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1. Introduction

In this paper, we consider the following nonlocal quasilinear elliptic problem

− Δu+ ωu− μuΔu2 + q
h2

u(|x|)
|x|2 (1 + μu2)u

+ q

(∫ ∞

|x|

hu(s)
s

(
2 + μu2(s)

)
u2(s) ds

)
u = λ|u|p−1u in R

2,

(1.1)

where u : R
2 → R is radially symmetric, ω, μ, q, λ are positive constants, p > 1 and

hu(s) =
∫ s

0

ru2(r) dr, s � 0.

Equation (1.1) appears in the study of standing waves for a modified Schrödinger
equation coupled with the Chern–Simons gauge theory. For the reader’s conve-
nience, we will give the derivation of (1.1) in § 2.

Our aim of this paper is to study existence and nonexistence of positive radial
solutions and radial ground state solutions of (1.1).
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When q = 0, (1.1) is reduced to the following quasilinear elliptic problem

− Δu+ ωu− μuΔu2 = λ|u|p−1u, (1.2)

which is obtained by the modified Schrödinger equation

iψt + Δψ + μψΔ|ψ|2 + λ|ψ|p−1ψ = 0, (1.3)

looking for standing waves of the form ψ(t, x) = exp(iωt)u(x). In the last decades,
a considerable attention has been devoted to the study of solutions to the quasi-
linear Schrödinger equation (1.3) that arises in various fields of Physics (see
[3–5,18,19]). This model is known to be more accurate in many physical phenom-
ena compared with the classical semi-linear Schrödinger equation iψt + Δψ + |ψ|p−1

ψ = 0. In (1.3) ψ : R × R
2 → C and λ is a constant representing the strength of self-

interaction potential. Moreover, the additional term μψΔ|ψ|2 appears in various
physical models and arises due to:

• the nonlocality of the nonlinear interaction for electron (see [4]),

• the weak nonlocal limit for nonlocal nonlinear Kerr media [18],

• the surface term for superfluid film (see [19]),

and the parameter μ represents the strength of each effect and may not be small.
The existence and properties of ground states of (1.2) as well as stability of

standing wave solutions have also been studied widely, see e.g. [1,8,9,22,28,29]
and references therein.

On the other hand if μ = 0 in (1.1), one obtains the following nonlocal elliptic
problem

− Δu+ ωu+ q
h2

u(|x|)
|x|2 u+ 2q

(∫ ∞

|x|

hu(s)
s

u2(s) ds

)
u = λ|u|p−1u. (1.4)

Equation (1.4) appears in the study of nonlinear Schrödinger equations coupled
with the Chern–Simons gauge fields. Recently, a lot of works concerning (1.4) has
been done, see [6,7,10,13,14,17,24–26,33,34]. Here we briefly introduce some
known results on (1.4). In [6], the existence of a positive radial solution of (1.4)
was shown in the case p > 3 by using a suitable constraint minimization argument.
The authors in [6] also investigated the case 1 < p � 3. They obtained existence
and nonexistence results depending on λ for the case p = 3, and the existence of
positive radial solutions as minimizers under L2-constraint in the case 1 < p < 3 (ω
appears as a Lagrangian multiplier). When p > 3, the existence of a positive solution
in the nonradial setting has been also obtained in [33]. In [25], a detailed study
for the case 1 < p < 3 has been performed. The authors in [25] investigated the
geometry of the functional associated with (1.4) and obtained an explicit threshold
value for ω. They also showed the multiple existence of positive radial solutions
for ω in some range. We mention that in [26] the case of a bounded domain for
1 < p < 3 is considered and some results on boundary concentration of solutions
has been proved. In [10] the authors studied (1.4) with general nonlinearities of
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the Berestycki-Lions type, and obtained a multiplicity result when q is sufficiently
small. We also recall that the multiple existence of normalized solutions of (1.4) has
been studied in [34]. Finally, we refer to [2,21,23] for results on Cauchy problem
associated with (1.4). To summarize, the existence and the nonexistence of solutions
of (1.4) heavily depends on ω, q, λ and p, and the solution set of (1.4) has a rich
structure depending on the parameters and the exponent p.

The purpose of this paper is to investigate the structure of the solutions set for
(1.1), which seems to be more complicated due to the presence of the quasilinear
term.

To state our main result, let us define the metric space

X := {u ∈ H1
r (R2) : u2 ∈ H1(R2)},

endowed with the distance

dX (u, v) := ‖u− v‖H1 + ‖∇(u2) −∇(v2)‖2.

We recall that

H1
r (R2) := {u ∈ H1(R2) : u is radially symmetric}.

Then u ∈ X is called a weak solution of (1.1) if u satisfies

∫
R2

{
(1 + 2μu2)∇u · ∇ϕ + 2μu|∇u|2ϕ + ωuϕ − λ|u|p−1uϕ + q

h2
u(|x|)
|x|2 (1 + μu2)uϕ

+ q

(∫ ∞

|x|
hu(s)

s

(
2 + μu2(s)

)
u2(s) ds

)
uϕ

}
dx = 0, for all ϕ ∈ C∞

0,r(R2),

(1.5)

where C∞
0,r(R

2) := {u ∈ C∞
0 (R2) : u is radially symmetric}.

At least formally, weak solutions of (1.1) can be obtained as critical points of the
following functional defined on X

I(u) =
1
2

∫
R2

[
(1 + 2μu2)|∇u|2 + ωu2

]
dx+

q

2

∫
R2

u2(x)
|x|2

(∫ |x|

0

su2(s) ds

)2

dx

+
qμ

4

∫
R2

u4(x)
|x|2

(∫ |x|

0

su2(s) ds

)2

dx− λ

p+ 1

∫
R2

|u|p+1 dx,

(1.6)

but X is not a vector space, because it is not close with respect to the sum. So we
cannot speak about critical points of I in the usual way, since the functional is not
differentiable. However, as we will see in § 3, one can show that I is well-defined
and continuous on X . Moreover, since, for every given u ∈ X and ϕ ∈ C∞

0,r(R
2), we
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have u+ ϕ ∈ X , we can evaluate the Gateaux derivative

I ′(u)[ϕ] =
∫

R2

{
(1 + 2μu2)∇u · ∇ϕ+ 2μu|∇u|2ϕ+ ωuϕ− λ|u|p−1uϕ

+ q
h2

u(|x|)
|x|2 (1 + μu2)uϕ+ q

(∫ ∞

|x|

hu(s)
s

(
2 + μu2(s)

)
u2(s) ds

)
uϕ

}
dx.

