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SUMMARY
In order to improve the training efficiency and establish a multi-person cooperative training simula-
tion system, including “virtual human,” in the process of virtual reality-based astronaut training, it is
necessary to plan the velocity at which astronauts carry the target object. A velocity planning algo-
rithm, combining a traditional six-stage acceleration/deceleration algorithm, based on a time-discrete
model with high-order dynamic constraints, considering the elastic damping torque of the space suit,
is proposed. The described algorithm is verified on MATLAB to prove its feasibility. Compared to
other algorithms, the planning time of the proposed algorithm is significantly reduced.

KEYWORDS: Velocity planning; Astronaut virtual training; Dynamic constraint; Particle swarm
optimization.

1. Introduction
Astronauts, working in space, do not feel the existence of gravity, but the inertial force still exists.1, 2

In the operation of carrying or installing solar panels, astronauts need to overcome the inertial force
of the target object. If the target object has a small mass, its inertial force will not be too large, as
long as the acceleration is not high. During the operation, astronauts can adjust the speed and force
of their arm, by visual observation, to guarantee that the object will reach the target point, without
collision. However, if the target object has a large mass or a large inertial force, it is difficult for the
astronaut to ensure that the velocity at the target point is zero. Therefore, it is necessary to conduct
astronaut simulation training on Earth.

In this paper, the velocity of the target object is planned, so as to reach the target point smoothly, at
the shortest possible time, while in virtual reality (VR) training environment.1The astronaut training
system, based on VR technology, can train astronauts in this process, effectively and efficiently. The
training system is a cable-driven parallel robot with 6-degrees of freedom (DOFs). The maximum
load of the robot is 300 kg and the maximum working space is 600 ×600 ×600 mm. The robot can
simulate the motion characteristics of large-mass objects, in space, as well as the tactile and force
sense, under microgravity. This paper also provides a reference to the simulation of astronauts train-
ing system and the establishment of a “virtual human” system, enabling further a cooperative training
model.

At present, the velocity planning algorithm is mainly applied to acceleration and deceleration con-
trol of computer numerical control (CNC) machine tools. There are many types of velocity planning
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algorithms, among which, the most commonly used, are linear acceleration/deceleration algorithms,
S-curve acceleration/deceleration algorithms, and B-spline curve acceleration/deceleration algo-
rithms.3 Linear acceleration/deceleration algorithm is the simplest and most feasible method, but the
resulting acceleration has abrupt change points, which has a significant impact on machine tools.4 S-
curve acceleration/deceleration algorithm ensures the continuity of velocity and acceleration, while
it has less impact on machine tools. Hsien-I Lin5 proposed a trajectory planning algorithm for joint
robots, based on the minimum jerk principle. After discretizing the trajectory, the particle swarm
algorithm (PSO) and K-means clustering are used to find the time required, by each trajectory, so as
to obtain the respective jerk. However, when the time is too short, or the number of trajectory seg-
ments is high, the loop is difficult to converge, thus reducing the algorithm stability. Tzyy-Chyang Lu
et al. proposed a velocity planning algorithm based on genetic algorithm6 and one based on PSO,7

simplifying the acceleration and velocity constraints into constants. Fusheng Liang et al.8 used an
iterative approach to gradually increase the control points of the B-spline curve from zero to a num-
ber, approximate to the constraints. Mingxing Yuan et al.9 proposed a new forward and backward
checking algorithm, which can directly find the optimal solution of each knot point, through multiple
analytic equations. The above algorithms all adopted an assumption that the acceleration constraint
of the point, to be planned, is a known quantity, before velocity planning. However, for this paper,
the acceleration constraints can only be obtained after the initial velocity planning.

Akilan Bharathi et al.10 proposed a feed rate optimization algorithm with high-order constraints.
After discretizing the trajectory, the maximum allowed velocity was obtained, by binary search at
each knot point, increasing the running time of the algorithm, thus achieving high-order dynamic
constraints. Chenxi Fang et al.11 proposed a time-optimal convex optimization algorithm. However,
it is difficult to constrain the jerk, after conversion to a convex optimization problem. Due to the
different objects studied, the above algorithms cannot be directly applied to the problems, described
in this paper. At present, there is no velocity planning algorithm that takes human biomechanical
model into consideration.

From the perspective of biomechanics, the dynamic acceleration and jerk constraints of the tar-
get object can be obtained by establishing a biomechanical model of human upper limb. After
discretizing the time-continuous model, the jerk of each segment is obtained, by the improved
PSO algorithm, while the near time-optimal velocity planning of the target object, with dynamic
acceleration constraints, is realized.

The rest of this paper is organized as follows. In Section 2, a biomechanical model of human upper
limb is established . In Section 3, the implementation process of the proposed algorithm is described.
The results of a simulation example, under specific application, are included in Section 4, while a
summary of the work is presented in Section 5.

