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We consider a strongly nonlinear long wave model for large amplitude internal waves
in a three-layer flow between two rigid boundaries. The model extends the two-layer
Miyata–Choi–Camassa (MCC) model (Miyata, Proceedings of the IUTAM Symposium
on Nonlinear Water Waves, eds. H. Horikawa & H. Maruo, 1988, pp. 399–406; Choi
& Camassa, J. Fluid Mech., vol. 396, 1999, pp. 1–36) and is able to describe the
propagation of long internal waves of both the first and second baroclinic modes.
Solitary-wave solutions of the model are shown to be governed by a Hamiltonian
system with two degrees of freedom. Emphasis is given to the solitary waves of
the second baroclinic mode (mode 2) and their strongly nonlinear characteristics
that fail to be captured by weakly nonlinear models. In certain asymptotic limits
relevant to oceanic applications and previous laboratory experiments, it is shown that
large amplitude mode-2 waves with single-hump profiles can be described by the
solitary-wave solutions of the MCC model, originally developed for mode-1 waves
in a two-layer system. In other cases, however, e.g. when the density stratification is
weak and the density transition layer is thin, the richness of the dynamical system with
two degrees of freedom becomes apparent and new classes of mode-2 solitary-wave
solutions of large amplitudes, characterized by multi-humped wave profiles, can be
found. In contrast with the classical solitary-wave solutions described by the MCC
equation, such multi-humped solutions cannot exist for a continuum set of wave
speeds for a given layer configuration. Our analytical predictions based on asymptotic
theory are then corroborated by a numerical study of the original Hamiltonian system.

Key words: internal waves, stratified flows, solitary waves

1. Introduction
Oceanic internal waves of large amplitude have been observed frequently in coastal

oceans. This fascinating geophysical phenomenon manifests whenever stably stratified
fluids are set in motion, and has been widely investigated for over five decades.
The majority of observations are of the first baroclinic mode (mode-1) waves (see

† Email address for correspondence: r.barros@lboro.ac.uk
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Helfrich & Melville (2006) and references therein), to which most studies in the
literature are devoted. However, there has been an increasing interest in higher
baroclinic modes, since these may be more prevalent than previously thought. This
view is supported, in particular, by a large number of recent observations of second
baroclinic mode (mode-2) waves in the ocean (see e.g. Shroyer, Moum & Nash 2010;
Yang et al. 2010).

Based on linear theory, isopycnals of mode-1 waves are displaced in the same
direction, and can either be of elevation or depression. Mode-2 waves, on the other
hand, have isopycnals displaced in opposite directions, are less energetic and can be
of two types: convex or concave.

Significant progress has been made in describing mode-2 waves through theoretical
investigations (Benjamin 1966; Davis & Acrivos 1967; Tung, Chan & Kubota
1982), numerical analyses (Tung et al. 1982; Terez & Knio 1998; Rusas & Grue
2002; Terletska et al. 2016), and laboratory experiments (Davis & Acrivos 1967;
Maxworthy 1980; Gavrilov, Liapidevskii & Gavrilova 2011; Gavrilov, Liapidevskii &
Liapidevskaya 2013; Carr, Davies & Hoebers 2015). The existence of mode-2 internal
solitary waves has been rigorously established for the fully nonlinear theory by Tung
et al. (1982) only under the Boussinesq approximation and when the domain and
density stratification are horizontally symmetric. These conditions are often found in
the majority of laboratory, theoretical and numerical studies mentioned above. Yet,
having, for example, the centre of the pycnocline located exactly at mid-depth in the
water column and, therefore, satisfying the symmetry condition, is unlikely to occur
in the field where most observations are made. The understanding of the influence
on the structure of mode-2 waves caused by a non-zero offset pycnocline has not
been studied until the recent works by Gavrilov et al. (2013), Olsthoorn, Baglaenko
& Stastna (2013) and Carr et al. (2015).

In many cases, a smoothly stratified ocean can be approximated by a stack of
several homogeneous layers. Motivated by the success of the strongly nonlinear model
proposed by Miyata (1988) and Choi & Camassa (1999) in describing large amplitude
(mode-1) long waves in salt-stratified experiments with a sharp density transition layer
(Camassa et al. 2006), commonly referred to as the Miyata–Choi–Camassa (MCC)
model, we adopt the extension of this model to a stack of three homogeneous layers
confined between two rigid boundaries (Choi 2000) to investigate the properties of
large amplitude mode-2 solitary waves (see also Liu & Wang 2012, for a closely
related model). The same model has been used by Jo & Choi (2014) to study
numerically the generation of mode-2 internal solitary waves. Also, a reduced version
of this model was proposed by Gavrilov et al. (2011, 2013) to study the propagation
of waves over a shelf. Such reduction was achieved by considering the Boussinesq
approximation and a thin intermediate layer in which the pressure is assumed to be
hydrostatic.

One of the characteristics of mode-2 waves is the development of an oscillatory
wave tail (Akylas & Grimshaw 1992; Vanden-Broeck & Turner 1992; Rusas & Grue
2002), which is commonly attributed to the property of long waves of mode 2 being
able to propagate at the same speed as short waves of mode 1. A special member
of this family of waves arises when the ripples vanish. These are called embedded
solitary waves and have been the object of numerous studies, since the seminal work
of Yang, Malomed & Kaup (1991). Whether or not these are the only solitary waves
decaying to zero at infinity is an open question. Nevertheless, the existence of classical
solitary waves cannot be simply ruled out. We start from this premise to present in this
study a detailed analysis of the classical internal solitary-wave solutions of the strongly
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nonlinear three-layer model. In particular, we aim to provide a better understanding of
the richness of coherent structures of mode-2 waves arising in a three-layer system.

Physical regimes for which mode-2 internal solitary waves can be described by the
MCC solutions are first identified. In the case when the thickness of the intermediate
layer is much thinner than other layer thicknesses, it is then found that classical
solitary wave profiles of large amplitude are difficult to compute. Using an asymptotic
approach, it is shown that new classes of solutions to reduced equations in this limit,
characterized by multi-humped profiles, exist at a countable, dense set of wave
speeds. Previously, these multi-humped waves have been observed experimentally. For
example, in the internal wave experiment of Gavrilov et al. (2013), a single hump
on the upper interface over two humps on the lower interface was observed. Here, a
rationale is presented to unveil a myriad of solutions obtained with different physical
parameters.

This paper is organized as follows. The mathematical model for the three-layer
system is introduced in § 2. After discussing in § 3 the weakly nonlinear limit of
the model, we derive in § 4 the dynamical system governing its large amplitude
solitary-wave solutions. The system is then investigated in § 5 within a few physical
regimes for which asymptotic solutions are provided for the second baroclinic mode
and compared with numerical solutions of the dynamical system. In § 6, for the
case of thin transition layer with weak stratification, it is shown that multi-humped
solitary waves are possible and their asymptotic and numerical solutions are presented.
Concluding remarks are given in § 7.

2. Mathematical model
Consider a physical system composed of three homogeneous liquid layers with

densities ρi, i= 1, 2, 3 (from top to bottom), bounded above and below by rigid flat
surfaces (see figure 1). To examine large amplitude long waves in this system, we
adopt the strongly nonlinear multi-layer model proposed by Choi (2000), which, under
weak horizontal vorticity and long wave (ε=Hi/λ� 1) assumptions, is formulated in
terms of the thicknesses of each layer, denoted by hi, and depth-averaged horizontal
velocities ui. Namely, consisting of the mass conservation laws for each layer,

hi,t + (hi ui)x = 0, (2.1)

and the momentum equations,

ui,t + uiui,x + gηi,x +
Pi,x

ρi
=

1
hi

(
1
3

h3
i ai +

1
2

h2
i bi

)
x

+

(
1
2

hiai + bi

)
ηi+1,x, (2.2)

where ai(x, t) = −(D2
i hi)/hi and bi(x, t) = −D2

i ηi+1 with Di = ∂/∂t + ui ∂/∂x. The
location of the upper and lower interfaces are defined by z = η2 ≡ ζ1(x, t) and z =
η3 ≡−H2 + ζ2(x, t), respectively. The two rigid walls are located at z= η1 ≡ H1 and
z= η4≡−(H2+H3). The thickness of the ith layer hi is then given by hi= ηi− ηi+1,
or, more precisely,

h1 =H1 − ζ1, h2 = ζ1 − ζ2 +H2, h3 =H3 + ζ2, (2.3a−c)

where Hi denotes the undisturbed thickness of the ith layer. The pressure at the
location z= ηi(x, t) denoted by Pi satisfies the recursion formula

Pi+1 = Pi + ρi(ghi −
1
2 aih2

i − bihi). (2.4)

Therefore, for three-layer flows between two rigid walls, a closed system for nine
unknowns hi, ui, Pi (i= 1, 2, 3) consists of (2.1) and (2.2) for i= 1, 2, 3 and (2.4) for
i= 1, 2 along with a geometric constraint given by h1 + h2 + h3 =H1 +H2 +H3.
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FIGURE 1. A three-fluid system.

Using (2.4), the momentum equations given by (2.2) can be also written as

ui,t + uiui,x + gηi+1,x +
Pi+1,x

ρi
=

1
hi

(
1
3

hi
3ai −

1
2

hi
2bi−1

)
x

−

(
1
2

hiai − bi−1

)
ηi,x, (2.5)

which might be more convenient for the top layer bounded above by a rigid wall,
where the pressure is unknown. For two-layer flows between two rigid walls (η1,x =

η3,x= 0), a system given by (2.5) for i= 1, (2.2) for i= 2, and (2.1) for i= 1, 2 yields
the MCC equations.

These long wave models can be also given in conservative form, which is
particularly well suited to examine their travelling-wave solutions. With this in view,
equations (2.5) and (2.2) for the top (i = 1) and bottom (i = 3) layers, respectively,
are rewritten as(

u1 +
1
6

h2
1 u1,xx

)
t

+

(
gη2 +

1
2

u1
2
+

1
6

h2
1 u1 u1,xx +

P2

ρ1
+

1
2

h1D2
1 h1

)
x

= 0, (2.6)(
u3 +

1
6

h2
3 u3,xx

)
t

+

(
gη3 +

1
2

u3
2
+

1
6

h2
3 u3 u3,xx +

P3

ρ3
+

1
2

h3D2
3 h3

)
x

= 0. (2.7)

For the intermediate layer (i= 2), the following two equivalent forms resulting from
(2.2) and (2.5) will be useful:

U2,t + (u2U2 +Q2)x = 0, (2.8)
V2,t + (u2V2 + R2)x = 0, (2.9)

with
U2 = u2 +

1
6 h2

2u2,xx −
1
2 h2(D2η3)x +

1
2 D2h2 η3,x +D2η3 η3,x,

Q2 =−
1
2

u2
2 + gη2 +

P2

ρ2
+

1
2

h2D2
2h2 + h2D2

2η3 −
1
2
(D2η3)

2,

 (2.10)

and
V2 = u2 +

1
6 h2

2u2,xx +
1
2 h2(D2η2)x −

1
2 D2h2 η2,x +D2η2 η2,x,

R2 =−
1
2

u2
2 + gη3 +

P3

ρ2
+

1
2

h2D2
2h2 − h2D2

2η2 −
1
2
(D2η2)

2.

 (2.11)

When convenient, it will be assumed, without loss of generality, that the strati-
fication is given as

ρ1 = ρ0(1−∆1), ρ2 = ρ0, ρ3 = ρ0(1+∆2), (2.12a−c)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

79
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.795


Strongly nonlinear internal waves in three-layer flows 883 A16-5

with 0<∆1 < 1, ∆2 > 0. Furthermore, we may introduce a parameter δ =∆1/∆2 to
write alternatively ρ1 = ρ0(1− δ∆2), with 0< δ < 1/∆2.

