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SINGULAR VECTOR DISTRIBUTION
OF SAMPLE COVARIANCE MATRICES

XIUCAI DING,∗ University of Toronto

Abstract

We consider a class of sample covariance matrices of the form Q = TXX∗T∗, where
X = (xij) is an M × N rectangular matrix consisting of independent and identically
distributed entries, and T is a deterministic matrix such that T∗T is diagonal. Assuming
that M is comparable to N, we prove that the distribution of the components of the right
singular vectors close to the edge singular values agrees with that of Gaussian ensembles
provided the first two moments of xij coincide with the Gaussian random variables. For
the right singular vectors associated with the bulk singular values, the same conclusion
holds if the first four moments of xij match those of the Gaussian random variables.
Similar results hold for the left singular vectors if we further assume that T is diagonal.
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1. Introduction

In the analysis of multivariate data, a large collection of statistical methods, including
principal component analysis, regression analysis, and clustering analysis, require the knowl-
edge of covariance matrices [11]. The advance of data acquisition and storage has led to
datasets for which the sample size N and the number of variables M are both large. This high
dimensionality cannot be handled using the classical statistical theory.

For applications involving large-dimensional covariance matrices, it is important to under-
stand the local behavior of the the singular values and vectors. Assuming that M is comparable
to N, the spectral analysis of the singular values has attracted considerable interest since the
seminal work of Marcenko and Pastur [30]. Since then, numerous researchers have contributed
to weakening the conditions on matrix entries as well as extending the class of matrices for
which the empirical spectral distributions (ESDs) have nonrandom limits. For a detailed review,
we refer the reader to the monograph [2]. Besides the ESDs of the singular values, the limiting
distributions of the extreme singular values were analysed in a collection of celebrated papers.
The results were first proved for the Wishart matrix (i.e. sample covariance matrices obtained
from a data matrix consisting of independent and identically distributed (i.i.d.) centered real
or complex Gaussian entries) in [23] and [38]; they were later proved for matrices with entries
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Singular vector distribution 237

satisfying arbitrary subexponential distributions in [5], [32], and [33]. More recently, the
weakest moment condition was given in [16].

Less is known however for the singular vectors. Therefore, recent research on the limiting
behavior of singular vectors has attracted considerable interest among mathematicians and
statisticians. Silverstein first derived limit theorems for the eigenvectors of covariance matrices
[34]; later, the results were proved for a general class of covariance matrices [3]. The
delocalization property for the eigenvectors were shown in [8] and [33]. The universal
properties of the eigenvectors of covariance matrices were analysed in [8], [9], [27], and [37].
For a recent survey of the results, we refer the reader to [31]. In this paper we prove the
universality for the distribution of the singular vectors for a general class of covariance matrices
of the form Q = TXX∗T∗, where T is a deterministic matrix such that T∗T is diagonal.

The covariance matrix Q contains a general class of covariance structures and random
matrix models [8, Section 1.2]. The singular values analysis of Q has attracted considerable
attention; see, for example, the limiting spectral distribution and Stieltjes transform derived in
[35], the Tracy–Widom asymptotics of the extreme eigenvalues proved in [5], [17], [26], and
[28], and the anisotropic local law proposed in [26]. It is notable that, in general, Q contains the
spiked covariance matrices [4], [6], [7], [8], [23]. In such models, the ESD of Q still satisfies
the Marcenko–Pastur (MP) law and some of the eigenvalues of Q will detach from the bulk
and become outliers. However, in this paper, we adapt the regularity Assumption 1.2 to rule
out the outliers for the purpose of universality discussion. Actually, it was shown in [12] and
[25] that the distributions of the outliers are not universal.

In this paper we study the singular vector distribution of Q. We prove the universality for the
components of the edge singular vectors by assuming the matching of the first two moments
of the matrix entries. We also prove similar results in the bulk, under the stronger assumption
that the first four moments of the two ensembles match. Similar results have been proved for
Wigner matrices in [24].

