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In data-based control design, system-identification techniques are used to extract
low-dimensional representations of the input–output map between actuators and
sensors from observed data signals. Under realistic conditions, noise in the signals
is present and is expected to influence the identified system representation. For
the subsequent design of the controller, it is important to gauge the sensitivity
of the system representation to noise in the observed data; this information will
impact the robustness of the controller and influence the stability margins for a
closed-loop configuration. Commonly, full Monte Carlo analysis has been used to
quantify the effect of data noise on the system identification and control design,
but in fluid systems, this approach is often prohibitively expensive, due to the
high dimensionality of the data input space, for both numerical simulations and
physical experiments. Instead, we present a framework for the estimation of statistical
properties of identified system representations given an uncertainty in the processed
data. Our approach consists of a perturbative method, relating noise in the data
to identified system parameters, which is followed by a Monte Carlo technique to
propagate uncertainties in the system parameters to error bounds in Nyquist and Bode
plots. This hybrid approach combines accuracy, by treating the system-identification
part perturbatively, and computational efficiency, by applying Monte Carlo techniques
to the low-dimensional input space of the control design and performance/stability
evaluation part. This combination makes the proposed technique affordable and
efficient even for large-scale flow-control problems. The ARMarkov/LS identification
procedure has been chosen as a representative system-identification technique to
illustrate this framework and to obtain error bounds on the identified system
parameters based on the signal-to-noise ratio of the input–output data sequence.
The procedure is illustrated on the control design for flow over an idealized aerofoil
with a trailing-edge splitter plate.
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1. Introduction
Flow control is an attractive and promising technology as it aims to alter and

improve inherent flow behaviour by externally applied forces. Reduction of drag,
suppression of instabilities, extension of parameter envelopes and enhancement of
mixing are just a few objectives that could be accomplished by flow-control strategies.
Despite its potential for technological advances, the design of flow-control schemes
still poses significant challenges, principally among them the modelling of the flow
behaviour and the accurate description of the disturbance environment.

Model-based approaches, based on a prescribed set of equations and an a priori
assumption on the characteristics of the noise environment, have been successfully
applied to numerical simulations and have demonstrated their effectiveness within the
range of design assumptions. For applications in experiments, in the absence of suffi-
cient information on the disturbance environment, a different approach may be more
appropriate which does not impose a preconceived model but rather extracts informa-
tion for the control design, such as transfer functions, directly from measured (noise-
contaminated) data. Techniques in this category rely on system-identification methods
to obtain representations of the input–output behaviour of the flow; they fall into two
major categories: subspace identification and Markov-parameter/realization techniques.
Whereas the former exploits the low-rank nature of the control signal space to arrive
at approximate system matrices via oblique projections (see, e.g., Katayama 2005),
the latter first determines the discrete impulse responses (Markov parameters) of the
flow, which are then, in a second step, used to derive a state-space model.

System identification has been an active field of research for many decades and
has matured into a well-established discipline of system theory. Even though many
techniques and algorithms are available, the use of system-identification techniques in
the design of flow-control strategies is rather recent (see Huang & Kim 2008; Hervé
et al. 2012; Juillet, Schmid & Huerre 2013). For the identification of a reduced-order
model that will form the basis of our control design, a two-step process is often
advocated (see, e.g., Hjalmarsson 2005). It consists of a high-order identification of a
preliminary model that best fits the available data, which is subsequently transformed
into a low-order representation by model-reduction techniques. The approach ensures
favourable statistical properties, since the asymptotic efficiency of the high-order sys-
tem can be shown to be inherited by the low-order system; furthermore, the thus
reduced low-order system is optimal within the constraints given by the high-order
system.

Following this principle, we choose a Markov-parameter/realization technique in
this study. In particular, we use an ARMarkov/LS technique to convert measured
data sequences into discrete impulse responses (Markov parameters) by assuming
an underlying autoregressive model that explicitly contains the Markov parameters;
the parameters of the autoregressive model are determined by a least-squares (LS)
matching to the measured data. The Markov parameters are then used in the
eigensystem realization algorithm (ERA) to arrive at a state-space representation of
the model, which in turn can be used to design a control law by standard techniques.
The ARMarkov/LS procedure was originally proposed by Akers & Bernstein (1997),
and many subsequent studies (see Van Pelt & Bernstein 1998; Kamrunnahar, Huang &
Fisher 2000; Fledderjohn et al. 2010) have confirmed it as a very efficient technique
to obtain the Markov parameters of a system. The ERA state-space realization
step was developed by Juang & Pappa (1985), has been studied extensively (see Lew,
Juang & Longman 1993) and has recently been applied to flow-control problems in the
form of an adjoint-free model-reduction procedure (see Ma, Ahuja & Rowley 2011).
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216 N. Dovetta, P. J. Schmid and D. Sipp

One of the advantages and appeals of data-based control design using system-
identification techniques is its applicability to realistic flow situations, where the
only information about the system to be controlled consists of (low-dimensional)
measurements. This advantage is, however, offset by the uncertainty these signals
introduce into the design process, since the processed data will surely be contaminated
by background and measurement noise and ultimately affect the control performance.
In particular, for a practical control design, it is important to quantify the noise in the
data and how it propagates through the procedural steps of the system identification
and control design to ultimately influence the control performance and its internal
stability margins. A sensitivity analysis of this type is the focus of this article. Due to
our two-step approach, we can break apart the error in the identification step into a
variance estimation of the identified model and a bias estimation of the reduced-order
model. This distinction is valid as long as the model-reduction step is robust, i.e.
shows a negligible sensitivity of the model parameters to noise in the underlying
data.

Computation of estimates of the variance and bias error with respect to variations
in the model parameters for an identification–realization algorithm has been the topic
of previous articles in the identification/realization literature. For example, the model-
order criteria of Akaike (1974) and Rissanen (1983) apply penalization techniques to
a repeatability estimate to arrive at an objective model order (see Ljung 1987). In the
study of Longman et al. (1991), the model parameters for the ERA step were chosen
based on statistical information of the identified variables. Besides its obvious benefits
for control and stability calculations, the quantification of the variance and bias of the
identification–realization parameters can also be used as a model structure falsification
criterion (see Hjalmarsson 2005).

We will concentrate on linear models as well as a representative system-identification
algorithm. The first choice is motivated by the widespread use of control theories,
model-reduction algorithms and system extraction techniques that rely on the linear
evolution of small perturbations about a steady base or mean flow. Even though a
great many fluid systems are more aptly described by nonlinear equations, linear
techniques are often applied and indeed applicable when small manipulations about
quasistationary states are concerned. For example, transition in boundary layers,
initiated by a low-amplitude disturbance environment, as encountered on aerofoils
under cruise conditions, can be successfully described (and controlled) by a linear
model. As for the second choice, we have selected a system-identification algorithm
that directly targets the Markov parameters (temporally discrete impulse responses)
using a least-squares fitting technique for a rational model. This commonly applied
algorithm will act as a placeholder for many other techniques based on z-transformed
frequency responses; the uncertainty analysis presented here can thus be applied to
various other related techniques with only minor modifications.

