model analysis of the number of words
recalled with sleep status and word difficulty as within sub-
ject factors demonstrated a significant effect for both sleep
status, F(1,22) 5 6.24, p 5 .02, and word difficulty,
F(1,22) 5 90.35, p , .01, but not an interaction of sleep
status and word difficulty, F(1,22)5 .017, p5 .897. After
TSD, participants recalled fewer total words compared to
when they were well-rested (mean difference52.26 words).
For word difficulty, three fewer hard words were recalled
than easy words, regardless of the sleep condition (mean
difference WR5 3.0 words, and TSD5 2.91 words).

Correlations of individual peak values in each of the a
priori ROIs revealed significant correlations after TSD
between the left inferior frontal gyrus while encoding easy
words and recall of easy words (r5 .425, p5 .049), as well
as between the right inferior frontal gyrus while encoding
hard words and total words recalled (r 5 .456, p 5 .029).
An analysis of the peak values obtained from each individ-
ual for each of the a priori ROIs revealed that the majority
of these values were significantly correlated across sub-
jects, indicating that good model fits would explain a mean-
ingful amount of variance. The correlations ranged from
.164 to .746 with 23 out of 36 correlations significant with
p , .05 (18 were significant with p , .01).

Table 1 shows the results of fitting each covariance matrix
to the two models tested, presented separately for easy and
hard items. Model 1 fits the easy word condition better than
Model 2 for both WR and TSD, whereas Model 2 fits the
Hard word condition better than Model 1 for both WR and
TSD.

An examination of the relative strengths of the model
connections within each item difficulty condition illustrates
that TSD influences the pattern of interactions within the
network. Because Model 1 and Model 2 share the same
number of free parameters, comparisons can be made
between strengths of connections within the best model fit
for each condition. Examining the impact of removing spe-
cific connections and re-running the structural equation

analyses evaluates the importance of that connection for
overall model fit (Loehlin, 2004). Because the RMSEA is
scaled to a standardized range of model fit, and all of the
best fitting models start with values of 0.00, the change in
RMSEA (delta RMSEA) was used to compare each con-
nection’s contribution to the model’s ability to fit the data.
Figure 2 illustrates the impact of removing each connection
on RMSEA for each of the best fitting models within task
difficulty. As Figure 2 illustrates, there is a decrease in the
relative importance of the connection between the left and
right IFG after TSD and a concomitant increase in the impor-
tance of the connection from LSPL to LIPL for both easy
and hard items. Additionally, the prominence of the inter-
action between the IFG (left or right) and the inferior pari-
etal lobe is diminished after TSD, regardless of item
difficulty. Finally, the right IFG connection with LSPL
becomes more prominent after TSD for the hard word model.
These findings underscore the conclusion that TSD pro-
duces a modulation of connectivity within the network that
best fits the WR condition. This modulation occurs when
no difference in activation between WR and TSD occur, as
in the Easy condition, as well as when TSD alters the mag-
nitude of activation, as in the hard condition.

In order to rule out the possibility that the influence of
the RIFG is caused by an indirect effect of the right supe-
rior and inferior parietal lobes (which were not included in
either a priori model), right inferior and superior lobes were
identified and peak voxel values were calculated using the
same procedures as for the other ROIs. Exploration of var-
ious combinations of models (by starting with a fully con-
nected model and trimming connections if their removal
did not increase the error in model fit) revealed that even
with the presence of the right parietal areas, the RIFG main-
tained its importance as a feedback source for the left pari-
etal areas when hard words were learned.

Table 1. Statistical fit of the a priori models

Item
difficulty Model x2 p RMSEA AIC

Well Rested

Easy 1 0.604 0.739 0.000 –3.396
Easy 2 10.254 0.006 0.433 6.254
Hard 1 6.198 0.045 0.309 2.198
Hard 2 0.166 0.921 0.000 –3.834

Sleep Deprived

Easy 1 0.090 0.956 0.000 –3.910
Easy 2 4.592 0.101 0.243 0.592
Hard 1 8.394 0.015 0.381 4.394
Hard 2 0.110 0.946 0.000 23.890

