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We study the periodic and Neumann boundary-value problems associated with the
second-order nonlinear differential equation

u′′ + cu′ + λa(t)g(u) = 0,

where g : [0, +∞[ → [0, +∞[ is a sublinear function at infinity having superlinear
growth at zero. We prove the existence of two positive solutions when∫ T

0
a(t) dt < 0

and λ > 0 is sufficiently large. Our approach is based on Mawhin’s coincidence degree
theory and index computations.
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1. Introduction

This paper deals with the periodic boundary-value problem (BVP) associated with
the nonlinear second-order ordinary differential equation

u′′ + cu′ + λa(t)g(u) = 0. (1.1)
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Let R
+ := [0, +∞[ denote the set of non-negative real numbers. We suppose that

a : R → R is a locally integrable T -periodic function and g : R
+ → R

+ is continuous
and such that

(g∗) g(0) = 0, g(s) > 0 for s > 0.

The real constant c is arbitrary and results will be given depending on the parameter
λ > 0.

We are interested in finding positive and T -periodic solutions to (1.1), namely
we look for u(t) satisfying (1.1) in the Carathéodory sense (see [17]) and such that
u(t + T ) = u(t) > 0 for all t ∈ R.

As main assumptions on the nonlinearity we require that g(s) tends to zero for
s → 0+ faster than linearly and it has a sublinear growth at infinity, that is

(g0) lims→0+ g(s)/s = 0,

(g∞) lims→+∞ g(s)/s = 0.

Under the above hypotheses, the search for positive solutions of (1.1) satisfying the
two-point boundary condition u(0) = u(T ) = 0 has received much attention. Note
that in this case its is not restrictive to suppose that c = 0, since one can always
reduce the problem to this situation via a standard change of variables. Typical
theorems guarantee the existence of at least two (positive) solutions when a(t) � 0
for all t and λ > 0 is sufficiently large (cf. [11]). These proofs have been obtained by
using different techniques, such as the theory of fixed points for positive operators
or critical point theory. Under additional technical assumptions, similar results can
also be given for the Dirichlet problem

−∆u = λa(x)g(u) in Ω,

u = 0 on ∂Ω

(see, for example, [2, 18, 26]). In the recent paper [8] a dynamical system approach
was proposed in order to obtain pairs of positive solutions even when a(t) may
change its sign.

Concerning the periodic BVP, analogous results on pairs of positive solutions
have been provided in [15] for equations of the form

u′′ − ku + λa(t)g(u) = 0,

with k > 0. However, fewer results seem to be available when k = 0. One of
the peculiar aspects of the periodic BVP associated with (1.1) is the fact that
the differential operator has a non-trivial kernel (which is made by the constant
functions). A second feature to take into account concerns the fact that we have
to impose additional conditions on the weight function. Indeed, if u(t) > 0 is a
T -periodic solution of (1.1), then (after integrating the equation on [0, T ]) one has
that ∫ T

0
a(t)g(u(t)) dt = 0,

with g(u(t)) > 0 for every t. Hence, a(t) cannot be of constant sign. These two
facts make it unclear how to apply the methods based on the theory of positive
operators for cones in Banach spaces.
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A first contribution in the periodic problem for (1.1) was obtained in [6] in the
case c = 0. More precisely, by taking advantage of the variational (Hamiltonian)
structure of the equation

u′′ + λa(t)g(u) = 0, (1.2)

critical point theory for the action functional

Jλ(u) :=
∫ T

0
[ 12 (u′)2 − λa(t)G(u)] dt

was used to prove the existence of at least two positive T -periodic solutions for (1.2),
with λ positive and large, by assuming a+ �≡ 0 on some interval and

(a∗)
∫ T

0 a(t) dt < 0.

Roughly speaking, condition (a∗) guarantees both that the functional Jλ is coercive
and bounded from below and that the origin is a strict local minimum. When λ > 0
is sufficiently large (so that inf Jλ < 0) one gets two non-trivial critical points: a
global minimum and a second one from a mountain pass geometry. To perform the
technical estimates, in [6] some further conditions on g(s) and

G(s) :=
∫ s

0
g(ξ) dξ

(implying (g0) and (g∞)) were imposed. For example, the superlinearity assumption
at zero is expressed by

(gα) lims→0+ g(s)/sα = �α > 0

for some α > 1. Note that assumptions of this kind have also been used in previous
works dealing with indefinite superlinear problems, such as [1, 4].

As observed in [6] (and first also in [3], in the context of the Neumann BVP), con-
dition (a∗) becomes necessary when g(s) is continuously differentiable with g′(s) > 0
for all s > 0. By repeating the argument in [6, proposition 2.1], one can check that
the same necessary condition is valid for (1.1) with an arbitrary c ∈ R.

Unlike the two-point (Dirichlet) BVP, where it is easy to enter into a variational
formulation of Sturm–Liouville type for an arbitrary c ∈ R, for the periodic problem
this formulation is no longer guaranteed. Indeed, for c �= 0, we lose the Hamiltonian
structure if we pass to the natural equivalent system in the phase plane

u′ = y, y′ = −cy − λa(t)g(u).

On the other hand, we can consider an equivalent first-order system of Hamiltonian
type, as

u′ = e−cty, y′ = −λecta(t)g(u),

but its T -periodic solutions do not correspond to the T -periodic solutions of (1.1).
The main contribution of our paper is to provide an existence result for pairs of

positive T -periodic solutions to (1.1) in the possibly non-variational setting (when
c �= 0). Towards this aim, we introduce a topological approach that may have some
independent interest even for the case c = 0. Our proof is reminiscent of the classical
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approach in the case of positive operators in ordered Banach spaces, which consists
in proving that the fixed-point index of the associated operator is 1 on small balls
B(0, r) as well as on large balls B(0, R). Moreover, when λ > 0 is sufficiently large,
one can find an intermediate ball B(0, ρ) (with r < ρ < R), where the fixed-point
index is 0. Thus, there exist a non-trivial (positive) solution in P ∩(B(0, ρ)\B[0, r])
and another in P ∩ (B(0, R) \ B[0, ρ]), where P is the positive cone. In our setting
we do not have a positive operator, but, using a maximum-principle-type argument,
we can work directly with the topological degree in the Banach space of continuous
T -periodic functions and then prove that the two non-trivial solutions that we reach
are indeed positive. Actually, the situation is even more complicated because (1.1)
is a coincidence equation of the form

Lu = Nλu,

with L a non-invertible differential operator. In this case Mawhin’s coincidence
degree theory (see [20]), adapted to the case of locally compact operators (cf. [25]),
is the appropriate tool for our purposes. In the recent paper [12] a similar approach
was adopted for the study of positive solutions when the nonlinearity is superlinear
both at zero and at infinity. In such a situation the existence of at least one positive
solution is guaranteed.

The advantage of using an approach based on degree theory lies in the fact that
the existence results are stable with respect to small perturbations of the differen-
tial equation. Hence, we can also provide pairs of positive T -periodic solutions for
equations of the form

u′′ + cu′ + εu + λa(t)g(u) = 0

for ε small. This also gives an interesting result in the variational case (when c = 0).
The technical assumptions on g(s) that we have to impose at zero (as well as at

infinity) allow us to slightly improve (gα), by using a condition of regular oscillation
type. Let R

+
0 := ]0, +∞[ and let h : R

+
0 → R

+
0 be a continuous function. We say

that h is regularly oscillating at zero if

lim
s→0+

ω→1

h(ωs)
h(s)

= 1.

Analogously, we say that h is regularly oscillating at infinity if

lim
s→+∞
ω→1

h(ωs)
h(s)

= 1.