1.1. Sample covariance matrices with a general class of populations

We first introduce some notation. Throughout the paper, we will use

r = lim
N→∞ rN = lim

N→∞
N

M
. (1.1)

Let X = (xij) be an M × N data matrix with centered entries xij = N−1/2qij, 1 ≤ i ≤ M and
1 ≤ j ≤ N, where qij are i.i.d. random variables with unit variance and for all p ∈N, there exists
a constant Cp such that q11 satisfies the condition

E|q11|p ≤ Cp. (1.2)

We consider the sample covariance matrix Q = TXX∗T∗, where T is a deterministic matrix
such that T∗T is a positive diagonal matrix. Using the QR factorization [22, Theorem 5.2.1],
we find that T = U�1/2, where U is an orthogonal matrix and � is a positive diagonal matrix.
Define Y = �1/2X and the singular value decomposition of Y as Y =∑N∧M

k=1
√

λkξkζ
∗
k , where

λk, k = 1, 2, . . . , N ∧ M, are the nontrivial eigenvalues of Q, and {ξk}M
k=1 and {ζk}N

k=1 are
orthonormal bases of RM and R

N, respectively. First, we observe that

X∗T∗TX = Y∗Y = Z�NZ∗,

where the columns of Z are ζ1, . . . , ζN and �N is a diagonal matrix with entries λ1, . . . , λN .
As a consequence, U will not influence the right singular vectors of Y . For the left singular
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238 XIUCAI DING

vectors, we need to further assume that T is diagonal. Hence, we can make the following
assumption on T:

T ≡ �1/2 = diag
{
σ

1/2
1 , . . . , σ

1/2
M

}
, with σ1 ≥ σ2 ≥ . . . ≥ σM > 0. (1.3)

We denote the empirical spectral distribution of � by

π := 1

M

M∑
i=1

δσi . (1.4)

Suppose that there exists some small positive constant τ such that

τ < σM ≤ σ1 ≤ τ−1, τ ≤ r ≤ τ−1, π ([0, τ ]) ≤ 1 − τ . (1.5)

For definiteness, in this paper we focus on the real case, i.e. all the entries xij are real.
However, it is clear that our results and proofs can be applied to the complex case after minor
modifications if we assume in addition that Re xij and Im xij are independent centered random
variables with the same variance. To avoid repetition, we summarize the basic assumptions for
future reference.

Assumption 1.1. We assume that X is an M × N matrix with centered i.i.d. entries satis-
fying (1.1) and (1.2). We also assume that T is a deterministic M × M matrix satisfying
(1.3) and (1.5).

From now on, we let Y = �1/2X and its singular value decomposition Y =∑N∧M
k=1

√
λkξkζ

∗
k ,

where λ1 ≥ λ2 ≥ . . . ≥ λM∧N .

1.2. Deformed Marcenko–Pastur law

In this subsection we discuss the empirical spectral distribution of X∗T∗TX, where we
basically follow the discussion of [26, Section 2.2]. It is well known that if π is a compactly
supported probability measure on R, letting rN > 0, then, for any z ∈C+, there is a unique
m ≡ mN(z) ∈C+ satisfying

1

m
= −z + 1

rN

∫
x

1 + mx
π (dx). (1.6)

We refer the reader to [26, Lemma 2.2] and [36, Section 5] for more details. In this paper
we define the deterministic function m ≡ m(z) as the unique solution of (1.6) with π defined
in (1.4). We define by ρ the probability measure associated with m (i.e. m is the Stieltjes
transform of ρ) and call it the asymptotic density of X∗T∗TX. Our assumption (1.5) implies
that the spectrum of � cannot be concentrated at 0; thus, it ensures π is a compactly supported
probability measure. Therefore, m and ρ are well defined.

Let z ∈C+. Then m ≡ m(z) can be characterized as the unique solution of the equation

z = f (m), Im m ≥ 0, where f (x) := −1

x
+ 1

rN

M∑
i=1

π ({σi})
x + σ−1

i

. (1.7)

The behavior of ρ can be entirely understood by the analysis of f . We summarize the
elementary properties of ρ in the following lemma. It can be found in [26, Lemmas 2.4, 2.5,
and 2.6].
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Lemma 1.1. Define R=R∪ {∞}. Then f defined in (1.7) is smooth on the M + 1 open
intervals of R defined through

I1 := (−σ−1
1 , 0

)
, Ii := (−σ−1

i , −σ−1
i−1

)
, i = 2, . . . , M, I0 := R⋃M

i=1 Īi
.

We also introduce a multiset C ⊂R containing the critical points of f , using the conventions
that a nondegenerate critical point is counted once and a degenerate critical point will be
counted twice. In the rN = 1 case, ∞ is a nondegenerate critical point. With the above notation,
the following statememts hold.

• We have |C ∩ I0| = |C ∩ I1| = 1 and |C ∩ Ii| ∈ {0, 2} for i = 2, . . . , M. Therefore, |C| =
2p, where, for convenience, we denote by x1 ≥ x2 ≥ . . . ≥ x2p−1 the 2p − 1 critical points
in I1 ∪ . . . ∪ IM and by x2p the unique critical point in I0.

• Defining ak := f (xk) we have a1 ≥ . . . ≥ a2p. Moreover, we have xk = m(ak) by assuming
that m(0) := ∞ for rN = 1. Furthermore, for k = 1, . . . , 2p, there exists a constant C
such that 0 ≤ ak ≤ C.