2. Biomechanical Model of Human Upper Limb

2.1. Kinematics model of human upper limb
The movement of the object is mainly accomplished by the human shoulder, elbow, and wrist joints.
Astronauts usually change the position and posture of the object, in one DOF at a time, without
complex motion, when carrying large-mass objects in space. Therefore, the virtual training of astro-
nauts carrying objects is regarded as horizontal push-pull movement,1 while the object is limited to
one-dimensional linear motion, in the sagittal plane. Each joint is simplified into a revolute pair, for
analysis purposes, while a push-pull object model is established, as shown in Fig. 1.

The difference between the left and right arms of the person is not obvious, so in terms of mechan-
ical properties, it can be considered that the left and right arms of human are symmetrical and bear
the load on average. Under this premise, the push-pull object model, shown in Fig. 1, is disassem-
bled, to establish the single-arm model, shown in Fig. 2, where l1 is the length of the upper arm, l2 is
the length of the forearm, lp is the distance between the projection of the human wrist and shoulder
joint on the coronal plane, θ1 is the angle between the upper arm and the coronal plane of human
body, θ2 is the angle of elbow, and Fl is the inertial force of the object.

Consider θ1 and θ2 as generalized coordinates, T1 and T2 as generalized forces, while the Lagrange
dynamics equation of the right arm can be obtained:

T1 = H11θ̈1 − H12θ̈2 + h122θ̇
2
2 − 2h122θ̇1θ̇2 + Fl[l1 cos θ1 − l2 cos(θ1 − θ2)] (1)
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Fig. 1. Push-pull object model.

Fig. 2. Single-arm model.

T2 = −H21θ̈1 + H22θ̈2 − h221θ̇
2
1 + Fll2 cos(θ1 − θ2) (2)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H11 = m1lc1
2 + J1 + J2 + m2

(
l1

2 + lc2
2 − 2l1lc2 cos θ2

)
H22 = m2lc2

2 + J2

H12 = H21 = m2
(
lc2

2 − l1lc2 cos θ2
) + J2

h112 = h122 = −h221 = −m2l1lc2 sin θ2

where m1, m2 are the mass of upper arm and forearm, respectively; lc1, lc2 are the distance from the
centroid of the upper arm to the shoulder joint and the distance from the centroid of the forearm to
the elbow joint, respectively; J1, J2 are the moments of inertia of the upper arm and the forearm,
respectively.

According to the force analysis of the target object, the inertial force can be obtained, without a
rotational motion of the object, under the assumption that the force of both arms is uniform:

Fl = 1

2
Ma (3)
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Fig. 3. The skeletal muscle model of elbow joint.

According to the geometric relationship, the distance between the projection of the human wrist
and shoulder joint, on the coronal plane lp, can be derived as:

lp = l2 cos(θ1 − θ2) − l1 cos θ1 = 1

2
(l6 − l3) (4)

The acceleration of the object is generated by the shoulder joint torque T1 and the elbow joint
torque T2. The maximum acceleration a1max of the object, determined by the shoulder and the maxi-
mum acceleration a2max of the object, determined by the elbow joints, can be obtained by substituting
Eqs. (3) and (4) into Eq. (1) and Eq. (2), respectively.

a1max = 2
(
T1 − H11θ̈1 + H12θ̈2 − h122θ̇

2
2 + 2h112θ̇1θ̇2

)
Mlp

(5)

a2max = 2
(
T2 + H21θ̈1 − H22θ̈2 + h221θ̇

2
1

)
Ml2 cos(θ1 − θ2)

(6)

The maximum acceleration of the object can be derived as:

amax = min(a1max, a2max) (7)

During the motion of the human push-pull object, the angular velocity, the angular acceleration,
the mass of the upper arm of human body, and the moment of inertia are negligible values, compared
to the mass of the object, so the angular velocity and angular acceleration terms, in Eqs. (5) and (6),
can be ignored.

The maximum acceleration that an object can generate is determined by the lowest value of a1max

and a2max. In the actual training equipment, the value of l2 is one order of magnitude higher than that
of lp. Therefore, the maximum acceleration of the object is mainly limited by the elbow joint torque
T2. By solving the elbow joint torque, the acceleration constraint of the object can be obtained.

2.2. Establishment of the elbow joint model
The muscles of the elbow joint are divided into the flexor group and the extensor group. The most
important muscle in the elbow flexor group is the biceps brachii, and the most important muscle
in the elbow extensor group is the triceps brachii. For the convenience of modeling, the biceps and
triceps are considered equivalent to single-head muscles, while the equivalent position of the upper
end of the muscle is determined by the equivalent length.

Muscle model was established by Hill and Zajac.12 The muscle strength is related to the length of
the muscle fiber lM and the contraction speed of the muscle fiber vM , that is, the muscle force can be
described as:

Ff = F (lM, vM) (8)

The skeletal muscle model of the elbow joint is shown in Fig. 3. d1 and d2 are the distances from
the two stop points of the biceps brachii to the rotating center of the elbow joint, d3 is the distance
from the upper stop point of the triceps brachii to the rotating center of the elbow joint, while θ2

refers to the angle of the elbow joint. From an anatomical point of view, the triceps are distributed
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Fig. 4. The relationship between the muscle fiber lengths and the elbow joint angle: The black solid line and the
red dashed line show the muscle fiber lengths of biceps and triceps, respectively.

along the outer envelope surface of the elbow joint, which is simplified to a spherical surface with a
radius R2.