When the system given by (2.1)–(2.2) is linearized about the equilibrium ζ1= ζ2=

u1 = u2 = 0, P1 = const., and solutions are sought as being proportional to exp[ik(x−
ct)], with wavenumber k and wave speed c, one obtains the linear dispersion relation
for the model

(ρ1ρ2H3θ1θ2 + ρ1ρ3H2θ1θ3 + ρ
2
2 H1H2H3k2θ4 + ρ2ρ3H1θ2θ3)c4

+ g(ρ1(ρ2 − ρ3)H2H3θ1 + ρ2(ρ1 − ρ3)H1H3θ2 + ρ3(ρ1 − ρ2)H1H2θ3)c2

+ g2H1H2H3(ρ1 − ρ2)(ρ2 − ρ3)= 0, (2.13)

where
θ4 =

1
12 k2H2

2 + 1, θi =
1
3 k2H2

i + 1, i= 1, 2, 3. (2.14a,b)

Equation (2.13) yields two modes, known as mode 1 (faster) and mode 2 (slower)
according to the magnitude of the wave speed (see figure 2). Notice that all four roots
of (2.13) are always real, as shown in appendix A.

In the long-wave limit when k→ 0, the linear long wave speeds c±0 are found as
the roots of the equation

(ρ1ρ2H3 + ρ1ρ3H2 + ρ2ρ3H1)c0
4

+ g(ρ1(ρ2 − ρ3)H2H3 + ρ2(ρ1 − ρ3)H1H3 + ρ3(ρ1 − ρ2)H1H2)c0
2

+ g2H1H2H3(ρ1 − ρ2)(ρ2 − ρ3)= 0. (2.15)

Furthermore, in the long-wave limit, it can be shown that the ratio between the two
interface displacements is given by

ζ2

ζ1
=
(ρ1H2 + ρ2H1)c2

0 − gH1H2(ρ2 − ρ1)

ρ2H1c2
0

. (2.16)

This ratio can have different signs, according to the wave mode considered. Given that

(c−0 )
2 <

gH1H2(ρ2 − ρ1)

ρ1H2 + ρ2H1
< (c+0 )

2, (2.17)

it then follows from (2.16) that linear long waves of the second (first) baroclinic mode
have the opposite (same) polarities.

3. Weakly nonlinear theory
We show in this section that the strongly nonlinear model reduces, in the weakly

nonlinear limit of a/Hi = O(H2
i /λ

2), with a and λ typical values of amplitude and
wavelength, to Boussinesq-type equations. The weakly nonlinear model consists of
(2.1) and

ui,t + uiui,x + gηi,x +
Pi,x

ρi
=+

1
3

H2
i ui,xxt −

1
2

Hi ηi+1,xtt, (3.1)

where i= 1, 2, 3 and the pressure Pi is given recursively by

Pi+1 = Pi + ρi(ghi −
1
2 H2

i ui,xt +Hi ηi+1,tt), (3.2)

with η1,t = 0, η2,t = ζ1,t, η3,t = ζ2,t and η4,t = 0.
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FIGURE 2. Dispersion relation (2.13) for different physical parameters. The axes have
been non-dimensionalized by the total depth H = H1 + H2 + H3, and the plots show
how the square of the Froude number c2/gH depends on the dimensionless wavenumber
kH. The dashed lines correspond to the linearized Euler equations and the solid lines
correspond to the present model (2.1)–(2.2). The stratification is given by (2.12), with
∆1 = δ∆2, and the physical parameters are set to H1/H = 0.4, H2/H = 0.2, ∆2 = 0.1.
(a) δ = 1, (b) δ = 5.

Furthermore, if only uni-directional waves are considered, a Korteweg–de Vries
(KdV) model can be derived, for example, for the upper interface, as

ζ1,t + c0 ζ1,x + α ζ1 ζ1,x + β ζ1,xxx = 0, (3.3)

with coefficients α and β given by

α =
3
2

c0

ρ3

H2
3
γ 3
+
ρ2

H2
2
(1− γ )3 −

ρ1

H2
1

ρ3

H3
γ 2
+
ρ2

H2
(1− γ )2 +

ρ1

H1

,

β =
1
6

c0
ρ3H3γ

2
+ ρ2H2(1+ γ + γ 2)+ ρ1H1

ρ3

H3
γ 2
+
ρ2

H2
(1− γ )2 +

ρ1

H1

,


(3.4)

where γ is defined as

γ = 1+
ρ1H2

ρ2H1
− g

(
ρ2 − ρ1

ρ2

)
H2

c2
0
, (3.5)

or, alternatively,

γ =

[
1+

ρ3H2

ρ2H3
− g

(
ρ3 − ρ2

ρ2

)
H2

c2
0

]−1

. (3.6)

Here we have used (2.15), which can be written as[
1+

ρ1H2

ρ2H1
− g

(
ρ2 − ρ1

ρ2

)
H2

c2
0

] [
1+

ρ3H2

ρ2H3
− g

(
ρ3 − ρ2

ρ2

)
H2

c2
0

]
= 1. (3.7)

Then, the lower interface is determined through the relationship ζ2=γ ζ1, in agreement
with linear theory (see (2.16)). First and second baroclinic mode solutions are obtained
by considering c+0 and c−0 , respectively, in the definition of γ , which implies γ + > 0
and γ − < 0.
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3.1. Boussinesq approximation
The Boussinesq approximation is commonly adopted in the study of stratified fluids
when the density variation is small. For the physical system under consideration, under
the Boussinesq approximation, both ∆1 = (ρ2 − ρ1)/ρ2 and ∆2 = (ρ3 − ρ2)/ρ2 are
assumed small (� 1) and of the same order of magnitude. Then, the coefficients of
the KdV equation (3.3) are simplified to

α =
3
2

c0

1
H2

3
γ 3
+

1
H2

2
(1− γ )3 −

1
H2

1
1

H3
γ 2
+

1
H2
(1− γ )2 +

1
H1

,

β =
1
6

c0
H3γ

2
+H2(1+ γ + γ 2)+H1

1
H3
γ 2
+

1
H2
(1− γ )2 +

1
H1

,


(3.8)

with γ now given by

γ = 1+
H2

H1
−

g′1H2

c2
0
, (3.9)

or, equivalently,

γ =

[
1+

H2

H3
−

g′2H2

c2
0

]−1

, (3.10)

in order to satisfy the condition for the linear long wave speeds. Here, g′1 = g∆1 and
g′2= g∆2 denote reduced gravities. These coefficients coincide with those presented by
Yang et al. (2010), based on the work by Benney (1966) (see also Benjamin 1966;
Grimshaw 1981).

3.2. Criticality condition and polarity of internal solitary waves
Based on KdV theory for (3.3), solitary-wave solutions may have different polarities,
according to the sign of the quadratic nonlinearity coefficient α (notice that β > 0),
being of elevation (depression) when α > 0 (< 0). The KdV model also predicts that
no solitary-wave solutions exist in the critical case when the quadratic nonlinearity
coefficient vanishes, i.e.

ρ3

H2
3
γ 3
+
ρ2

H2
2
(1− γ )3 −

ρ1

H2
1
= 0, (3.11)

with γ defined by (3.5). Figures 3 and 4 display how the criticality condition (3.11)
depends on the physical parameters considered (similar diagrams can be found in
Kurkina et al. (2006) and Yuan, Grimshaw & Johnson (2018), under the Boussinesq
approximation). It must be stressed that, contrary to the two-layer case (with or
without a top rigid lid, cf. Choi & Camassa (1999) and Barros (2016)), criticality
cannot be expressed in a polynomial fashion on the physical parameters for each one
of the wave modes considered (see appendix B for further considerations).

4. Formulation of solitary waves as a dynamical system
To examine the travelling-wave solutions of our model, we consider the ansatz ζi=

ζi(X), ui = ui(X) and P1 = P1(X), where X = x− ct. It follows from (2.1) that

(ui − c)hi = const.≡mi, i= 1, 2, 3. (4.1)
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FIGURE 3. Criticality condition (3.11) for the slow mode (solid line). The shaded
region represents the set of parameters for which the left-hand side of (3.11) is positive
(i.e. α(γ −)> 0), and, therefore, KdV theory predicts convex mode-2 waves. The axes have
been non-dimensionalized by the total depth H = H1 + H2 + H3 and the diagrams are
presented on the (H1/H,H2/H)-plane. The stratification is given by (2.12), with ∆1= δ∆2,
and ∆2 = 0.01. (a) δ = 0.5, (b) δ = 1, (c) δ = 2.
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FIGURE 4. Criticality condition (3.11) for the fast mode (solid line). The shaded region
represents the set of parameters for which the left-hand side of (3.11) is positive
(i.e. α(γ +)> 0), and, therefore, KdV theory predicts mode-1 waves of elevation. The axes
have been non-dimensionalized by the total depth H=H1+H2+H3 and the diagrams are
presented on the (H1/H,H2/H)-plane. The stratification is given by (2.12), with ∆1= δ∆2,
and ∆2 = 0.01. (a) δ = 0.5, (b) δ = 1, (c) δ = 2.

We proceed by integrating once equations (2.6) and (2.8) and eliminating P2 to obtain

1
3 h1h2(ρ1m2

1h2 + ρ2m2
2h1)ζ

′′

1 + (
1
6ρ2m2

2h2
1h2)ζ

′′

2

+
1
6(ρ1m2

1h2
2 − ρ2m2

2h2
1)ζ
′2
1 +

1
3ρ2m2

2h2
1 ζ
′

1ζ
′

2 +
1
3ρ2m2

2h2
1 ζ
′2
2

= (ρ2κ2 − ρ1κ1)h2
1h2

2 +
1
2ρ1m2

1h2
2 −

1
2ρ2m2

2h2
1 + (ρ1 − ρ2)gη2h2

1h2
2. (4.2)

Similarly, we integrate once equations (2.7) and (2.9) and eliminate P3, to yield

1
6ρ2m2

2h2h2
3 ζ
′′

1 +
1
3(ρ3m2

3h2
2h3 + ρ2m2

2h2h2
3)ζ
′′

2

−
1
3ρ2m2

2h2
3 ζ
′2
1 −

1
3ρ2m2

2h2
3 ζ
′

1ζ
′

2 +
1
6(ρ2m2

2h2
3 − ρ3m2

3h2
2)ζ
′2
2

= (ρ3κ3 − ρ2κ4)h2
2h2

3 +
1
2ρ2m2

2h2
3 −

1
2ρ3m2

3h2
2 + (ρ2 − ρ3)gη3h2

2h2
3. (4.3)
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Here, the constants κi, i = 1, 2, 3, 4 are simply integration constants, and thus can
be determined by imposing boundary conditions. In particular, to study solitary-wave
solutions, we impose the boundary conditions: ζi, ζ ′i , ζ

′′

i → 0, ui→ 0, P1→ P∞1 , as X
goes to infinity, from which it follows that mi =−cHi, and

κ1 =
1
2

c2
+

P∞2
ρ1
, κ2 =

1
2

c2
+

P∞2
ρ2
, κ3 =

1
2

c2
− gH2 +

P∞3
ρ3
,

κ4 =
1
2

c2
− gH2 +

P∞3
ρ2
.

 (4.4)

After rearrangement we can cast the dynamical system into the following form:

c2

{
1
3

(
ρ1

H2
1

h1
+ ρ2

H2
2

h2

)
ζ ′′1 +

1
6
ρ2

H2
2

h2
ζ ′′2 +

1
6

(
ρ1

H2
1

h2
1
− ρ2

H2
2

h2
2

)
ζ ′21 +

1
3
ρ2

H2
2

h2
2
ζ ′1ζ
′

2

+
1
3
ρ2

H2
2

h2
2
ζ ′22

}
=

1
2

c2

[
(ρ2 − ρ1)+ ρ1

H2
1

h2
1
− ρ2

H2
2

h2
2

]
− g(ρ2 − ρ1)ζ1, (4.5)

c2

{
1
6
ρ2

H2
2

h2
ζ ′′1 +

1
3

(
ρ2

H2
2

h2
+ ρ3

H2
3

h3

)
ζ ′′2 −

1
3
ρ2

H2
2

h2
2
ζ ′21 −

1
3
ρ2

H2
2

h2
2
ζ ′1ζ
′

2

+
1
6

(
ρ2

H2
2

h2
2
− ρ3

H2
3

h2
3

)
ζ ′22

}
=

1
2

c2

[
(ρ3 − ρ2)+ ρ2

H2
2

h2
2
− ρ3

H2
3

h2
3

]
− g(ρ3 − ρ2)ζ2.