• We have supp ρ ∩ (0, ∞) = (
⋃p

k=1 [a2k, a2k−1]) ∩ (0, ∞).

With the above definitions and properties, we now introduce the key regularity assumption
on �.

Assumption 1.2. Fix τ > 0. We say that

1. the edges ak, k = 1, . . . , 2p, are regular if

ak ≥ τ, min
l �=k

|ak − al| ≥ τ, min
i

|xk + σ−1
i | ≥ τ ; (1.8)

2. the bulk components k = 1, . . . , p are regular if, for any fixed τ ′ > 0, there exists a
constant c ≡ cτ,τ ′ such that the density of ρ in [a2k + τ ′, a2k−1 − τ ′] is bounded from
below by c.

Remark 1.1. The second condition in (1.8) states that the gap in the spectrum of ρ adjacent
to ak can be well separated when N is sufficiently large. The third condition ensures a square
root behavior of ρ in a small neighborhood of ak. To be specific, consider the right edge of the
kth bulk component; by Equation (A.12) of [26], there exists some small constant c > 0 such
that ρ has the following square root behavior:

ρ(x) ∼√
a2k−1 − x, x ∈ [a2k−1 − c, a2k−1]. (1.9)

As a consequence, it will rule out the outliers. The bulk regularity imposes a lower bound on
the density of eigenvalues away from the edges. For examples of matrices � verifying the
regularity conditions, we refer the reader to [26, Examples 2.8 and 2.9].

1.3. Main results

In this subsection we provide the main results of this paper. We first introduce some
notation. Recall that the nontrivial classical eigenvalue locations γ1 ≥ γ2 ≥ . . . ≥ γM∧N of
Q are defined as

∫∞
γi

dρ = (i − 1
2 )/N. By Lemma 1.1, there are p bulk components in the

spectrum of ρ. For k = 1, . . . , p, we define the classical number of eigenvalues of the kth bulk
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component through Nk := N
∫ a2k−1

a2k
dρ. When p ≥ 1, we relabel λi and γi separately for each

bulk component k = 1, . . . , p by introducing

λk,i := λi+∑l<k Nl , γk,i := γi+∑l<k Nl ∈ (a2k, a2k−1). (1.10)

Equivalently, we can characterize γk,i through∫ a2k−1

γk,i

dρ = i − 1/2

N
.

In this paper we will use the following assumption for the technical application of the
anisotropic local law.

Assumption 1.3. For k = 1, 2, . . . , p and i = 1, 2, . . . , Nk, γk,i ≥ τ for some constant τ > 0.

We define the index sets I1 := {1, . . . , M} and I2 := {M + 1, . . . , M + N}, with I :=
I1 ∪ I2. We will consistently use Latin letters i, j ∈ I1, Greek letters μ, ν ∈ I2, and s, t ∈ I.
Then we label the indices of the matrix according to X = (Xiμ : i ∈ I1, μ ∈ I2). We similarly
label the entries of ξk ∈R

I1 and ζk ∈R
I2 . In the kth, k = 1, 2, . . . , p, bulk component, we

rewrite the index of λα′ as

α′ := l +
∑
t<k

Nt when α′ −
∑
t<k

Nt <
∑
t≤k

Nt − α′, (1.11)

α′ := −l + 1 +
∑
t≤k

Nt when α′ −
∑
t<k

Nt >
∑
t≤k

Nt − α′. (1.12)

In this paper we say that l is associated with α′. Note that α′ is the index of λk,l before the
relabeling of (1.10), and the two cases correspond to the right and left edges, respectively.
Our main result on the distribution of the components of the singular vectors near the edge
is the following theorem. For any positive integers m, k, some function θ : Rm →R, and x =
(x1, . . . , xm) ∈R

m, we define

∂ (k)θ (x) = ∂kθ (x)

∂xk1
1 ∂xk2

2 . . . ∂xkm
m

,

m∑
i=1

ki = k, k1, k2, . . . , km ≥ 0,

and ||x||2 to be its l2 norm. Define QG := �1/2XGX∗
G�1/2, where XG is GOE (i.e. a random

matrix with entries being i.i.d. real standard Gaussian random variables) and � satisfies (1.3)
and (1.5).