Then u ∈ X is a weak solution of (1.1) if and only if the Gateaux derivative of I in
every direction ϕ ∈ C∞

0,r(R
2) is zero (see lemma 3.3 below).

Our main results are the followings.

Theorem 1.1. Assume that p > 5. Then for any ω, μ, q and λ > 0, (1.1) has
a positive radial solution u ∈ X ∩ C2(R2). Moreover u is a radial ground state
of (1.1), that is, u has least energy among any nontrivial radial weak solutions
of (1.1).

Theorem 1.2. Assume that 1 < p < 5. Then, for any μ, q and λ > 0, there exists
ω̄ > 0 such that for ω � ω̄, (1.1) has no nontrivial solution.

We will also study the dependence of ω̄ with respect to μ and q in remark 5.3 below.

To prove theorem 1.1, we use a constraint minimization argument which is a
combination of the Nehari manifold and the Pohozaev manifold, as performed in
[6,33]. However we must pay attention to apply this approach in our case, since
the functional I associated with (1.1) is only Gateaux differentiable and only in
some directions. We will overcome this difficulty by establishing the regularity of
weak solutions of (1.1). Once we could show that any weak solution of (1.1) satisfies
the Nehari identity and the Pohozaev identity, we next aim to prove that the con-
straint minimizer is actually a ground state solution. For this purpose, we apply an
argument performed in [22,28], which enables us to avoid considering complicated
algebraic equations as in [6,33].

The proof of theorem 1.2 can be done similarly as in [6,25]. To this end, we will
obtain a new inequality of Sobolev type for u ∈ X . As shown in [25] for the case
μ = 0, the existence and the nonexistence of positive solutions of (1.1) in the case
1 < p < 5 heavily depends on ω, μ, q and λ. We expect to obtain the (multiple)
existence of positive solutions when ω is small. But we postpone this question to a
future work.

This paper is organized as follows. In § 2, we introduce the derivation of (1.1)
and the role of physical constants ω, μ, q and λ. We formulate (1.1) as a variational
problem in § 3. The regularity property of weak solutions of (1.1), which enables
us to apply the Pohozaev identity and plays a central role for the existence of
ground state solutions, is also established here. In § 4, we will obtain the existence
result (theorem 1.1) by applying the constraint minimization technique described
before. Finally, by establishing a new inequality of Sobolev type for u ∈ X , we prove
theorem 1.2 in § 5.
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2. Derivation of the model

In this section, we introduce the derivation of equation (1.1) together with phys-
ical backgrounds. Let us consider the Lagrangian density LMNLS for a modified
nonlinear Schrödinger equation, which is given by

LMNLS =
1
2
�(ψψ̄t) − 1

2
|∇ψ|2 +

λ

p+ 1
|ψ|p+1 − μ

4

∣∣∇|ψ|2∣∣2. (2.1)

We are interested in the situation where the Schrödinger wave function ψ is,
for instance, a charged particle and interacts with the gauge potential (φ,A) for
the electro-magnetic field in the Chern–Simons theory. Here φ : R × R

2 → R and
A = (A1, A2) : R × R

2 → R
2 are the electric potential and the magnetic potential

respectively. Then the interaction between ψ and (φ,A) is obtained by replacing
the usual derivatives with the covariant ones, namely

∂t �−→ ∂t + ieφ, ∇ �−→ ∇− ieA, (2.2)

where e denotes the strength of the interaction with the electro-magnetic field (see
[12] for details). Substituting (2.2) in (2.1), one has the following Lagrangian

L̃MNLS(ψ, φ,A) =
1
2
�(ψψ̄t) − e

2
φ|ψ|2 − 1

2
|∇ψ − ieAψ|2 +

λ

p+ 1
|ψ|p+1

− μ

4

∣∣∇|ψ|2 − ieA|ψ|2∣∣2.
We have to consider also the Lagrangian density for the electro-magnetic field,
which, in the Chern–Simons theory, is given by

LMCS(φ,A) = −1
8
FαβFαβ +

κ

8
εναβAνFαβ ,

Fαβ = ∂αAβ − ∂βAα, α, β, ν ∈ {0, 1, 2},
where the first term in LMCS is the usual Maxwell term and the second term
is the so-called Chern–Simons term (see [15,16] for details). Here ε is the Levi-
Civita tensor, κ ∈ R is a parameter which controls the Chern–Simons term, the
Lorentz metric tensor is diag(1,−1,−1), and the coordinates are xν = (t, x1, x2).
Moreover we have A0 = A0 = φ and Aj = −Aj , for j = 1, 2. At large distances and
low energies, the lower derivatives of the Chern–Simons term dominates the higher
derivative Maxwell term, and hence we may replace the Lagrangian density by

L̃MCS(φ,A) =
κ

8
εναβAνFαβ =

κ

4
(
φ(∂2A

1 − ∂1A
2) −A1(∂2φ+ ∂tA

2)

+A2(∂tA
1 + ∂1φ)

)
.

So, the total Lagrangian L is defined by

L(ψ, φ,A) = L̃MNLS(ψ, φ,A) + L̃MCS(φ,A)

=
1
2
�(ψψ̄t) − e

2
φ|ψ|2 − 1

2
|∇ψ − ieAψ|2 +

λ

p+ 1
|ψ|p+1 − μ

4

∣∣∇|ψ|2

− ieA|ψ|2∣∣2+
κ

4
(
φ(∂2A

1−∂1A
2)−A1(∂2φ+ ∂tA

2)+A2(∂tA
1 + ∂1φ)

)
.
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Then the Euler-Lagrange equations for the total action

S = S(ψ, φ,A) =
∫

R2

∫
R

L(ψ, φ,A) dtdx

are given by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

iψt − eφψ + (∇− ieA)2ψ + λ|ψ|p−1ψ + μψΔ|ψ|2 − e2μ|A|2|ψ|2ψ = 0
κ(∂2A

1 − ∂1A
2) = e|ψ|2

κ(∂2φ+ ∂tA
2) + e2μ|ψ|4A1 = 2e�

(
ψ̄(∂1ψ − ieA1ψ)

)
−κ(∂1φ+ ∂tA

1) + e2μ|ψ|4A2 = 2e�
(
ψ̄(∂2ψ − ieA2ψ)

)
.