In the process of muscle contraction, the muscle tension line can be approximated by a straight
line. According to the geometric relationship, illustrated in Fig. 3, and the pennation angle of muscle,
the muscle fiber length of biceps brachii lMBIC can be derived as:

lMBIC =
√

d2
1 + d2

2 − 2d1d2 cos θ2 − lTBIC

cos ϕBIC
(9)

where lTBIC refers to the sum of tendon lengths at the ends of the biceps brachii muscle fibers, and
ϕBIC is the pennation angle of the biceps brachii.

In the process of muscle contraction, the tendon length can be regarded as a constant, because it
changes slightly. The pennation angle also hardly changes, while its value remains generally below
20◦, so its influence can be ignored.

The muscle fiber length of triceps brachii is

lMTRI = LCEopt + (θ0 − θ2)R2

cos ϕTRI
(10)

where θ0 refers to the joint angle of elbow joint in the state of maximum isometric contraction, LCEopt

is ideal muscle fiber length, and ϕTRI is the pennation angle of triceps brachii.
According to Eqs. (9) and (10), the muscle fiber lengths of biceps brachii and triceps brachii during

elbow joint bending are shown in Fig. 4. They are basically the same with the measurement results
in ref. [13].

The method proposed in ref. [14] is used to obtain dynamic biceps brachii muscle force arm as:

dBIC = dlMBIC

dθ2

(11)

The triceps brachii muscle force arm can be derived as:

dTRI = dlMTRI

dθ2

= − R2

cos ϕTRI
(12)

If the influence of pennation angle is ignored, dTRI can be regarded as a constant, during the
motion, to simplify the model.

The total torque of elbow joint T2 (the torque, to make elbow joint abduct, is positive):

T2 = Tf − (FfBICdBIC + FfTRIdTRI) (13)

where Tf is the elbow joint damping torque on the space suit, whose value is determined, as described
in ref. [15]. According to [15], the damping characteristics of the elbow joint on the space suit are
similar to those of the torsion spring. To simplify the calculation, the elbow joint damping torque
measured, in [15], is replaced by Eq. (14).

Tf = k

[
180

π
(π − θ2) − 30

]
(14)
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where,

{
k = 1

6
π
3 � θ2 � 5π

6

k = 1
2

5π
6 � θ2 � π

After the damping torque of the spacesuit is considered equivalent to the torsion spring, the
human-space suit-object system can be equivalent to a mass-spring system. The output torque of
the astronaut elbow joint must not only overcome the inertial force of the object but also overcome
the spring force.

By substituting Eqs. (8)–(12) and (14) into Eq. (13), the functional relationship between the total
torque of the elbow joint and the angle of the elbow joint can be obtained as:

T2 = T
(
θ2, θ̇2

)
(15)

3. Six-Stage Velocity Planning Algorithm Based on Time-Discrete System
The maximum acceleration of the object can be obtained by substituting Eq. (15) into Eqs. (6) and
(7).

amax = amax
(
θ1, θ2, θ̇2

)
(16)

Since the motion of the push-pull object is considered as one-dimensional linear motion, with
single DOF, the geometric relationship, in Fig. 2, can illustrate that the angle of elbow joint θ2 has a
certain constraint relationship with the angle of shoulder joint θ1, as shown in Eqs. (17) and (18).

l1 cos θ1 − l2 cos(θ2 − θ1) = lp (17)
l1 sin θ1 + l2 sin(θ2 − θ1) = l (18)

Eq. (16) can be simplified to

amax = amax
(
θ2, θ̇2

) = amax
(
l, l̇

)
(19)

It is evident that the maximum acceleration constraint of the object is related to the position and
velocity, at the current moment. If, for example, the velocity, at the current moment, is unknown, the
maximum acceleration constraint of the object cannot be derived.

In the seven-stage S-curve acceleration/deceleration algorithm, the object accelerates, at maxi-
mum acceleration, during the uniform acceleration stage. According to Eq. (19), the distance, along
which the object has been moved, in that stage, can be obtained at any time.

l(t) =
∫∫ t

t1

amax
(
l(t), l̇(t)

)
dt + l0 (t > t1) (20)

where t1 is the start time of the uniform acceleration stage, l0 is the distance from the object to the
coronal plane, at the start time of the uniform acceleration stage.

It is difficult to find the analytical solution of Eq. (20). Therefore, based on the seven-stage
acceleration/deceleration algorithm and the motion law of the object, being carried by astronauts,
a near time-optimal six-stage acceleration/deceleration algorithm, based on the time-discrete model,
is proposed in this paper.