Theorem 1.1. Suppose that QV = �1/2XVX∗
V�1/2 satisfies Assumption 1.1. Let EG and E

V

denote the expectations with respect to XG and XV . Consider the kth, k = 1, 2, . . . , p, bulk
component, with l defined in (1.11) or (1.12). Under Assumption 1.2 and 1.3 for any choices
of indices i, j ∈ I1 and μ, ν ∈ I2, there exists a δ ∈ (0, 1) such that, when l ≤ Nδ

k , we have

lim
N→∞ [EV −E

G]θ (Nξα′ (i)ξα′( j), Nζα′ (μ)ζα′ (ν)) = 0,

where θ is a smooth function in R
2 that satisfies

|∂ (k)θ (x)| ≤ C(1 + ||x||2)C, k = 1, 2, 3, with some constant C > 0.
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Theorem 1.2. Suppose that QV = �1/2XVX∗
V�1/2 satisfies Assumption 1.1. Consider the

k1th, . . . , knth, k1, . . . , kn ∈ {1, 2, . . . , p}, n ≤ p, bulk components for lki defined in (1.11) or
(1.12) associated with the kith, i = 1, 2, . . . , n, bulk component. Under Assumptions 1.2 and
1.3 for any choices of indices i, j ∈ I1 and μ, ν ∈ I2, there exists a δ ∈ (0, 1) such that, when
lki ≤ Nδ

ki
, where lki is associated with α′

ki
, i = 1, 2, . . . , n, we have

lim
N→∞ [EV−E

G]θ
(
Nξα′

k1
(i)ξα′

k1
( j), Nζα′

k1
(μ)ζα′

k1
(ν), . . . , Nξα′

kn
(i)ξα′

kn
( j), Nζα′

kn
(μ)ζα′

kn
(ν)
)

= 0,

where θ is a smooth function in R
2n that satisfies

|∂ (k)θ (x)| ≤ C(1 + ||x||2)C, k = 1, 2, 3, with some constant C > 0.

Remark 1.2. The results in Theorems 1.1 and 1.2 can be easily extended to a general
form containing more entries of the singular vectors using a general form of the Green
function comparison argument. For example, to extend Theorem 1.1, we consider the kth bulk
component and choose any positive integer s. Under Assumptions 1.2 and 1.3 for any choices
of indices i1, j1, . . . , is, js ∈ I1 and μ1, ν1, . . . , μs, νs ∈ I2 for the corresponding li, i =
1, 2, . . . , s, defined in (1.11) or (1.12), there exists some 0 < δ < 1 with 0 < max1≤i≤s{li} ≤
Nδ

k , such that

lim
N→∞

[
E

V−E
G]θ (Nξα′

1
(i1)ξα′

1
( j1), Nζα′

1
(μ1)ζα′

1
(ν1), . . . , Nξα′

s
(is)ξα′

s
( js), Nζα′

s
(μs)ζα′

s
(νs))

= 0, (1.13)

where θ ∈R
2s is a smooth function satisfying |∂ (k)θ (x)| ≤ C(1 + ||x||2)C, k = 1, 2, 3, with

some constant C > 0. Similarly, we can extend Theorem 1.2 to contain more entries of singular
vectors.

Recall (1.10), and define �k := (| f ′′(xk)|/2)1/3, k = 1, 2, . . . , 2p. Then, for any positive
integer h, we define

q2k−1,h := N2/3

�2k−1
(λk,h − a2k−1), q2k,h := −N2/3

�2k
(λk,Nk−h+1 − a2k).

Consider a smooth function θ ∈R whose third derivative θ (3) satisfies |θ (3)(x)| ≤ C(1 + |x|)C

for some constant C > 0. Then, by [26, Theorem 3.18], we have

lim
N→∞ [EV −E

G]θ (qk,h) = 0. (1.14)

Together with Theorem 1.1, we have the following corollary, which is an analogy of [24,
Theorem 1.6]. Let t = 2k − 1 if α′ is as given in (1.11) and 2k if α′ is as given in (1.12).

Corollary 1.1. Under the assumptions of Theorem 1.1, for some positive integer h, we have

lim
N→∞ [EV −E

G]θ
(
qt,h, Nξα′ (i)ξα′( j), Nζα′ (μ)ζα′ (ν)

)= 0,

where θ ∈R
3 satisfies

|∂ (k)θ (x)| ≤ C(1 + ||x||2)C, k = 1, 2, 3, with some constant C > 0. (1.15)
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Corollary 1.1 can be extended to a general form for several bulk components. Let ti =
2ki − 1 if α′

ki
is as given in (1.11) and 2ki if α′

ki
is as given in (1.12).