If we consider standing waves ψ(t, x) = exp(iS(t, x))u(t, x) with u, S : R × R
2 →

R, the total action depends on (u, S, φ,A) and the Euler-Lagrange equations
become⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−Δu+ (St + eφ+ |∇S − eA|2)u− μuΔu2 + e2μ|A|2u3 = λ|u|p−1u

∂t(u2) + 2 div
(
(∇S − eA)u2

)
= 0

κ(∂2A
1 − ∂1A

2) = eu2

κ(∂2φ+ ∂tA
2) + e2μu4A1 = 2e(∂1S − eA1)u2

−κ(∂1φ+ ∂tA
1) + e2μu4A2 = 2e(∂2S − eA2)u2.

Now we suppose that u = u(x) and S = ωt. Moreover we consider the static case:
φ = φ(x) and Ai = Ai(x). Then we get⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−Δu+ ωu− μuΔu2 + eφu+ e2|A|2(1 + μu2)u = λ|u|p−1u,

div(Au2) = 0,
κ(∂2A

1 − ∂1A
2) = eu2,

−κ∂2φ = e2(2 + μu2)u2A1,

κ∂1φ = e2(2 + μu2)u2A2.

Finally in the Coulomb gauge divA = 0, it follows that div(Au2) = A · ∇u2 and
hence ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−Δu+ ωu− μuΔu2 + eφu+ e2|A|2(1 + μu2)u = λ|u|p−1u,

A · ∇u2 = 0,
κ(∂2A

1 − ∂1A
2) = eu2,

−κ∂2φ = e2(2 + μu2)u2A1,

κ∂1φ = e2(2 + μu2)u2A2.

(2.3)

Observe that the second equation in (2.3) implies that, up to the ‘trivial cases’,
the function u is radial if and only if A is a tangential vector field, i.e.

A =
e

κ
hu(x)t, where t = (x2/|x|2,−x1/|x|2).

Moreover, since the problem is invariant by translations, to avoid the related dif-
ficulties, we look for radial solutions u. Thus, from this choice, arguing as in [13,
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lemma 3.3], it follows that A has to be invariant for the group action:

TgA(x) = g−1 · A(g(x)), g ∈ O(2),

and this readily implies that hu has to be a radial function. So, whenever u is radial,
the magnetic potential A has to be necessarily written as

A1(x) =
e

κ

x2

|x|2hu(|x|), A2(x) = − e

κ

x1

|x|2hu(|x|).

Moreover, by the last two equations in system (2.3), one finds that

∇φ =
e2

κ

(
A2,−A1

)
(2 + μu2)u2 = − e3

κ2

x

|x|2hu(|x|)(2 + μu2)u2

= − e3

κ2
hu(|x|)(2 + μu2)u2n

where n = (x1/|x|2, x2/|x|2). Thus it follows that the electric potential φ is radial.
Assuming that lim|x|→+∞ φ(|x|) = 0, we have

φ(|x|) =
e3

κ2

∫ ∞

|x|

hu(s)
s

(
2 + μu2(s)

)
u2(s) ds.

Finally, using the third equation in system (2.3) and assuming hu(0) = 0, which is
necessary to have A smooth, we have

hu(|x|) =
∫ |x|

0

su2(s) ds.

In this way we have solved φ and A in terms of u and so, in order to solve the (2.3),
we need to study only the first equation of the system which, now, can be written
as

− Δu+ ωu− μuΔu2 +
e4

κ2

h2
u(|x|)
|x|2 (1 + μu2)u

+
e4

κ2

(∫ ∞

|x|

hu(s)
s

(
2 + μu2(s)

)
u2(s) ds

)
u = λ|u|p−1u in R

2.

Putting q := e4/κ2, we arrive at (1.1).

3. Variational settings and preliminaries

In this section, we formulate (1.1) as a variational problem and prepare some pre-
liminary results. Now we observe that if u ∈ X is a solution of (1.1), then it solves
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L(u) = 0 where

L(u) = divA(u,∇u) +B(x, u,∇u),

with

A(σ,p) = (1 + 2μσ2)p,

B(x, σ,p) = −(2μ|p|2 + ω + qV1(x)(1 + μu2) + qV2(x)
)
σ + λ|σ|p−1σ, (3.1)

and

V1(x) =

⎧⎨
⎩
h2

u(|x|)
|x|2 x 	= 0,

0 x = 0,
V2(x) =

∫ ∞

|x|

hu(s)
s

(
2 + μu2(s)

)
u2(s) ds.

From (3.1), we find that (1.1) is a quasilinear elliptic equation with principal part
in divergence form and the structure conditions in [20] are all fulfilled (see [20,
Chapter 4] or [31]).

First we establish that any weak solutions of (1.1) are classical ones. To this end,
we begin with the following lemma.

Lemma 3.1. Let us fix u ∈ X . We have:

(i) V1, V2 are nonnegative and bounded;

(ii) if we suppose further that u ∈ C(R2), then V1 and V2 belong to the class
C1(R2).

Proof. We argue as in [6, proposition 2.1, 2.2]. First by the definition, we see that
V1, V2 are nonnegative. Next by the Schwarz inequality, one finds that

hu(s) =
1
2π

∫
Bs(0)

u2(y) dy � 1
2π

|Bs(0)|1/2‖u‖2
4 � Cs‖u‖2

4, for s � 0. (3.2)

Thus by the definition and from (3.2), we get

V1(x) � C‖u‖4
4, for all x ∈ R

2.