(4.6)

We may then introduce a potential V(ζ1, ζ2)

V(ζ1, ζ2) = −
1
2

c2

(
ρ2 − ρ1 + ρ1

H1

h1

)
ζ1 +

1
2
(ρ2 − ρ1)g ζ 2

1

−
1
2

c2

(
ρ3 − ρ2 − ρ3

H3

h3

)
ζ2 +

1
2
(ρ3 − ρ2)g ζ 2

2

−
1
2

c2ρ2
H2

h2
(ζ2 − ζ1), (4.7)

and a Lagrangian L:

L(ζ1, ζ2, ζ
′

1, ζ
′

2) =
1
6

c2

(
ρ1

H2
1

h1
+ ρ2

H2
2

h2

)
ζ ′21

+
1
6

c2ρ2
H2

2

h2
ζ ′1ζ
′

2 +
1
6

c2

(
ρ2

H2
2

h2
+ ρ3

H2
3

h3

)
ζ ′22 − V(ζ1, ζ2), (4.8)

such that (4.5)–(4.6) are simply the Euler–Lagrangian equations

Lζi −
d

dX
(Lζ ′i

)= 0, i= 1, 2. (4.9)

Alternatively, the dynamical system (4.9) can be written as a Hamiltonian system
with two degrees of freedom. To do so, consider the symmetric matrix M:

M(ζ1, ζ2)=


1
3

c2

(
ρ1

H2
1

h1
+ ρ2

H2
2

h2

)
1
6

c2ρ2
H2

2

h2

1
6

c2ρ2
H2

2

h2

1
3

c2

(
ρ2

H2
2

h2
+ ρ3

H2
3

h3

)
 , (4.10)
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such that L can be given in compact form as

L= 1
2 q′TM q′ − V(q), (4.11)

with q= (ζ1, ζ2). By defining p= ∂L/∂q′, we can then introduce the Hamiltonian

H= p · q′ −L, (4.12)

which can be given explicitly in terms of the variables (q, p) as

H= 1
2 pTM−1p+ V, (4.13)

by noticing that (ζ ′1, ζ
′

2) 7−→ (p1, p2) is a change of variables. Here, we have used
the symmetry of M to write p=M q′, together with the fact that M is non-singular.
Finally, Hamilton’s equations corresponding to (4.9) are given by

q′ =
∂H
∂p
, p′ =−

∂H
∂q
. (4.14a,b)

4.1. Linearization at the origin
Clearly, the origin is a critical point of the dynamical system composed by (4.5)–(4.6).
When linearized about the origin, the system can be cast into matrix form

Aζ ′′+ Bζ = 0, (4.15)

by introducing ζ = (ζ1, ζ2) and symmetric matrices

A= c2

[
1
3(ρ1H1 + ρ2H2)

1
6ρ2H2

1
6ρ2H2

1
3(ρ2H2 + ρ3H3)

]
,

B=

g(ρ2 − ρ1)−

(
ρ1

H1
+
ρ2

H2

)
c2 c2 ρ2

H2

c2 ρ2

H2
g(ρ3 − ρ2)−

(
ρ2

H2
+
ρ3

H3

)
c2

 .


(4.16)

Looking for values of λ for which there are solutions of (4.15) of the form ζ = ceλX ,
with c a non-zero vector, is equivalent to finding the eigenvalues of the system, given
by the solutions of

det(B+ λ2A)= 0. (4.17)

Moreover, it can be easily checked that A is a positive definite matrix. A classical
result from linear algebra asserts that λ2 is a real root of the equation

a0λ
4
+ a2λ

2
+ a4 = 0, (4.18)

with a0 > 0 and a4 = det B, which is just a multiple of the right-hand side of (2.15).
Collision of eigenvalues can only occur at the origin, i.e. when c = c±0 . Moreover,
their nature will change with different values of the wave speed. It can be shown that:
the origin is a centre–centre equilibrium in the range ]0, c−0 [, i.e. one has four pure
imaginary eigenvalues ±iλ1,±iλ2; the origin is a saddle–centre in the range ]c−0 , c+0 [,
i.e. one has two real eigenvalues ±λ3 and two pure imaginary eigenvalues ±iλ4; the
origin is a saddle–saddle in the range ]c+0 , ∞[, i.e. one has four real eigenvalues
±λ5,±λ6, with λi all positive.
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4.2. System reduction under Boussinesq approximation
The Hamiltonian structure is preserved under the Boussinesq approximation and the
corresponding solitary-wave solutions are governed by the Euler–Lagrange equations
for the following Lagrangian L̃:

L̃(ζ1, ζ2, ζ
′

1, ζ
′

2)=
1
6

c2

(
H2

1

h1
+

H2
2

h2

)
ζ ′21 +

1
6

c2 H2
2

h2
ζ ′1ζ
′

2+
1
6

c2

(
H2

2

h2
+

H2
3

h3

)
ζ ′22 − Ṽ(ζ1, ζ2),

(4.19)
with Ṽ defined by

Ṽ(ζ1, ζ2)=
1
2

{
−c2

(
H2

1

h1
+

H2
2

h2
+

H2
3

h3

)
+ g′1 ζ

2
1 + g′2 ζ

2
2 + c2(H1 +H2 +H3)

}
. (4.20)

Furthermore, the dynamical system

L̃ζi −
d

dX
(L̃ζ ′i

)= 0, i= 1, 2, (4.21)

can be cast into the form

T1[ζ1, ζ2] = 0, T2[ζ1, ζ2] = 0, (4.22a,b)

which correspond to a system of differential equations

c2

{
1
3

(
H2

1

h1
+

H2
2

h2

)
ζ ′′1 +

1
6

H2
2

h2
ζ ′′2 +

1
6

(
H2

1

h2
1
−

H2
2

h2
2

)
ζ ′21

+
1
3

H2
2

h2
2
ζ ′1ζ
′

2 +
1
3

H2
2

h2
2
ζ ′22

}
=

1
2

c2

(
H2

1

h2
1
−

H2
2

h2
2

)
− g′1ζ1, (4.23)

c2

{
1
6

H2
2

h2
ζ ′′1 +

1
3

(
H2

2

h2
+

H2
3

h3

)
ζ ′′2 −

1
3

H2
2

h2
2
ζ ′21

−
1
3

H2
2

h2
2
ζ ′1ζ
′

2 +
1
6

(
H2

2

h2
2
−

H2
3

h2
3

)
ζ ′22

}
=

1
2

c2

(
H2

2

h2
2
−

H2
3

h2
3

)
− g′2ζ2. (4.24)

We note here that the equations under the Boussinesq approximation are invariant
under the transformation g→−g and ∆1→−∆1, ∆2→−∆2. Thus one may look
at the interfaces ‘upside down’. Under this condition, for every solution pair (ζ1, ζ2)
of a given configuration with densities ρ0(1 − ∆1), ρ0, ρ0(1 + ∆2) and undisturbed
thickness of layers H1, H2, H3 (from top to bottom), (−ζ2,−ζ1) is a solution of the
modified physical configuration with densities ρ0(1−∆2), ρ0, ρ0(1+∆1), where the
undisturbed thickness of layers are H3, H2, H1 (from top to bottom).

5. Internal solitary-wave solutions of the second baroclinic mode
In this section, we first use asymptotics to find approximate solutions of (4.5)–

(4.6) for large amplitude internal solitary waves of the slow (second baroclinic) mode
under the assumption of weak density stratification. Then we confirm the asymptotic
solutions with numerical solutions of (4.5)–(4.6).

It would be reasonable to expect that solitary-wave solutions of the first baroclinic
mode in a three-layer flow can be approximated by those in a two-layer flow bounded
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by rigid boundaries, provided the thickness of the intermediate layer is thin enough
(see appendix D). In a way, this would explain the success achieved by the MCC
model in describing mode-1 solitary waves in salt-stratified laboratory experiments
(Camassa et al. 2006). What is perhaps surprising is that in certain regimes mode-2
waves in a three-layer flow can also be approximated by those in a two-layer flow by
choosing layer thicknesses appropriately, as discussed below.

We start by writing the dynamical system (4.5)–(4.6) in non-dimensional variables
as

F2

{
1
3

(
σ1

h1
+

r2
2

h2

)
ζ ′′1 +

1
6

r2
2

h2
ζ ′′2 +

1
6

(
σ1

h2
1
−

r2
2

h2
2

)
ζ ′21

+
1
3

r2
2

h2
2
ζ ′1ζ
′

2 +
1
3

r2
2

h2
2
ζ ′22

}
=

1
2

F2

[
(1− σ1)+

σ1

h2
1
−

r2
2

h2
2

]
− (1− σ1) ζ1, (5.1)

F2

{
1
6

r2
2

h2
ζ ′′1 +

1
3

(
r2

2

h2
+
σ3 r2

3

h3

)
ζ ′′2 −

1
3

r2
2

h2
2
ζ ′21 −

1
3

r2
2

h2
2
ζ ′1ζ
′

2

+
1
6

(
r2

2

h2
2
−
σ3 r2

3

h2
3

)
ζ ′22

}
=

1
2

F2

[
(σ3 − 1)+

r2
2

h2
2
−
σ3 r2

3

h2
3

]
− (σ3 − 1) ζ2. (5.2)

Here, we have introduced variables ζ ∗i = ζi/H1 and h∗i = hi/H1. Derivatives are
calculated with respect to X∗= (x− ct)/H1 (as usual, the asterisks have been dropped
for brevity), and the Froude number F, the density ratios σi (i= 1, 3) and the depth
ratios rj ( j= 2, 3) are set as follows:

F2
= c2/gH1, σ1 = ρ1/ρ2, σ3 = ρ3/ρ2, r2 =H2/H1, r3 =H3/H1. (5.3a−e)

Obviously, the system given by (5.1)–(5.2) has trivial solutions of ζ1 = ζ2 = 0 for
which h1 = 1, h2 = r2, and h3 = r3. Hereafter we focus on non-trivial solitary-wave
solutions of the slow (second baroclinic) mode for the following three cases relevant
for realistic oceanic conditions and some laboratory experiments:

(i) small density difference between two adjacent layers: σ1 ' 1, σ3 − 1=O(1);
(ii) small density differences across all three layers: σ1 ' 1 and σ3 ' 1; and

(iii) thin transition layer with weak stratification: σ1 ' 1, σ3 ' 1, r2� 1.

5.1. Case (i): small density difference between two adjacent layers
In this case, as 1− σ1� 1, or ∆1≡ 1− σ1� 1, the top and middle layers have nearly
identical densities. Then the long wave speeds can be approximated, from (2.15), by

(c+0 )
2
=

g(ρ3 − ρ2)H3(H1 +H2)

ρ2H3 + ρ3(H1 +H2)
[1+O(∆1)], (5.4)

(c−0 )
2
=

gH1H2

H1 +H2

[
∆1 +

H2(H1 +H2)(ρ3 − ρ2)− ρ2H2
1

(H1 +H2)2(ρ3 − ρ2)
∆2

1 +O(∆3
1)

]
. (5.5)

This being the case, the displacement ratios for the two wave modes can be
approximated, from (2.16), by(

ζ2

ζ1

)+
=

H1 +H2

H1
+O(∆1),

(
ζ2

ζ1

)−
=−

ρ2H1

(ρ3 − ρ2)(H1 +H2)
∆1+O(∆2

1). (5.6a,b)
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As can be seen (5.4), the first baroclinic mode of a three-layer system in this limit
is almost equivalent to that of a two-layer system, where the density and thickness
are given, respectively, by ρ2 and H1+H2 for the upper layer and ρ3 and H3 for the
lower layer.