This paper is concerned with the propagation of uncertainties and stochastic
fluctuations in the processed data through a multistep procedure based on system
identification, state-space realization and optimal control design. In particular, we
wish to quantify how small perturbations in the data will ultimately affect closed-loop
control performance and degrade internal stability margins. As system-identification
techniques are increasingly applied to fluid dynamical systems in an attempt to
extract models upon which control strategies are to be designed (see, e.g., Huang &
Kim 2008; Hervé et al. 2012; Juillet et al. 2013), it appears prudent to assess the
sensitivity of the models and the control to stochastic variability in the underlying
data. We start in § 2 by presenting the ARMarkov/LS/ERA identification–realization
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Uncertainty propagation in model extraction by system identification 217

algorithm for a single-input–single-output (SISO) system. Section 3 will then
concentrate on a perturbation technique to derive estimates of the error between the
real and identified models; this section naturally divides into two parts: quantifying the
ARMarkov/LS identification error and deriving an ERA error estimate. A validation
of these error estimates is presented in § 4, where we consider the flow over an
idealized aerofoil and demonstrate the utility of sensitivity measures in the analysis
of closed-loop control problems based on system identification and realization.
Conclusions are presented in § 5.

2. From data sequences to control performance
We start by developing the essential steps in the design of an efficient and robust

control strategy, starting from input–output data sequences. These steps will consist
of (i) a system-identification process, which matches the coefficients of a given
model structure using observed input–output signals, (ii) a design of a feedback or
feed-forward controller and (iii) the assessment of gain and phase margins of the
compensated system.

2.1. General framework for linear time-invariant systems
We choose a discrete-time state-space representation to describe the flow-control set-up
for a linear time-invariant (LTI) system and consider a single input and single output
(i.e. a SISO system). The restriction to SISO systems does not pose limitations on the
applicability of our analysis to more complex control settings, such as multiple-input–
multiple-output (MIMO) systems. It has mostly been chosen for clarity of exposition
and to focus on the conceptual uncertainty-propagation framework, rather than on full
generality. In our SISO derivation below, our Markov parameters (discrete impulse
responses) are scalars, while for the more involved MIMO case they constitute no× ni
matrices, with no and ni as the numbers of output (sensor) and input (actuator) signals
respectively; the essential steps in the analysis can readily be extended to the MIMO
case. We have

x(k+ 1)= A x(k)+ Bu(k)+w(k), (2.1a)
y(k)= Cx(k)+Du(k)+ g(k), (2.1b)

where k denotes the discrete-time index, x(k) represents the state vector, u(k) is the
control, y(k) stands for the measurement, and w(k) and g(k) are the state noise and
measurement uncertainties respectively. The system matrix is given by A, the actuation
is modelled by B and the sensors by C. Finally, D describes the instantaneous effect
of the actuation on the measurement, also referred to as the throughput. For a system
of order n, the system matrix A is n× n, the actuation matrix B and the plant noise
w are n× 1, the sensor matrix C is 1× n, and D and g are scalar quantities.

The impulse response of the above system (2.1), in the case of vanishing noise
terms, can be defined as a sequence of scalars. This sequence is also referred to as
the Markov parameters Hj. From the state-space representation (2.1) an explicit form
of the Markov parameters can be derived according to

H0 =D, (2.2a)
Hj = CAj−1B, j > 1. (2.2b)

Based on these Markov parameters, we can formulate regressive or autoregressive
representations of the system input–output behaviour that do not involve the state
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vector x(k). Rather, the output at k can be determined solely as functions of past
inputs and outputs. The definition (2.2) of the Markov parameters Hj then allows us
to formulate a regressive representation of general LTI systems as a discrete transfer
function from the input u to the output y. We obtain

y(k)=
∞∑

j=0

Hju(k− j). (2.3)

An approximation of this model, assuming that after a certain time the effects of the
actuations are negligible, is the well-known finite-impulse response (FIR) model of
order µ. We have

y(k)=
µ−1∑
j=0

Hju(k− j). (2.4)

A more sophisticated representation is given by applying an autoregressive term to the
signal y, which yields the well-known ARX (autoregressive-exogenous-input) model

y(k)=
n∑

j=1

−Njy(k− j)+
n∑

j=0

Mju(k− j), (2.5)

where Mj and Nj are coefficients to be determined. Akers & Bernstein (1997) showed
that the Markov parameters can be extracted from the ARX representation via the
following recursive algorithm. Using (2.5) and the definition of the measurement y we
obtain, after repeated substitution, the following autoregressive representation which
explicitly isolates µ Markov parameters (referred to as µ-ARMarkov):

y(k)=
n∑

j=1

−Pjy(k−µ− j+ 1)+
µ∑

j=1

Hj−1u(k− j+ 1)+
n∑

j=1

Qju(k−µ− j+ 1). (2.6)

To proceed, the µ-ARMarkov model may be written as a linear relation between y(k),
a vector φ(k) and the model parameters, grouped into the vector W , according to

y(k)= φ(k)W, (2.7)

where φ(k) and W are given as

φ(k)= [y(k−µ), . . . , y(k−µ− n+ 1), u(k), . . . , u(k−µ− n+ 1)
]

(2.8)

and
WT = [−P1, . . . ,−Pn,H0, . . . ,Hµ−1,Q1, . . . ,Qn

]
. (2.9)

Equation (2.7) is a compact form of the autoregressive representation of (2.6) where
φ(k) contains the input–output sequence just before the kth time index and W contains
the ARMarkov parameters. The transfer functions based on the z-transform of the
above models (FIR, autoregressive moving average (ARMA) and µ-ARMarkov) are
given in appendix A for completeness. The following section presents the algorithm
proposed by Akers & Bernstein (1997) to identify the µ-ARMarkov parameters (in
W) from input–output data sequences. Once the Markov parameters are identified (as
a part of the vector W), the system behaviour is predicted using the FIR model (2.4).
The other coefficients (i.e. Pi and Qi) – even though ultimately not used – are to
account for noise in the dataset and thus yield more accurate Markov parameters (see
Kamrunnahar et al. 2000; Hjalmarsson 2005).
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FIGURE 1. (Colour online) Outline of the procedural steps: from processed data, via
system identification and control design, to performance analysis. The pathway in red
indicates the uncertainty analysis, linking additive variance in the processed data to
stability margins of the final control design. Approach (1), consisting of a perturbation
part for the system identification, combined with a Monte Carlo approach for the control
design, is pursued in this article; the alternative approach (2) is computationally far more
costly, due to the high dimensionality of the input space.