Moreover, observing that, for all x ∈ R
2, 0 � V2(x) � V2(0), we need to estimate

only

V2(0) =
∫ 1

0

hu(s)
s

(
2 + μu2(s)

)
u2(s) ds+

∫ ∞

1

hu(s)
s

(
2 + μu2(s)

)
u2(s) ds

� C‖u‖2
4

[∫ 1

0

(2 + μu2(s))u2(s) ds+
∫ ∞

1

(2 + μu2(s))u2(s) ds
]
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� C‖u‖2
4

[(∫ 1

0

s−(1/2) ds
)2/3(∫ 1

0

(2 + μu2(s))3u6(s)sds
)1/3

+
∫ ∞

1

(2 + μu2(s))u2(s)sds
]

� C‖u‖2
4(‖u‖2

6 + ‖u‖4
12 + ‖u‖2

2 + ‖u‖4
4).

This completes the proof of (3.1).
To prove (3.1), we observe that V1, V2 ∈ C1(R2 \ {0}) if u ∈ C(R2). Moreover since
u ∈ C(R2), it follows that

hu(|x|)
|x|2 =

1
2π|x|2

∫
B|x|(0)

u2(y) dy → 1
2
u2(0) as |x| → 0.

This implies that hu(|x|) = O(|x|2) as |x| → 0. Thus one has V1(x) = O(|x|2) and,
for i = 1, 2,

∂V1

∂xi
(0) = 0,

and

∂V1

∂xi
(x) =

2xihu(|x|)
|x|4

(|x|2u2(x) − hu(|x|)) = O(|x|) as |x| → 0,

from which we conclude that V1 ∈ C1(R2). In a similar way, it follows that V2 ∈
C1(R2). �

Now we are ready to prove the following regularity result.

Proposition 3.2. Let u ∈ X be a weak solution of (1.1). Then u ∈ C2(R2) and
decays exponentially up to second derivatives.

Proof. The proof consists of two steps.

Step 1: We claim that u ∈ L∞(R2) and u(x) → 0, as |x| → ∞.
For this purpose, we perform the De Giorgi iteration as in [20, theorem 7.1], [22,
appendix 6]. Let y ∈ R

2, R > 0 and σ ∈ (0, 1) be arbitrarily given. Choose a cut-
off function ξ ∈ C∞

0 (R2) with ξ = 1 on BσR(y), ξ = 0 on Bc
R(y), 0 � ξ � 1 and

|∇ξ| � C
(1−σ)R . Finally we set ϕ = ξ2(u− k)+ with k � 0.

By a density argument, one can use ϕ as a test function in (1.5) to obtain∫
R2
ξ2(1 + 2μu2)|∇(u− k)+|2 + ξ2

(
2μ|∇u|2 + ω + qV1(x)(1 + μu2)

+ qV2(x)
)
u(u− k)+ dx

= −2
∫

R2
ξ(1 + 2μu2)(u− k)+∇u · ∇ξ dx+ λ

∫
R2
ξ2|u|p−1u(u− k)+ dx.
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Since V1, V2 � 0, (u− k)+ = 0 on {u � k} and 0 � (u− k)+ � u on {u > k}, one
has ∫

R2
ξ2
(
2μ|∇u|2 + ω + qV1(x)(1 + μu2) + qV2(x)

)
u(u− k)+ dx

� 2μ
∫
{u>k}

ξ2u(u− k)+|∇u|2 dx

� 2μ
∫
{u>k}

ξ2(u− k)2+|∇u|2 dx

= 2μ
∫

R2
ξ2(u− k)2+|∇u|2 dx.

On the other hand by ∇(u− k)+ = ∇u on the set {u > k}, the Hölder inequality
and the Young inequality, we also have

− 2
∫

R2
ξ(1 + 2μu2)(u− k)+∇u · ∇ξ dx

� 2
∫
{u>k}

ξ(1 + 2μu2)(u− k)+|∇u||∇ξ|dx

� 2

(∫
{u>k}

ξ2(1 + 2μu2)|∇u|2 dx

)1/2(∫
{u>k}

(1 + 2μu2)(u− k)2+|∇ξ|2 dx

)1/2

� 1
2

∫
{u>k}

ξ2(1 + 2μu2)|∇u|2dx+ 2
∫
{u>k}

(1 + 2μu2)(u− k)2+|∇ξ|2 dx

=
1
2

∫
R2
ξ2(1 + 2μu2)|∇(u− k)+|2dx+ 2

∫
{u>k}

(1 + 2μu2)(u− k)2+|∇ξ|2 dx.

Thus it follows that

1
2

∫
R2
ξ2(1 + 2μu2)|∇(u− k)+|2 dx+ 2μ

∫
R2
ξ2(u− k)2+|∇u|2 dx

� 2
∫
{u>k}

(1 + 2μu2)(u− k)2+|∇ξ|2 dx+ λ

∫
{u>k}

ξ2|u|p+1 dx.
(3.3)

Now we put v :=
√

1 + 2μu2(u− k)+ + k so that (1 + 2μu2)(u− k)2+ = (v − k)2+.
Then it follows that

u > k ⇔ v > k and u � v a.e. x ∈ R
2. (3.4)

Moreover by the Young inequality, one has

|∇(v − k)+|2 = (1 + 2μu2)|∇(u− k)+|2 + 4μu(u− k)+∇u · ∇(u− k)+

+
4μ2u2

1 + 2μu2
(u− k)2+|∇u|2

� C
(
(1 + 2μu2)|∇(u− k)+|2 + (u− k)2+|∇u|2

)
.
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Thus from (3.3) and (3.4), we get

∫
R2
ξ2|∇(v − k)+|2 dx � C

{∫
{v>k}

(v − k)2+|∇ξ|2 dx+
∫
{v>k}

ξ2|u|p+1 dx

}
.