For the second baroclinic mode, since (ζ2/ζ1)
−
= O(∆1), the displacement of the

lower interface can be neglected for ∆1� 1, which implies that the second interface
can be replaced by a rigid boundary for the second baroclinic mode. Therefore, once
again, the second baroclinic mode of a three-layer system can be approximated by
the internal wave mode of a two-layer system, whose density and thickness are given,
respectively, by ρ1 and H1 for the upper layer and ρ2 and H2 for the lower layer. This
observation is also valid for the nonlinear problem, as shown next.

After writing σ1= 1− ε (or ∆1= ε� 1), we assume from (5.5) that F2
= εC with

C=O(1) for the slow mode. We seek approximate solutions of (5.1)–(5.2) by inserting
into this set of equations the following expansions of the interface displacements: ζk=

ζk,0+ ε ζk,1+O(ε2), (k= 1, 2). The same representation will be adopted for each layer
thickness hi= hi,0+ εhi,1+O(ε2), (i= 1, 2, 3). At leading order, it immediately follows
from (5.2) that ζ2,0= 0, as expected from (5.6). We then conclude from (5.1) that ζ1,0
is governed by

C
{

1
3

(
1

h1,0
+

r2
2

h2,0

)
ζ ′′1,0+

1
6

(
σ1

h2
1,0
−

r2
2

h2
2,0

)
ζ ′21,0

}
=

1
2

C
(

1
h2

1,0
−

r2
2

h2
2,0

)
− ζ1,0. (5.7)

After integrating this once after multiplying an integrating factor, or, equivalently,
setting to zero for homoclinic trajectories the Hamiltonian H defined by (4.13) with
ζ2,0 = 0, it can be shown that ζ1,0 is a solution of

ζ ′21,0 =
3
C
ζ 2

1,0[ζ
2
1,0 − (1− r2) ζ1,0 +C(1+ r2)− r2]

(1+ r2)[(1− r2)ζ1,0 + r2]
. (5.8)

When converted back to dimensional variables, we find that the upper interface is
approximated by the solution of the equation

ζ ′21 =
3
c2

ζ 2
1 [c

2(H2 + ζ1)+ c2(H1 − ζ1)− gε(H1 − ζ1)(H2 + ζ1)]

c2H2
1(H2 + ζ1)+ c2H2

2(H1 − ζ1)
, (5.9)

which is simply the MCC equation for the interface of two liquid layers confined by
two rigid walls placed at z=H1 and z=−H2, under the Boussinesq approximation. In
this regime, we expect a large displacement of the interface z= ζ1(x, t) characterized
by single-humped profile that broadens as the wave speed increases, while the
displacement of the interface z=−H2 + ζ2(x, t) is almost imperceptible.

The reverse situation occurs when σ3 = 1 + ε (ε � 1) while 1 − σ1 = O(1). The
solutions of the second baroclinic mode are characterized by a large displacement of
the lower interface z = −H2 + ζ2, with an almost imperceptible displacement of the
upper interface z= ζ1.

5.2. Case (ii): small density difference across all three layers
When both density increments are small and of the same order so that ∆2=O(∆1)=

O(ε), with ε � 1, then the two linear long wave speeds become comparable and
proportional to ε1/2, as can be seen from (5.4)–(5.5).
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For simplicity, we consider the case when the density increments across the first and
second interfaces are the same so that σ1= 1− ε and σ3= 1+ ε (ε� 1). Therefore, we
set F2

= εC with C=O(1) and let all other quantities be O(1). As before, approximate
solutions of (5.1)–(5.2) are sought by expanding the interface displacements in powers
of ε. Unfortunately, solving the leading-order system is as difficult as solving the full
dynamical system. However, when the thicknesses of the top and bottom layers are
almost the same (r3≈ 1), some simplification can be made. As we will see, at leading
order, mode-2 solutions are anti-symmetric and are governed by a Hamiltonian system
with one degree of freedom.

To find such an approximate system, we assume the density increment across the
layers is small and the same so that we can impose the Boussinesq approximation
to the original system with g′1 = g′2 = g′. Furthermore, if the thicknesses of the
unperturbed top and bottom layers are assumed the same so that H1 =H3 (known as
the symmetric configuration), the system (4.22) enjoys the following property:

T2[ζ1, ζ2] =−T1[−ζ2,−ζ1]. (5.10)

This implies that, if (ζ1, ζ2) is a solution, (−ζ2,−ζ1) is also a solution. In particular,
anti-symmetric solutions of the form ζ2 = −ζ1 are worth being considered, as the
original system given by (4.5)–(4.6) or (5.1)–(5.2) can be reduced to a single equation.
We remark that such constraint is in agreement with the predictions of the weakly
nonlinear theory for the mode-2 ISW, given that the proportionality constant γ −
between the displacements of the two interfaces is simply −1, according to (3.9)
with (c−0 )2 = g′H1H2/(2H1 +H2).

The anti-symmetric solutions can be found by solving the following leading-order
equation, in dimensional variables, for ζ1:

c2

{(
1
3

H2
1

h1
+

1
6

H2
2

h2

)
ζ ′′1 +

1
6

(
H2

1

h2
1
−

H2
2

h2
2

)
ζ ′21

}
=

1
2

c2

(
H2

1

h2
1
−

H2
2

h2
2

)
− g′ζ1, (5.11)

which can be integrated once to yield the Hamiltonian

ζ ′21 =
6
c2

ζ 2
1 [(2H1 +H2)c2

− g′h1h2]

2H2
1h2 +H2

2h1
, (5.12)

where h1 =H1 − ζ1 and h2 = 2ζ1 +H2. This may be rewritten as

1
2
ζ ′21 =

[
6g′

(4H2
1 −H2

2)c2

]
ζ 2

1 (ζ1 − a−)(ζ1 − a+)
ζ1 − a∗

≡−K(ζ1). (5.13)

In (5.13), a∗ is given by

a∗ =−
H1H2

2H1 −H2
, (5.14)

and a± are the two roots of a quadratic equation,

ζ 2
1 + q1ζ1 + q2 = 0, (5.15)

with q1 and q2 defined by

q1 =−
1
2
(2H1 −H2), q2 =

1
2

H1H2

(
c2

(c−0 )2
− 1
)
. (5.16a,b)
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FIGURE 5. Anti-symmetric solutions governed by (5.13). These approximate the mode-2
solitary waves in a weakly stratified flow with the same density increment across the layers
and nearly identical depths in equilibrium for the top and bottom layers. The upper and
lower interfaces are plotted in dimensionless variables, i.e. η2/H1 and η3/H1 are plotted as
functions of (x− ct)/H1. (a) H2/H1 = 0.5 and a/H1 = 0.1, 0.3, 0.374. The corresponding
wave speeds for ∆1 = ∆2 = 10−3 are c2/g′H1 ≈ 0.252, 0.308, 0.313. (b) H2/H1 = 5 and
a/H1 = −0.1, −0.5, −0.74. The corresponding wave speeds for ∆1 = ∆2 = 10−3 are
c2/g′H1 ≈ 0.754, 0.857, 0.875.

A homoclinic orbit for (5.13) is possible when K is negative through ζ1=0 and ζ1=

a±. For this to happen, the leading order of K must be negative in a neighbourhood
of the origin. We use Taylor series to expand K around ζ1 = 0 as

K(ζ1)=−
3g′

(2H1 +H2)c2

(
c2

(c−0 )2
− 1
)
ζ 2

1 +O(ζ 3
1 ), (5.17)

from which it follows that solitary waves exist only if c2 > (c−0 )2. Furthermore,
when the roots a± coincide, the dynamical system admits a heteroclinic, rather
than homoclinic, solution, connecting the origin ζ1 = 0 to the critical point
ζ1=am≡ (2H1−H2)/4. This peculiar scenario occurs at the speed c2

m=g′(2H1+H2)/8,
and the corresponding solution is known as a front wave solution. Different wave
polarities are possible depending on the sign of 2H1−H2. More precisely, if H2< 2H1,
then ζ1(X) is a wave of elevation. Otherwise, it is a wave of depression. In the latter
case, a curious feature holds: the value of cm can actually exceed the linear long
wave speed c+0 , provided H2 > 6H1. Such peculiar case will be further discussed in
§ 5.4 (see figure 16).

Equation (5.15) shows that the wave speed c can be written in terms of amplitude
a as

c2

(c−0 )2
=
(H1 − a)(H2 + 2a)

H1H2
, (5.18)

which can be convenient to plot the solutions of (5.13) as in figure 5.
Finally, and remarkably, the dynamical system obtained in this limit is precisely the

same as in the MCC (two-layer) model, under the Boussinesq approximation, when
the layers in equilibrium have thicknesses H1 and H2/2 (see Gavrilov & Liapidevskii
2010).

5.3. Case (iii): thin transition layer with weak stratification
Another interesting limit is case (iii), where the middle layer is much thinner than
the top and bottom layers, i.e. r2 ≡H2/H1� 1 while H3/H1 =O(1). In this case, the
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linear long wave speeds can be approximated by

(c+0 )
2
=

g(ρ3 − ρ1)H1H3

ρ1H3 + ρ3H1
[1+O(r2)] , (c−0 )

2
=

g(ρ2 − ρ1)(ρ3 − ρ2)H1

ρ2(ρ3 − ρ1)
[r2 +O(r2

2)].

(5.19a,b)
Then, from (2.16), the displacement ratios for the two wave modes can be estimated
as(
ζ2

ζ1

)+
= 1+

ρ1(ρ3 − ρ2)H3 + ρ3(ρ1 − ρ2)H1

ρ2(ρ3 − ρ1)H3
r2+O(r2

2),

(
ζ2

ζ1

)−
=
ρ1 − ρ2

ρ3 − ρ2
+O(r2).

(5.20a,b)
To find the solitary-wave solution of the first baroclinic mode, the thin middle layer

can be neglected at leading order. Therefore, for the first baroclinic mode, the solitary-
wave solutions of the three-layer system are expected to be in good agreement with
those of the two-layer MCC model, as shown in appendix D. On the other hand, for
the second baroclinic mode, more elaborate solutions can be found as discussed in the
following.

Inspired by the work of Gavrilov et al. (2013), who first considered a variant of the
strongly nonlinear multi-layer model (Choi 2000) to study the propagation of mode-2
waves in a three-layer flow with a thin intermediate layer, we consider the case of a
weakly stratified flow in which σ1 = 1 − εm and σ3 = 1 + εm, where m is a positive
integer and ε� 1 measures the thickness of the thin intermediate layer, i.e. r2=O(ε).
By applying the Boussinesq approximation to (5.19), the linear long wave speeds can
be approximated as

(c−0 )
2
=

1
2

g′H1[r2 +O(r2
2)], (c+0 )

2
=

2g′H1H3

H1 +H3
[1+O(r2)], (5.21a,b)

where g′ = gεm. Therefore, regardless the value of m, one can see that the linear
long wave speeds have the following orders of magnitude: (c−0 )2/gH1 =O(ε1+m) and
(c+0 )2/gH1 =O(εm).

Following the strategy employed for the previous cases, one would assume, from
(5.19), F2

=O(ε1+m) for mode-2 waves and seek asymptotic solutions to (5.1)–(5.2) by
expanding the interface displacements in powers of ε as ζk= ζk,0+ ε ζk,1+O(ε2), (k=
1, 2), while letting all other quantities to be O(1). However, given that ζk,p≡ 0 at any
order O(εp), this would yield the null solution. This implies that no finite amplitude
solutions (ζk,0 6= 0) exist under the assumption of F2

=O(ε1+m). Note that this does not
preclude the existence of solitary waves under the assumption of ζk/H1=O(r2)=O(ε),
for a small range of wave speeds. For example, in the special case when H3 = H1,
anti-symmetric solutions can be found from (5.13) under the condition of H2/H1� 1.

