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KYKLOS, an algorithmic composition program, is
presented here. It generalises musical scales for use in
composition as well as in performance. The sonic output of
the system is referred to as polymodal music since it
consists of four independent voices playing ‘synthetic
modes’. KYKLOS is suitable for computer-assisted
composition because it generates MIDI files which can be
altered later by the composer. It can equally well be used in
live performance for dynamic modification of parameters
enabling realtime musical control.

1. INTRODUCTION

Computer music literature contains a great number
of works investigating the creative potential of math-
ematical structures applied to composition. Further,
mathematical structures in computer music have
become not only an occasional tool for generating
new music, but common starting points to extract
basic material and to develop new ideas. Early
investigations on mathematical structures in music
studied scales and modes using combinatorics, Fibon-
acci series and the golden mean in order to under-
stand compositional processes based on modal
concepts (Barbour 1929). The analysis of Bartok’s
works is another example of this line of investigation
(Lendvai 1968, Bachman and Bachman 1979).

Recently, we postulated that many mathematical
applications in computer music can be understood as
sound functors (Manzolli and Maia Jr 1998, Maia Jr,
do Valle and Manzolli 1998). Here, we continue this
exploration on mathematical structures in music. We
propose a model for generating scales and modes and
a compositional environment named KYKLOS con-
ceived to work out this sound material. It is an inter-
active tool for composition.

In the following sections we start with basic musi-
cal and mathematical concepts and introduce the
algorithmic mechanism used. Further, we present an
interactive concept used to create a compositional
environment that is based on a polyphony paradigm.
We also describe a graphic interface developed at
NICS and the general functions of KYKLOS.
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2. MUSICAL PRELIMINARIES

It is well known that ‘from roughly 800 to 1500 the
Gregorian Modes formed the basis for nearly all
western music. Since the music of this period was pri-
marily vocal, the modes reflect the many influences
and accommodations of this medium of expression.’
(Benward 1981). These modes totalled twelve (eight
Greek modes and four others created in the Renaiss-
ance) and included not only the major and minor
modes, but also several others which have not as
strong a sense of gravitation to a tonic note as is the
main characteristic of the modern major–minor
system.

Many composers advocated the use of modes in
order to achieve a particular expression to their
music. For example, it is well known that Beethoven
in his Missa Solemnis and in some of his later quar-
tets used Early Greek modes. Also Bartok, in several
of his works, used pentatonic scales based on Fibon-
acci numbers. Messiaen introduced the ‘modes de
transposition limitée’ (Messiaen 1944), as presented
in figure 1.

The Italian composer, F. Busoni, ‘described a
method of forming scales by raising or lowering vari-
ous tones of the scale of C major’ (see Barbour 1929).
He obtained 113 scales and this result was corrected
later by Barbour (1929). As mentioned by Barbour,
the number of possible scales is given by the combina-
torial formula

C(p, 11)G11!y(pA1)!(12Ap)! ,

where p is the number of notes in the scale. For
example, from 7-note scales we obtain 462 modes,
from 5-note scales, 330 modes, and so on. Further,
several ‘exotic’ scales are still in use around the world
by different cultures and peoples. For example, some
Japanese music is based on two pentatonic scales
named Miyako-bushi and Minyö (see figure 2). There
are also examples to be found in African, Latin
American and Eastern European music (Fujie 1992).

Extending the discussion to ‘synthetic scales’
defined by Barbour (1929), we implemented an algo-
rithmic system to expand the modal universe. This
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Figure 1. Messiaen’s second mode à transpositions limitées (mélodiquement).

Figure 2. The (a) Minyö and (b) Miyako-bushi scales.

program was called KYKLOS. Here we give only a
simple model using cyclical permutations on scales
and modes. From the point of view of sound functors
(Manzolli and Maia Jr 1998), we simply mapped the
well-known group of cyclical permutations on a set
of sounds fixed a priori. In our example, this set is
formed of generalised scales using a MIDI protocol.
Of course, more complex mathematical and sound
models can be used.