Corollary 1.2. Under the assumptions of Theorem 1.2, for some positive integer h, we have

lim
N→∞ [EV −E

G]θ
(
qt1,h, Nξα′

k1
(i)ξα′

k1
( j), Nζα′

k1
(μ)ζα′

k1
(ν), . . . , qtn,h, Nξα′

kn
(i)ξα′

kn
( j),

× Nζα′
kn

(μ)ζα′
kn

(ν)
)

= 0,

where θ ∈R
3n is a smooth function that satisfies

|∂ (k)θ (x)| ≤ C(1 + ||x||2)C, k = 1, 2, 3, with some arbitrary C > 0.

Remark 1.3. (i) Similarly to (1.13), the results in Corollaries 1.1 and 1.2 can be easily
extended to a general form containing more entries of the singular vectors. For example, to
extend Corollary 1.1, we choose any positive integers s and h1, . . . , hs. Under Assumptions
1.2 and 1.3 for any choices of indices i1, j1, . . . , is, js ∈ I1 and μ1, ν1, . . . , μs, νs ∈ I2, for the
corresponding li, i = 1, 2, . . . , s, defined in (1.11) or (1.12), there exists some 0 < δ < 1 with
max1≤i≤s{li} ≤ Nδ

k , such that

lim
N→∞ [EV −E

G]θ
(
qt1,h1

, Nξα′
1
(i1)ξα′

1
( j1), ζα′

1
(μ1)ζα′

1
(ν1), . . . , qts,hs

, Nξα′
s
(is)ξα′

s
( js),

Nζα′
s
(μs)ζα′

s
(νs)

)
= 0.

where the smooth function θ ∈R
3s satisfies |∂ (k)θ (x)| ≤ C(1 + ||x||2)C, k = 1, 2, 3, for some

constant C.

(ii) Theorems 1.1 and 1.2, and Corollaries 1.1 and 1.2 still hold for the complex case, where
the moment matching condition is replaced by

E
Gx̄v

ijx
u
ij =E

V x̄v
ijx

u
ij, 0 ≤ v + u ≤ 2.

(iii) All the above theorems and corollaries are stronger than their counterparts from [24]
because they hold much further into the bulk components. For instance, in the counterpart
of Theorem 1.1, which is [24, Theorem 1.6], the universality was established under the
assumption that l ≤ ( log N)C log log N .

In the bulks, similar results hold under the stronger assumption that the first four moments
of the matrix entries match those of Gaussian ensembles.

Theorem 1.3. Suppose that QV = �1/2XVX∗
V�1/2 satisfies Assumption 1.1. Assume that the

third and fourth moments of XV agree with those of XG and consider the kth, k = 1, 2, . . . , p
bulk component, with l defined in (1.11) or (1.12). Under Assumptions 1.2 and 1.3 for any
choices of indices i, j ∈ I1 and μ, ν ∈ I2, there exists a small δ ∈ (0, 1) such that, when δNk ≤
l ≤ (1 − δ)Nk, we have

lim
N→∞ [EV −E

G]θ (Nξα′ (i)ξα′( j), Nζα′ (μ)ζα′ (ν)) = 0,

where θ is a smooth function in R
2 that satisfies

|∂ (k)θ (x)| ≤ C(1 + ||x||2)C, k = 1, 2, 3, 4, 5, with some constant C > 0.
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Theorem 1.4. Suppose that QV = �1/2XVX∗
V�1/2 satisfies Assumption 1.1. Assume that the

third and fourth moments of XV agree with those of XG, and consider the k1th, . . . , knth,
k1, . . . , kn ∈ {1, 2, . . . , p}, n ≤ p, bulks for lki defined in (1.11) or (1.12) associated with the
kith, i = 1, 2, . . . , n, bulk component. Under Assumptions 1.2 and 1.3 for any choices of
indices i, j ∈ I1 and μ, ν ∈ I2, there exists a δ ∈ (0, 1) such that, when δNki ≤ lki ≤ (1 − δ)Nki ,

i = 1, 2, . . . , n, we have

lim
N→∞ [EV −E

G]θ
(
Nξα′

k1
(i)ξα′

k1
( j), Nζα′

k1
(μ)ζα′

k1
(ν), . . . , Nξα′

kn
(i)ξα′

kn
( j), Nζα′

kn
(μ)ζα′

kn
(ν)
)

= 0,

where θ is a smooth function in R
2n that satisfies

|∂ (k)θ (x)| ≤ C(1 + ||x||2)C, k = 1, 2, 3, 4, 5, with some constant C > 0.

Remark 1.4. (i) Similarly to Corollaries 1.1 and 1.2 and Remark 1.3(i), we can extend the
results to the joint distribution containing singular values. We take the extension of Theorem
1.3 as an example. By Assumption 1.2(ii), in the bulk, we have

∫ γα′
λα′ dρ = 1/N + o(N−1).