2.2. From data to an identified system: ARMarkov/LS
This section shows how the coefficients of the ARMarkov model are obtained from
data sequences via a least-squares minimization. Many alternative techniques exist
to identify model coefficients, in particular, for the ARMarkov representation. While
details are kept to a minimum in what follows, the interested reader is referred to
Ljung (1987) and Hjalmarsson (2005) for more information about the mathematical
and algorithmic principles underlying system identification.

It will be emphasized here that the ARMarkov/LS algorithm is used to convert time
sequences of the input and output signals into discrete impulse responses (Markov
parameters), which in turn are fed to a realization algorithm (in our case, the ERA)
to yield the system matrices of a state-space representation. A feedback controller can
then be designed using standard techniques; a feed-forward controller can be devised
directly from the identified transfer function. A sketch outlining the procedural steps
is given in figure 1.

2.2.1. The LS algorithm
Given an input–output dataset, a system-identification procedure is concerned with

finding a model that can reproduce the output (y) sequence using the input (u)
sequence. Formally, y(k) is the array of measured outputs at time k, W denotes a set
of parameters that describe the model and ŷ(k |W) stands for the output computed
using the input sequence and the model parameterized by W . The goal is to find
W such that the sequence ŷ(k |W) best matches y(k). Thus, the ARMarkov/LS
identification consists of minimizing J given by

J(W)= 1
N

N∑
k=1

(y(k)− ŷ(k |W))2, (2.10)
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with N as the number of data points. For ARMarkov, the relationship between ŷ(k |W)
and W is explicit and is given by (2.7). Substituting into (2.10) yields

J(W)= ‖Y −ΦW‖2
2, (2.11)

with

Y =


y(µ+ n)

y(µ+ n+ 1)
...

y(N)

 and Φ =


φ(µ+ n)

φ(µ+ n+ 1)
...

φ(N)

 . (2.12a,b)

The minimization of J(W) may be solved using the pseudoinverse to obtain

W =Φ†
εY . (2.13)

The coefficient vector W contains the Markov parameters Hj. The pseudoinverse is
often computed using Moore’s definition

Φ†
ε ≡ (ΦTΦ + εI)−1ΦT, (2.14)

which minimizes a regularized cost functional J̃(W) of the form

J̃ε(W)= ‖Y −ΦW‖2
2 + ε‖W‖2

2. (2.15)

The parameter ε can be set to machine precision, but it can also be used to enforce
regularization of an otherwise ill-posed problem, as Φ is often rank-deficient. The
term Φ contains the input–output data sequence: when the input does not consist of
a broadband signal, the resulting LS problem becomes ill-posed. In this case, the use
of Moore’s pseudoinverse definition allows us to implement a Tikhonov regularization
of the problem (ε 6= 0, Fleming 2011). In this way, the norm of W remains bounded
which, in turn, avoids numerical problems when using the identified model. In the
different test cases presented in this paper, regularization is always applied with ε
ranging from 10−5 to 10−16 (machine precision). The choice of ε depends on the
application and the ill-posedness of the data sequence (Φ).

In order to have W represent the system dynamics rather than measurement noise,
the minimization problem should be strongly underparameterized, i.e. 2n + µ � N.
In the limiting case of 2n + µ = N, the input–output data sequence (u, y) will be
exactly matched by the reconstructed data (u, ŷ). In this case, the model parameters
in W are strongly noise-dependent and are unlikely to be consistent with another set
of data. In our examples, the parameters are chosen such that 2n + µ < N/5; this
choice is related to the AIC criterion defined below (see (2.16)). Even so, the model
parameters in W are still dependent on noise, where the majority of this dependence
is contained in the autoregressive part of W . For this reason, only the Markov
parameters are kept (see Kamrunnahar et al. 2000; Hjalmarsson 2005), to minimize
the noise dependence. The ARMarkov/LS procedure identifies all coefficients of the
ARMarkov representation, but only an FIR (i.e. the set of Markov parameters) transfer
function is kept. Still, with all of these precautions to identify a model that faithfully
represents the system dynamics, the Markov parameters are influenced by noise,
especially for a realistic dataset where the noise-to-signal ratio may be rather high.
The uncertainty-propagation analysis aims to quantitatively estimate this dependence
in order to improve the prediction of a controller’s performance.
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Identification error

Model order

Bias error

Overlearning error

FIGURE 2. (Colour online) Sketch of the overlearning and bias error contributions to the
total estimation error, as a function of the model order.

2.2.2. Choice of data sequence
As we saw, the choice of the spectral content of the inputs has a significant

impact on the statistical properties of the identified model, as it is related to the
well-posedness of the minimization problem. The input signal has to be rich in
frequencies that show a significant dynamic relevance in the physical system. In the
absence of guiding information, a broad sweep through frequencies is commonly
applied. However, since system-identification techniques are particularly attractive
to experimental settings, the realizability of user-specified input signals becomes an
additional point of concern. An attractive compromise consists of a pseudorandom
binary signal (PRBS), a signal randomly changing between a zero and a unit
state, which combines the requirements of a broadband frequency range, a simple
relation between the duty cycle and the signal variance and, finally, a rather easy
implementation in experiments by standard actuators. In numerical experiments with
various input signals (e.g. chirp signals, random frequency sweeps etc.), the processing
of data driven by a PRBS has yielded accurate and robust results. For further details
on the choice and implications of the input signals, the reader is referred to the studies
of Mehra (1974), Brighenti, Wahlberg & Rojas (2009) and Gerencser, Hjalmarsson &
Martensson (2009).

2.2.3. Model order and its link to model estimation error
The order of the model constitutes a crucial choice that has to be made in the

identification process. For an ARMarkov model the order is 2n+µ, while for an FIR
model the order is simply µ. As shown previously, the model order is constrained, on
one hand, by the length of the data sequence 2n+µ�N. On the other hand, we have
that 2n+µ (and in particular µ since only an FIR is kept from the identification) has
to be large with respect to the order of the model that describes the dynamics between
the input and the output. A model order has to be chosen to balance these two criteria.
Figure 2 graphically illustrates this balance that has to be struck. The bias error is
related to an undermodelling of the dynamics, while the variance error is caused by
a data sequence that is too small compared with the model order. An adequate model
order can be found by various means. The very common Akaike criterion is chosen
for our work (see Akaike 1974), which can be stated as

AIC= log(J(W))+ 2
N

card(W). (2.16)
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(a) (b)

FIGURE 3. (Colour online) Feedback (a) and feed-forward (b) control layout. The Gi stand
for transfer functions inherent to the system; K and C are the transfer functions of the
respective controllers. The respective physical systems are indicated in shaded boxes.