3.1. The existence analysis of uniform motion stage
In the seven-stage S-curve acceleration/deceleration algorithm, the existence condition of the uni-
form motion stage is that the object reaches the maximum speed, which depends on the maximum
contraction speed of the biceps brachii and triceps brachii. The maximum contraction velocity of
muscle fibers is about 10LCEopt. The maximum velocity of the target object, determined by the biceps
brachii, can be obtained from the geometric relationship in Figs. 2 and 3 follows:

VMAXBIC =
l1l2

√
d2

1 + d2
2 − 2d1d2 cos θ2

d1d2

√
l21 + l22 − 2l1l2 cos θ2

√
1 − l2p

l21 + l22 − 2l1l2 cos θ2
vmaxBIC (21)

where vmaxBIC is the maximum contraction velocity of the biceps brachii.
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Fig. 5. The relationship between the maximum velocity of the target object and the elbow joint angle: The black
solid line and the red dashed line show the maximum velocity of the target object determined by the triceps and
the biceps, respectively.

The maximum velocity of the target object is determined by the triceps brachii as follows:

VMAXTRI = l1l2 sin θ2√
l21 + l22 − 2l1l2 cos θ2R2

√
1 − l2p

l21 + l22 − 2l1l2 cos θ2
vmaxTRI (22)

where vmaxTRI is the maximum contraction velocity of the triceps brachii. The maximum velocity of
the target object is defined as:

VMAX = min(VMAXBIC, VMAXTRI)

The relationship between the maximum velocity of the target object and the elbow joint angle
obtained by Eqs. (21) and (22) is shown in Fig. 5 where the angle of the elbow joint is limited within
the range [30◦, 180◦].

Figure 5 shows that the actual velocity of the target object is difficult to reach the maximum veloc-
ity. When the elbow joint angle is 180◦, the maximum velocity, determined by the triceps brachii,
is zero. In fact, the velocity, after planning, is also zero. Therefore, during the process of carrying
the object, the velocity of the target object cannot reach the maximum velocity; that is, the uniform
motion stage does not exist. On this basis, the seven-stage acceleration/deceleration model can be
simplified into a six-stage model.

3.2. Acceleration law analysis in carrying objects
In this paper, a typical push object process is taken as an example to analyze the acceleration law
of the object. In this demonstration, the distance from the object to the coronal plane, at the initial
moment, is 0.3 m and the target distance is 0.55 m. The parameters of the human body and muscle
are set as shown in Table I, while the other structural parameters of the biceps brachii and triceps
brachii are set according to ref. [16], as shown in Table II, where the multi-head muscle is equivalent
to the single-head muscle. PCSA, as listed in Table II, is the physiological cross-sectional area of
muscle.

The muscle activation of biceps brachii and triceps brachii, the output torque of elbow joint, and
the elbow joint damping torque of the space suit can all be obtained by establishing a muscle sim-
ulation model and executing the corresponding algorithm, which takes longer time with Matlab, as
shown in Fig. 6. The jerk, acceleration, and velocity of the target object, as well as the distance, from
the target object to the coronal plane are shown in Fig. 7.

According to Figs. 6 and 7, the motion of each stage is analyzed as follows:

• t0–t2: the first stage of the seven-stage model, where the acceleration is positive and the absolute
value of the acceleration is high;

• t2–t3: the uniform acceleration stage of the seven-stage model, where the jerk is not zero, due to
the nonlinearity of the upper limb model and the variation of the damping torque of the space suit;

• t3–t5: the third stage of the seven-stage model, where the object accelerates at a reduced
acceleration;
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Table I. The parameters of the human body and muscle

The length of the upper arm 0.28m
Maximum normalized muscle elongation 1.5
Active force–velocity curve factor 0.25
Maximum stress of muscle fiber 0.6MPa
The outer surface radius of the elbow joint, R2 0.02m
Offset distance, lp 0
The distance from the upper stop point of the biceps to the rotation center 0.35m
The length of the forearm 0.29m
Maximum passive muscle tension strain 0.6
Fiber volume of biceps brachii 0.12−3m3

Fiber volume of triceps brachii 0.2−3m3

Active force-length curve factor 0.45
Passive force-length index factor 5
The distance from the lower stop point of the biceps to the rotation center 0.04m

Table II. Structural parameters of the biceps brachii and triceps brachii

Muscle name PCSA(cm2) LCEopt(cm) LTopt(cm)

Long head of biceps 4.5 11.6 27.2
Short head of biceps 3.1 13.2 19.2
Biceps equivalent length 7.6 12.3 23.9
Long head of triceps 5.7 13.4 14.3
Lateral head of triceps 4.5 11.4 9.8
Medial head of triceps 4.5 11.4 9.1
Triceps equivalent length 14.7 12.2 11.3
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Fig. 6. Simulation results. (a) The muscle activation of biceps and triceps, in the process of pushing object,
where the black solid line and the red dashed line show the muscle activation of biceps and triceps, respectively.
(b) The black solid line and the red dashed line show the output torque of elbow joint and the elbow joint
damping torque of the space suit, respectively.

• t5–t6: the deceleration stage of the seven-stage model, where the absolute value of acceleration
increases gradually, while the acceleration is similar to that of the previous stage;

• t6–t7: the uniform deceleration stage of the seven-stage model, where, similarly, due to the non-
linearity of the upper limb model and the variation of the damping torque of the space suit, the
acceleration is also not zero;

• t7–t8: the deceleration stage of the seven-stage model, where the absolute value of acceleration
decreases gradually.