3. MATHEMATICAL APPROACH

We define a mode of n notes as any subset of n notes,
arranged in ascending order, extracted from the chro-
matic scale (C, C •, D, D •, E, F, F •, G, G •, A, A •, B).
For the mathematically oriented reader, these modes
are nothing more than ordered subsets of the
sequence (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11). Let us
denote ∼−∼u as the set of all modes, which is a finite set.
Consider now ∼−∼un , the subset of ∼−∼u which contains all
modes of n notes (or n-modes for short). So we have
∼−∼uGU12

nG1∼−∼un . Now, we can consider the operation of
cyclical permutations on ∼−∼un . For example, if we take
a mode of five notes, say (C, D, F, G, A), under cycli-
cal permutations we get four other modes, namely
(D, F, G, A, C), (F, G, A, C, D), etc. Mathematically
this is obtained by the action of the cyclical group
Zn . From a musical point of view, this is nothing
more than an analogy with the Early Greek modes.
Under cyclical permutations, the set ∼−∼un is partitioned
in classes of equivalence whose elements are then the
equivalent modes. The classes of equivalence are then
denominated as scales. Loosely speaking, we may say
that the modes are cyclical permutations of a particu-
lar scale. As in the Greek modes, the starting note
of a particular scale’s cyclical permutation gives the
mode’s name.

Although Messiaen was not a professional math-
ematician, he created an interesting problem in com-
binatorial analysis (see, for example, Read 1997).
Read calculated the number of nonequivalent n-note
scales under transposition – a Pólya-type problem in

discrete mathematics. Table 1 shows all modes de
transposition limitée proposed by Messiaen, i.e. n-
note scales equivalent to at least one of their
transpositions.

To calculate only the total number of modes
associated with n-notes is a simpler problem than that
presented by Read (see Barbour 1929). For any sub-
set of the twelve tone set, our aim was to calculate all
possible modes with KYKLOS. Following Barbour,
these modes are here called synthetic modes, thus
expanding the chromatic modal universe to its maxi-
mum size. In our implementation, we created a rou-
tine to calculate all these modes and to list them. In
this sense, we present in the next section a simple
computational solution to this problem.

4. COMPUTER IMPLEMENTATION

Using the above definitions it is possible to enumerate
n-scales as a sequence of integers. Each value in the
sequence gives the distance (in half tones) between
two consecutive tones. For example, the sequence
3:2:2:3 is interpreted as a pentatonic scale, C-E§-F-
G-B§, and as defined above it is a C mode. The same
scale in F mode reads F-G-B§-C-E§. So, if we apply
cyclical permutations, (nA1)-sequences of numbers
should be interpreted as n-modes of tones. With this
material at hand and an interactive graphic environ-
ment, KYKLOS becomes a tool for algorithmic com-
position. Our algorithmic implementation is
described next.

An n-mode is defined as an array with nA1
integers [a1 , a2 , . . . , anA1]. Each array generated at
the kth step can be read as a number a1a2a3 . . .anA1

in decimal representation, where a1 is an integer
between 1 and 9. We denote the number obtained at
the kth step as (a1a2a3 . . . anA1)

(k). The rules to
implement the algorithm are as follows:

(1) V0G(1, 1, 1, 1, . . . , 1) (initial n-mode),
(2) ∑ ai‚11 with iG1, 2, . . . , nA1 (octave range

constraint),
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Table 1. Number of all possible modes de transposition limitée.

Number of notes 0 1 2 3 4 5 6 7 8 9 10 11 12
Symmetry

1 1 5 18 40 66 75 66 40 18 5 1
2 1 2 3 2 1
3 1 1 1
4 1 1
6 1

12 1 1
All scales 1 1 6 19 43 66 80 66 43 19 6 1 1

Table 2. Relationship between number of notes and number of scales.

Number of notes 2 3 4 5 6 7 8 9 10 11

Number of scales 11 55 165 330 462 462 330 165 55 11

(3) VkG(a1a2a3 . . . anA1)
(k)

F(b1b2b3 . . . bnA1)
(kC1)

GVkC1

where
aj‚bj , 1‚j‚nA1,

(4) VmaxG(13An, 1, 1, . . . , 1).