Using a similar Dyson Brownian motion argument as in [33], combining with Theorem 1.3,
we have

lim
N→∞ [EV −E

G]θ (pα′ , Nξα′ (i)ξα′( j), Nζα′ (μ)ζα′(ν)) = 0,

where pα′ is defined as

pα′ := ρ(γα′ )N(λα′ − γα′ ),

and θ ∈R
3 satisfies

|∂ (k)θ (x)| ≤ C(1 + ||x||2)C, k = 1, 2, 3, 4, 5, with some constant C > 0.

(ii) Theorems 1.3 and 1.4 still hold for the complex case, where the moment matching
condition is replaced by

E
Gx̄v

ijx
u
ij =E

V x̄v
ijx

u
ij, 0 ≤ v + u ≤ 4.

1.4. Remarks on applications to statistics

In this subsection we give a few remarks on possible applications to statistics and machine
learning. First, our results show that, under Assumptions 1.1, 1.2, and 1.3, the distributions of
the right singular vectors, i.e. entries of principal components, are independent of the laws
of xij. Hence, we can extend the statistical analysis relying on Gaussian or sub-Gaussian
assumptions to general distributions. For instance, in the problem of classification, assuming
that Y = (yi) and each yi has the same covariance structure but may have different means, i.e.
Eyi = μk, i = 1, 2, . . . , N, k = 1, 2, . . . , K, where K is a fixed constant. We are interested in
classifying the samples yi into K clusters. In the classical framework, researchers use the matrix
�V to classify the samples yi, where � = diag{λ1, . . . , λK} and V = (ζ1, . . . , ζK) (recall that
λi and ζi are the singular values and right singular vectors of Y). Existing statistical analysis
needs the sub-Gaussian assumption [29]. In this sense, our result, especially Remark 1.4, can
be used to generalize such results.
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Next, our results can be used to do statistical inference. It is notable that, in general, the
distribution of the singular vectors of the sample covariance matrix Q = TXX∗T∗ is unknown,
even for the Gaussian case. However, when T is a scalar matrix (i.e. T = cI, c > 0), Bourgade
and Yau [10, Appendix C] showed that the entries of the singular vectors are asymptotically
normally distributed. Hence, our universality results imply that, under Assumptions 1.1, 1.2,
and 1.3, when T is conformal (i.e. T∗T = cI, c > 0), the entries of the right singular vectors are
asymptotically normally distributed. Therefore, this can be used to test the null hypothesis:

(H0) T is a conformal matrix.

The statistical testing problem (H0) contains a rich class of hypothesis tests. For instance,
when T = I, it reduces to the sphericity test and when c = 1, it reduces to testing whether the
covariance matrix of X is orthogonal [40].

To illustrate how our results can be used to test (H0), we assume that c = 1 in the following
discussion. Under (H0), denote the QR factorization of T to be T = UI, the right singular
vector of TX is the same as X, ζk, k = 1, 2, . . . , N. Using [10, Corollary 1.3], we find that, for
i, k = 1, 2, . . . , N, √

Nζk(i) →N , (1.16)

where N is a standard Gaussian random variable. In detail, we can take the following steps to
test whether (H0) holds.

1. Randomly choose two index sets R1, R2 ⊂ {1, 2, . . . , N} with |Ri| = O(1), i = 1, 2.

2. Use the bootstrapping method to sample the columns of Q and obtain a sequence of
M × N matrices Qj, j = 1, 2, . . . , K.

3. Select ζ
j
k(i), k ∈ R1, i ∈ R2, from Qj, j = 1, 2, . . . , K. Use the classic normality test, for

instance, the Shapiro–Wilk test, to check whether (1.16) holds for the above samples.
Let A be the number of samples which cannot be rejected by the classic normality test.

4. Given some pre-chosen significant level α, reject H0 if A/|R1||R2| < 1 − α.

Another important piece of information from our result is that the singular vectors are
completely delocalized. This property can be applied to the problem of low rank matrix
denoising [13], i.e.

Ŝ = TX + S,

where S is a deterministic low rank matrix. Consider that S is of rank one, and assume that the
left singular vector u of S is e1 = (1, 0, . . . , 0) ∈R

M . Using the completely delocalized result,
it can be shown that ũ1, the first left singular vector of Ŝ has the same sparse structure as that
of u, i.e.

ũ1(1) = O(1), ũ1(i) = O(M−1/2), i �= 1,

hold with high probability. Thus, to estimate the singular vectors of S, we need only carry out
singular value decomposition on a block matrix of Ŝ. For more details, we refer the reader to
[13, Section 2.1].