The concept of a regularly oscillating function (usually referring to the case at infin-
ity) is related to classical conditions of Karamata type that have been developed
and studied by several authors due to their significance in different areas of real
analysis and probability (cf. [5, 27]). For the specific definition considered in our
paper, as well as for some historical remarks, see [10] and the references therein.
Observe that any function h(s) such that h(s) ∼ Ksp, K, p > 0, is regularly oscillat-
ing both at zero and at infinity. However, the class of regularly oscillating functions
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is quite broad. For instance, functions such as

h(s) = sp exp
( ∫ s

1

b(t)
t

dt

)
,

with b(t) continuous and bounded, are regularly oscillating at infinity.
Now we are in a position to state our main result.

Theorem 1.1. Let g : R
+ → R

+ be a continuous function satisfying (g∗). Suppose
also that g is regularly oscillating at zero and at infinity and satisfies (g0) and
(g∞). Let a : R → R be a locally integrable T -periodic function satisfying the average
condition (a∗). Furthermore, suppose that there exists an interval I ⊆ [0, T ] such
that a(t) � 0 for almost every (a.e.) t ∈ I and∫

I

a(t) dt > 0.

Then there exists λ∗ > 0 such that for each λ > λ∗ (1.1) has at least two positive
T -periodic solutions.

As will become clear from the proof, the constant λ∗ can be chosen depending (as
well as on c and g(s)) only on the behaviour of a(t) on the interval I. This remark
allows us to obtain the following corollary for the related two-parameter equation

u′′ + cu′ + (λa+(t) − µa−(t))g(u) = 0, (1.3)

with λ, µ > 0, where, as usual, we have set

a+(t) :=
a(t) + |a(t)|

2
, a−(t) :=

−a(t) + |a(t)|
2

.

Equation (1.3), for c = 0, has been considered in [7], with the aim of investigating
multiplicity results and complex dynamics when µ 	 0 (see also [13] and the
references therein for related results in the superlinear case).

Corollary 1.2. Let g(s) be as above and let a(t) be a T -periodic function with
a± ∈ L1([0, T ]) and a− �≡ 0. Suppose also that there exists an interval I ⊆ [0, T ]
such that ∫

I

a−(t) dt = 0 <

∫
I

a+(t) dt.

Then there exists λ∗ > 0 such that for each λ > λ∗ and for each

µ > λ

∫ T

0 a+(t) dt∫ T

0 a−(t) dt

equation (1.3) has at least two positive T -periodic solutions.

Our results are sharp in the sense that there are examples of functions g(s)
satisfying all the assumptions of theorem 1.1 or of corollary 1.2 and such that there
are no positive T -periodic solutions if λ > 0 is small or if (a∗) is not satisfied
(see [6, § 2], where the assertions are proved in the case c = 0). One can easily
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check that those results can be extended to the case of an arbitrary c ∈ R (see
also § 4.4).

Another sharp result can be given when g(s) is smooth. Indeed, initially we
produce a variant of theorem 1.1 (see theorem 4.4) by replacing the hypothesis
of regular oscillation of g at zero (respectively, at infinity), with the condition of
continuous differentiability of g(s) in a neighbourhood of s = 0 (respectively, near
infinity). Next, in the smooth case and further assuming that |g′(s)| is bounded on
R

+
0 , we can also provide a non-existence result for λ > 0 small (see theorem 4.6). As

a consequence of these results, the following variant of theorem 1.1 can be stated.
We define g′(∞) = lims→+∞ g′(s).

Theorem 1.3. Let g : R
+ → R

+ be a continuously differentiable function satisfying
(g∗) and such that g′(0) = 0 and g′(∞) = 0. Let a : R → R be a locally integrable
T -periodic function satisfying the average condition (a∗). Furthermore, suppose that
there exists an interval I ⊆ [0, T ] such that a(t) � 0 for a.e. t ∈ I and

∫
I
a(t) dt > 0.

Then there exists λ∗ > 0 such that for each 0 < λ < λ∗ (1.1) has no positive T -
periodic solution. Moreover, there exists λ∗ > 0 such that for each λ > λ∗ (1.1)
has at least two positive T -periodic solutions. Condition (a∗) is also necessary if
g′(s) > 0 for s > 0.

To show a simple example of the applicability of theorem 1.3, we consider the
T -periodic BVP

u′′ + cu′ + λ(sin(t) + k)g(u) = 0,

u(2π) − u(0) = u′(2π) − u′(0) = 0,

}
(1.4)

where k ∈ R and
g(s) = arctan(sα) with α > 1

(other examples of functions g(s) can easily be produced). Since g′(s) > 0 for all
s > 0, we know that there are positive T -periodic solutions only if −1 < k < 0.
Moreover, for any fixed k ∈ ]−1, 0[ there exist two constants 0 < λ∗,k � λ∗,k such
that for 0 < λ < λ∗,k there are no positive solutions for (1.4), while for λ > λ∗,k

there are at least two positive solutions. Estimates for λ∗,k and λ∗,k can be given
for any specific equation.

The plan of the paper is as follows. In § 2 we recall some basic facts about
Mawhin’s coincidence degree and we present two lemmas for the computation of
the degree (see lemmas 2.1 and 2.2); next we show the general scheme followed in
the proof of theorem 1.1, which is performed in § 3. In § 4 we present some conse-
quences and variants of the main theorem (including the existence of small (large)
solutions using only conditions for g(s) near zero (near infinity)). We also deal with
the smooth case and give a non-existence result. In § 5 we briefly describe how all
the results can be adapted to the Neumann problem, including a final application
to radially symmetric solutions on annular domains.

2. The abstract setting

Let X := CT be the Banach space of continuous and T -periodic functions u : R → R,
endowed with the norm

‖u‖∞ := max
t∈[0,T ]

|u(t)| = max
t∈R

|u(t)|,
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and let Z := L1
T be the Banach space of measurable and T -periodic functions

v : R → R that are integrable on [0, T ], endowed with the norm

‖v‖L1
T

:=
∫ T

0
|v(t)| dt.

The linear differential operator

L : u �→ −u′′ − cu′

is a (linear) Fredholm map of index zero defined on domL := W 2,1
T ⊆ X, with

range

Im L =
{

v ∈ Z :
∫ T

0
v(t) dt = 0

}
.

Associated with L we have the projectors

P : X → ker L ∼= R, Q : Z → coker L ∼= Z/ Im L ∼= R,

which, in our situation, can be chosen as the average operators

Pu = Qu :=
1
T

∫ T

0
u(t) dt.

Finally, let
KP : Im L → dom L ∩ ker P

be the right inverse of L, that is, for any v ∈ L1
T with

∫ T

0 v(t) dt = 0, KP v = u is
the unique T -periodic solution u of

u′′ + cu′ + v(t) = 0 with
∫ T

0
u(t) dt = 0.

Next, we define the L1-Carathéodory function

fλ(t, s) :=

{
−s if s � 0,

λa(t)g(s) if s � 0,

where a : R → R is a T -periodic and locally integrable function, g : R
+ → R

+ is a
continuous function with g(0) = 0 and λ > 0 is a fixed parameter. Let us denote
by Nλ : X → Z the Nemytskii operator induced by the function fλ, that is

(Nλu)(t) := fλ(t, u(t)), t ∈ R.

By coincidence degree theory we know that the equation

Lu = Nλu, u ∈ dom L, (2.1)

is equivalent to the fixed-point problem

u = Φλu := Pu + QNλu + KP (Id − Q)Nλu, u ∈ X.