Note. RMSEA5 root mean square error of approximation; AIC5Akaike
Information Criterion. RMSEA values ,.05 indicate an excellent model
fit, while smaller AIC values indicate a better model fit (Browne &
Cudeck, 1993; Burnham & Anderson, 1998).
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DISCUSSION

Model fit statistics confirmed that TSD coherently altered
network connections rather than producing a less coherent
network, confirming hypothesis 1. Compatible with hypoth-

esis 2, TSD reduced the importance of inferior frontal to
left inferior parietal links in accounting for the covariation
among network nodes, whereas it increased the importance
of the left superior parietal to left inferior parietal connec-
tion. Hypothesis 3 was not confirmed. Difficulty level did

Fig. 2. The reorganization of interactions after sleep deprivation
Panel A: Impact of removing the named connection on the Best Model’s Fit
Panel B: Summary of Sleep Deprivation’s Impact on Model Connections. Dashed lines indicate decreased strength
following total sleep deprivation, solid lines indicate increased strength.
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not generally potentiate the impact of TSD on the network
of connections. Rather, the impact of TSD on network con-
nections differed for easy and hard words, because learning
networks differed depending on difficulty level. In partic-
ular, variation in item difficulty determined whether pari-
etal areas interacted more with the LIFG or the RIFG while
WR. Although the impact of TSD on network connections
differed by difficulty level, some similar effects of TSD
were seen for easy and hard words. Regardless of difficulty,
interhemispheric interaction between the LIFG and RIFG
decreased after TSD, and intrahemispheric communication
between the LIPL and LSPL increased. Whereas it is not
clear if this shift in the pattern of activation may be indic-
ative of a compensatory response to TSD, it demonstrates a
coherent change in the pattern of activation in response to
TSD. It may also help explain why we previously found the
left parietal cortex to be critical for task performance after
TSD (Drummond et al., 2000; Drummond et al., 2005). The
shift in RIFG interactions from LIPL to LSPL after TSD
may indicate a change in encoding strategy, because the
LSPL is less integrative than the LIPL (Cabeza & Nyberg,
2000). The SEM results are also consistent with the recall
data, which indicated a large effect of word difficulty (asso-
ciated with a different model fit) and a lesser effect of sleep
status on the total number of words recalled (associated
with changes in interactions within a good fitting model).

The results described earlier show that TSD and item
difficulty differentially influence brain networks involved
in verbal learning, at least for the small network of areas
selected for analysis. TSD altered the strength of the con-
nections within the best fitting models without altering the
overall model fit. Item difficulty appears critical in deter-
mining the intrinsic connectivity of the involved networks.
TSD appears to modulate the connectivity strength among
established network connections, rather than establish new
connections to previously uninvolved regions. The study
findings support the view that TSD does not elicit activa-
tion in new brain areas, so much as it produces a modula-
tion of connectivity within networks used when WR.
According to this view, prior studies have found activations
in “new” brain regions by altering the strength of connec-
tions within the network, thus, activating nodes that are
latent when individuals are well rested. More broadly, these
results shed an alternative light on imaging studies that inter-
pret an increased fMRI response as a recruitment of new
brain areas. Such interpretations are common in the study
of addiction, aging, Alzheimer disease, and schizophrenia
(e.g., Bondi et al., 2005; Cabeza et al., 2002; Davidson &
Heinrichs, 2003; Tapert et al., 2004)

This richer account of changes in brain function with
TSD is only possible through use of theoretically deter-
mined functional connectivity analysis with a priori ROIs
and contrasting network connections. Moreover, theoreti-
cally based a priori models do not capitalize as much on
chance as do the exploratory model trimming approaches
that are often used in the SEM literature (Horwitz et al.,
1999; Horwitz, 2003; Horwitz et al., 2005; MacCallum,

1986). However, the models tested in this study are greatly
simplified. Because of concerns about power and noise
within the data, the smallest possible number of ROIs and
connections were chosen based on previous research that
contrasted WR and TSD brain response. In future studies
we plan to use a larger number of participants, and gradu-
ally develop a more comprehensive model of encoding,
including hippocampal and lateral temporal areas. The cur-
rent study serves as a starting point to test more compre-
hensively developed a priori models in the future.
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