This value can be computed a posteriori, once a model has been determined. For
model orders higher than Akaike’s criterion, see (2.16), the model error is assumed
to be mostly due to variance error; for model orders below Akaike’s value, the
model error is mostly due to bias error. The optimal model according to Akaike has
a minimal AIC value. The criterion contains two terms. The first term log(J(W))
characterizes the residual minimization error, which is meant to represent the bias
error of the identified model. Indeed, if the model order is sufficiently high, the
problem becomes overparameterized and J(W) consequently tends to zero. However,
if the model order is rather low, the problem is overconstrained and J(W) may
not vanish. The second term in (2.16) denotes an index that is correlated with the
variance error. It increases linearly with the number of parameters in the model and
penalizes overparameterization. For our ARMarkov model, the cardinality card(W) is
the number of parameters 2n+ µ. The model order that minimizes AIC is taken as
the optimal order for the identification procedure.

The uncertainty propagation developed later allows us to estimate the variance error;
the bias error, however, is far harder to estimate, particularly when the noise-to-signal
ratio is high. In order to take advantage of the variance error estimation, it is essential
to choose a model order that is sufficiently high. What constitutes a sufficiently high
order is difficult to define theoretically based on only the data sequence. For the
remainder of the article, we base the model order on the minimal value of AIC given
in (2.16).

2.3. From identified system to controller design
Once a model of appropriate order has been identified, a control strategy can be
defined. Among the various choices to manipulate the flow, we will concentrate
on two of the most common approaches: simple feedback control and simple
feed-forward control. Both strategies are outlined in figure 3 in the form of a
block diagram; they cover the most widely studied structures to control oscillatory
and convectively dominated fluid flows.

In these configurations, y represents the signal from the objective sensor which
enters a user-specified objective function, and u is the control variable, i.e. the signal
passed to the actuator. In the feed-forward configuration, an additional sensor is
present, which provides information about incoming disturbances and acts as a proxy
for the (upstream) disturbance environment. In either configuration, Gi stands for a
transfer function describing the fluid behaviour between input and output signals; the
transfer functions of the respective controllers are denoted by K and C respectively.
For the feedback set-up, we also account for environmental noise sources, indicated
by u′ and y′. Before describing performance and stability criteria, we briefly outline
common design algorithms for the two control configurations.
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2.3.1. Feedback controllers
One of the most commonly applied strategies for feedback control is the infinite-

time-horizon LQG/LQR control. After the identified system has been converted to a
state-space representation, for example by using the ERA (Juang & Pappa 1985), a
Kalman filter (for the optimal state estimation from measurements) and a proportional
controller (which minimizes the control objective) can be designed. A large body of
literature gives details of this design process; a data-based feedback approach applied
to a fluid system can be found, e.g., in Illingworth, Morgans & Rowley (2011).

Regardless of the details of the designed controller, transfer functions of the
feedback-controlled system can be expressed explicitly. They will be referred to as
closed-loop transfer functions (CLTFs) throughout this paper. The CLTF describing
the influence of the noise signal u′ on the output y reads

TCL = G0

1+G0K
, (2.17)

while the CLTF linking the noise signal y′ to the same output is given by

T ′CL =
G0K

1+G0K
. (2.18)

2.3.2. Feed-forward controllers
This type of control is commonly applied to flows with a strongly convective

behaviour, where disturbances originating upstream are to be compensated. In this
set-up, an upstream sensor detects the incoming disturbances, after which an actuator
counteracts them to create a nearly disturbance-free environment farther downstream
(at the location of the objective sensor). General algorithms to design such controllers
fall within the category of model predictive controllers (MPCs). Following the
diagram in figure 3(b), the mapping between the measured incoming perturbations
s and the output (objective) sensor y is given by the transfer function G1. An
equivalent link between the actuator signal u and the same output sensor y can be
established and described by the transfer function G0. The goal of the control design
is then to construct a controller transfer function C such that the signal passing
through C and G0 destructively interferes with the signal passing though G1. It is
straightforward to show that C = −G−1

0 G1 provides a control law that accomplishes
this task. Special care has to be exercised when inverting the transfer function
G0, as substantially damped or eliminated frequencies in G0 will yield numerical
difficulties (or failure) during the inversion. For this reason, the inversion has to be
understood as a regularized inversion, which can be accomplished, e.g., by Tikhonov
regularization or by singular-value thresholding during pseudoinversion. As before,
the transfer function of a system controlled by a feed-forward controller (from the
upstream to the downstream sensor) can be stated explicitly. We will refer to it as
the controlled-system transfer function (CSTF), given by

TCS =G1 +G0C. (2.19)

2.4. From controller design to performance and stability: Nyquist and Bode
plot analysis

The two transfer functions can be used to determine performance and stability
measures. However, one has to keep in mind that the true transfer functions are not
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FIGURE 4. (Colour online) Nyquist plot of the OLTF, showing phase and gain margins,
based on the nominal system (a) and the nominal system with uncertainty bounds (b).

known; only their identified variants are available. To formally differentiate the exact
and identified transfer functions, we introduce Gi for the exact (but experimentally
inaccessible) transfer function and Ĝi for the nominal (identified) transfer function.
Differences between these two transfer functions can be traced back to uncertainties
or noise in the processed data.

For performance and stability studies, a simple substitution of Gi by Ĝi in (2.17)
and (2.19) and a small-difference expansion can be applied for a first estimate of the
influences of data corruption. In some high noise-to-signal cases, however, a different
approach, involving a better approximation of the identification error, is called for. In
the following section, we give a brief summary of stability criteria for the feedback
(the Nyquist criterion) and feed-forward controller. Only stability issues will be dealt
with in this article; uncertainty propagation, as introduced here, is not, however,
limited to this output criterion.

2.4.1. The Nyquist stability criterion for feedback controllers
Considering the expressions in (2.17) and (2.18), the two CLTFs are singular when

G0K =−1. This singularity is linked to the instability of the controlled system. The
Nyquist plot is a representation of the open-loop transfer function (OLTF) G0K as a
parameterized curve (by frequency) in the complex plane. The phase and gain margins
defined by the Nyquist plot are measures that quantify the distance of the OLTF
G0K from the point −1 in the complex plane. The phase margin is the maximally
admissible phase variation of the system before stability is lost; the gain margin is
the maximally admissible gain variation for the system to lose stability. The Nyquist
curve can be recovered from the discrete-time transfer function (a function of z) by a
transformation to a continuous-time transfer function (a function of the frequency ω)
via z= eiωTe , where Te stands for the sampling time step of the data sequence.