One question that remains to be answered is if there exists any mode-2 solitary-
wave solution of finite amplitude in a three-layer system with a thin transition
layer so that ζk,0 6= 0 although the solution might not be connected smoothly with
small amplitude solutions. More specifically, we are looking for solutions whose
amplitudes are comparable to H1, which have been observed experimentally. To find
such a solution, one might need to adopt a different approach, which will be further
investigated in detail in § 6.
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FIGURE 6. Mode-2 internal solitary-wave solutions computed numerically for the
dynamical system (4.5)–(4.6) for case (i). The upper and lower interfaces are plotted in
dimensionless variables, i.e. ζ1/H1 and ζ2/H1 are plotted as functions of (x− ct)/H1. We
set ρ1/ρ2 = 0.9, ρ3/ρ2 = 2.0, H2/H1 = 0.5, H3/H1 = 1.0 and consider different values for
the wave speed. (a) c2/g′1H1 ≈ 0.37. (b) c2/g′1H1 ≈ 0.387698.

5.4. Numerical solutions
This section is not intended to address an exhaustive description of all possible
internal solitary-wave solutions to the strongly nonlinear long wave model given by
(4.5)–(4.6). Instead, we will focus on the second baroclinic mode for the cases of
weak stratification, in particular, cases (i) and (ii), for which the asymptotic solutions
have been obtained here.

After fixing the density ratios (ρ1/ρ2 and ρ3/ρ2) and the depth ratios (H2/H1
and H3/H1), the wave profiles are calculated using a shooting method as in Barros
& Gavrilyuk (2007). Figure 6 illustrates solutions obtained for case (i), where the
top and intermediate liquid layers have close density values (ρ1/ρ2 = 0.9), while a
greater density difference is allowed for the bottom liquid layer (ρ3/ρ2 = 2.0). As
expected from the asymptotic analysis in § 5.1, the deformation of the lower interface
is almost imperceptible, while the displacement of the top interface is large and starts
broadening as the wave speed increases.

In figure 7, we consider case (ii), where the stratification is weak everywhere. Here
we assume that the density increment across the layers is constant (ρ1/ρ2 = 0.999,
ρ3/ρ2= 1.001) and, in equilibrium, the top and bottom layers have the same depth, or
H3/H1= 1. Because the Boussinesq approximation is not being imposed here, a slight
break of symmetry of the dynamical system occurs. However, as predicted in § 5.2,
solutions may still be well approximated by anti-symmetric solutions. Our numerical
tests have revealed that when the intermediate layer is thick (H2/H1 = 5), solutions
can be easily computed for any given wave speed. Waves with a single-hump profile
seem to persist up to large values of the wave speed, and become broader as the wave
speed increases, as shown in figure 7(a,b).

When the intermediate layer is thinner than the other two layers, e.g. H2/H1 = 0.5,
solutions with one single-hump profile become more difficult to compute. While we
could find for H2/H1 = 0.5 asymptotic solutions with large amplitudes approaching
a front, as shown in figure 5(a), we are able to find numerical solutions with
wave amplitudes relatively smaller than the maximum amplitude predicted by the
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FIGURE 7. Mode-2 internal solitary-wave solutions computed numerically for the
dynamical system (4.5)–(4.6) for case (ii) with H1 =H3. The upper and lower interfaces
are plotted in dimensionless variables, i.e. ζ1/H1 and ζ2/H1 are plotted as functions
of (x − ct)/H1. In all cases we have set ρ1/ρ2 = 0.999, ρ3/ρ2 = 1.001, H3/H1 = 1.0.
(a) H2/H1 = 5, c2/g′H1 ≈ 0.86. (b) H2/H1 = 5, c2/g′H1 ≈ 0.874999. (c) H2/H1 = 0.5,
c2/g′H1 ≈ 0.281.

asymptotics. The solution presented in figure 7(c) is close to the largest amplitude
wave solution we can compute with the current numerical method. It is not so
clear if the solitary-wave solutions of the original system cease to exist at a smaller
wave amplitude than the asymptotic prediction, or if an improved numerical method
is required to larger amplitude waves of the original dynamical system with two
degrees of freedom.

As the asymptotics in § 5.3 suggests, when the thickness of the middle layer
decreases further, finding the large amplitude solitary-wave solutions of the original
system given by (4.5)–(4.6) is a delicate subject. For this reason we reserve the
following section for a detailed analysis for the case of a thin transition layer,
complemented by numerics.

6. Multi-humped internal solitary waves
6.1. Leading-order asymptotic solutions for a thin transition layer

Here we revisit case (iii) considered in § 5.3, where the thickness of the middle
transition layer is assumed thin so that r2 = O(ε) with σ1 = 1− εm and σ3 = 1+ εm.
When F2

= εmC is assumed (instead of F2
= εm+1C) with m positive integer and

C = O(1), the leading-order equations of (5.1)–(5.2) can be found, after dimensional
variables are recovered, as

(ζ1 − ζ2)
2

{
2h1ζ

′′

1 + ζ
′2
1 − 3+ 6g′

ζ1h2
1

c2H2
1

}
= 0,

(ζ1 − ζ2)
2

{
2h3ζ

′′

2 − ζ
′2
2 + 3+ 6g′

ζ2h2
3

c2H2
3

}
= 0,

 (6.1)

where H3/H1 = O(1) and ζk/H1 = O(1) (k = 1, 2) have been assumed. Notice that
the same system can be obtained directly from (4.22) with g′1 = g′2 = g′, and H2 =

0. Therefore, ζ1 = ζ2, or the following decoupled system of differential equations is
satisfied:

2h1ζ
′′

1 + ζ
′2
1 = 3− 6g′

ζ1h2
1

c2H2
1
, (6.2)
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2h3ζ
′′

2 − ζ
′2
2 =−3− 6g′

ζ2h2
3

c2H2
3
. (6.3)

Both equations can be solved analytically in terms of elliptic functions. We start
with the first of these two equations. By multiplying both sides of (6.2) by h−1/2

1 , one
may integrate it once to have the following Hamiltonian:

1
2
ζ ′21 =

3
2c2H2

1
ζ1(c2H1 − g′h1ζ1), (6.4)

which can be rewritten as

1
2
ζ ′21 =

3g′

2c2H2
1
ζ1(ζ1 − a−)(ζ1 − a+), (6.5)

where a± are the roots of the equation

ζ 2
1 −H1ζ1 +

c2H1

g′
= 0. (6.6)

Notice that (6.5) can be also obtained from (5.13) with H2 = 0. Although no
homoclinic orbits for solitary-wave solutions are possible, periodic orbits starting
from rest at zero exist provided c2 < (1/4)g′H1, under which a± are real and positive.
As shown later, when these (inner) solutions are connected to zero (outer) solutions,
they will be the leading-order approximate solution to (5.1)–(5.2). When (6.5) is
integrated once, one can obtain

cH1
√

3g′

∫ ζ1(X)

0
[(ζ1 − a+)(ζ1 − a−)ζ1]

−1/2 dζ1 = X, (6.7)

with X ≡ x − ct. This integral can be computed explicitly with recourse to elliptic
functions (Abramowitz & Stegun 1965):

ζ1(X)= a− sin2

[
F−1

(√
3g′a+

2cH1
X
∣∣∣∣ a−

a+

)]
. (6.8)

Here, F is the elliptic integral of the first kind and F−1 is known as the Jacobi
amplitude function. It is worth pointing out that near the origin, the solution has the
following behaviour:

ζ1(X)=
3

4H1
X2
+O(X4). (6.9)

Similar steps can be taken to solve (6.3). In this case we need to solve

cH3
√

3g′

∫
−ζ2(X)

0
[(ζ 2 + b+)(ζ 2 + b−)ζ 2]

−1/2 dζ 2 = X, (6.10)

with ζ 2 =−ζ2, and where b± are the roots of the equation

ζ 2
2 +H3ζ2 +

c2H3

g′
= 0. (6.11)
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Periodic orbits starting from rest at zero exist provided c2 < (1/4)g′H3, under which
b± are real and negative (b+ < b− < 0). Their analytical expression is provided by

ζ2(X)= b− sin2

[
F−1

(√
−3g′b+
2cH3

X
∣∣∣∣ b−

b+

)]
, (6.12)

which has the following behaviour near the origin:

ζ2(X)=−
3

4H3
X2
+O(X4). (6.13)

These periodic solutions given by (6.8)–(6.12) exist when c2 < c2
m, where

c2
m =min{ 1

4 g′H1,
1
4 g′H3}. Moreover, one can see that these solutions represent mode-2

waves as cm < c+0 , where c+0 is the linear long wave speed of mode-1 waves. For this
particular stratification, under the Boussinesq approximation, the linear long wave
speeds are, in the limit when H2→ 0, given by

(c−0 )
2
= 0, (c+0 )

2
= g′H1

(
2H3

H1 +H3

)
. (6.14a,b)

Consider c< cm and let L1 and L2 be half-periods of ζ1 and ζ2, i.e.

L1=
cH1
√

3g′

∫ a−

0
[(ζ1 − a+)(ζ1 − a−)ζ1]

−1/2

dζ1=
cH1
√

3g′
2
√

a+
F
(

π

2

∣∣∣ a−
a+

)
.

L2=
cH3
√

3g′

∫
−b−

0
[(ζ̃2 + b+)(ζ̃2 + b−)ζ̃2]

−1/2

d ζ̃2=
cH3
√

3g′
2
√
−b+

F
(

π

2
b−
b+

)
.



(6.15)

Suppose we look for the two wave profiles that touch at some of their troughs, which
requires the period of ζ1 to be a rational multiple N of that of ζ2, which yields

K
(

a−
a+

)
=

NH3

H1

√
a+
−b+

K
(

b−
b+

)
, (6.16)

where K is the complete elliptic integral of the first kind. Notice that when H1 =

H3 (symmetric configuration) we have b− = −a− and b+ = −a+. As a consequence,
equation (6.16) is only satisfied for N = 1, regardless the value for the wave speed.
However, if symmetry is slightly broken, say by setting H3/H1 = 1.1, then (6.16) is
met at other integer values of N, namely N = 1, 2, 3 (see figure 8a).

If N is a rational number, there exist unique integer values p, q such that N = p/q
and gcd(p, q)= 1. If (6.16) holds for for such value of N, there is a periodic solution
characterized by q humps for the upper interface over p humps for the lower interface,
within any period between two common zero values of ζ1, ζ2. Let λ? be such period.
Then it can be easily established that

λ? = 2q
2cH1
√

3g′a+
K
(

a−
a+

)
. (6.17)

We may now select the wave profiles over any such period and connect its edges
with the trivial null solution ζ1 = ζ2 = 0. Then the solutions for ζ1 and ζ2 given by
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FIGURE 8. Set of parameters verifying condition (6.16). The diagrams are presented on
the (N, c2/g′H1)-plane for different depth ratios. (a) H3/H1= 0.2. (b) H3/H1= 1.1. These
parameters will be used in § 6.2 to find numerically exotic solutions for a three-layer flow
with a thin (finite thickness) intermediate layer.
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FIGURE 9. Leading-order asymptotic solutions (compactons) ruled by (6.2)–(6.3). The
upper and lower interfaces given by (6.8) and (6.12) are plotted in dimensionless variables,
i.e. ζ1/H1 and ζ2/H1 are plotted as functions of (x − ct)/H1. We set H3/H1 = 1.1
and consider different values for the wave speed. (a) c2/g′H1 ≈ 0.19751417344421549.
(b) c2/g′H1 ≈ 0.24998489280008013. (c) c2/g′H1 ≈ 0.2499999853496341. These solutions
correspond to the cases when (6.16) holds for N = 1, 2, 3, respectively. The ratio (c/c+0 )2
for the three cases is given respectively as (c/c+0 )2 ≈ 0.188536; 0.238622; 0.238636.

(6.8) and (6.12) for 0<X< λ? are referred to as compactons (Rosenau 2005). Notice
that both interface displacements have a jump in their second derivatives at X= 0 and
X = λ?. However, it follows from (6.2)–(6.3) (6.9) and (6.13) that

(ζ1 − ζ2)
2(H1 − ζ1) ζ

′′

1 v X4
×H(X),

(ζ1 − ζ2)
2(ζ2 +H3) ζ

′′

2 v X4
×H(X),

}
(6.18)

which both converge to zero as X goes to zero, where H(X) is the Heaviside function.
Hence, it satisfies our equation.