Furthermore, delocalization of singular vectors is important in machine learning, especially
the perturbation analysis of a singular subspace [1], [15], [21], [20], [41]. In these problems,
researchers are interested in bounding the difference between the sample singular vectors
and those of T . The Davis–Kahan sin θ theorem is often used to bound the l2 distance.
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However, in many applications, for instance, the wireless sensor network localization [21]
and multidimesional scaling [15], people are usually interested in bounding the l∞ distance.
Denote the right singular vectors of T by vi and recall that the ζi are the right singular vectors
of Y . We aim to bound

||vi − ζi||∞.

To obtain such a bound, an important step is to show the delocalization (i.e. incoherence) of
the singular vectors [1], [15], [41]. Hence, our results in this paper can provide the crucial
ingredients for such applications.

This paper is organized as follows. In Section 2 we introduce some notation and tools that
will be used in the proofs. In Section 3 we prove the singular vector distribution near the
edge. In Section 4 we prove the distribution within the bulks. The Green function comparison
arguments are mainly discussed in Section 3.2 and Lemma 4.5. The proof of Lemma 3.4 is
given in the supplementary material [14] to this paper.

Conventions. We always use C to denote a generic large positive constant, whose value
may change from one line to the next. Similarly, we use ε to denote a generic small positive
constant. For two quantities aN and bN depending on N, the notation aN = O(bN) means that
|aN | ≤ C|bN | for some positive constant C > 0, and aN = o(bN) means that |aN | ≤ cN |bN | for
some positive constants cN → 0 as N → ∞. We also use the notation aN ∼ bN if aN = O(bN)
and bN = O(aN). We write the identity matrix In×n as 1 or I when there is no confusion about
the dimension.

2. Notation and tools

In this section we introduce some notation and tools which will be used in this paper.
Throughout the paper, we always use ε1 to denote a small constant and D1 to denote a large
constant. Recall that the ESD of an N × N symmetric matrix H is defined as

F(N)
H (λ) := 1

N

N∑
i=1

1{λi(H)≤λ},

and its Stieltjes transform is defined as

mH =
∫

1

x − z
dF(N)

H (x), z = E + iη ∈C+.

For some small constant τ > 0, we define the typical domain for z = E + iη as

D(τ ) = {z ∈C+ : |E| ≤ τ−1, N−1+τ ≤ η ≤ τ−1}. (2.1)

It was shown in [13], [16], [26], and [39] that the linearizing block matrix is quite useful in
dealing with rectangular matrices.

Definition 2.1. For z ∈C+, we define the (N + M) × (N + M) self-adjoint matrix

H ≡ H(X, �): =
( −zI z1/2Y

z1/2Y∗ −zI

)
, (2.2)

and

G ≡ G(X, z) := H−1. (2.3)
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By Schur’s complement, it is easy to check that

G =
( G1(z) z−1/2G1(z)Y

z−1/2Y∗G1(z) z−1Y∗G1(z)Y − z−1I

)

=
(

z−1YG2(z)Y∗ − z−1I z−1/2YG2(z)

z−1/2G2(z)Y∗ G2(z)

)
, (2.4)

where

G1(z) := (YY∗ − z)−1, G2(z) := (Y∗Y − z)−1, z = E + iη ∈C+.

Thus, a control of G directly yields controls of (YY∗ − z)−1 and (Y∗Y − z)−1. Moreover, we
have

m1(z) = 1

M

∑
i∈I1

Gii, m2(z) = 1

N

∑
μ∈I2

Gμμ. (2.5)

Recall that Y =∑M∧N
i=1

√
λkξkζ

∗
k , ξk ∈R

I1 , ζk ∈R
I2 . By (2.4), we have

G(z) =
M∧N∑
k=1

1

λk − z

(
ξkξ

∗
k z−1/2

√
λkξkζ

∗
k

z−1/2
√

λkζkξ
∗
k ζkζ

∗
k

)
. (2.6)

Define

�(z) :=
√

Im m(z)

Nη
+ 1

Nη
, �o :=

(
� 0
0 I

)
, � :=

(
z−1/2�1/2 0

0 I

)
. (2.7)

Definition 2.2. For z ∈C+, we define the I × I matrix

�(z) :=
(−z−1(1 + m(z)�)−1 0

0 m(z)

)
. (2.8)

We will see later from Lemma 2.1 that G(z) converges to �(z) in probability.