(3.5)
Next by the Hölder inequality, one has

∫
{v>k}

ξ2|u|p+1 dx �
(∫

{v>k}
ξ2 dx

)1/2(∫
{v>k}

ξ2|u|2p+2 dx

)1/2

�
(∫

BR(y)

|u|2p+2 dx

)1/2

|A+
k,R|1/2,

where A+
k,R := {x ∈ BR(y) : v(x) > k}. From (3.5), we find that∫
BσR(y)

|∇(v − k)+|2 dx

� C

{
1

(1 − σ)2R2

∫
BR(y)

(v − k)2+ dx+ ‖u‖p+1
L2p+2(BR(y))|A+

k,R|1/2

}
,

for any σ ∈ (0, 1) and k � 0. This implies that v belongs to the De Giorgi class
DG+ and hence, by [11], we have

sup
x∈BσR(y)

v+(x) � C
(
‖v‖L2(BR(y)) + ‖u‖(p+1)/2

L2p+2(BR(y))

)
,

and so v+ ∈ L∞(R2). Since u � v, we deduce that u+ ∈ L∞(R2), too. Arguing sim-
ilarly, one can show that u− is bounded from above. This yields that u ∈ L∞(R2).
Finally since u ∈ H1

r (R2), by the radial lemma due to [30], u decays to zero at
infinity.

Step 2: We claim that u ∈ C2(R2) and decays exponentially up to second deriva-
tives.
By Step 1, we know that u ∈ H1(R2) ∩ L∞(R2). Although we only have V1,
V2 ∈ L∞(R2) at this stage, we find that u ∈ C1,α(R2) for some α ∈ (0, 1) by apply-
ing the regularity result due to [31]. Then by (3.1) of lemma 3.1 and the Schauder
estimate, we conclude that u ∈ C2,α(R2). Finally the exponential decay follows by
applying suitable comparison argument (see e.g. [27, theorem 4.1]). This completes
the proof. �

Arguing as in [6], standard computations show that

Lemma 3.3. The functional I in (1.6) is well-defined and continuous in X . More-
over, if the Gateaux derivative of I evaluated in u ∈ X is zero in every direction
ϕ ∈ C∞

0,r(R
2), then u is a weak solution of (1.1).

We conclude this section with the following
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Lemma 3.4. Any weak solution u of (1.1) satisfies the Nehari identity N(u) = 0
and the Pohozaev identity P (u) = 0, where

N(u) =
∫

R2

{
(1 + 4μu2)|∇u|2 + ωu2 − λ|u|p+1 + q

h2
u(|x|)
|x|2 (3 + 2μu2)u2

}
dx,

(3.6)

P (u) =
∫

R2

{
ωu2 − 2λ

p+ 1
|u|p+1 + q

h2
u(|x|)
|x|2 (2 + μu2)u2

}
dx. (3.7)

Proof. First by a density argument, one can use u ∈ X as a test function in (1.5).
Then we see that the identity N(u) = 0 holds.
Next let u ∈ X ∩ C2(R2) be a solution of (1.1). Then multiplying by ∇u · x and
integrating by parts on BR, arguing as in [6, proposition 2.3], we have

∫
BR

Δu(∇u · x) dx =
R

2

∫
∂BR

|∇u|2 dσ =: I,

∫
BR

uΔu2(∇u · x) dx =
1
2

∫
BR

Δu2(∇u2 · x) dx =
R

4

∫
∂BR

|∇u2|2 dσ =: II,

∫
BR

u(∇u · x) dx = −
∫

BR

u2 dx+
R

2

∫
∂BR

u2 dσ = −
∫

BR

u2 dx+ III,

∫
BR

|u|p−1u(∇u · x) dx = − 2
p+ 1

∫
BR

|u|p+1 dx+
R

p+ 1

∫
∂BR

|u|p+1 dσ

= − 2
p+ 1

∫
BR

|u|p+1 dx+ IV.

Since u ∈ X and so u2 ∈ H1(R2), one can take Rn → ∞ such that the terms I, II,
III, IV with Rn replacing R converge to 0 as n→ ∞. Moreover, for α = 2 or α = 4,
we have

4
α

∫
BRn

(∫ ∞

|x|

hu(s)
s

uα(s) ds

)
u(∇u · x) dx+

∫
BRn

h2
u(|x|)
|x|2 uα−1(∇u · x) dx

=
∫

BRn

h2
u(|x|)
|x|2 uα−1(∇u · x) dx+

4
α

∫
BRn

uα(x)
|x|2

(∫ |x|

0

su2(s) ds

)

×
(∫ |x|

0

s2u(s)u′(s) ds

)
dx

− 4
α

∫
BRn

uα(x)
|x|2

(∫ |x|

0

su2(s) ds

)(∫ |x|

0

s2u(s)u′(s) ds

)
dx

+
4
α

∫
BRn

(∫ ∞

|x|

hu(s)
s

uα(s) ds

)
u(∇u · x) dx
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=
1
α

d
dt

∣∣∣∣
t=1

∫
BRn

uα(tx)
|x|2

(∫ |x|

0

su2(ts) ds

)2

dx

− 4
α

∫
BRn

uα(x)
|x|2

(∫ |x|

0

su2(s) ds

)(∫ |x|

0

s2u(s)u′(s) ds

)
dx

+
4
α

∫
BRn

(∫ ∞

|x|

hu(s)
s

uα(s) ds

)
u(∇u · x) dx

= − 4
α

∫
BRn

uα(x)
|x|2

(∫ |x|

0

su2(s) ds

)2

dx+ on(1).

Thus from (1.1), one has

∫
BRn

{
ωu2 − 2λ

p+ 1
|u|p+1 + q

h2
u(|x|)
|x|2 (2 + μu2)u2

}
dx+ on(1) = 0,

from which we deduce that P (u) = 0. �

4. Proof of theorem 1.1

Throughout this section, we suppose that p > 5. In the following, for any u ∈ X ,
we denote

A(u) =
∫

R2
|∇u|2 dx, B(u) =

∫
R2
u2 dx, C(u) =

∫
R2
u2|∇u|2 dx,

D(u) =
∫

R2

u2(x)
|x|2

(∫ |x|

0

su2(s) ds

)2

dx,

E(u) =
∫

R2

u4(x)
|x|2

(∫ |x|

0

su2(s) ds

)2

dx, F (u) =
∫

R2
|u|p+1 dx.

First we recall the following properties of D(u).

Lemma 4.1 [6, lemma 3.2]. Suppose that a sequence {un} converges weakly to
a function u in H1

r (R2) as n→ +∞. Then for each ϕ ∈ H1
r (R2), {D(un)},

{D′(un)[ϕ]} and {D′(un)[un]} converge up to a subsequence to D(u), D′(u)[ϕ] and
D′(u)[u], respectively, as n→ +∞.