Technically, the term QNλu in the above formula should be more correctly written
as JQNλu, where J is a linear (orientation-preserving) isomorphism from cokerL
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to ker L. However, in our situation, we can take as J the identity on R, having
identified cokerL, as well as ker L, with R. It is standard to verify that Φλ : X → X
is a completely continuous operator. In such a situation, we usually say that Nλ is
L-completely continuous (see [20], where the treatment has been given for the most
general cases).

If O ⊆ X is an open and bounded set such that

Lu �= Nλu ∀u ∈ ∂O ∩ dom L,

the coincidence degree DL(L − Nλ,O) (of L and Nλ in O) is defined as

DL(L − Nλ,O) := degLS(Id − Φλ,O, 0),

where ‘degLS’ denotes the Leray–Schauder degree.
In our applications we need to consider a slight extension of coincidence degree

to open (not necessarily bounded) sets. Towards this aim, we just follow the stan-
dard approach used to define the Leray–Schauder degree for locally compact maps
defined on open sets, which is classical in the theory of fixed-point index (cf. [16,
22,24,25]). More precisely, let Ω ⊆ X be an open set and suppose that the solution
set

Fix(Φλ, Ω) := {u ∈ Ω : u = Φλu} = {u ∈ Ω ∩ dom L : Lu = Nλu}
is compact. The extension of the Leray–Schauder degree to open (not necessarily
bounded) sets allows us to define

degLS(Id − Φλ, Ω, 0) := degLS(Id − Φλ,V, 0),

where V is an open and bounded set with

Fix(Φλ, Ω) ⊆ V ⊆ V̄ ⊆ Ω. (2.2)

One can check that the definition is independent of the choice of V. Accordingly,
we define the coincidence degree DL(L − Nλ, Ω) (of L and Nλ in Ω) as

DL(L − Nλ, Ω) := DL(L − Nλ,V) = degLS(Id − Φλ,V, 0),

with V as above. In the special case when Ω is an open and bounded set such that

Lu �= Nλu ∀u ∈ ∂Ω ∩ dom L, (2.3)

it is easy to verify that the above definition is exactly the usual definition of
coincidence degree, according to Mawhin. Indeed, if (2.3) holds with Ω open and
bounded, then, by the excision property of the Leray–Schauder degree, we have
degLS(Id − Φλ,V, 0) = degLS(Id − Φλ, Ω, 0) for each open and bounded set V satis-
fying (2.2). We refer the reader to [23] for an analogous introduction from a different
point of view.

Combining the properties of coincidence degree from [20, ch. II] with the fixed-
point index theory for locally compact operators (cf. [24,25]), it is possible to derive
the following versions of the main properties of the degree.

• Additivity. Let Ω1 and Ω2 be open and disjoint subsets of Ω such that
Fix(Φλ, Ω) ⊆ Ω1 ∪ Ω2. Then

DL(L − Nλ, Ω) = DL(L − Nλ, Ω1) + DL(L − Nλ, Ω2).
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• Excision. Let Ω0 be an open subset of Ω such that Fix(Φλ, Ω) ⊆ Ω0. Then

DL(L − Nλ, Ω) = DL(L − Nλ, Ω0).

• Existence theorem. If DL(L − Nλ, Ω) �= 0, then Fix(Φλ, Ω) �= ∅; hence, there
exists u ∈ Ω ∩ dom L such that Lu = Nλu.

• Homotopic invariance. Let H : [0, 1] × Ω → X, Hϑ(u) := H(ϑ, u), be a con-
tinuous homotopy such that

S :=
⋃

ϑ∈[0,1]

{u ∈ Ω ∩ dom L : Lu = Hϑu}

is a compact set and there exists an open neighbourhood W of S such that
W̄ ⊆ Ω and (KP (Id − Q)H)|[0,1]×W̄ is a compact map. Then the map ϑ �→
DL(L − Hϑ, Ω) is constant on [0, 1].

For more details, proofs and applications, we refer to [14,20,21] and the references
therein.

Later we shall apply this general setting as follows. We consider an L-completely
continuous operator N and an open (not necessarily bounded) set A such that
the solution set {u ∈ Ā ∩ dom L : Lu = Nu} is compact and disjoint from ∂A.
Therefore, DL(L−N ,A) is well defined. We shall proceed analogously when dealing
with homotopies.

2.1. Auxiliary lemmas

Within the framework introduced above, we now present two auxiliary semi-
abstract results that are useful for the computation of the coincidence degree. In
the following, we denote by B(0, d) and B[0, d] respectively the open and closed
balls of centre at the origin and radius d > 0 in X. For lemmas 2.1 and 2.2 we
do not require all the assumptions on a(t) and g(s) stated in theorem 1.1. In this
way we hope that the two results may have independent interest beyond that of
providing a proof of theorem 1.1.

Lemma 2.1. Let λ > 0. Let g : R
+ → R

+ be a continuous function such that g(0) =
0 and let a ∈ L1

T . Assume that there exists a constant d > 0 and a compact interval
I ⊆ [0, T ] such that the following properties hold.

(Ad,I) If α � 0, then any non-negative T -periodic solution u(t) of

u′′ + cu′ + λa(t)g(u) + α = 0 (2.4)

satisfies maxt∈I u(t) �= d.

(Bd,I) For every β � 0 there exists a constant Dβ � d such that if α ∈ [0, β] and
u(t) is any non-negative T -periodic solution of (2.4) with maxt∈I u(t) � d,
then maxt∈[0,T ] u(t) � Dβ.

(Cd,I) There exists α∗ � 0 such that (2.4), with α = α∗, does not possess any non-
negative T -periodic solution u(t) with maxt∈I u(t) � d.
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Then
DL(L − Nλ, Ωd,I) = 0,

where
Ωd,I :=

{
u ∈ X : max

t∈I
|u(t)| < d

}
.

Note that Ωd,I is open but not bounded (unless I = [0, T ]).

Proof. For a fixed constant d > 0 and a compact interval I ⊆ [0, T ] as in the
statement, let us consider the open set Ωd,I defined above. We study the equation

u′′ + cu′ + fλ(t, u) + α = 0 (2.5)

for α � 0, which can be written as a coincidence equation in the space X:

Lu = Nλu + α1, u ∈ dom L,

where 1 ∈ X is the constant function 1(t) ≡ 1.
As a first step, we check that the coincidence degree DL(L − Nλ − α1, Ωd,I) is

well defined for any α � 0. Towards this aim, suppose that α � 0 is fixed and
consider the set

Rα := {u ∈ cl(Ωd,I) ∩ dom L : Lu = Nλu + α1}
= {u ∈ cl(Ωd,I) : u = Φλu + α1}.

We have that u ∈ Rα if and only if u(t) is a T -periodic solution of (2.5) such that
|u(t)| � d for every t ∈ I. By a standard application of the maximum principle, we
find that u(t) � 0 for all t ∈ R and, indeed, u(t) solves (2.4), with maxt∈I u(t) � d.
Condition (Bd,I) gives a constant Dα such that ‖u‖∞ � Dα and so Rα is bounded.
The complete continuity of the operator Φλ ensures the compactness of Rα. More-
over, condition (Ad,I) guarantees that |u(t)| < d for all t ∈ I and then we con-
clude that Rα ⊆ Ωd,I . In this manner we have proved that the coincidence degree
DL(L − Nλ − α1, Ωd,I) is well defined for any α � 0.

Now, condition (Cd,I), together with the property of existence of solutions when
the degree DL is non-zero, implies that there exists α∗ � 0 such that

DL(L − Nλ − α∗1, Ωd,I) = 0.