Figure 4 shows an example of a Nyquist plot. This figure gives a graphical
definition of the phase and gain margins, as well as a potential reduction in the
margins due to general uncertainties. For small noise-to-signal ratio the phase and
gain margins can be satisfactorily estimated from the nominal system. As soon as
uncertainties become more prevalent, the stability margins computed from the nominal
system increasingly differ from the exact margins. In this latter case, uncertainty has
to be directly taken into account to properly correct the margins.
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FIGURE 5. (Colour online) Bode diagram of the uncontrolled (thin black) and controlled
(thick black) transfer functions, showing the H∞-based performance of the nominal system
(a) and the nominal system with uncertainty bounds (b).

2.4.2. Performance analysis for feed-forward disturbance rejection controllers
For feed-forward control configurations and strictly convective systems (i.e. with

no feedback from the downstream input u to the upstream sensor s), the controller
cannot be unstable. (In the presence of feedback from the downstream input u to the
upstream sensor s, instabilities in the feed-forward control loop are possible; in this
case, a state-space formulation would be more appropriate.) In this case, performance
is of principal concern and constitutes the criterion for our analysis of uncertainty
propagation. Performance will be defined using the maximum value of the CSTF
(i.e. its H∞ norm). A controller is deemed effective if the maximum value of the
transfer function without control is larger than the maximum value of the CSTF.
Figure 5 provides a sketch of this criterion. In this figure, the uncontrolled and the
controlled transfer function of the system are plotted, and the performance measure
of the controller is evaluated. Similarly to the feedback configuration, uncertainty
bounds about the nominal transfer function may yield a pronounced reduction of this
nominal performance.

3. Uncertainty propagation for the ARMarkov/LS identification process
We proceed by developing procedures to estimate uncertainty bounds in the

identified system stemming from uncertainty in the processed data. In our case,
we assume that the standard deviation of the data is known. First, the uncertainty
propagation is demonstrated for the ARMarkov/LS identification algorithm, where the
impact on the model parameters (Markov parameters and autoregressive parameters)
is quantified. This is followed by establishing a link between the uncertainty in the
Markov parameter and the resulting uncertainty bounds in the Bode and Nyquist
diagrams. As a validation of this established procedure, a Monte Carlo variance
estimation is then used, on a simple test case, to corroborate the uncertainty-
propagation results by alternative means; since this validation step is advisable,
but incidental to our development of a step-by-step procedure, we relegate this study
to appendix B.

3.1. Variance error: linear perturbation analysis of the LS algorithm
Contrary to Monte Carlo techniques, we seek an explicit expression linking statistical
information (such as the standard deviation) on the input data to an equivalent
statistical measure of the Markov parameters. The uncertainty in the data is assumed
to be additive; multiplicative uncertainty-propagation analyses can be found in
Skogestad & Postlethwaite (2001), but will not be considered here. In addition,
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we restrict ourselves to sufficiently small measurement uncertainty in order to justify
a first-order perturbation approach; furthermore, for simplicity, we assume noise-free
input signals. The original data sequence, described by the vector Y , is perturbed
as follows:

Ỹ =Y + δY . (3.1)

The perturbations δY are primarily perturbations of the input variables for the
subsequent system-identification method. However, they have been generated by
driving the physical system with a given input signal (in our case, PRBS) and hence
contain, as subcomponents, measurement noise and observable plant noise. While
a distinction between these two subcomponents will not be made, we acknowledge
them as possible sources for the composite perturbation δY . The influence of the
perturbation δY on the identified parameters (contained in W) can be quantified
using (2.13). We note that, since Φ contains past measurements, the size N of the
total data sequence differs from the number of equations N − µ − n + 1. For this
reason, two notations must be put forth: the vector of output data Y of size N, and
the solution Y t of the LS problem of size N −µ− n+ 1:

(W + δW)= (Φ + δΦ)†ε (Y t + δY t) . (3.2)

The resulting perturbation δW of the model parameters W is sought as a function
of the perturbation δY in the data Y . Under the previously mentioned assumption
of small perturbations δY , we linearize the above expression and derive a first-order
perturbation solution for δW . This step is equivalent to linearizing the pseudoinverse
term Φ̃†

ε = (Φ + δΦ)†ε , a complex problem that has been the object of many past
studies (see Wedin 1973; Stewart 1977, 1990). Following these studies, we can give
an explicit expression for the model parameter perturbation δW (see Stewart 1977):

δW ≈Φ†
ε δY t+

(−Φ†
εPΦδΦRΦΦ

†
ε + (ΦTΦ)†εRΦδΦ

TP⊥Φ − R⊥ΦδΦ
TPΦ(ΦΦ

T)†ε
)

Y t, (3.3)

where

PΦ ≡ΦΦ†
ε , RΦ ≡Φ†

εΦ, (3.4a,b)

P⊥Φ ≡ I − PΦ, R⊥Φ ≡ I − RΦ . (3.4c,d)

The matrix δΦ contains perturbations of the data sequence. By definition, it can be
directly expressed in terms of δy(k) for k ∈ [1, N] according to

δΦ =


δy(n) δy(n− 1) . . . δy(1) 0 . . . 0

δy(n+ 1) δy(n) . . . δy(2) 0 . . . 0
...

...
...

...
. . .

...

δy(N) δy(N − 1) . . . δy(N − n+ 1) 0 . . . 0

 (3.5)

or, in a more compact form,

δΦ =
N∑

k=1

E(k)δy(k), (3.6)

where we have introduced the operator E(k)i,j as

E(k)i,j =
{

1 if i− j+ n= k and i< n,
0 elsewhere. (3.7)
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With this definition, we can reformulate the above relation between the data
perturbations and the model parameter perturbations and state it in the form

δW ≈ Φ†
ε δY t +

N∑
k=1

(−Φ†
εPΦE(k)RΦΦ

†
ε + (ΦTΦ)†εRΦE(k)TP⊥Φ − R⊥ΦE(k)TPΦ(ΦΦ

T)†ε
)

×Y tδy(k). (3.8)

Finally, this expression is equivalent to

δW = LδY, (3.9)

where L can be interpreted as the Jacobian of W with respect to Y . Consequently,
the gradient of each component of W with respect to a specific perturbation in the
processed data can be extracted from L. We recall that only the Markov parameters Hi
are relevant for the representation of the system-identified model. With the definition
of W , the propagation of data uncertainties into each Markov parameter can be
found from (3.9). If we introduce the notation Li as the ith row of the Jacobian L,
we obtain

δHi = Li+nδY, i= 1, . . . , µ. (3.10)

With the above link between the data perturbations and Markov parameter pertur-
bations, we can now establish a mapping between the statistical properties of the two
perturbations. To this end, let σδy and σδHi denote respectively the standard deviation
of the measurement noise and that of the ith Markov parameter. Further introducing
the noise standard deviation δYTδY =Nσ 2

δy, we can state

σHi = σδy
√

Li+nLT
i+n. (3.11)

This final expression (3.11) describes the first-order uncertainty mapping (in terms
of the standard deviation) from the output data sequence to the identified Markov
parameters; given the noise standard deviation, it is now possible to determine
uncertainty bounds for each Markov parameter. These bounds are associated with
statistical probabilities: if the measurement noise is Gaussian, the ith Markov
parameter falls within the range Hi ± σHi with a 68.2 % probability or is contained
within Hi± 2σHi with a 95 % probability. However, evaluation of the 95 % probability
range of a specific Markov parameter is not an effective way of probing the potential
impact of data uncertainty on the controlled-system behaviour. Rather, a direct
influence on stability or performance criteria is sought. As stated in § 2.4, we will
limit our stability and performance assessment to criteria that can be straightforwardly
extracted from Nyquist or Bode plots.