Some examples are depicted in figures 9 and 10. Multi-humped solutions can easily
be obtained in this special limit and it is seen how small deviations of the wave speed
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FIGURE 10. Leading-order asymptotic solutions (compactons) ruled by (6.2)–(6.3). The
upper and lower interfaces given by (6.8), (6.12) are plotted in dimensionless variables,
i.e. ζ1/H1 and ζ2/H1 are plotted as functions of (x − ct)/H1. We set H3/H1 = 1.1
and consider different values for the wave speed. (a) c2/g′H1 ≈ 0.23738395840085139.
(b) c2/g′H1 ≈ 0.2467648492972218. These solutions correspond to the cases when (6.16)
holds for N = 11/10, 5/4, respectively.

can radically alter the solution behaviour. In particular, there is a countable number
of these peculiar waves and their support can be made large, as intended.

Finally, we point out that these results can be easily extended to the general case
when g′1 6= g′2, for which condition (6.16) should be modified to

K
(

a−
a+

)
=

NH3

H1

√
δ

√
a+
−b+

K
(

b−
b+

)
, (6.19)

where δ=∆1/∆2 and a± and b± are roots of the quadratic equations (6.6) and (6.11),
replacing g′ by g′1 and g′2, respectively.

It is important to stress that compactons are not solutions to the coupled system
of equations (4.5)–(4.6), but simply leading-order asymptotic solutions (near-field
periodic solutions connected to far-field trivial solutions) for a thin transition layer.
Unlike the compacton, solutions to the original dynamical system are smooth.

To validate the asymptotic theory leading to multi-humped solitary wave solutions,
we use the shooting method adopted in § 5.4 to compute solitary-wave solutions of
(4.5)–(4.6) for H2/H1= 0.01 and H3/H1= 1.1. According to the asymptotic theory, we
should be able to find solutions of large amplitudes that exhibit multi-hump profiles.
As shown in figure 9, if the upper interface profile has a single hump, we expect
to find wave profiles for the lower interface with one, two, or three humps for very
specific (discrete) wave speed values. Numerical solutions are shown in figure 11. The
computed wave speeds at which multi-humped solutions exist are slightly greater than
those predicted by the asymptotic theory, but the agreement between asymptotic and
numerical solutions in figures 9 and 11, respectively, is particularly striking.

As the thickness of the transition layer increases from H2/H1 = 0.01, it is found
difficult to compute multi-humped solitary-wave solutions using the shooting method.
Therefore, a different numerical method is adopted in the following section.
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FIGURE 11. Numerical solutions of the dynamical system (4.5)–(4.6) for multi-humped
solitary waves in case (iii). The upper and lower interfaces are plotted in dimensionless
variables, i.e. ζ1/H1 and ζ2/H1 are plotted as functions of (x − ct)/H1. We set ρ1/ρ2 =

1 − ε2, ρ3/ρ2 = 1 + ε2, H2/H1 = ε, H3/H1 = 1.1, with ε = 0.01, and consider
different values for the wave speed. (a) c2/g′H1 ≈ 0.19751417344421549. (b) c2/g′H1 ≈

0.25130330695239749509. For comparison with the results in figure 9, the ratio (c/c+0 )2
for the two cases is given here respectively as (c/c+0 )2 ≈ 0.188533; 0.239877.

6.2. Numerical solutions with Boussinesq approximation
As the density increment is assumed small to find leading-order asymptotic solutions,
we solve the dynamical system (4.5)–(4.6) under the Boussinesq approximation, as a
direct extension of § 6.1. In addition, for simplicity, equal density jumps between the
layers are assumed.

To seek multi-humped solutions we consider the case when the intermediate layer
is thin (but finite) relative to the other layers. Based on the results in § 6.1, classical
solitary-wave solutions may not exist for a continuum set of wave speeds, for a
given layer configuration. In this scenario numerical computations are more delicate
as one generically expects generalized solitary waves, which are solutions that do
not decay to zero in the far field, but instead have oscillations whose amplitude
asymptotes to a finite amplitude at infinity. These far-field oscillations correspond to
first baroclinic mode ‘tails’ of the second baroclinic mode ‘core’ of the generalized
solitary wave. True solitary waves may exist along branches of generalized solitary
waves at some wave speeds, where the far-field oscillation has zero amplitude. These
are called embedded solitary waves and usually occur only at discrete values of the
wave speed on the branch of generalized solitary waves (Yang 2010). We present
here numerical evidence that embedded solitary-wave solutions exist in our three-layer
system. The computational method consists on using the intermediate layer thickness
as a parameter to perform a direct continuation of solutions in § 6.1. More precisely,
starting from the compactons found in § 6.1, we find single and multi-humped
solitary-wave solutions as we vary continuously the thickness intermediate layer to a
finite value.

All solutions in this section are computed by using a collocation method on (4.22)
resulting in a system of nonlinear algebraic equations that is solved by Newton’s
method. Collocation methods perform well in computing homoclinic orbits (solitary
waves) of dynamical systems which are often too ill conditioned for shooting methods
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(Liu, Moore & Russell 1997). The equations (4.22) are discretized using second-order
finite differences on a domain with n uniformly distributed mesh points on X∈[−L,L],
resulting in 2n + 1 unknowns: ζ1,j, ζ2,j approximating ζ1(xj), ζ2(xj) for j = 1, . . . , n
and c. Evaluating the equation at the interior mesh points results in 2n− 4 equations.
The Jacobian matrix is calculated analytically and Newton iterations are halted when
the l2-norm of the residual is less than 10−10. Various mesh sizes and domain sizes
were tested to ensure convergence and typical solutions presented here use 103 points.
We use either periodic boundary conditions or fix the solution at the boundaries such
that the interface is at the undisturbed interface level. Periodic boundary conditions
are used in the computations of generalized solitary-wave solutions. For embedded
solitary-wave solutions, the period is taken large enough such that the solution has
decayed sufficiently. Once four boundary conditions are imposed, the remaining
system has one degree of freedom. We use the degree of freedom either by imposing
a last condition such as a particular amplitude of the crest of one of the interfaces,
or, in the cases of embedded solitary waves, as a parameter in an optimization step
in the algorithm to determine their wave speeds. This optimization step minimizes
the l2-norm of the solution on a fixed set of m points (typically m= n/8) in the far
field, seeking a true solitary wave along a continuous branch of generalized solitary
waves. The objective function for the optimization step is thus given by

Q=
m∑

j=1

(ζ 2
1,j + ζ

2
2,j + ζ

2
1,N+1−j + ζ

2
2,N+1−j), (6.20)

which is minimized over a range of speeds. Denoting ζ1,j, ζ2,j, j = 1, . . . , N + 1
by Z1, Z2 and the discretized version of the Boussinesq equations (4.22) as
P(Z1, Z2, c)= 0, the discrete minimization problem may be stated as

(Z∗1, Z∗2, c∗)= arg min
(Z1,Z2,c) s.t. P=0

Q(Z1, Z2). (6.21)

We accept the solution as an approximation to a solitary wave when the numerical
optimization algorithm (MATLAB fminbnd) has achieved Q< 10−6. We also increase
the computational domain to confirm numerical convergence.

Figure 12 shows numerical solutions with multiple humps by extending the branch
into finite values of H2 from the compacton solution in § 6.1 with q= 1, p= 2, and
H3/H1 = 1.1, reminiscent of the waves observed experimentally by Gavrilov et al.
(2013). Both solitary waves and generalized solitary waves are found and their nature
depends sensitively on the value of the speed c. Although generalized solitary waves
are prevalent, it is shown in panel (a) that solutions decaying to zero at infinity can
be obtained for special values of c. Panel (b) shows that whenever the wave speed
is not finely tuned, oscillations tend to arise at the far field. To illustrate this claim,
we fix the wave speed and vary the thickness of the intermediate layer by preserving
the depth ratio H3/H1= 1.1. The amplitude of such oscillations can vary significantly
according to different parameters. Although oscillations may be clearly visible in some
cases (e.g. H2/H=0.12), they can be almost imperceptible in other cases (e.g. H2/H=
0.01).

Figure 13 shows numerical solutions for single-hump solitary waves corresponding
to q = 1 and p = 1 in the previous geometrical configuration (H3/H1 = 1.1). If the
top and bottom symmetry had not been broken, or H3/H1 = 1, anti-symmetric waves
decaying to zero at infinity at a fixed value of H2 would exist for any value of c
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FIGURE 12. Numerical solutions obtained for the Boussinesq model (4.22) with g′1= g′2=
g′. The displacements of each interface are plotted in dimensionless variables, i.e. ζ1/H
and ζ2/H are plotted as functions of (x− ct)/H, where H=H1+H2+H3 with H3/H1=1.1.
Starting with the original compact solution valid for the zero thickness, the middle layer is
opened up gradually, with H1 and H3 decreasing equally. (a) Solitary waves for c2/g′H1≈

0.258067 with H2/H1 ≈ 0.065 (H2/H = 0.03) and c2/g′H1 ≈ 0.263769 with H2/H1 ≈ 0.11
(H2/H = 0.05). The ratio (c/c+0 )2 for the two cases is given respectively as (c/c+0 )2 ≈
0.246319;0.251749. (b) Generalized solitary waves for c2/g′H≈0.11904 and H2/H=0.01,
0.06, 0.12. We stress that the solitary-wave solutions shown in (a) can be found at special
values of c found by the optimization step discussed in § 6.2.
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FIGURE 13. Similar to figure 12, but with a single hump. Solitary waves obtained in the
case when H3/H1 = 1.1 and different values of H2/H1: c2/g′H1 ≈ 0.2021 with H2/H1 ≈

0.0429 (H2/H = 0.02); c2/g′H1 ≈ 0.2064 with H2/H1 ≈ 0.0875 (H2/H = 0.04); c2/g′H1 ≈

0.2105 with H2/H1 ≈ 0.134 (H2/H = 0.06); c2/g′H1 ≈ 0.2145 with H2/H1 ≈ 0.1826
(H2/H = 0.08).

within the range c−0 < c< cm, as discussed in § 5.2. The slight break of symmetry leads
to a very different behaviour of the solutions to the dynamical system. In particular,
true solitary waves of finite amplitudes no longer exist for a continuum set of values
of c, and H2 must be varied in order to obtain a branch of solutions. In figure 13,
solitary-wave solutions for four different values of H2/H1 are presented. As shown in
figure 14, a mode-2 solitary wave was observed in a laboratory experiment with a
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FIGURE 14. A mode-2 internal solitary wave observed in a laboratory experiment with
the parameters H1 = 0.133 m, H2 = 0.025 m, H3 = 0.142 m (courtesy of Magda Carr).
Even though the density varies continuously in the salt-stratified experiment, it can be
well approximated by a three-layer system with densities ρ1 = 1025 Kg m−3, ρ3 =

1048 Kg m−3, ρ2 = (ρ1 + ρ3)/2= 1036.5 Kg m−3. Here, H3/H1 = 1.067, H2/H1 ≈ 0.1880
and the density increment is constant across the layers (∆1=∆2≈ 0.0111), which is close
to the scenario depicted in figure 13.

parameter set close to that of the solitary wave with the largest value of H2/H1 in
figure 13. While no quantitative comparison between the numerical solution and the
experiment has been made, it is clearly shown that large amplitude mode-2 solitary
waves in this parameter regime can be observed experimentally.

Next we consider the case when the centre of the pycnocline is considerably
displaced with respect to the midline (H3/H1 = 0.2). As long as the thickness of the
intermediate layer is thin enough, the asymptotics in § 6.1 predicts the existence of
solutions with q humps on the upper interface over p humps on the lower interface,
provided p/q is roughly within the range ]0.5, 2.2[ (see figure 8). As shown in
figure 15, we were able to find numerically such a solution from the compacton of
§ 6.1 with q = 2, p = 3, and H3/H1 = 0.2, by extending the branch up to the value
H2/H1 ≈ 0.00603.