On the other hand, from condition (Bd,I) applied on the interval [0, β] := [0, α∗],
by repeating the argument in the first step above, we find that the set

S :=
⋃

α∈[0,α∗]

Rα

=
⋃

α∈[0,α∗]

{u ∈ cl(Ωd,I) ∩ dom L : Lu = Nλu + α1}

=
⋃

α∈[0,α∗]

{u ∈ cl(Ωd,I) : u = Φλu + α1}

is a compact subset of Ωd,I . Hence, by the homotopic invariance of the coincidence
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degree, we have that

DL(L − Nλ, Ωd,I) = DL(L − Nλ − α∗1, Ωd,I) = 0.

This concludes the proof.

Lemma 2.2. Let λ > 0. Let g : R
+ → R

+ be a continuous function such that g(0) =
0. Suppose a ∈ L1

T with ∫ T

0
a(t) dt < 0.

Assume that there exists a constant d > 0 such that g(d) > 0 and the following
property holds.

(Hd) If ϑ ∈ ]0, 1] and u(t) is any non-negative T -periodic solution of

u′′ + cu′ + ϑλa(t)g(u) = 0, (2.6)

then maxt∈[0,T ] u(t) �= d.

Then
DL(L − Nλ, B(0, d)) = 1.

Proof. First, we claim that there are no solutions to the parametrized coincidence
equation

Lu = ϑNλu, u ∈ ∂B(0, d) ∩ dom L, 0 < ϑ � 1.

Indeed, if any such a solution u exists, it is a T -periodic solution of

u′′ + cu′ + ϑfλ(t, u) = 0

with ‖u‖∞ = d. By the definition of fλ(t, s) and a standard application of the
maximum principle, we easily get that u(t) � 0 for every t ∈ R. Therefore, u(t) is a
non-negative T -periodic solution of (2.6) with maxt∈[0,T ] u(t) = d. This contradicts
property (Hd) and the claim is thus proved.

As a second step, we consider QNλu for u ∈ ker L. Since kerL ∼= R, we have

QNλu =
1
T

∫ T

0
fλ(t, s) dt for u ≡ const. = s ∈ R.

For notational convenience, we set

f#
λ (s) :=

1
T

∫ T

0
fλ(t, s) dt =

⎧⎪⎨
⎪⎩

−s if s � 0,

λ

(
1
T

∫ T

0
a(t) dt

)
g(s) if s � 0.

Note that sf#
λ (s) < 0 for each s �= 0. As a consequence, we find that QNλu �= 0 for

each u ∈ ∂B(0, d) ∩ ker L.
An important result from Mawhin’s continuation theorem (see [21, theorem 2.4]

and also [19], where the result was previously given in the context of the periodic
problem for ODEs) guarantees that

DL(L − Nλ, B(0, d)) = dB(−QNλ|ker L, B(0, d) ∩ ker L, 0) = dB(−f#
λ , ]−d, d[, 0),
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where dB denotes the Brouwer degree; the latter is clearly equal to 1 as

−f#
λ (−d) = −d < 0 < λ

(
− 1

T

∫ T

0
a(t) dt

)
g(d) = −f#

λ (d).

This concludes the proof.

2.2. Proof of theorem 1.1: the general strategy

With the aid of the two lemmas just proved, we can give a proof of theorem 1.1,
as follows.

We fix a constant ρ > 0 and consider, for I := I, the open set

Ωρ,I :=
{

u ∈ X : max
t∈I

|u(t)| < ρ
}

.

First, we show that condition (Aρ,I) is satisfied provided that λ > 0 is sufficiently
large, say λ > λ∗ := λ∗

ρ,I . Such a lower bound for λ does not depend on α. Then,
we fix an arbitrary λ > λ∗ and show that conditions (Bρ,I) and (Cρ,I) are satisfied
as well. In particular, for β = 0, we find a constant D0 = D0(ρ, I, λ) � ρ such that
any possible solution of

Lu = Nλu, u ∈ cl(Ωρ,I) ∩ dom L,

satisfies
‖u‖∞ � D0.

In this manner, we have that

B(0, ρ) ⊆ Ωρ,I and Fix(Φλ, Ωρ,I) ⊆ B(0, R) ∀R > D0.

Moreover,

DL(L − Nλ, Ωρ,I) = DL(L − Nλ, Ωρ,I ∩ B(0, R)) = 0 ∀R > D0.

As a next step, using (g0) and the regular oscillation of g(s) at zero, we find a
positive constant r0 < ρ such that for each r ∈ ]0, r0] condition (Hr) (of lemma 2.2)
is satisfied and therefore

DL(L − Nλ, B(0, r)) = 1 ∀0 < r � r0.

With a similar argument, using (g∞) and the regular oscillation of g(s) at infinity,
we find a positive constant R0 > D0 such that for each R � R0 condition (HR) is
also satisfied, and therefore

DL(L − Nλ, B(0, R)) = 1 ∀R � R0.

By the additivity property of the coincidence degree we obtain

DL(L − Nλ, Ωρ,I \ B[0, r]) = −1 ∀0 < r � r0 (2.7)

and
DL(L − Nλ, B(0, R) \ cl(Ωρ,I ∩ B(0, R0))) = 1 ∀R > R0. (2.8)
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Thus, in conclusion, we find a first solution u of (2.1) with u ∈ Ωρ,I \ B[0, r]
(using (2.7) for a fixed r ∈ ]0, r0]) and a second solution ū of (2.1) with ū ∈
B(0, R) \ cl(Ωρ,I ∩ B(0, R0)) (using (2.8) for a fixed R > R0). Both u(t) and ū(t)
are non-trivial T -periodic solutions of

u′′ + cu′ + fλ(t, u) = 0

and, by the maximum principle, they are actually non-negative solutions of (1.1).
Finally, since by condition (g0) we know that a(t)g(s)/s is L1-bounded in a right
neighbourhood of s = 0, it is immediate to prove (by an elementary form of the
strong maximum principle) that such solutions are in fact strictly positive.

3. Proof of theorem 1.1: the technical details

In this section we give a proof of theorem 1.1 by following the steps described
in § 2.2. Towards this aim, it is sufficient to check separately the validity of the
assumptions in lemma 2.1, for I := I and d = ρ > 0 a fixed number, and those in
lemma 2.2, for d = r > 0 small (0 < r � r0) and for d = R > 0 large (R � R0).
Note that r0 and R0 are chosen after both ρ and λ > 0 have been fixed.

Throughout the section, for simplicity, we suppose the validity of all the assump-
tions in theorem 1.1. However, from a careful checking of the proofs below, one can
see that not all of them are needed for the verification of each individual lemma.

3.1. Checking the assumptions of lemma 2.1 for λ large

Let ρ > 0 be fixed. Let I := [σ, τ ] ⊆ [0, T ] be such that a(t) � 0 for a.e. t ∈ I and∫
I
a(t) dt > 0. We fix ε > 0 such that for

σ0 := σ + ε < τ − ε =: τ0

it holds that ∫ τ0

σ0

a(t) dt > 0.

Let us consider the non-negative solutions of (2.4) for t ∈ I. Such an equation
takes the form

u′′ + cu′ + h(t, u) = 0, (3.1)

where we have set (for notational convenience)

h(t, s) = hλ,α(t, s) := λa(t)g(s) + α,

where λ > 0 and α � 0. Note that h(t, s) � 0 for a.e. t ∈ I and for all s � 0.
Writing (3.1) as

(ectu′)′ + ecth(t, u) = 0,

we find that (ectu′(t))′ � 0 for almost every t ∈ I, so that the map t �→ ectu′(t) is
non-increasing on I.