According to the above analysis, the damping torque of the elbow joint of the space suit has a
great influence on the velocity planning. In addition to the nonlinear influence of the output torque of
the human elbow joint, the acceleration constraint of the object is dynamic. It is difficult to use tradi-
tional methods for fast velocity planning, because the respective algorithm is very different from the
traditional six-stage or seven-stage acceleration/deceleration algorithm. However, the acceleration
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Fig. 7. Jerk, acceleration, velocity, and distance profiles. (a) Jerk profile; (b) acceleration profile; (c) velocity
profile; (d) distance profile.

of the object can still be clearly divided into six stages, similar to the traditional six-stage acceler-
ation/deceleration algorithm, in the process of motion. On this basis, the algorithm in this paper is
proposed.

3.3. Time discretization
Let the duration of each stage of the six-stage acceleration/deceleration algorithm be T1, T2, T3, T4,
T5, T6, then the total time duration is:

Tt =
6∑

i=1

Ti (23)

The time is evenly divided into N segments on t ∈ (0, Tt), while each segment is Tt/N. There
are N + 1 knot points uk (k = 0, 1, 2, . . . , N), while the acceleration, velocity, and position of each
point are ak, vk, lk, respectively. The jerk, acceleration, velocity, and position, in the time from (i − 1)

Tt/N to iTt/N (i = 1, 2, . . . , N), are Ji, ai(t), vi(t), and li(t), as shown in Eqs. (24), (25), and (26),
respectively.

ai(t) = ai−1 +
∫ t

0
Jidt = ai−1 + Jit, t ∈

(
0,

Tt

N

]
(24)

vi(t) = vi−1 +
∫ t

0
ai(t)dt = vi−1 + ai−1t + 1

2
Jit

2, t ∈
(

0,
Tt

N

]
(25)

li(t) = li−1 +
∫ t

0
vi(t)dt = li−1 + vi−1t + 1

2
ai−1t2 + 1

6
Jit

3, t ∈
(

0,
Tt

N

]
(26)

The acceleration, velocity, and position of the object, at each knot point, can be obtained by
substituting t = Tt/N into Eqs. (24), (25), and (26), as follows:

ak = ak−1 + Jk
Tt

N
(27)

vi(t) = vk−1 + ai−1
Tt

N
+ 1

2
Jk

(
Tt

N

)2

(28)

li(t) = lk−1 + vk−1
Tt

N
+ 1

2
ak−1

(
Tt

N

)2

+ 1

6
Jk

(
Tt

N

)3

(29)
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The acceleration, velocity, and position of the object at each knot point, expressed by initial state,
can be obtained by successive iterations. So the acceleration, velocity, and position of the object at
the end of time can be obtained as shown in Eqs. (30), (31), and (32), respectively.

aN = a0 +
N∑

i=1

Ji
Tt

N
= ad (30)

vN = v0 + a0Tt +
N−1∑
i=0

(
1

2
+ i

)
JN−i

(
Tt

N

)2

= vd (31)

lN = l0 + v0Tt + 1

2
a0T2

t +
N−1∑
i=0

(
1

6
+ i + i2

2

)
JN−i

(
Tt

N

)3

= ld (32)

At the same time, Eqs. (23), (30), (31), and (32), J1, J2, ..., JN , T1, T2, ..., T6, Tt are variables, while
the number of variables is N + 7. Tt, JN−2, JN−1, JN can be expressed by J1, J2, ..., JN−3, T1, T2, ...,
T6, if J1, J2, ..., JN−3, T1, T2, ..., T6 are regarded as known quantities.

Tt =
6∑

i=1

Ti

JN−2 = � − � + 1

3
�

JN−1 = −2� + 3� − 7

6
�

JN = � − 2� + 11

6
�

where

� =
(

ld − l0 − v0Tt − 1

2
a0T2

t

) (
N

Tt

)3

−
N−1∑
i=3

(
1

6
+ i + i2

2

)
JN−i

� = (vd − v0 − a0Tt)

(
N

Tt

)2

−
N−1∑
i=3

(
1

2
+ i

)
JN−i

� = (a0 − ad)
N

Tt
−

N−3∑
i=1

Ji

Therefore, given J1, J2, ..., JN−3, T1, T2, ..., T6 is a set of solutions satisfying the equations, while
the number of solutions is infinite. It is necessary to find the time-optimal solution, under the given
constraints.

The optimal problem is discretized, under dynamic constraints, into the following static optimal
problem:

Min
6∑

i=1

Ti

s.t. a0 = v0 = aN = vN = 0; l0 = y0; lN = yd;
ak � akmax(lk, vk, aBICmax, aTRImax); ak � akmin(lk, vk, aBICmin, aTRImin);

|Jk|� Jmax; |ak|� aglove; k = 1, 2, ..., N.

where aglove is the maximum acceleration of the object, allowed by the spacesuit glove, so as not
to be torn, akmax and akmin are the maximum and the minimum allowable acceleration of the object,
respectively, determined by the torque of the elbow joint, according to Eq. (19). ad is the acceleration
of the object, at the target position, vd is the velocity of the object, at the target position. The values
of aBIC and aTRI are shown as follows: aBICmax = 0, aTRImax = 1, aBICmin = 1, aBICmin = 0.
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3.4. Parameter optimization based on PSO
For the optimization of the variables J1, J2, ..., JN−3, T1, T2, ..., T6, the improved PSO algorithm is
adopted in this paper. The above analysis shows that the dimension of the search space is N + 3 in
solving this problem. The first six dimensions of the particle represent the time of six stages, while
the last N − 3 dimensions represent the jerk of the object, in the first N − 3 segments. The position
constraint of the search space is set as follows.