Two approaches to extend the uncertainty analysis to apply to stability and
performance measures come to mind. First, the numerical procedures to compute
the criteria and corresponding margins can be linearized about a nominal set of
Markov parameters, after which the Jacobian of these criteria/margins with respect to
data uncertainty can be extracted. Such a linearization, however, is rather cumbersome
due to the complex steps in computing the criteria and margins; for instance, the
stability phase margin in the Nyquist diagram of a feedback controller requires
one to (i) compute a transfer function, (ii) find the frequency for which the gain
is one and (iii) determine the minimal phase between this frequency and the
singularity at z = −1 in the complex plane. Each of these three steps needs to
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be linearized to arrive at sensitivity measures. The complexity of this perturbative
approach motivates us to consider a second approach. An alternative, and more
attractive, technique to extend the uncertainty analysis to stability and performance
measures is based on a Monte Carlo approach. We recall that the Monte Carlo method
has been dismissed as an option for determining the uncertainty propagation from
measurement errors to Markov parameters. Our reasoning came from the prohibitively
large dimensionality of the input space that defines the measurement uncertainty, and
ultimately led us to the linearization approach. Past the system-identification step,
however, the dimensionality of the input space for the control design and performance
evaluation is comparatively small: the number of Markov parameters µ is substantially
smaller than the number N of measurement points (for example, N ≈ 104 whereas
µ ≈ 102). For this reason, Monte Carlo techniques become a viable option. We
thus advocate a hybrid approach that uses an efficient perturbation approach for
the high-dimensional data-input-to-Markov-parameters step and a more convenient
Monte Carlo technique for the mapping of uncertainties in the Markov parameters
onto performance and stability margins. This hybrid approach is indicated in figure 1
and labelled as approach (1), in contrast to the full Monte Carlo approach (2). The
hybrid approach combines computational efficiency through the system-identification
part and mathematical convenience through the control design and evaluation part.
The uncertainty regions around the nominal Nyquist and Bode diagrams are thus
computed using a large number of possible systems taken within the uncertainty
bounds of the identified Markov parameters (see (3.11)).

The overall algorithm can be summarized as follows. For a given set of perturbed
data, a Nyquist or Bode plot including uncertainty bounds may be computed by
(i) solving the nominal problem for W, using the ε-regularized pseudoinverse of Φ,
according to (2.13), (ii) computing the Jacobian matrix L defined in (3.9) using the
nominal solution, (iii) computing the standard deviation of each Markov parameter
based on (3.11), (iv) generating a large number (order µ) of transfer functions
using Markov parameters that are given by their mean (nominal value) and standard
deviation (from the above uncertainty propagation) and (v) computing the standard
deviation of the Nyquist or Bode plots, or any other stability or performance criterion,
from this set of transfer functions. In the following section we apply the above
procedure to several test cases of controllers.

4. Application to a test flow

We consider a linear numerical simulation of flow over an idealized aerofoil
followed by an infinite plate. The aerofoil consists of a circular body of radius
R and two straight segments joining at the trailing edge (see Wallace & McKeon
2012 for an experimental implementation). The Reynolds number based on R is
Re = 400, the radius R = 0.5 and the chord length is 4.6 non-dimensional units;
see figure 6 for a sketch of the flow configuration. With a unit inflow velocity, the
viscosity is chosen to correspond to the inverse Reynolds number ν = 1/Re. The flow
domain is meshed by a two-dimensional unstructured grid of approximately 5× 105

nodes. First, a stable base flow is computed using a Newton iterative solver. Then,
equations for the temporal evolution of perturbations (u, v, p) around this base flow
are formulated and spatially discretized using finite elements (in our case, P2–P1
Taylor–Hood elements). The pressure field is computed using the Uzawa algorithm
with a Cahouet–Chabart preconditioner (see Glowinski 2003). The time discretization
is semi-implicit based on a second-order backward-differentiation scheme. We choose
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Constant
velocity
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Input OutputOutput

FIGURE 6. (Colour online) Numerical domain and boundary conditions for the case of
flow over an idealized aerofoil.

a time step of 1t = 0.003 for the simulations. Data sequences generated by the
simulations are extracted with a time step of dt = 0.075, before being subjected to
the identification algorithms. The length of the sampled data is N = 1500, and the
entire measurement sequence is used in the identification algorithms. Two simulations
are performed: the first contains an upstream source of noise (one radius R upstream
of the leading edge) that creates fluctuations in the flow field which are detected
by both sensors; in the second simulation, a broadband pseudorandom binary signal
(PRBS) is applied to the input which mostly affects the downstream sensor. At the
downstream sensor location, a shear-stress signal (as feasible in a physical experiment)
is collected. Artificial measurement perturbations are added to the downstream sensor,
using a white Gaussian noise with the same variance as the noise-free signal variance
(i.e. we consider a 100 % noise contamination); this choice is intended to simulate
adverse experimental conditions and, at the same time, challenge the robustness of
the system-identification algorithm. We would like to point out, however, that the
amount of noise contamination has little influence on the perturbation approach,
and an uncontaminated output/sensor signal would have produced nearly identical
results. All identified nominal transfer functions will be found using the ARMarkov
identification algorithm with the set of parameters µ = 200, n = 20 and N = 1500.
Based on the given noise standard deviation, the standard deviation of each Markov
parameter is estimated using the uncertainty-propagation algorithm given by (3.11).
Finally, exact transfer functions are also identified from longer noise-free data signals
(with N = 4000). These latter signals are assumed to be unobtainable in realistic
experiments; they are computed here solely for a performance evaluation of the
uncertainty-propagation algorithm.

With the nominal transfer function and the different controller transfer functions
known, it is then possible to estimate the performance and stability of a given
controlled system. The following subsections focus on two control set-ups: a feedback
and a feed-forward configuration. It will be shown that the exact performance and
stability are quite different from the nominal values, and that this difference is well
predicted by the uncertainty-propagation technique.