We split the proof into different steps.
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Step 1 (a general estimate). For every non-negative solution u(t) of (3.1) the
following estimate holds:

|u′(t)| � u(t)
ε

e|c|T ∀t ∈ [σ0, τ0]. (3.2)

To prove this, let us fix t ∈ [σ0, τ0]. The result is trivially true if u′(t) = 0. Suppose
that u′(t) > 0 and consider the function u(t) on the interval [σ, t]. Since ξ �→ ecξu′(ξ)
is non-increasing on [σ, t], we have

u′(ξ) � u′(t)ec(t−ξ) ∀ξ ∈ [σ, t].

Integrating on [σ, t], we obtain

u(t) � u(t) − u(σ) � u′(t)e−|c|(t−σ)(t − σ) � u′(t)e−|c|T ε

and therefore (3.2) follows. If u′(t) < 0, we obtain the same result, after an inte-
gration on [t, τ ]. Hence, (3.2) is proved in any case. Observe that only a condition
on the sign of h(t, s) is used, and therefore the estimate is valid independently on
λ > 0 and α � 0.

Step 2 (verification of (Aρ,I) for λ > λ∗, with λ∗ depending on ρ and I but not on
α). Suppose that u(t) is a non-negative T -periodic solution of (2.4) with

max
t∈I

u(t) = ρ.

Let t0 ∈ I be such that u(t0) = ρ and observe that u′(t0) = 0 if σ < t0 < τ , while
u′(t0) � 0 if t0 = σ and u′(t0) � 0 if t0 = τ .

First, we prove the existence of a constant δ ∈ ]0, 1[ such that

min
t∈[σ0,τ0]

u(t) � δρ. (3.3)

This follows from the estimate (3.2). Indeed, if t∗ ∈ [σ0, τ0] is such that u(t∗) =
mint∈[σ0,τ0] u(t), we obtain that

|u′(t∗)| � u(t∗)
ε

e|c|T . (3.4)

On the other hand, by the monotonicity of the function t �→ ectu′(t) in [σ, τ ],

u′(ξ)ecξ � u′(t∗)ect∗ ∀ξ ∈ [σ, t∗] (3.5)

and

u′(ξ)ecξ � u′(t∗)ect∗ ∀ξ ∈ [t∗, τ ]. (3.6)

From the properties about u′(t0) listed above, we deduce that if t0 > t∗, then
u′(t0) � 0, and therefore we must have u′(t∗) � 0. Similarly, if t0 < t∗, then
u′(t0) � 0, and therefore we must have u′(t∗) � 0. The case t∗ = t0 can be handled
trivially and we do not consider it here. Thus, we have that one of the following
situations occurs: either

σ � t0 < t∗ ∈ [σ0, τ0], u(t0) = ρ, u′(ξ) � 0, ∀ξ ∈ [t0, t∗] (3.7)
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or

τ � t0 > t∗ ∈ [σ0, τ0], u(t0) = ρ, u′(ξ) � 0, ∀ξ ∈ [t∗, t0]. (3.8)

Suppose that (3.7) holds. In this situation, from (3.5) we have

−u′(ξ) � −u′(t∗)ec(t∗−ξ) ∀ξ ∈ [t0, t∗]

and thus, integrating on [t0, t∗] and using (3.4), we obtain

ρ − u(t∗) � |u′(t∗)|e|c|T (t∗ − t0) � u(t∗)
ε

e2|c|T T.

This gives (3.3) for
δ :=

ε

ε + e2|c|T T
.

We get exactly the same estimate in the case of (3.8), by using (3.6) and then
integrating on [t∗, t0]. Observe that the constant δ ∈ ]0, 1[ does not depend on λ
or α.

Having found the constant δ, we now define

η = η(ρ) := min{g(s) : s ∈ [δρ, ρ]}.

Then, integrating (2.4) on [σ0, τ0] and using (3.2) (for t = σ0 and t = τ0), we obtain

λη

∫ τ0

σ0

a(t) dt � λ

∫ τ0

σ0

a(t)g(u(t)) dt

= u′(σ0) − u′(τ0) + c(u(σ0) − u(τ0)) − α(τ0 − σ0)

� 2
ρ

ε
e|c|T + 2|c|ρ.

Now, we define

λ∗ :=
2ρ(ε|c| + e|c|T )
εη

∫ τ0

σ0
a(t) dt

. (3.9)

Arguing by contradiction, we immediately conclude that there are no (non-negative)
T -periodic solutions u(t) of (2.4) with maxt∈I u(t) = ρ if λ > λ∗. Thus, condition
(Aρ,I) is proved.

Step 3 (verification of (Bρ,I)). Let u(t) be any non-negative T -periodic solution
of (2.4) with maxt∈I u(t) � ρ. Let us fix an instant t̂ ∈ [σ0, τ0]. By (3.2), we know
that

|u′(t̂)| � ρ

ε
e|c|T .

Using the fact that

|h(t, s)| � M(t)|s| + N(t) for a.e. t ∈ [0, T ], ∀s ∈ R, ∀α ∈ [0, β],

with suitable M, N ∈ L1
T (depending on β), from a standard application of the

(generalized) Gronwall inequality (cf. [17]), we find a constant Dβ = Dβ(ρ, λ) such
that

max
t∈[0,T ]

(|u(t)| + |u′(t)|) � Dβ .

So condition (Bρ,I) is verified.
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Step 4 (verification of (Cρ,I)). Let u(t) be an arbitrary non-negative T -periodic
solution of (2.4) with maxt∈I u(t) � ρ. Integrating (2.4) on [σ0, τ0] and using (3.2)
(for t = σ0 and t = τ0), we obtain

α(τ0 − σ0) = u′(σ0) − u′(τ0) + c(u(σ0) − u(τ0)) − λ

( ∫ τ0

σ0

a(t)g(u(t)) dt

)

� 2
ρ

ε
e|c|T + 2|c|ρ =: K = K(ρ, ε).

This yields a contradiction if α > 0 is sufficiently large. Hence, (Cρ,I) is verified by
taking α∗ > K/(τ0 − σ0).

In conclusion, all the assumptions of lemma 2.1 have been verified for a fixed
ρ > 0 and for λ > λ∗.

Remark 3.1. Note that, of the assumptions of theorem 1.1, in this part of the proof
we have used only the following: g(s) > 0 for all s ∈ ]0, ρ], lim sups→+∞ |g(s)|/s <
+∞, a ∈ L1

T and a(t) � 0 for a.e. t ∈ I, with
∫

I
a(t) dt > 0.

3.2. Checking the assumptions of lemma 2.2 for r small

We prove that condition (Hd) of lemma 2.2 is satisfied for d = r sufficiently
small. Indeed, we claim that there exists r0 > 0 such that there is no non-negative
T -periodic solution u(t) of (2.6) for some ϑ ∈ ]0, 1] with ‖u‖∞ = r ∈ ]0, r0]. Arguing
by contradiction, we suppose that there exists a sequence of T -periodic functions
un(t) with un(t) � 0 for all t ∈ R and such that

u′′
n(t) + cu′

n(t) + ϑnλa(t)g(un(t)) = 0 (3.10)

for a.e. t ∈ R with ϑn ∈ ]0, 1], and also such that ‖un‖∞ = rn → 0+. Let t∗n ∈ [0, T ]
be such that un(t∗n) = rn.