Next we show that analogous properties hold for E(u).

Lemma 4.2. Suppose that a sequence {un} converges weakly to a function u
in H1

r (R2) as n→ +∞. Then for each ϕ ∈ H1
r (R2), {E(un)}, {E′(un)[ϕ]} and

{E′(un)[un]} converge up to a subsequence to E(u), E′(u)[ϕ] and E′(u)[u],
respectively, as n→ +∞.

https://doi.org/10.1017/prm.2019.9 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.9


1928 P. d’Avenia, A. Pomponio and T. Watanabe

Proof. First we prove that E(un) → E(u) as n→ +∞. Now one has

(2π)2|E(un) − E(u)| �
∫

R2
|u4

n(x) − u4(x)|
(

1
|x|
∫

B|x|
u2

n(y) dy

)2

dx

+
∫

R2
u4(x)

∣∣∣∣∣∣
(

1
|x|
∫

B|x|
u2

n(y) dy

)2

−
(

1
|x|
∫

B|x|
u2(y) dy

)2
∣∣∣∣∣∣ dx

� ‖u4
n − u4‖2

∥∥∥∥∥ 1
| · |
∫

B|·|
u2

n(y) dy

∥∥∥∥∥
2

4

+ ‖u‖4
8

∥∥∥∥∥∥
(

1
| · |
∫

B|·|
u2

n(y) dy

)2

−
(

1
| · |
∫

B|·|
u2(y) dy

)2
∥∥∥∥∥∥

2

.

Since H1
r (R2) is compactly embedded into Lq(R2) for all q > 2, it follows that

u4
n → u4 in L2(R2). Moreover as shown in [6, lemma 3.2], we also have

1
|x|
∫

B|x|
u2

n(y) dy → 1
|x|
∫

B|x|
u2(y) dy in Lq(R2) for q > 2, as n→ ∞,

from which we conclude that E(un) → E(u), as n→ +∞. Analogously one can
show that E′(un)[ϕ] → E′(u)[ϕ] for any ϕ ∈ H1

r (R2) and E′(un)[un] → E′(u)[u],
as n→ ∞. �

For any u ∈ X and α > 0, we hereafter consider the map

t ∈ R
+ �−→ ut ∈ X , ut(x) = tαu(tx).

By direct calculations we have D(ut) = t6α−4D(u) and E(ut) = t8α−4E(u). Thus
we get

I(ut) =
t2α

2
A(u) +

t2α−2

2
ωB(u) + t4αμC(u) +

t6α−4

2
qD(u) +

t8α−4

4
qμE(u)

− t(p+1)α−2

p+ 1
λF (u).

Let

α ∈
{

(1,+∞) if p � 7,(
1, 2

7−p

)
if 5 < p < 7.

(4.1)

We observe that, fixed u ∈ X \ {0}, using (4.1), the dominant term near t ∼ 0 of
I(ut) is t2α−2, which implies that I(ut) is strictly positive for small t > 0 and
any u ∈ X \ {0}. Furthermore the dominant term near t ∼ +∞ among all positive
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terms of I(ut) is t8α−4. Thus under the assumption (4.1), we see that 8α− 4 <
(p+ 1)α− 2 and hence I(ut) → −∞ as t→ +∞ for any u ∈ X \ {0}. These facts
imply that the map

γu := t ∈ (0,+∞) �−→ I(ut)

has a maximum point at a positive level. The next lemma shows that this maximum
point is the unique critical point.

Lemma 4.3. Let u ∈ X \ {0}. Then the map γu attains its maximum at exactly one
point t(u) > 0. Moreover γu is positive and increasing on (0, t(u)), and decreasing
for t > t(u).

Proof. Let u ∈ X \ {0}. A simple computation yields that

γ′u(t) = αA(u)t2α−1 + (α− 1)ωB(u)t2α−3 + 4αμC(u)t4α−1 + (3α− 2)qD(u)t6α−5

+ (2α− 1)qμE(u)t8α−5 − (p+ 1)α− 2
p+ 1

λF (u)t(p+1)α−3

= t8α−5

(
αA(u)
t6α−4

+
(α− 1)ωB(u)

t6α−2
+

4αμC(u)
t4α−4

+
(3α− 2)qD(u)

t2α

+(2α− 1)qμE(u) − (p+ 1)α− 2
p+ 1

λF (u)t(p−7)α+2

)

=: t8α−5g(t).

From (4.1), it is clear that γ′u(t) > 0 for small t > 0 and γ′u(t) < 0 for large t > 0.
Then, there exists t0 > 0 such that γ′u(t0) = 0. Moreover, from the choice of α, the
function g(t) is strictly decreasing for all t > 0. Thus since {t > 0 : γ′u(t) = 0} =
{t > 0 : g(t) = 0}, the critical point of γu(t) is unique. �

Let us define

Γ(u) : = γ′u(1) = αA(u) + (α− 1)ωB(u) + 4αμC(u) + (3α− 2)qD(u)

+ (2α− 1)qμE(u) − (p+ 1)α− 2
p+ 1

λF (u)

and

M := {u ∈ X \ {0} : Γ(u) = 0}.
Remark 4.4. From (3.6) and (3.7), we readily see that Γ(u) = αN(u) − P (u) and
hence by lemma 3.4, any weak solution of (1.1) belongs to M.

To complete the proof of theorem 1.1, we prepare several lemmas. The first one
is a direct consequence of lemma 4.3 since

Γ(ut) = tγ′u(t). (4.2)

Lemma 4.5. For any u ∈ X \ {0} there exists a unique t(u) > 0 such that
ut(u) ∈ M.
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Next we establish, in the next lemmas, that the functional I is strictly positive
on M. Indeed, as a first step we have

Lemma 4.6. There exists c > 0 such that for any u ∈ M

I(u) � c

∫
R2

[|∇u|2 + u2 + u2|∇u|2] dx.