In the PSO algorithm, for solving this problem, the range of the last N − 3 dimensions, represent-
ing the object jerk, is determined by the first six dimensions representing the time of each stage. In
the optimization process of the PSO algorithm, the range of the last N − 3 dimensions is dynami-
cally adjusted. Since T1, T2, ..., T6 may not be an integer multiple of Tt/N, each stage may not contain
integer discrete time Tt/N, so T1, T2, ..., T6 need to be rounded. The rounding process is as follows:

Ni = round

(
Ti

Tt
N

)
, i = 1, 2, 3, 4, 5, 6 (33)

N5 = N −
6∑

i=1
i�=5

Ni (34)

where round(x) is a rounding function.
Because rounding function is used, the remainder would continuously accumulate up to a certain

stage. In this paper, the remainder is accumulated in the fifth stage, because it takes a long time and
the value of jerk is low in this stage. Even if there is a deviation, it will not have a great impact on
the final result.

In summary, the PSO is carried out in the (N + 3)-dimensional search space to solve this problem.

The swarm is composed of m particles, Swarm =
{

x(k)
1 , x(k)

2 , ..., x(k)
m

}
. The position vector of the par-

ticle i, in the search space, at time k:x(k)
i =

{
x(k)

i1 , x(k)
i2 , ..., x(k)

id , x(k)
i(N+3)

}
, i = 1, 2, ..., m. The first six

dimensions x(k)
i1 − x(k)

i6 represent the time of six stages, ranging from 0 to Tmax, while the last N − 3
dimensions x(k)

i7 − x(k)
i(N+3) represent the jerk of the object in the first N − 3 segments, ranging from

Jmin to Jmax. The values of Jmin and Jmax are shown as follows:

Jmin =

⎧⎪⎪⎨
⎪⎪⎩

Jmins1, 6 < d � 6 + ∑1
i=1 Ni

Jminsj, 6 + ∑j−1
i=1 Ni < d � 6 + ∑j

i=1

Jmins6, 6 + ∑5
i=1 < d � N + 3

Jmax =

⎧⎪⎪⎨
⎪⎪⎩

Jmaxs1, 6 < d � 6 + ∑1
i=1 Ni

Jmaxsj, 6 + ∑j−1
i=1 Ni < d � 6 + ∑j

i=1

Jmaxs6, 6 + ∑5
i=1 < d � N + 3

where j = 2, 3, 4, 5, Ni is the number of segments in each stage according to Eqs. (34) and (34).
If the updated position vector exceeds the search space, the nearest neighborhood is used to ensure

that the jerk of each stage is within the range of values. The nearest method is defined as:

If x(k)
i �∈ S(S is the search space), reset x(k)

i = x′, where x′ is satisfied that ∀x ∈ S, dist
(

x(k)
i , x′

)
�

dist
(

x(k)
i , x

)
, that is, x′ is the closest position to the particle x(k)

i , in the search space.

3.5. Higher order constraints processing
In constrained optimization problems, it is very important to deal with constrained conditions. The
constraints in this paper are divided into equality constraint, inequality constraint, and upper/lower
boundary constraint. The equality constraint can be expressed by Eqs. (30)–(31). Regarding inequal-
ity constraints, the current constraints processing techniques can be divided into the following
categories: penalty function method,7, 17 multi-object method,18 and other methods.19–22
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There are two kinds of inequality constraints in this paper. The first type is high-order constraints
like JN , while the second one is the acceleration of the object, at each knot point ak. In this paper,
the penalty function method is used to deal with the constraints, while the fitness function f (X), with
penalty terms, is reconstructed by adding penalty terms to the objective function, as follows:

f (X) =
6∑

i=1

Ti + C1(X) + C2(X)

where C1(X), C2(X) are the penalty terms who do not satisfy the first and the second kind of con-
straints, respectively. Their definitions are as follows: C1(X) = ∑N

k=N−2 c1k, where c1k is the penalty
function for JN−2, JN−1, JN as follows:

c1k =

⎧⎪⎨
⎪⎩

exp[p1(|Ji| − |Jmax|)], iter � 0.3ger
inf, |Ji| > Jmax, iter > 0.3ger
0, else

where iter is the current iterative order, ger is the total iteration number, and p1 is the penalty factor.