We define

vn(t) :=
un(t)

‖un‖∞
=

un(t)
rn

and observe that (3.10) can equivalently be written as

v′′
n(t) + cv′

n(t) + ϑnλa(t)q(un(t))vn(t) = 0, (3.11)

where q : R
+ → R

+ is defined as q(s) := g(s)/s for s > 0 and q(0) = 0. Note that
q is continuous on R

+ (by (g0)). Moreover, q(un(t)) → 0 uniformly in R, as a
consequence of ‖un‖∞ → 0. Multiplying (3.11) by vn and integrating on [0, T ], we
find

‖v′
n‖2

L2
T

=
∫ T

0
v′

n(t)2 dt � λ‖a‖L1
T

sup
t∈[0,T ]

|q(un(t))| → 0 as n → ∞.

As an easy consequence, ‖vn − 1‖∞ → 0 as n → ∞.
Integrating (3.10) on [0, T ] and using the periodic boundary conditions, we have

0 =
∫ T

0
a(t)g(un(t)) dt =

∫ T

0
a(t)g(rn) dt +

∫ T

0
a(t)(g(rnvn(t)) − g(rn)) dt
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and hence, dividing by g(rn) > 0, we obtain

0 < −
∫ T

0
a(t) dt � ‖a‖L1

T
sup

t∈[0,T ]

∣∣∣∣g(rnvn(t))
g(rn)

− 1
∣∣∣∣.

Using the fact that g(s) is regularly oscillating at zero and vn(t) → 1 uniformly as
n → ∞, we find that the right-hand side of the above inequality tends to zero and
thus we achieve a contradiction.

Remark 3.2. Note that, among the assumptions of theorem 1.1, in this part of the
proof we have used only the following ones (for verifying (Hr)): g(s) > 0 for all s
in a right neighbourhood of s = 0, g(s) regularly oscillating at zero and satisfying
(g0), a ∈ L1

T with
∫ T

0 a(t) dt < 0.

3.3. Checking the assumptions of lemma 2.2 for R large

We shall check that condition (Hd) of lemma 2.2 is satisfied for d = R sufficiently
large. In other words, we claim that there exists R0 > 0 such that there is no non-
negative T -periodic solution u(t) of (2.6) for some ϑ ∈ ]0, 1] with ‖u‖∞ = R � R0.
Arguing by contradiction, we suppose that there exists a sequence of T -periodic
functions un(t) with un(t) � 0 for all t ∈ R and such that

u′′
n(t) + cu′

n(t) + ϑnλa(t)g(un(t)) = 0 (3.12)

for a.e. t ∈ R with ϑn ∈ ]0, 1], and also such that ‖un‖∞ = Rn → +∞. Let
t∗n ∈ [0, T ] be such that un(t∗n) = Rn.

First, we claim that un(t) → +∞ uniformly in t (as n → ∞). Indeed, to be more
precise, we have that un(t) � 1

2Rn for all t. To prove this assertion, let us suppose, by
contradiction, that minun(t) < 1

2Rn. In this case, we can take a maximal compact
interval [αn, βn] containing t∗n and such that un(t) � 1

2Rn for all t ∈ [αn, βn]. By
the maximality of the interval, we also have that un(αn) = un(βn) = 1

2Rn with
u′

n(αn) � 0 � u′
n(βn).

We set
wn(t) := un(t) − 1

2Rn

and observe that 0 � wn(t) � 1
2Rn for all t ∈ [αn, βn]. Equation (3.12) reads

equivalently as
−w′′

n(t) − cw′
n(t) = ϑnλa(t)g(un(t)).

Multiplying this equation by wn(t) and integrating on [αn, βn], we obtain
∫ βn

αn

w′
n(t)2 dt � λ‖a‖L1

T

1
2Rn sup

Rn/2�s�Rn

|g(s)|.

From condition (g∞), for any fixed ε > 0 there exists Lε > 0 such that |g(s)| � εs
for all s � Lε. Thus, for n sufficiently large that Rn � 2Lε, we find∫ βn

αn

w′
n(t)2 dt � 1

2λεR2
n‖a‖L1

T
.
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By an elementary form of the Poincaré–Sobolev inequality, we conclude that

1
4R2

n = max
t∈[αn,βn]

|wn(t)|2 � T

∫ βn

αn

w′
n(t)2 dt � 1

2λεTR2
n‖a‖L1

T

and a contradiction is achieved if we take ε sufficiently small.
Consider now the auxiliary function

vn(t) :=
un(t)

‖un‖∞
=

un(t)
Rn

and divide (3.12) by Rn. In this manner we again obtain (3.11). By (g∞) and the fact
that un(t) → +∞ uniformly in t, we conclude that q(un(t)) = g(un(t))/un(t) → 0
uniformly (as n → ∞). Hence, we are exactly in the same situation as in the case
in § 3.2 for r small and we can end the proof in a similar way. More precisely,
‖v′

n‖L2
T

→ 0 as n → ∞ (this follows by multiplying (3.11) by vn(t) and integrating
on [0, T ]) so that ‖vn − 1‖∞ → 0, as n → ∞. Then, integrating (3.12) on [0, T ] and
dividing by g(Rn) > 0, we obtain

0 < −
∫ T

0
a(t) dt � ‖a‖L1

T
sup

t∈[0,T ]

∣∣∣∣g(Rnvn(t))
g(Rn)

− 1
∣∣∣∣.

Using the fact that g(s) is regularly oscillating at infinity and vn(t) → 1 uniformly
as n → ∞, we find that the right-hand side of the above inequality tends to zero
and thus we achieve a contradiction.

Remark 3.3. Note that, of the assumptions of theorem 1.1, in this part of the
proof we have used only the following (for verifying (HR)): g(s) > 0 for all s in a
neighbourhood of infinity, g(s) regularly oscillating at infinity and satisfying (g∞),
a ∈ L1

T with
∫ T

0 a(t) dt < 0.

4. Related results

In this section we present some consequences and variants obtained from theo-
rem 1.1. We also examine the cases of non-existence of solutions when the parameter
λ is small.

4.1. Proof of corollary 1.2

In order to deduce corollary 1.2 from theorem 1.1, we stress the fact that the
constant λ∗ > 0 (defined in (3.9)) is produced along the proof of lemma 2.1 in
dependence of an interval I ⊆ [0, T ] where a(t) � 0 and

∫
I
a(t) dt > 0. For this

step in the proof we do not need any information about the weight function on
[0, T ] \ I. As a consequence, when we apply our result to (1.3), we have that λ∗

can be chosen independently on µ. On the other hand, for lemma 2.2 with r small
as well as with R large, we do not need any special condition on λ (except that λ
in (3.10) or in (3.12) is fixed) and we use only the fact that

∫ T

0 a(t) dt < 0 (without
requiring any other information on the sign of a(t)). Accordingly, once λ > λ∗ is
fixed, to obtain a pair of positive T -periodic solutions we only need to check that
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the integral of the weight function on [0, T ] is negative. For (1.3) this condition is
equivalent to

µ

λ
>

∫ T

0 a+(t) dt∫ T

0 a−(t) dt
.

By using these remarks, we immediately deduce corollary 1.2 from theorem 1.1.

4.2. Existence of small and large solutions

Theorem 1.1 guarantees the existence of at least two positive T -periodic solutions
of (1.1). More precisely, we have found a first solution in Ωρ,I \B[0, r] and a second
one in B(0, R) \ cl(Ωρ,I ∩ B(0, R0)), verifying that the coincidence degree is non-
zero in these sets (see (2.7) and (2.8)). The positivity of both solutions follows
from maximum-principle arguments. A careful reading of the proof (cf. § 3) shows
that weaker conditions on g(s) are sufficient to repeat some of the steps in § 2.2 in
order to prove (2.7) (respectively, (2.8)) and thus obtain the existence of a small
(respectively, large) positive T -periodic solution of (1.1).

More precisely, taking into account remarks 3.1 and 3.2 we can state the following
theorem, ensuring the existence of a small positive T -periodic solution.