Proof. Let u ∈ M. Then we have

I(u) = I(u) − 1
(p+ 1)α− 2

Γ(u)

=
(

1
2
− α

(p+ 1)α− 2

)
A(u) +

(
1
2
− α− 1

(p+ 1)α− 2

)
ωB(u)

+
(

1 − 4α
(p+ 1)α− 2

)
μC(u)

+
(

1
2
− 3α− 2

(p+ 1)α− 2

)
qD(u) +

(
1
4
− 2α− 1

(p+ 1)α− 2

)
qμE(u)

=
(p− 1)α− 2

2
(
(p+ 1)α− 2

)A(u) +
(p− 1)α

2
(
(p+ 1)α− 2

)ωB(u) +
(p− 3)α− 2
(p+ 1)α− 2

μC(u)

+
(p− 5)α+ 2

2
(
(p+ 1)α− 2

)qD(u) +
(p− 7)α+ 2

4
(
(p+ 1)α− 2

)qμE(u).

By (4.1), all coefficients are positive and we conclude. �

Lemma 4.7. There exist c1, c2 > 0 such that for any u ∈ M

‖u‖p+1
p+1 � c1

∫
R2

[|∇u|2 + u2 + u2|∇u|2] dx � c2.

Proof. Since D(u) and E(u) are nonnegative it follows that

(α− 1)
∫

R2
[|∇u|2 + ωu2 + μu2|∇u|2] dx− (p+ 1)α− 2

p+ 1
λ

∫
R2

|u|p+1 dx � Γ(u) = 0,

for all u ∈ M, and we have the first inequality.
Moreover, by the Sobolev inequality, one gets∫

R2
[|∇u|2 + u2 + u2|∇u|2] dx � C1‖u‖p+1

p+1 � C2‖u‖p+1
H1

� C2

(∫
R2

[|∇u|2 + u2 + u2|∇u|2] dx
)(p+1)/2

.

This completes the proof. �

Combining lemmas 4.6 and 4.7, we have
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Lemma 4.8. There exists c > 0 such that I(u) � c, for any u ∈ M.

Let us define

σ := inf
u∈M

I(u). (4.3)

Then by lemma 4.8, we infer that σ > 0. Moreover by lemmas 4.3, 4.5 and from
(4.3), it follows that

σ = inf
u∈X\{0}

max
t>0

I(ut). (4.4)

Finally we establish the following result.

Proposition 4.9. Let u ∈ X be a minimizer of I(u) under the constraint M. Then
u is a radial ground state solution of (1.1). Moreover, any radial ground state
solution of (1.1) is positive.

Proof. We argue as in [22, lemma 2.5] or [28, theorem 2.2].
Let u ∈ M be a minimizer of the functional I|M. Then from (4.4), one has

I(u) = inf
v∈X\{0}

max
t>0

I(vt) = inf
v∈M

I(v) = σ. (4.5)

Suppose by contradiction that u is not a weak solution of (1.1). Then one can find
ϕ ∈ C∞

0,r(R
2) such that

I ′(u)[ϕ] < −1.

We choose small ε > 0 so that

I ′(ut + τϕ)[ϕ] � −1
2

for |t− 1| + |τ | � ε. (4.6)

Finally let ξ ∈ C∞
0 (R) be a cut-off function satisfying 0 � ξ � 1, ξ(t) = 1 for

|t− 1| � ε/2 and ξ(t) = 0 for |t− 1| � ε.
For t � 0, we construct a path η : R+ → X defined by

η(t) =

{
ut if |t− 1| � ε

ut + εξ(t)ϕ if |t− 1| < ε.

Then η is continuous on the metric space (X , dX ). Moreover, choosing ε smaller if
necessary, it follows that dX (η(t), 0) > 0, for |t− 1| < ε. Next we claim that

sup
t�0

I(η(t)) < σ. (4.7)

If |t− 1| � ε, one has

I(η(t)) = I(ut) < I(u) = σ,

because the function t �→ I(ut) attains its maximum at t = 1 for u ∈ M.
If |t− 1| < ε, we get

I(ut + εξ(t)ϕ) = I(ut) +
∫ ε

0

I ′
(
ut + τξ(t)ϕ

)
[ξ(t)ϕ] dτ.
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Then from (4.6), we obtain

I(η(t)) � I(ut) − 1
2
εξ(t) < σ,

yielding that (4.7) holds.
Now by (4.2) and arguing as in lemma 4.3, it follows that Γ(η(1 − ε)) > 0 and
Γ(η(1 + ε)) < 0. By the continuity of the map t �→ Γ(η(t)), there exists t0 ∈ (1 −
ε, 1 + ε) such that Γ(η(t0)) = 0. This implies that η(t0) = ut0 + εξ(t0)ϕ ∈ M and
I(η(t0)) < σ by (4.7). This contradicts (4.5), and hence u is a weak solution of
(1.1). By remark 4.4, since any weak solution of (1.1) belongs to M, we conclude
that u is a radial ground state solution.
Finally, if u is a minimizer of I|M, then one finds that |u| is also a minimizer. Thus
we may assume that u � 0. Then, by proposition 3.2, we know that u ∈ C2(R2)
and hence we can apply the Harnack inequality [32] to conclude that u > 0. �

Proof of theorem 1.1. Let {un} be a minimizing sequence for I|M, namely {un} ⊂
M and I(un) → σ as n→ +∞. By lemma 4.6, the sequences {un} and {u2

n} are
bounded in H1

r (R2). Therefore, there exists ū ∈ X such that, by the compactness
result due to [30], up to a subsequence

un ⇀ ū weakly in H1(R2),

u2
n ⇀ ū2 weakly in H1(R2),

un → ū in Lq(R2) for any q > 2.

Then, by lemma 4.7, we infer that ū 	= 0.
Next, by lemma 4.5, let us consider t̄ = t(ū) > 0 such that ūt̄ ∈ M. Since [un]t̄ ⇀ ūt̄

and ([un]t̄)2 ⇀ ū2
t̄ weakly in H1(R2) as n→ +∞, by lemmas 4.1 and 4.2, we have

σ � I(ūt̄) � lim inf
n→∞ I([un]t̄).

On the other hand, since {un} ⊂ M, the function t �→ I([un]t) reaches its maximum
at t = 1 for all n ∈ N. This implies that

lim inf
n→∞ I([un]t̄) � lim inf

n→∞ I(un) = σ.