C2(X) =
N∑

k=1

c2k

where c2k is the penalty function for acceleration, at each knot point ak, as follows:

c2k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp[p2(ak − akmax)], ak > akmax, iter � 0.3ger
exp[p2(akmin − ak)], ak < akmin, iter � 0.3ger
inf, ak > akmax|ak < akmin, iter > 0.3ger
0, else

The penalty function, constructed in this paper, has the following characteristics: in the initial
stages of evolution, there are few feasible solutions that meet the constraints, while most of them
exhibit low fitness. At this time, for the infeasible solution, the approach of increasing the penalty
term is adopted. If the reconfigurable fitness of the infeasible solution is still lower than the fitness
of the feasible solution, the infeasible solution is retained. In this process, since the construction of
the penalty term adopts the exponential function, even if the infeasible solution does not meet the
constraint, it is close to the feasible region boundary. In the subsequent evolution process, it is easy
to enter the feasible region and become a feasible solution for the reserved infeasible solution. At the
end of evolution, almost all particles enter the feasible region. At this time, the fitness of the feasible
solution must be lower than that of the infeasible solution. The penalty term of the fitness function
fails and the algorithm gradually converges to the optimal solution.

The flowchart of the PSO algorithm, designed in this paper, is shown in Fig. 8.

4. Simulation and Comparisons
Simulations are conducted with Matlab R2018 to verify the algorithm. The simulation platform is
an Intel 3.7 GHz computer with 16 GB RAM. The simulation parameters are listed in Table III. The
range of jerk in each stage is shown in Table IV, while the maximum acceleration of the object,
allowed by the spacesuit glove not being torn, aglove is 2m/s2.

The jerk, acceleration, and velocity of the object, the distance from the target object to the coronal
plane, as obtained by the algorithm are shown in Fig. 9.

The acceleration and its limits, in this process, are plotted in the same graph, as shown in Fig. 10,
to verify the effect of the constraint. It is evident that the actual acceleration can be closer to the
acceleration limits.

To establish a “virtual person” system, it is necessary to obtain the value of the muscle activation
in the process. In order to observe the changes in muscle activation, during this process, the muscle
activation of the biceps and triceps is obtained, as shown in Fig. 11(a) and the muscle forces of
the biceps and triceps are shown in Fig. 11(b). During the whole motion, the muscle force is stable
without sudden changes.
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Table III. Simulation parameters

Object mass, M 200 kg
Initial position of the object, y0 0.3 m
Target position of the object, yd 0.55 m
Total iteration number, ger 100
Number of segments, N 50
Penalty factor, p1 0.05
Penalty factor, p2 1

Table IV. The range of jerk in each stage

s1 s2 s3 s4 s5 s6

Jmins∗ 3 −0.5 −5 −5 −0.5 3
Jmaxs∗ 5 0.2 −3 −3 0.2 5

Fig. 8. The flowchart of the PSO algorithm.

The jerk, acceleration, velocity, and distance obtained by applying the standard PSO algorithm
to the discrete static optimal problem are shown in Fig. 12. Comparing Figs. 12 to 11 shows that,
although the standard PSO algorithm can also realize the optimization of discrete static optimal
problems, the jerk profile has many sudden change points. The acceleration cannot increase rapidly,
so the final planning time is 1.6 s longer than that of the algorithm presented in this paper.

The algorithm, presented in ref. [7], is adopted and modified to become suitable for the problem
applied in this paper. The constraints of acceleration are modified according to those in this paper.
The actual acceleration and acceleration limits are plotted in the same graph, as shown in Fig. 13.

Comparing Figs. 10, 11, 12, and 13, shows that the algorithm in this paper can easily reach the
boundary of acceleration limit, resulting in shorter planning time. Compared to the algorithm in ref.
[7], the planning time of this algorithm is reduced by 6.5%.

In order to verify the stability of the algorithm, presented in this paper, 20 simulation tests were
performed, with N = 30, 40, 50, and 60, respectively. The average CPU computing time, the average
planning time, the standard deviation of planning time, and the shortest planning time are listed in
Table V, compared to the standard PSO algorithm and the algorithm in ref. [7].

In the case of N = 50, 20 simulation tests were performed, using the algorithm in this paper and
in ref. [7], with different mass of the object. The results are shown in Table VI.

Table V shows that, when the number of segments is larger, meaning that it is the closer to the
real continuous curve, the higher the feasibility of planning a shorter planning time is more feasi-
ble. Compared to the case of N = 30, the average planning time and the shortest planning time are
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Fig. 9. Planning results of the algorithm: (a) jerk profile; (b) acceleration profile; (c) velocity profile; (d) distance
profile.
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Fig. 10. Acceleration constraints: The blue dotted line and the red dashed line show the minimum accelera-
tion constraint and maximum acceleration constraint, respectively, while the black solid line shows the actual
acceleration.
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Fig. 11. Muscle activation and muscle force in the process. (a) The black solid line and the red dashed line show
the muscle activation of biceps and triceps, respectively. (b) The black solid line and the red dashed line show
the muscle forces of biceps and triceps, respectively.

reduced by 1.6% and 1.8%, respectively, in the case of N = 60. However, if the number of segments
is high, it is easier for the PSO algorithm to converge to the local optimal solution, so the algorithm
is unstable with a larger standard deviation. There is no feasible solution to be found, because of
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Table V. Algorithm stability verification and comparisons