Based on the asymptotic theory, it has been shown in § 5.2 that the wave speeds of
mode-2 solitary waves could be comparable to those of mode-1 waves, in particular,
when the density difference across the layers is small and the thickness of the
intermediate layer is greater than those of the top and bottom layers. Therefore, it is
of interest to examine numerically the non-unicity of solutions of the original system
under the Boussinesq approximation at a given wave speed. The particular situation
depicted here is the critical case when H3 = H1 and the intermediate layer is thick
enough (H2 > 6H1). According to § 5.2, this guarantees the existence of a branch of
true solitary mode-2 waves, whose speeds may exceed the linear long wave speed of
the first baroclinic mode. The KdV theory fails in describing mode-1 solitary waves
for the system (see § 3.2 and appendix B). However, the Gardner equation could
potentially be used to show the co-existence of waves of depression and elevation of
the first baroclinic mode (see Kurkina et al. 2006). As shown in figure 16, for the
same fixed value of c, three distinct solitary-wave solutions are found numerically.
This feature is highlighted in figure 16(c), where the speed–amplitude relationship for
waves of the two baroclinic modes is presented.
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FIGURE 15. Exotic mode-2 solitary wave obtained for the physical parameters H3/H1 =

0.2, H2/H1≈ 0.00603 (H2/H= 0.005). A solution with two humps on the upper interface
over three humps on the lower interface is obtained when c2/g′H1 ≈ 0.0471449.

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0.28 0.32 0.36 0.40

0.10

0.08

0.06

0.04

0.02
0

A
m

pl
itu

de

c

(a) (b) (c)

FIGURE 16. Numerical solutions obtained in the critical case when H3 = H1 under the
Boussinesq approximation. The upper and lower interfaces are plotted in non-dimensional
variables, i.e. ζ1/H and ζ2/H are plotted as functions of (x− ct)/H. We have set H2/H1=

7.0, H3/H1 = 1.0, and c2/g′H is increased from its bifurcation values c−0 /
√

g′H =
√

7/9
for the mode-2 wave and c+0 /

√
g′H = 1/3 for the mode-1 wave. (a) Mode-2 solution.

(b) Mode-1 solution. (c) Speed–amplitude relationship for mode-1 (solid line) and mode-2
(dashed line) waves. The amplitude is measured as max(‖ζ1‖∞, ‖ζ2‖∞). For a range of
c/
√

g′H > 1/3 the mode-1 and 2 solutions co-exist and three distinct solutions travelling
at the same speed can be determined (the third solution is the reflection of (b) about the
midline). Mode-2 and mode-1 solutions in (a) and (b), respectively, are obtained for the
wave speed c/

√
g′H = 0.3492.

7. Conclusion

In this paper, a detailed investigation of mode-2 internal solitary waves is presented
based on a strongly nonlinear model for a three-layer flow confined by two rigid
boundaries. The underlying dynamical system is a Hamiltonian system with two
degrees of freedom, and mode-2 internal solitary waves are the homoclinic trajectories
to a saddle-centre equilibrium at the origin. The dynamics around such an equilibrium
usually implies periodic connections to homoclinic orbits, corresponding to solutions
with oscillatory wave tails in addition to the main pulse, commonly known as
generalized solitary waves. Relying on asymptotic analysis and numerical studies, we
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provide strong evidence for the existence of true internal solitary waves (decaying to
zero at infinity) to the long wave model, and some of their important features.

When the Boussinesq approximation is adopted (with the same density increment
across the layers) and the geometrical configuration is horizontally symmetric, the
dynamical system, originally composed of two coupled second-order differential
equations, reduces to a single differential equation (as recognized by Gavrilov &
Liapidevskii (2010)), which can be integrated to yield the Hamiltonian for the
MCC model (see § 5.2). This implies the existence of a continuous branch of finite
amplitude mode-2 waves that broaden with increasing values of the wave speed until
reaching a front. This is consistent with the setting under which the existence of
mode-2 internal solitary waves was established, based on the fully nonlinear theory
for continuously density-stratified flows (Tung et al. 1982).

When symmetry is broken by geometry, density stratification or non-Boussinesq
effects, asserting whether or not such waves exist becomes a non-trivial problem. We
have outlined the various interesting regimes for mode-2 solutions in three-layer flows
and only begun to explore certain cases. We were able to identify in §§ 5.1 and 5.2
asymptotic limits under which the dynamical system can be reduced, for which given
a layer configuration (not necessarily satisfying the symmetry condition) a continuous
branch of finite amplitude mode-2 solitary waves can be found. Notwithstanding,
the break of symmetry generically could preclude continuous branches of solitary
waves with physical relevance to large amplitude waves, and hence true solitary
waves need to be found amidst generalized solitary waves. The cases depicted in
figures 7(c) and 13, of particular relevance to laboratory experiments, support well
this claim. Both cases can be examined under the asymptotic limit corresponding to
the Boussinesq approximation and horizontally symmetric domain, since only a slight
break of symmetry is present (by density stratification and geometry, respectively).
Large amplitude solutions close to anti-symmetric solutions are expected. However,
in the first case, we have found that, when the intermediate layer is thinner than
the other two layers, solutions with one single hump profile appear to cease to exist
at an early stage and become increasingly difficult to compute. In the second case,
by considering a slight offset of the centre of the pycnocline (H3/H1 = 1.1) and
introducing specialized computational methods, we have found that as the thickness
of the intermediate layer increases from zero a continuous branch of solitary waves
can only be found when wave amplitude depends on the layer thickness. For fixed
layer thickness, generalized solitary waves are found generically. Therefore, large
single-hump waves decaying to zero at infinity may not exist. Despite this, the
numerical solutions that we did obtain bear strong resemblance to waves observed
experimentally in similar physical configurations (see figure 14). A related question is
that of conjugate states. Given that in these cases three conjugate states are predicted
by Euler equations (Lamb 2000), it would be interesting to determine whether a front
connecting the origin to one of these equilibria exists.

One of major findings here is an account of a new class of solutions, characterized
by multi-humped profiles, arising when the thickness of the intermediate layer is thin
enough. Although a weak stratification is adopted in § 6.1 for simplicity reasons, it is
shown in the appendix C that a thin density transition layer is the key ingredient for
the development of such waves. The analytical solutions for the compactons, resulting
from the asymptotic limit when the thickness of the intermediate layer goes to zero,
can then be used to find corresponding waves by extending the branch into finite
values of the thickness of the intermediate layer. In future investigations, it would be
interesting to explore comprehensively the branches of solutions of single- and multi-
hump solitary wave and their apparent stability, as observed in experiments (Gavrilov
et al. 2013).
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Appendix A. Proof that the dispersion relation for the model is well defined
We prove here that the four roots of equation (2.13) are all real. Although this

should be a straightforward task, given that we have a bi-quadratic equation for
the wave speed c, the coefficients are rather messy and depend on many physical
parameters, making it difficult evaluating the sign of the discriminant. To overcome
this issue, we use an alternative approach. The dispersion relation (2.13) is obtained
by solving

det
[

gH1H2(ρ1 − ρ2)+ Ã1c2
−Ã2c2

gH1H2(ρ1 − ρ2)+ B̃1c2 gH2H3(ρ3 − ρ2)− B̃2

]
= 0, (A 1)

with
Ã1 = ρ1H2θ1 + ρ2H1θ2, Ã2 = ρ2H3(

1
6 H2

2k2
− 1),

B̃1 =
1
2ρ2H1H2

2k2
+ ρ1H2θ1, B̃2 =

1
2ρ2H3H2

2k2
+ ρ3H2θ3.

}
(A 2)

To prove our claim, we first show that c2
∈ R. Let M be the matrix in (A 1). Then,

det M = 0 is equivalent to −H1H3 det M = 0, that is

det
[

H1 0
H3 −H3

]
det M = 0, (A 3)

or equivalently

det
{[

gH2
1H2(ρ1 − ρ2) 0

0 gH2H2
3(ρ2 − ρ3)

]
+ c2

[
Ã1H1 −Ã2H1

−Ã2H1 (B̃2 − Ã2)H3

]}
= 0. (A 4)

This implies that c2 is solution of det(M1+ c2M2)=0, with M1, M2 symmetric matrices
and M2 positive definite. A classical result from linear algebra asserts that c2

∈R. It
remains to demonstrate that c2 is non-negative. But this can be easily established by
examining the sign of the coefficients of the polynomial equation (2.13).

Appendix B. Remarks on the criticality condition and shortcomings of the
Boussinesq approximation

Benjamin (1966) has raised, in his appendix, genuine concerns on the use of
the Boussinesq approximation. Namely, he was able to identify that the criticality
condition (given in his notation by K = 0) may depend considerably on small density
variations. According to the author, when density contrasts are small, K is necessary
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small, but an accurate evaluation of it is still essential to a reliable description of any
solitary wave possible in the system. We give here further support to this claim by
revealing important non-Boussinesq effects on first baroclinic mode waves.

Under the Boussinesq approximation, the criticality condition is given by

γ 3

H2
3
+
(1− γ )3

H2
2
−

1
H2

1
= 0, (B 1)

with γ defined by (3.9). Note that such condition is simply a cubic equation for γ .
In addition, at linear long wave speeds, the following relationship between γ and γ −1

holds:
δγ −1

= γ +Λ, (B 2)

where
δ =∆1/∆2, Λ= δ(1+H2/H3)− 1−H2/H1, (B 3a,b)

and ∆1 = (ρ2 − ρ1)/ρ2, ∆2 = (ρ3 − ρ2)/ρ2 are small (� 1) and of the same order.
Equation (B 2) can be viewed as a polynomial equation,

γ 2
+Λγ − δ = 0. (B 4)

Since (B 1) and (B 4) are required to have a common root, their resultant must vanish
(Prasolov 2004), i.e.

−H4
1H3

3 − 2H3
1H2H3

3 + 2H1H3
2H3

3 +H4
2H3

3 +H3
1H4

3 +H2
1H2H4

3 −H1H2
2H4

3

−H3
2H4

3 + 3H4
1H2H2

3δ + 3H3
1H2

2H2
3δ − 3H2

1H3
2H2

3δ − 3H1H4
2H2

3δ − 3H4
1H3

3δ −

− 3H3
1H2H3

3δ + 3H3
1H4

3δ − 3H2
1H2H4

3δ + 3H1H2
2H4

3δ − 3H4
1H2

2H3δ
2
+ 3H2

1H4
2H3δ

2

+ 3H4
1H2H2

3δ
2
+ 3H2

1H3
2H2

3δ
2
− 3H4

1H3
3δ

2
+ 3H3

1H2H3
3δ

2
− 3H2

1H2H3
3δ

2

+ 3H3
1H4

3δ
2
− 3H2

1H2H4
3δ

2
+H4

1H3
2δ

3
−H3

1H4
2δ

3
+H4

1H2
2H3δ

3
− 2H3

1H3
2H3δ

3

−H4
1H2H2

3δ
3
−H4

1H3
3δ

3
+ 2H3

1H2H3
3δ

3
+H3

1H4
3δ

3
= 0. (B 5)

When divided by H7, where H = H1 + H2 + H3 is the total depth, equation (B 5)
defines a one-parameter family of algebraic curves on the (H1/H, H2/H)-plane. The
geometrical locus defined by each one of these curves can be visualized within the
admissible domain – a triangle T with vertices (0, 0), (1, 0) and (0, 1) – as in
figure 17. It is straightforward to check that all vertices and midpoints of the sides
of T are included in this geometrical locus.