Theorem 4.1. Let g : R
+ → R

+ be a continuous function satisfying (g∗) and

lim sup
s→+∞

g(s)
s

< +∞. (4.1)

Suppose also that g is regularly oscillating at zero and satisfies (g0). Let a : R → R

be a locally integrable T -periodic function satisfying the average condition (a∗).
Furthermore, suppose that there exists an interval I ⊆ [0, T ] such that a(t) � 0 for
a.e. t ∈ I and

∫
I
a(t) dt > 0. Then there exists λ∗ > 0 such that for each λ > λ∗

(1.1) has at least one positive T -periodic solution.

On the other hand, in view of remarks 3.1 and 3.3 we have the following result,
giving the existence of a large positive T -periodic solution.

Theorem 4.2. Let g : R
+ → R

+ be a continuous function satisfying (g∗) and

lim sup
s→0+

g(s)
s

< +∞. (4.2)

Suppose also that g is regularly oscillating at infinity and satisfies (g∞). Let a : R →
R be a locally integrable T -periodic function satisfying the average condition (a∗).
Furthermore, suppose that there exists an interval I ⊆ [0, T ] such that a(t) � 0 for
a.e. t ∈ I and

∫
I
a(t) dt > 0. Then there exists λ∗ > 0 such that for each λ > λ∗

(1.1) has at least one positive T -periodic solution.

Note that the possibility of applying a strong maximum principle (in order to
obtain positive solutions) is ensured by (g0) in theorem 4.1, while it follows by
(4.2) in theorem 4.2. The dual condition (4.1) in theorem 4.1 is, on the other hand,
needed to apply Gronwall’s inequality (checking the assumptions of lemma 2.1).
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4.3. Smoothness versus regular oscillation

It can be observed that the assumptions of regular oscillation of g(s) at zero
(respectively, at infinity) can be replaced by suitable smoothness assumptions.
Indeed, we can provide an alternative way to check the assumptions of lemma 2.2
for r small or R large, by assuming that g(s) is smooth in a neighbourhood of zero
(respectively, infinity). For this purpose, we present some preliminary considera-
tions.

Let u(t) be a positive and T -periodic solution of

u′′ + cu′ + νa(t)g(u) = 0, (4.3)

where ν > 0 is a given parameter (in the following, we shall take ν = λ or ν = ϑλ).
Suppose that the map g(s) is continuously differentiable on an interval containing
the range of u(t). In such a situation, we can perform the change of variable

z(t) :=
u′(t)

νg(u(t))
(4.4)

and observe that z(t) satisfies

z′ + cz = −νg′(u(t))z2 − a(t). (4.5)

The function z(t) is absolutely continuous, T -periodic with
∫ T

0 z(t) dt = 0 and,
moreover, there exists a t∗ ∈ [0, T ] such that z(t∗) = 0.

This change of variables (recently also considered in [9]) is used to provide a
non-existence result as well as a priori bounds for the solutions. We first state the
following result.

Lemma 4.3. Let J ⊆ R be an interval. Let g : J → R
+
0 be a continuously differen-

tiable function with bounded derivative (on J). Let a ∈ L1
T satisfy (a∗). Then there

exists ω∗ > 0 such that if
ν sup

s∈J
|g′(s)| < ω∗,

there are no T -periodic solutions of (4.3) with u(t) ∈ J for all t ∈ R.

Proof. For notational convenience, let us set

D := sup
s∈J

|g′(s)|.

First, we fix a positive constant M > e|c|T ‖a‖L1
T

and define

ω∗ := min
{

M − e|c|T ‖a‖L1
T

M2T e|c|T ,
−

∫ T

0 a(t) dt

M2T

}
.

Note that ω∗ does not depend on ν, J and D. We shall prove that if

0 < νD < ω∗,

then (4.3) has no T -periodic solution u(t) with range in J .
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By contradiction we suppose that u(t) is a solution of (4.3) with u(t) ∈ J for all
t ∈ R. Setting z(t) as in (4.4), we claim that

‖z‖∞ � M. (4.6)

Indeed, if by contradiction we suppose that (4.6) is not true, then, using the fact
that z(t) vanishes at some point of [0, T ], we can find a maximal interval I of the
form [t∗, τ ] or [τ, t∗] such that |z(t)| � M for all t ∈ I and |z(t)| > M for some t /∈ I.
By the maximality of the interval I, we also know that |z(τ)| = M . Multiplying
(4.5) by ec(t−τ) yields

(z(t)ec(t−τ))′ = (−νg′(u(t))z2(t) − a(t))ec(t−τ).

Then, by integrating on I and passing to the absolute value, we obtain

M = |z(τ)| = |z(τ) − z(t∗)ec(t∗−τ)|

�
∣∣∣∣
∫

I
νg′(u(t))z2(t) dt

∣∣∣∣e|c|T + ‖a‖L1
T
e|c|T

� νDM2T e|c|T + ‖a‖L1
T
e|c|T

< ω∗M
2T e|c|T + ‖a‖L1

T
e|c|T

� M,

a contradiction. Thus, we have verified that (4.6) is true.
Now, integrating (4.5) on [0, T ] and using (4.6), we reach

0 < −
∫ T

0
a(t) dt =

∫ T

0
νg′(u(t))z2(t) dt < ω∗M

2T � −
∫ T

0
a(t) dt,

a contradiction. This concludes the proof.

The same change of variable is employed to provide the following variant of
theorem 1.1.

Theorem 4.4. Let g : R
+ → R

+ be a continuous function satisfying (g∗) and such
that g(s) is continuously differentiable on a right neighbourhood of s = 0 and on a
neighbourhood of infinity. Suppose also that (g0) and

(g′
∞) g′(∞) := lim

s→+∞
g′(s) = 0

hold. Let a : R → R be a locally integrable T -periodic function satisfying the average
condition (a∗). Furthermore, suppose that there exists an interval I ⊆ [0, T ] such
that a(t) � 0 for a.e. t ∈ I and

∫
I
a(t) dt > 0. Then there exists λ∗ > 0 such that

for each λ > λ∗ (1.1) has at least two positive T -periodic solutions.

Proof. We follow the scheme described in § 2.2. The verification of the assumptions
of lemma 2.1 for λ large is exactly the same as in § 3.1. We just describe the changes
with respect to §§ 3.2 and 3.3. It is important to emphasize that λ > λ∗ is fixed
from now on.
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Verification of the assumption of lemma 2.2 for r small. Let [0, ε0[ be a right
neighbourhood of 0 where g is continuously differentiable. We claim that there
exists r0 ∈ ]0, ε0[ such that for all 0 < r � r0 and for all ϑ ∈ ]0, 1] there are no
non-negative T -periodic solutions u(t) of (2.6) such that ‖u‖∞ = r.

First, we observe that any non-negative T -periodic solution u(t) of (2.6), with
‖u‖∞ = r, is positive. This follows either by the uniqueness of the trivial solution
(due to the smoothness of g(s) in [0, ε0[), or by an elementary form of the strong
maximum principle. Thus, we have to prove that there are no T -periodic solutions
u(t) of (2.6) with range in the interval ]0, r] (for all 0 < r � r0).

We apply lemma 4.3 to the present situation with ν = ϑλ and J = ]0, r]. There
exists a constant ω∗ > 0 (independent of r) such that there are no T -periodic
solutions with range in ]0, r] if

sup
0<s�r

|g′(s)| = max
0�s�r

|g′(s)| <
ω∗
λ

(recall that 0 < ϑ � 1). This latter condition is clearly satisfied for every r ∈ ]0, r0],
with r0 > 0 suitably chosen using the continuity of g′(s) at s = 0+.