Number of Average CPU Average Standard deviation The shortest
Algorithm type segments computing time planning time of planning time planning time

Algorithm in
this paper

N = 30 3.66 1.2328 0.0038 1.2205
N = 40 4.76 1.2202 0.0040 1.2083
N = 50 5.95 1.2106 0.0047 1.1994
N = 60 7.11 1.2109 0.0096 1.1988

Standard PSO N = 40 3.93 2.8062 0.4368 2.0718

Algorithm in [7] N = 5 2.09 1.2830 0.0007 1.2826
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Fig. 12. Planning results of the standard algorithm. (a) jerk profile; (b) acceleration profile; (c) velocity profile;
(d) distance profile.
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Fig. 13. Acceleration constraints.

too many constraints, which leads to the failure of solving. In the process of experiment, it is found
that the result of the algorithm will eventually converge to an infeasible solution under the current
parameters with N = 60. When the number of segments tends to infinity, the final planning time is
the shortest, but the probability of converging to the feasible solution is close to zero, at the longest
CPU computing time. Therefore, the number of segments should be selected, keeping some balance
in mind. It can be known, from repeated tests, that N = 40 to 50 is a reasonable parameter range. The
trajectory is divided into only five segments in ref. [7], so the algorithm stability is higher, but longer

https://doi.org/10.1017/S0263574719001863 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001863


2136 Velocity planning for astronaut virtual training robot

Table VI. Planning results with different object mass

Algorithm Average Standard deviation The shortest
M type planning time of planning time planning time

50
Algorithm in this paper 1.1402 0.0059 1.1250
Algorithm in ref. [7] 1.1787 0.0020 1.1777

100
Algorithm in this paper 1.1416 0.0055 1.1251
Algorithm in ref. [7] 1.2241 0.0002 1.2241

150
Algorithm in this paper 1.1412 0.0087 1.1251
Algorithm in ref. [7] 1.2577 0.0014 1.2577

200
Algorithm in this paper 1.2106 0.0047 1.1994
Algorithm in ref. [7] 1.2830 0.0007 1.2826

250
Algorithm in this paper 1.2308 0.0086 1.2205
Algorithm in ref. [7] 1.3214 0.0009 1.3203

300
Algorithm in this paper 1.2509 0.0124 1.2693
Algorithm in ref. [7] 1.3836 0.0033 1.3801

planning time is required. Especially when the planning distance is long or the mass of the object is
large, the planning time of this algorithm is significantly different from that of the algorithm in this
paper. The presented application, in this paper, does not require the algorithm to be real-time, while
the optimal solution can be obtained, after repeatedly running the algorithm.

Table VI shows that, when the mass of the object is small, the results, obtained by the algorithm
in this paper, differ less from those of the algorithm in ref. [7]. The average planning time and the
shortest planning time with M = 50 kg are reduced by 3.8% and 3.6%, respectively, compared to the
algorithm in ref. [7], but by 6.7% and 8.0%, with M =300 kg. When the mass is small, the maximum
acceleration of the object, determined by the joint torque, is high, while the acceleration constraint
depends on the maximum acceleration of the object, allowed by the spacesuit glove not being torn.
The algorithm is degraded to the velocity planning algorithm, under static constraints. There is no
uniform acceleration stage, because the acceleration is difficult to reach the maximum allowable
value at a short planning distance. The planning result of the algorithm, in this paper, is similar to the
five-stage model. When the mass of the object is large, the results obtained by the algorithm, in this
paper, are quite different from those presented in ref. [7]. The reason is that the maximum allowable
acceleration of the object, determined by the joint torque, is low, while the acceleration constraints
determined by the joint torque are dynamic. In addition, the acceleration of the object can reach the
maximum allowable value. Therefore, the planning result of the presented algorithm, in this paper, is
similar to the six-stage model.

5. Conclusion
The motion law of object, carried by astronauts wearing spacesuits, is analyzed, in this paper, from
the perspective of biomechanics. Based on the analysis, the improved PSO algorithm is used to
optimize the jerk of each segment, by discretizing the time-continuous model, while the near time-
optimal velocity planning of mass-spring system is realized, with dynamic acceleration constraints.
The optimal number of segments is determined based on repeated simulation. Simulation results
show that the planning time of this algorithm is shorter than the planning time of other algorithm, in
the case of large objects. The algorithm of this paper exhibits practical application feasibility.

Further research includes:

1. At present, only one-dimensional linear motion of the carried object is studied. In actual con-
ditions, the object has not only a translational motion in one direction but also a rotational
motion around the coordinate axis. A next research issue is to analyze the more complex process,
involving rotational motion.

2. In the operation process, the time is not the only factor to be considered. The energy consumed
by astronauts, in the process of operation, should also be taken into account. Another research
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point is to consider both operation time and energy consumed, in a multi-objective optimization
process.

3. There are still improvement prospects, regarding the poor stability of the PSO algorithm.
4. The parameters of the current muscle model are generic and may not be applicable to every

astronaut. In future research, the algorithm will continuously adjust the planning results of the
generic algorithm, according to the sEMG, during the training process, so as to provide individual
time-optimal velocity planning.
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