As pointed out earlier, no distinction can be made a priori about the wave mode
considered, and diagrams for criticality look like as if figures 3 and 4 were combined.
We can, however, infer from § 3.2 that the ‘∧-shaped’ branch containing the vertices
(0, 0) and (1, 0) is the one corresponding to the slow mode, whilst the remaining
two branches correspond to the fast mode. The former is smoothly deformed as δ
varies, which contrasts markedly with what is perceived for the latter. We observe
that, for small δ, the top vertex is connected to the midpoint of the diagonal of T.
However, as δ increases, a new configuration is obtained in which the same top vertex
is now connected to the midpoint of the adjacent side. The transition between the two
configurations can only be made at the expense of a singularity. We will see that such
transition occurs when the curve becomes degenerate.
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FIGURE 17. Geometrical locus defined by (B 5). The axes have been non-dimensionalized
by the total depth H =H1 +H2 +H3, and diagrams are presented on the (H1/H,H2/H)-
plane for different values of δ. (a) δ = 0.5, (b) δ = 1, (c) δ = 2.

Let l be the median from the vertex (0, 1) defined analytically by H1 =H3. Along
this line segment, criticality holds when

H3
1H2(δ − 1) {H3

1 +H2
1H2 −H1H2

2 −H3
2 + 4H3

1δ − 5H2
1H2δ

+ 2H1H2
2δ + 2H3

2δ +H3
1δ

2
+H2

1H2δ
2
−H1H2

2δ
2
−H3

2δ
2
} = 0. (B 6)

A few cases can then be considered: H1 = 0 gives the top vertex of T as a solution;
H2 = 0 yields the midpoint of the opposing side; requiring the expression within
brackets to vanish leads to a cubic equation on the variable v ≡H1/H2,

(1+ 4δ + δ2)v3
+ (1− 5δ + δ2)v2

− (1− δ)2v − (1− δ)2 = 0, (B 7)

which has a single real root, and yields the interior point of T at which l intersects
the criticality curve of the second baroclinic mode; finally, the whole line segment is a
solution provided δ= 1. The algebraic curve obtained from (B 5) becomes degenerate
and splits up into two curves (the median l and a curve of degree 6) cf. figure 17(b).

We conclude that if δ 6= 1, any interior point of T along l is fully contained in
the region where α(γ +) > 0 or α(γ +) < 0 accordingly as δ is less or greater than 1.
In other words, under the Boussinesq approximation, given a physical configuration
where the top and bottom layers have the same depth in equilibrium, the switch of
polarities of first baroclinic mode solitary waves occurs precisely when δ= 1; that is
when the density increment between the layers is constant. The general case can be
treated in a similar way as follows.

Non-Boussinesq case. In the general case, the criticality condition is given by (3.11).
The relationship between γ −1 and γ is given by(

ρ2 − ρ1

ρ3 − ρ2

)
γ −1
= γ +Λ, (B 8)

where Λ now reads

Λ=
ρ2 − ρ1

ρ3 − ρ2

(
1+

ρ3H2

ρ2H3

)
− 1−

ρ1H2

ρ2H1
. (B 9)

To express the criticality condition in a polynomial way on the physical parameters,
it suffices to compute the resultant between the cubic in (3.11) and the quadratic
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FIGURE 18. Comparison of the criticality condition for the fast mode obtained with
(dashed line) and without (full line) the Boussinesq approximation. The axes have been
non-dimensionalized by the total depth H=H1+H2+H3 and the diagrams are presented
on the (H1/H,H2/H)-plane. The stratification is given by (2.12), with ∆1= δ∆2, and ∆2=

0.0121. (a) δ = 0.918, (b) δ = 0.99. Panel (b) shows that the Boussinesq approximation
captures the switch of configurations of the criticality curve only at a later stage, more
precisely when δ = 1.

equation resulting from (B 8), when multiplied by γ . The output is a bit cumbersome
and will not be presented here. However, it can be proved that the transition between
the two configurations for the criticality condition in the first baroclinic mode, as
described in figure 4, occurs precisely when ρ2

2 − ρ1ρ3 = 0, i.e. ρ2/ρ1 = ρ3/ρ2. The
algebraic curve then becomes degenerate and splits up into two curves, one of which
is the line segment defined by H1 = (ρ1/ρ3)

1/2H3.
This means that when density variations are small, caution is needed to characterize

finite amplitude waves, especially in the first baroclinic mode and when the top and
bottom layers have nearly the same depth in equilibrium. As we have shown, under
the Boussinesq approximation, switch of configurations of the criticality curves occur
at different stages, which could result in discrepant predictions of wave polarities (see
figure 18).

Appendix C. Existence of multi-humped solutions in the presence of a sharp
density transition layer between the top and bottom layers

In this section we extend the work presented in § 6 by allowing the density
jumps between the liquid layers to take any values, while preserving a sharp density
transition layer (r2� 1). By using asymptotic expansions, we conclude that, at leading
order, ζ1= ζ2, or the following decoupled system of differential equations is satisfied:

2h1ζ
′′

1 + ζ
′2
1 = 3

(
ρ2 − ρ1

ρ1

h2
1

H2
1
+ 1
)
− 6g

(
ρ2 − ρ1

ρ1

)
ζ1h2

1

c2H2
1
,

2h3ζ
′′

2 − ζ
′2
2 = 3

(
ρ3 − ρ2

ρ3

h2
3

H2
3
− 1
)
− 6g

(
ρ3 − ρ2

ρ3

)
ζ2h2

3

c2H2
3
.

 (C 1)

For clarity purposes, equations have been set in dimensional variables. As before, both
equations can be solved analytically in terms of elliptic functions. It is straightforward
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to integrate the equations once to produce

1
2
ζ ′21 =

3g
2c2H2

1

(
ρ2 − ρ1

ρ1

)
ζ1(ζ1 − a−)(ζ1 − a+),

1
2
ζ ′22 =−

3g
2c2H2

3

(
ρ3 − ρ2

ρ3

)
ζ2(ζ2 − b−)(ζ2 − b+),

 (C 2)

where a± and b± are respectively given by the roots of

ζ 2
1 −H1

(
1+

c2

gH1

)
ζ1 +

c2H1

g

(
ρ2

ρ2 − ρ1

)
= 0,

ζ 2
2 +H3

(
1−

c2

gH3

)
ζ2 +

c2H3

g

(
ρ2

ρ3 − ρ2

)
= 0.

 (C 3)

For the upper interface displacement, periodic orbits starting from rest at zero exist
provided

c2 <
gH1(ρ1 − 2

√
ρ1ρ2 + ρ2)

ρ2 − ρ1
, or c2 >

gH1(ρ1 + 2
√
ρ1ρ2 + ρ2)

ρ2 − ρ1
, (C 4a,b)

while for the lower interface the same assertion holds when

c2 <
gH3(ρ2 − 2

√
ρ2ρ3 + ρ3)

ρ3 − ρ2
. (C 5)

As long as the wave speeds considered comply with these restrictions, we are able to
present periodic solutions for both ζ1 and ζ2. Moreover, it can be shown that if that
is the case, the description applies to mode-2 waves with analytical expressions given
by

ζ1(X)= a− sin2

F−1


√

3g
(
ρ2 − ρ1

ρ1

)
a+

2cH1
X

∣∣∣∣∣∣∣∣∣∣
a−
a+


 ,

ζ2(X)= b− sin2

F−1


√
−3g

(
ρ3 − ρ2

ρ3

)
b+

2cH3
X

∣∣∣∣∣∣∣∣∣∣
b−
b+


 .



(C 6)

Similarly to (6.16), the period of ζ1 is a rational multiple N of the period of ζ2 if
the following condition is met:

K
(

a−
a+

)
=

NH3

H1

√
a+
−b+

√
ρ3(ρ2 − ρ1)

ρ1(ρ3 − ρ2)
K
(

b−
b+

)
, (C 7)

which in its turn can be used to exhibit compacton solutions as leading-order solutions
to our system. Remark that the range of values of N can now vary considerably from
those presented in figure 8, under the Boussinesq approximation.
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Appendix D. Mode-1 solitary waves in the case of a sharp density transition layer
Suppose the middle layer is thin, such that r2 = H2/H1 � 1, H3/H1 = O(1) and

h2 = O(r2), while h1 and h3 are both of O(1). Given that we have a sharp density
transition layer, one would expected that the internal solitary-wave solutions of the
two-layer MCC model can effectively be used to characterize the mode-1 solutions
for such physical configuration. We show that, indeed, this is the case.

We focus on the first baroclinic mode by assuming that F2
= O(1). We then seek

solutions ζ1, ζ2 for our dynamical system, of the form ζk = ζk,0+ r2 ζk,1+O(r2
2), (k=

1, 2). The same representation will be adopted for each layer thickness hi = hi,0 +

r2hi,1 +O(r2
2), (i= 1, 2, 3). At leading order, (5.1)–(5.2) yield

F2

{
σ1

3h1,0
ζ ′′1,0+

1
6

(
σ1

h2
1,0
−

1
h2

2,1

)
ζ ′21,0 +

1
3h2

2,1
ζ ′1,0 ζ

′

2,0 +
1

3h2
2,1
ζ ′22,0

}
=

1
2

F2

[
(1− σ1)+

σ1

h2
1,0
−

1
h2

2,1

]
− (1− σ1) ζ1,0, (D 1)

F2

{
1
3
σ3r2

3

h3,0
ζ ′′2,0−

1
3h2

2,1
ζ ′21,0 −

1
3h2

2,1
ζ ′1,0 ζ

′

2,0 +
1
6

(
1

h2
2,1
−
σ3r2

3

h2
3,0

)
ζ ′22,0

}
=

1
2

F2

[
(σ3 − 1)+

1
h2

2,1
−
σ3r2

3

h2
3,0

]
− (σ3 − 1) ζ2,0. (D 2)

Here we have assumed h2=O(r2) and ζ1,0= ζ2,0≡ ζ . This leaves us with the following
coupled system:

F2

{
1
3
σ1

h1,0
ζ ′′+

(
1
6
σ1

h2
1,0
+

1
2h2

2,1

)
ζ ′2
}

=
1
2

F2

[
1− σ1 +

σ1

h2
1,0
−

1
h2

2,1

]
− (1− σ1) ζ , (D 3)

F2

{
1
3
σ3r2

3

h3,0
ζ ′′−

(
1

2h2
2,1
+

1
6
σ3r2

3

h2
3,0

)
ζ ′2
}

=
1
2

F2

[
σ3 − 1+

1
h2

2,1
−
σ3r2

3

h2
3,0

]
− (σ3 − 1) ζ . (D 4)

Since h1,0 = 1− ζ and h3,0 = r3 + ζ , the unknowns of the problem are simply ζ and
h2,1≡ ζ1,1− ζ2,1+ 1. The latter can be eliminated by simply adding the two equations
to have

F2

{
1
3

(
σ1

h1,0
+
σ3 r2

3

h3,0

)
ζ ′′+

1
6

(
σ1

h2
1,0
−
σ3 r2

3

h2
3,0

)
ζ ′2
}

=
1
2

F2

[
σ3 − σ1 +

σ1

h2
1,0
−
σ3 r2

3

h2
3,0

]
− (σ3 − σ1)ζ . (D 5)

We recognize this equation as the second-order ordinary differential equation that
governs the solitary-wave solutions of the MCC model. Once ζ is known, we can
use either (D 3) or (D 4) to find the first-order correction of the thickness of the
intermediate layer.
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When we go back to dimensional variables, we can rewrite (D 5) as

1
3 h1h3c2(ρ1H2

1h3 + ρ3H2
3h1)ζ

′′
+

1
6 c2(ρ1H2

1h2
3 − ρ3H2

3h2
1)ζ
′2

=
1
2 c2
[(ρ3 − ρ1)h2

1h2
3 + ρ1H2

1h2
3 − ρ3H2

3h2
1] − g(ρ3 − ρ1)h2

1h2
3ζ , (D 6)

which, according to Choi & Camassa (1999), can be integrated once to recover the
Hamiltonian

ζ ′2 =
3 ζ 2
[(ρ1h3 + ρ3h1)c2

− g(ρ3 − ρ1)h1h3]

c2(ρ1H2
1h3 + ρ3H2

3h1)
. (D 7)
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