Therefore, ūt̄ is minimizer of I on M. Finally by proposition 4.9, we conclude that,
actually, ūt̄ is a radial ground state solution of (1.1). �

5. Proof of theorem 1.2

In this section, we prove the nonexistence result for (1.1) when 1 < p < 5. First we
state the following inequality which was obtained in [6].

Proposition 5.1 (6, proposition 2.4). For any u ∈ H1
r (R2), the following inequality

holds: ∫
R2

|u|4 dx � 2‖∇u‖2

(∫
R2

h2
u(|x|)
|x|2 u2 dx

)1/2

. (5.1)
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Next we establish the following inequality, which cannot be obtained by (5.1)
directly.

Proposition 5.2. For any u ∈ X , the following inequality holds:∫
R2

|u|6 dx � 4
(∫

R2
u2|∇u|2 dx

)1/2(∫
R2

h2
u(|x|)
|x|2 u4 dx

)1/2

. (5.2)

Proof. The proof is the same as that of proposition 5.1. By the density, we may
assume that u ∈ C∞

0 (R2). Then by the Fubini theorem and the Schwarz inequality,
one has ∫

R2
|u|6 dx = 2π

∫ ∞

0

ru2(r)
(∫ ∞

r

−(u4(s)
)′ ds) dr

� 8π
∫ ∞

0

∫ ∞

0

ru2(r)|u(s)|3|u′(s)|χ{s>r} dsdr

= 8π
∫ ∞

0

|u(s)|3|u′(s)|
(∫ s

0

ru2(r) dr
)

ds

= 4
∫

R2

|u|3|∇u|
|x| hu(|x|) dx

� 4
(∫

R2
u2|∇u|2 dx

)1/2(∫
R2

h2
u(|x|)
|x|2 u4 dx

)1/2

.

�

Proof of theorem 1.2. Suppose that 1 < p < 5 and let u ∈ X be a solution of (1.1).
We distinguish three cases: 0 < q < 1/3, 1/3 � q < 2 and q � 2.
First we consider the case 0 < q < 1/3. From (5.1), (5.2) and by the Young
inequality, it follows that∫

R2
|u|4 dx � ‖∇u‖2

2 +
∫

R2

h2
u(|x|)
|x|2 u2 dx,

∫
R2

|u|6 dx � 2
∫

R2
u2|∇u|2 dx+ 2

∫
R2

h2
u(|x|)
|x|2 u4 dx. (5.3)

Then since N(u) = 0, we obtain

0 � (1 − 3q)‖∇u‖2
2 + 2μ(2 − q)

∫
R2
u2|∇u|2 dx

+
∫

R2

(
ωu2 + 3qu4 + qμu6 − λ|u|p+1

)
dx

�
∫

R2

(
ωu2 + 3qu4 + qμu6 − λ|u|p+1

)
dx.

In the case 1
3 � q < 2, we slightly modify the use of (5.1) to obtain∫

R2
|u|4 dx � 1

3q
‖∇u‖2

2 + 3q
∫

R2

h2
u(|x|)
|x|2 u2 dx.
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From this estimate, the Nehari identity and (5.3), one gets

0 �
(

1 − 1
3q

)
‖∇u‖2

2 + 2μ(2 − q)
∫

R2
u2|∇u|2 dx

+
∫

R2

(
ωu2 + u4 + qμu6 − λ|u|p+1

)
dx.

Finally in the case q � 2, we apply the following estimate which is derived from
(5.2): ∫

R2
|u|6 dx � 4

q

∫
R2
u2|∇u|2 dx+ q

∫
R2

h2
u(|x|)
|x|2 u4 dx.

Then we have

0 �
(

1 − 1
3q

)
‖∇u‖2

2 + 4μ
(

1 − 2
q

)∫
R2
u2|∇u|2 dx

+
∫

R2

(
ωu2 + u4 + 2μu6 − λ|u|p+1

)
dx.

Now we define g : R → R where

g(t) :=

⎧⎪⎨
⎪⎩
ωt2 + 3qt4 + qμt6 − λ|t|p+1 if 0 < q < 1

3 ,

ωt2 + t4 + qμt6 − λ|t|p+1 if 1
3 � q < 2,

ωt2 + t4 + 2μt6 − λ|t|p+1 if q � 2.

Then one has ∫
R2
g(u) dx � 0. (5.4)

We observe that for given q, μ and λ > 0, there exists ω̄ > 0 such that g(t) > 0 for
ω � ω̄ and t 	= 0. Indeed for 0 < q < 1/3, one has

g′(t) = t
(
2ω + 12qt2 + 6qμt4 − (p+ 1)λ|t|p−1

)
.

Since 1 < p < 5, we can apply the Young inequality to

(p+ 1)λ|t|p−1 =
(

24qμ|t|4
p− 1

)(p−1)/4

· (p+ 1)λ
(
p− 1
24qμ

)(p−1)/4

and obtain

(p+ 1)λ|t|p−1 � 6qμt4 +
5 − p

4
((p+ 1)λ)4/(5−p)

(
p− 1
24qμ

)(p−1)/(5−p)

.

Thus it follows that

g′(t) � t

(
2ω − 5 − p

4
((p+ 1)λ)4/(5−p)

(
p− 1
24qμ

)(p−1)/(5−p)

+ 12qt2
)

for t > 0.

Taking ω larger, we have g′(t) > 0 for t > 0. Other cases can be treated in the same
way. Similarly one has g′(t) < 0 for t < 0 and hence g(t) > 0 for t 	= 0, as claimed.
This and (5.4) imply that u ≡ 0 and hence the proof is complete. �
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Remark 5.3. It is easy to check that ω̄, defined in theorem 1.2, increases as q
decreases. In other words, if we fix ω, we have to take q smaller in order to obtain
nontrivial solutions of (1.1). This is exactly the situation studied in [10] for the
case μ = 0.
Analogously ω̄ increases as μ decreases. In particular, when 1 < p < 3, we notice
that ω̄ can be chosen independent of μ and this is consistent with the result obtained
in [25]. On the other hand, if 3 � p < 5, we have to choose larger ω̄ as μ becomes
smaller. We expect, therefore, that, for fixed ω and 3 � p < 5, we are able to find
a nontrivial solution of (1.1) provided that μ is sufficiently large.
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