4.1. Feedback control
We first consider a feedback configuration for flow over the idealized aerofoil. The
developed framework applies to the block diagram shown in figure 3(a) where, in the
present case, y denotes the signal from the downstream sensor and u stands for the
upstream control input. From the realistic (i.e. noise-contaminated) data sequence, the
nominal transfer function (Markov parameters) is identified using the ARMarkov/LS
identification algorithm. The number of identified Markov parameters is set to µ=200,
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FIGURE 7. (Colour online) (a) Nyquist plot of the OLTF. The red lines show the exact
value and the black lines show the nominal value; the 95 %-likelihood bounds around the
nominal value are given by dashed blue lines. (b) Magnified detail of the OLTF in (a)
near the point z=−1, with arrows showing the nominal and real gain margins. The dashed
black line indicates the unit circle.

which is approximately 1.4 times the AIC value of µ = 144. The nominal system
together with the noise standard deviation then provides an estimate of the standard
deviation of the identified Markov parameters. This latter standard deviation can be
interpreted as uncertainty bands about the nominal transfer function.

For demonstration purposes, we assume a proportional feedback controller with
K = 0.025. The stability of the closed-loop system is determined by the distance
of the OLTF G0K from the point −1; see (2.17). Figure 7(a,b) show the Nyquist
plots of the exact OLTF, the nominal OLTF and the uncertainty bounds associated
with twice the standard deviation at each frequency. These bounds correspond to
a confidence interval of 95 %, i.e. in only 5 % of cases does the real OLTF fall
outside these bounds. Furthermore, the nominal transfer function of the controlled
system shows a gain margin of GM+ = 0.033 dB, which overestimates the real
gain margin by more than 40 % (GM+ = 0.023 dB). Our uncertainty-propagation
algorithm gives estimates for the gain margin of more than GM+ = 0.017 dB with a
probability of 95 %, and more than GM+ = 0.025 dB with a probability of 68.2 %.
According to the same algorithm, the standard deviation of the gain margin is
approximately σGM+ = 0.008 dB. In contrast, the singularity at −1 is nearly four
standard deviations away from the nominal transfer function, which – according to
the gain margin criterion and under the assumption of Gaussian noise – suggests that
in only 0.1 % of all cases should we expect an unstable feedback-controlled system.
A similar comparison may be performed using the phase margin: the nominal margin
is PM= 29◦, the exact phase margin is PM= 21◦, while the 95 %-likelihood margin
is determined as PM= 13◦.

In this feedback control example, compared with the nominal transfer function, the
real transfer function tends to overestimate the stability margins of the closed-loop
system. The uncertainty-propagation technique allows a quantitative estimation of the
error bounds, which results in a more realistic estimation of these margins.
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FIGURE 8. (Colour online) (a) Bode diagram of the uncontrolled system (black line),
the nominal CSTF (black thick line), and the exact CSTF (red); the error bounds around
the nominal CSTF are shown by black dot-dashed lines. The maximum amplitude of the
uncontrolled system is represented by a dashed horizontal line. (b) Magnified view of (a)
for a limited frequency range.

4.2. Feed-forward control
In feed-forward control applications, the control performance is often measured by
the maximum magnitude of the CSTF. In this case, the input signal comes from
the upstream sensor (see figure 6). As before, this CSTF can be estimated with the
nominal identifications and compared with the real transfer function. Figure 8(a,b)
shows the transfer function of the exact system without control, the nominal controlled
system and the exact controlled system. This time, the performance of the controller
seems to be positive (note the reduction of the maximal amplitude) with the nominal
estimation. However, a closer look reveals that the real system behaves worse with
control than without. This can be predicted using the 95 %-uncertainty bounds which
show the probable lack of performance of the controlled system.

5. Conclusions

The identification error due to measurement uncertainty can have an important
effect on the stability margins and performance bounds of any data-based controller.
In this study, an uncertainty-propagation technique has been developed and applied
to two types of control architecture: feedback and feed-forward control. In both
cases, the nominal prediction overestimates either the controller performance or the
stability margins. When input-data uncertainty is taken into account, more accurate
predictions can be made. Even though uncertainty propagation may be treated via
Monte Carlo analysis, the related computational costs are often prohibitive. In contrast,
a linearization of the identification algorithm provides statistical information about the
identified transfer function, requiring only a single experiment and thus overcoming
the previous computational bottleneck. Estimating a priori the performance and
stability characteristics of a given controller, using the data sequences from which
the controller has been designed, may lead to a better design of control strategies.
In fact, controllers are commonly built to be optimal in the nominal sense. Being
able to give a robust definition of optimality with respect to uncertainty should
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allow the construction of control set-ups that are more relevant for implementation in
experiments or more suited for the control of flows under realistic conditions.

We have restricted our analysis to linear models and a specific system-identification
technique (ARMarkov/LS). Linear techniques still dominate the bulk of flow-control
applications, as the evolution and manipulation of small-amplitude disturbances about
steady or quasisteady states are common and widespread in a wide range of flow
configurations (see, e.g., Rathnasingham & Breuer 2003; Juillet, McKeon & Schmid
2014). It should also be mentioned that even in the presence of an underlying
nonlinear system, which has to be identified using nonlinear system-identification
techniques as well as nonlinear control techniques, the influence of small disturbances
in the processed data and their impact on control performance can still be analysed
within a linear framework, i.e. by a sequence of linearizations. Special techniques
developed for (nonlinear) Wiener or Hammerstein systems are conceivable for
replacing the linear identification methods used in this study. Similarly, our choice
of system-identification algorithm does not impose limitations on the applicability
to other techniques, such as observer/Kalman filter identification (OKID); the
perturbations in the identified Markov parameters due to uncertainty and noise in
the processed data sequence will yield very similar expressions and only differ in the
shape of the underlying frequency response model. Subspace identification techniques,
which directly identify a state-space model and bypass the discrete transfer function,
would require more notable changes to the present procedure; an effort in this
direction is left for a future endeavour.

Appendix A. Transfer functions for linear time-invariant systems

Three different models have been introduced in § 2.1. For the sake of completeness,
we present the transfer functions of these models, which can be obtained by taking
the z-transform of the equivalent discrete-time models.