Verification of the assumption of lemma 2.2 for R large. Let ]N, +∞[ be a neigh-
bourhood of infinity where g is continuously differentiable. As in § 3.3, we argue
by contradiction. Suppose that there exists a sequence of non-negative T -periodic
functions un(t) satisfying (3.12) and such that ‖un‖∞ = Rn → +∞. By the argu-
ment developed in § 3.3, we find that un(t) � 1

2Rn for all t ∈ R (for n sufficiently
large). Note that for this part of the proof we require condition (g∞), but we do
not need the hypothesis of regular oscillation at infinity. Clearly, (g∞) is implied
by (g′

∞).
For n sufficiently large (such that Rn > 2N), we apply lemma 4.3 to the present

situation with ν = νn := ϑnλ and J = Jn := [12Rn, Rn]. There exists a constant
ω∗ > 0 (independent of n) such that there are no T -periodic solutions with range
in Jn if

max
Rn/2�s�Rn

|g′(s)| <
ω∗
λ

(recall that 0 < ϑn � 1). This latter condition is clearly satisfied for every n
sufficiently large as a consequence of condition (g′

∞). The desired contradiction is
thus achieved.

Remark 4.5. Clearly, one can easily produce two further theorems by combining
the assumptions of regular oscillation at zero (at infinity) with the smoothness
condition at infinity (at zero).

4.4. Non-existence results

In the proof of theorem 4.4 we applied lemma 4.3 to intervals of the form ]0, r] or
[ 12Rn, Rn] in order to check the assumptions of lemma 2.2. Clearly, one could apply
such a lemma to the whole interval R

+
0 of positive real numbers. In this manner,

we can easily provide a non-existence result of positive T -periodic solutions to (1.1)
when g′(s) is bounded in R

+
0 and λ is small. In this respect, the following result

holds.
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Theorem 4.6. Let g : R
+ → R

+ be a continuously differentiable function satisfying
(g∗), (g0) and (g′

∞). Let a ∈ L1
T satisfy (a∗). Then there exists λ∗ > 0 such that for

each 0 < λ < λ∗ (1.1) has no positive T -periodic solution.

Proof. First, we observe that g′ is bounded on R
+
0 (since g(s) is continuously dif-

ferentiable in R
+ with g′(0) = g′(∞) = 0). Accordingly, let us set

D := max
s�0

|g′(s)|.

We now apply lemma 4.3 to (1.1) for J = R
+
0 . This lemma guarantees the existence

of a constant ω∗ > 0 such that if 0 < λ < ω∗/D, (1.1) has no positive T -periodic
solution. This ensures the existence of a suitable constant λ∗ � ω∗/D, as claimed
in the statement of the theorem.

At this point, theorem 1.3 is a straightforward consequence of theorems 4.4
and 4.6.

5. Neumann boundary conditions

In this final section we briefly describe how to obtain the preceding results for the
Neumann BVP. For simplicity, we deal with the case c = 0. If c �= 0, we can write
(1.1) as

(u′ect)′ + λã(t)g(u) = 0 with ã(t) := a(t)ect,

and enter the setting of coincidence degree theory for the linear operator L : u �→
−(u′ect)′. Accordingly, we consider the BVP

u′′ + λa(t)g(u) = 0,

u′(0) = u′(T ) = 0,

}
(5.1)

where a : [0, T ] → R and g(s) satisfy the same conditions as in the previous sections.
In this case, the abstract setting of § 2 can be reproduced almost verbatim with
X := C([0, T ]), Z := L1([0, T ]) and L : u �→ −u′′, by taking

dom L := {u ∈ W 2,1([0, T ]) : u′(0) = u′(T ) = 0}.

With the above positions kerL ∼= R, Im L and the projectors P and Q are exactly
the same as in § 2. All the results given up to § 4 can now be restated for prob-
lem (5.1). In particular, we again obtain theorems 1.1, 4.4 and 4.6, as well as their
corollaries for (1.1) (with c = 0) and the Neumann boundary conditions.

We now present a consequence of these results in the study of a partial differential
equation in an annular domain. In order to simplify the exposition of the next
results, we assume the continuity of the weight function. In this way, the solutions
we find are the ‘classical’ ones (at least twice continuously differentiable).

5.1. Radially symmetric solutions

Let ‖ · ‖ be the Euclidean norm in R
N (for N � 2) and let

Ω := B(0, R2) \ B[0, R1] = {x ∈ R
N : R1 < ‖x‖ < R2}

be an open annular domain, with 0 < R1 < R2.
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We deal with the Neumann BVP

−∆u = λq(x)g(u) in Ω,

∂u

∂n
= 0 on ∂Ω,

⎫⎬
⎭ (5.2)

where q : Ω̄ → R is a continuous function that is radially symmetric; namely, there
exists a continuous scalar function Q : [R1, R2] → R such that

q(x) = Q(‖x‖) ∀x ∈ Ω̄.

We look for existence/non-existence and multiplicity of radially symmetric positive
solutions of (5.2) that are classical solutions such that u(x) > 0 for all x ∈ Ω and
also u(x) = U(‖x‖), where U is a scalar function defined on [R1, R2].

Accordingly, our study can be reduced to the search for positive solutions of the
Neumann BVP

U ′′(r) +
N − 1

r
U ′(r) + λQ(r)g(U(r)) = 0, U ′(R1) = U ′(R2) = 0. (5.3)

Using the standard change of variable

t = h(r) :=
∫ r

R1

ξ1−N dξ

and defining

T :=
∫ R2

R1

ξ1−N dξ, r(t) := h−1(t) and v(t) = U(r(t)),

we transform (5.3) into the equivalent problem

v′′ + λa(t)g(v) = 0, v′(0) = v′(T ) = 0, (5.4)

with
a(t) := r(t)2(N−1)Q(r(t)).

Consequently, the Neumann BVP (5.4) is in the same form as (5.1) and we can
apply the previous results.

Note that condition (a∗) reads as

0 >

∫ T

0
r(t)2(N−1)Q(r(t)) dt =

∫ R2

R1

rN−1Q(r) dr.

Up to a multiplicative constant, the latter integral is the integral of q(x) on Ω,
using the change of variable formula for radially symmetric functions. Thus, a(t)
satisfies (a∗) if and only if

(q∗)
∫

Ω

q(x) dx < 0.

The analogue of theorem 1.1 for problem (5.2) now becomes the following.
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Theorem 5.1. Let g : R
+ → R

+ be a continuous function satisfying (g∗). Suppose
also that g is regularly oscillating at zero and at infinity and satisfies (g0) and (g∞).
Let q(x) be a continuous (radial) weight function as above satisfying (q∗) and such
that q(x0) > 0 for some x0 ∈ Ω. Then there exists λ∗ > 0 such that for each λ > λ∗

problem (5.2) has at least two positive radially symmetric solutions.

Similarly, if we replace the regularly oscillating conditions with the smoothness
assumptions, by theorems 4.4 and 4.6 we obtain the next result.

Theorem 5.2. Let g : R
+ → R

+ be a continuously differentiable function satisfying
(g∗), (g0) and (g′

∞). Let q(x) be a continuous (radial) weight function, as above,
satisfying (q∗) and such that q(x0) > 0 for some x0 ∈ Ω. Then there exist two
positive constants λ∗ � λ∗ such that for each 0 < λ < λ∗ there are no positive
radially symmetric solutions for problem (5.2), while for each λ > λ∗ there exist at
least two positive radially symmetric solutions. Moreover, if g′(s) > 0 for all s > 0,
then condition (q∗) is also necessary.
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