This algorithm obtains C(p, 11) different scales in
agreement with Barbour (1929) up to modes with 2
and 3 notes. This limitation is due to the decimal rep-
resentation we have used in the algorithm. Table 2
displays the results. We include the modes from 2 to
11 notes (from Barbour 1929) for mathematical
completeness.

5. INTERACTIVE SOUND MODEL

Western polyphony evolved through the use of the
major and minor modes. The term ‘modal’ conse-
quently refers to the type of melody and harmony
that prevailed in the early and later Middle Ages. It
is frequently used in opposition to tonal, which refers
to the harmony based on the major–minor tonality,
which came later (Machlis and Forney 1990). Before
the establishment of tonality, the superimposition of
modal melodies on multiple voices generated chords,
thus creating harmony. This is a characteristic of
Western music and distinguishes it from that of other
civilisations. Using these observations as our para-
digm, we developed an interactive computer system
to expand the concept of polyphony to harmonic
clusters. Thus, instead of searching for chords, we
created a tool to produce harmonic complexity.

Using a set of parameters, we developed an algo-
rithm to generate and control four independent
voices. The voices differ from each other in the fol-
lowing properties: synthetic modes, rhythmic pat-
terns, instrumentation and tempo. Using KYKLOS’
graphic interface, a composer can explore many
aspects of modal music in real time. The result of this
process we call polymodal music.

As the name KYKLOS (Greek for cycles) indi-
cates, cycles control the process used to generate and
modify synthetic modes. Therefore, all modes are
presented in ascending order and played in sequence
originally. If this process were restricted to initial
conditions, the composer could not change the
mode’s original order. Therefore, KYKLOS has a
permutation tool based on a random process or any
change input by the user (see figure 3).

Another of the system’s attributes enables
dynamic rhythmic control using strings written as
sequences of small integers. Each number determines
a proportional duration in relation to a voice tempo,
and negative values represent rests.

In addition to the sound output produced in real
time, there are two types of scores: MIDI file and
parametric score. In the first case, sequences are
recorded and processed later in any sequencer-like
software. In the second, the parametric score stores
changes made by the user on the graphic interface.

Figure 3. Diagram of the KYKLOS main functions and
processes.
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This kind of score can be used in interactive perform-
ances to integrate a prerecorded sequence with live
musicians (see figure 3).

6. KYKLOS ENVIRONMENT

The KYKLOS environment is based on a graphic
interface written for a MS-Windows system and it is
portable for any PC with any multimedia soundboard
running under Windows 3.x, NT, 95 and 98. A dia-
gram of the system functions, menus, control files and
output is presented in figure 3.

KYKLOS initialisation uses a set of text files con-
taining all precalculated synthetic modes. It also fills
the voices’ parametric array with MIDI controllers
and other parameters such as pitch shift and voice
starting note. As described above, KYKLOS’ basic
materials are synthetic modes varying from 5-notes
to 11-notes. A composer can assign a different num-
ber of notes for each voice and consequently it is
possible to choose any subset mode. Four voices play
the chosen modes in a specific rhythmic pattern, vol-
ume, pan, MIDI program, pitch shift, permutation
and tempo independently. These can all be changed
by the user in real time.

7. CONCLUSION AND FURTHER
DEVELOPMENTS

We have presented the program KYKLOS, whose
potential is based on the set of all synthetic modes
linked to realtime exploration of a graphic environ-
ment. The mathematical model described here could
be implemented with other software tools for musical
creation, such as MAX, for example. Nevertheless,
the simultaneous creation of a mathematical model
and a computer implementation will be useful for
many composers and researchers, as well as enabling
these tools to be used by the PC computer music

community. We intend to provide a computer serial
connection between KYKLOS and interfaces such as
gloves, interactive tap shoes (Manzolli, Moroni and
Matallo 1998) and the robot Khepera (for details, see
the web page http:yywww.ini.unizh.ch:80y∼ jmby
roboser.html), developed at the NICS Gestures
Interface Lab. These will enable the control of
KYKLOS intuitively using body or machine motion.
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