For the FIR model we obtain the transfer function

G(z)=H0 +H1z−1 + · · · +Hµ−1z1−µ, (A 1)

with Hi as the Markov parameters (discrete impulse response). The transfer function
is simply a sum of monomials in z−1. Following the same procedure, the more
complicated ARMA model yields the transfer function

G(z)= M0 +M1z−1 + · · · +Mnz−n

1+N1z−1 + · · · +Nnz−n
, (A 2)

which represents a rational function in z−1 to approximate the transfer function of the
identified system. The third and final model, the ARMarkov model, has the transfer
function

G(z)= H0 +H1z−1 + · · · +Hµ−1z−(µ−1) + z−µ(Q0 +Q1z−1 + · · · +Qnz−n)

1+ z−µ(N1z−1 + · · · +Nnz−n)
, (A 3)

which also represents a rational approximation of the system response but, contrary to
the previous ARMA model, contains the first µ Markov parameters Hi explicitly.
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FIGURE 9. The power spectral densities of the different measurement disturbances: crosses
denote the white noise, circles show the coloured noise 1, the dashed line displays the
coloured noise 2. The spectrum of the noise-free output signal is represented by the solid
line.

Appendix B. Validation using Monte Carlo simulation

We will validate the perturbation framework introduced in the main text using
Monte Carlo simulations. In particular, we wish to assess the dependence of the
perturbative approach on the signal-to-noise ratio of the processed data. To this
end, we introduce the parameter γ , defined as γ = σδy/σy, measuring the standard
deviation of the perturbations relative to the standard deviation of the unperturbed
data. For efficiency reasons, we choose as our test case a system that can be solved
quickly, yet still has the characteristics of a full-scale fluid system. In particular, the
chosen system should produce data sequences reminiscent of many fluid systems:
with a range of certain frequencies amplified by the flow, while other frequencies are
damped, and with a delay between input and output signals mimicking advection.

The selected test case consists of incompressible flow around a cylinder (Re= 40),
modelled by the linear complex Ginzburg–Landau equation. An actuator is placed
approximately half a radius upstream of the cylinder, and the sensor is located in the
stable wake; both impose or provide signals of the normal-velocity component. The
linear Ginzburg–Landau model equation is solved numerically using finite differences
on a one-dimensional equispaced mesh of N = 100 grid points. The relatively small
dimensionality of the system facilitates the convergence of the Monte Carlo variance
estimation. The flow behaves as a filter with delay, and the power spectral density
of the output signal (given white-noise input) is plotted in figure 9 (solid line); it
shows amplification of lower frequencies (around 25 mHz) and a strong damping of
higher frequencies. The input sequence has been generated with a PRBS algorithm.
A total of 500 noise-free numerical experiments have been performed, resulting
in 500 independent noise-free input–output data sequences, with each sequence
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containing 1000 measurement points sampled at 1 Hz (i.e. approximately 50 times
the characteristic time scale of the system). The length of each sequence represents
25 characteristic time units. This length and the sampling frequency are adequate to
accurately identify the system behaviour (see § 2.2).

After establishing the baseline data sequences, we add noise to each of the 500
experiments. In general, three different approaches can be distinguished. The added
noise could be (i) broadband and affect all frequencies nearly equally. Alternatively,
it could be strongly coloured with (ii) higher amplitudes near the natural frequency of
the system or (iii) higher amplitudes at higher frequencies that do not correspond to
physically observed frequencies. Often, the characteristic frequency of the system can
be estimated, which allows the application of low-pass filters to eliminate the noise for
the third case. In the first two cases, low-pass filtering will not succeed in eliminating
the noise components in the data. For this reason, we will focus on these cases.

Three different measurement contaminations will be considered: white noise and
two coloured noise distributions with a pronounced amplitude near the characteristic
frequencies of the system. Their power spectra are presented in figure 9 together
with the output power spectrum. These noise spectra cannot be simply filtered
and are likely to influence the values of the identified Markov parameters. Their
noise-to-signal ratio γ is set by choosing the noise amplitude. For each of the three
noise spectra and for every considered noise-to-signal ratio, we compare the statistical
information estimated by the Monte Carlo approach with the same information
computed by the uncertainty algorithm of the main text. The mean standard deviation
of the identified Markov parameter (mean(σH)) is the objective for this test case; it
has to be compared with the average of the Markov parameter value, which is 1.
If mean(σH) = 10−2, the variance error is estimated to be on average 1 % for each
Markov parameter.

First, 500 noisy data sequences are used to estimate the standard deviation
of the identified Markov parameters (the Monte Carlo approach). Then, one
single input–output data sequence and the noise standard deviation are used to
estimate the standard deviation of the identified Markov parameters (using the
uncertainty-propagation approach). For the Monte Carlo estimation, each of the
500 perturbed input–output data sequences is used in the ARMarkov/LS identification
algorithm, yielding the corresponding Markov parameters; from these 500 sets of
Markov parameters, their means and standard deviations can easily be determined.
For the uncertainty propagation, one arbitrarily perturbed data sequence is taken as
input to the algorithm of § 3. Equation (3.11) produces the standard deviation of the
Markov parameters based on the noise standard deviation, from which the mean can
be computed. The parameters for the different algorithms are N = 1000, µ = 400,
n= 40, and ε is set to machine precision. The corresponding AIC is not given, since
its value varies with each noise-to-signal ratio and each colour of noise. Figure 10
shows the results of the standard deviation estimates for each algorithm (Monte Carlo
and uncertainty propagation) and for each noise-spectrum/noise-to-signal ratio.

As can be deduced from figure 10, the three different noise spectra (measurement
contaminations) affect the standard deviation of the Markov parameters in a similar
manner. Independent of the noise spectrum, the Monte Carlo and uncertainty-
propagation approaches give identical estimates for high noise-to-signal ratios, thus
validating the uncertainty-propagation algorithm for sufficiently high values of γ .
According to these experiments, accurate estimates of the standard deviation of the
Markov parameters can be expected for noise-to-signal ratios γ between 10−5 and
2 (very noisy signal). For low values of γ (� 10−5), two reasons may explain the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

38
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.38


Uncertainty propagation in model extraction by system identification 235

10−8

10−5 100

10−6

10−4

10−2

10−8

10−5 100 10−5 100

10−6

10−4

10−2

10−6

10−4

10−2

100

102
100(a) (b) (c)

FIGURE 10. (Colour online) Monte Carlo (blue dots) and uncertainty-propagation (red
squares) estimates of the standard deviation of the identified Markov parameters as
a function of the noise-to-signal ratio γ . (a) Measurement contamination by white
noise; (b) measurement contamination by low-pass filtered noise 1; (c) measurement
contamination by low-pass filtered noise 2.

discrepancy between the Monte Carlo results and the uncertainty propagation. First,
the standard deviation may be influenced by round-off errors which become important
at 10−8 due to the square root dependence of the standard deviation. Second, with
only 500 samples available, the Monte Carlo algorithm may only be converged up
to 10−6. In any event, realistic data sequences taken from fluid systems are rarely
contaminated by noise of less than 0.001 %.

This simple test case illustrates that uncertainty propagation provides accurate and
valuable estimates of the Markov-parameter variance error for realistic noise-to-signal
ratios.
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