Remark 2.1. In [26, Definition 3.2], the linearizing block matrix is defined as

Ho: =
(−�−1 X

X∗ −zI

)
. (2.9)

It is easy to check the following relation between (2.2) and (2.9):

H =
(

z1/2�1/2 0
0 I

)
Ho

(
z1/2�1/2 0

0 I

)
. (2.10)

In [26, Definition 3.3], the deterministic convergent limit of H−1
o is

�o(z) =
(−�(1 + m(z)�)−1 0

0 m(z)

)
. (2.11)

Therefore, by (2.10), we can get a similar relation between (2.8) and (2.11):

�(z) =
(

z−1/2�−1/2 0
0 I

)
�o(z)

(
z−1/2�−1/2 0

0 I

)
. (2.12)
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Definition 2.3. We introduce the notation X(T) to represent the M × (N − |T|) minor of X by
deleting the ith, i ∈T, columns of X. For convenience, ({i}) will be abbreviated to (i). We will
continue to use the matrix indices of X for X(T), that is, X(T)

ij = 1( j /∈T)Xij. Let

Y (T) = �1/2X(T), G(T)
1 = (Y (T)Y (T)∗ − zI)−1, G(T)

2 = (Y (T)∗Y (T) − zI)−1.

Consequently, m(T)
1 (z) = M−1 Tr G(T)

1 (z) and m(T)
2 (z) = N−1 Tr G(T)

2 (z).

Our key ingredient is the anisotropic local law derived by Knowles and Yin [26].

Lemma 2.1. Fix τ > 0. Assume that (1.1), (1.2), and (1.5) hold. Moreover, suppose that every
edge k = 1, . . . , 2p satisfies ak ≥ τ and that every bulk component k = 1, . . . , p is regular in
the sense of Assumption 1.2. Then, for all z ∈ D(τ ) and any unit vectors u, v ∈R

M+N, there
exist some small constant ε1 > 0 and large constant D1 > 0 such that, when N is large enough,
with probability 1 − N−D1 , we have

| < u, �−1(G(z) − �(z))�−1v > | ≤ Nε1�(z) (2.13)

and

|m2(z) − m(z)| ≤ Nε1�(z). (2.14)

Proof. Equation (2.14) was proved in [26, Equation (3.11)]. We need only prove (2.13). By
(2.10), we have

Go(z) =
(

z1/2�1/2 0
0 I

)
G(z)

(
z1/2�1/2 0

0 I

)
. (2.15)

By [26, Theorem 3.6], with probability 1 − N−D1 , we have

| < u, �−1
o (Go(z) − �o(z))�−1

o v > | ≤ Nε1�(z). (2.16)

Therefore, by (2.12), (2.15), and (2.16), we conclude our proof. �
It is easy to derive the following corollary from Lemma 2.1.

Corollary 2.1. Under the assumptions of Lemma 2.1, with probability 1 − N−D1 , we have

|〈v, (G2(z) − m(z))v〉| ≤ Nε1�(z), |〈u, (G1(z) + z−1(1 + m(z)�)−1)u〉| ≤ Nε1�(z),
(2.17)

where v and u are unit vectors in R
N and R

M, respectively.

We use the following lemma to characterize the rigidity of the eigenvalues within each bulk
component, which can be found in [26, Theorem 3.12].

Lemma 2.2. Fix τ > 0. Assume that (1.1), (1.2), and (1.5) hold. Moreover, suppose that every
edge k = 1, . . . , 2p satisfies ak ≥ τ and that every bulk component k = 1, . . . , p is regular in
the sense of Assumption 1.2. Recall that Nk is the number of eigenvalues within each bulk.
Then, for i = 1, . . . , Nk satisfying γk,i ≥ τ and k = 1, . . . , p, with probability 1 − N−D1 , we
have

|λk,i − γk,i| ≤ (i ∧ (Nk + 1 − i))−1/3N−2/3+ε1 . (2.18)

Within the bulk, we have a stronger result. For small τ ′ > 0, define

Db
k := {

z ∈ D(τ ) : E ∈ [a2k + τ ′, a2k−1 − τ ′]
}
, k = 1, 2, . . . , p, (2.19)

as the bulk spectral domain. Then [26, Theorem 3.15] gives the following result.
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Lemma 2.3. Fix τ, τ ′ > 0. Assume that (1.1), (1.2), and (1.5) hold and that the bulk component
k = 1, . . . , 2p is regular in the sense of Assumption 1.2(ii). Then, for all i = 1, . . . , Nk

satisfying γk,i ∈ [a2k + τ ′, a2k−1 − τ ′], (2.13) and (2.14) hold uniformly for all z ∈ Db
k and,

with probability 1 − N−D1 ,

|λk,i − γk,i| ≤ N−1+ε1 .

As discussed in [26, Remark 3.13], Lemmas 2.1 and 2.2 imply complete delocalization of
the singular vectors.

Lemma 2.4. Fix τ > 0. Under the assumptions of Lemma 2.1, for any i and μ such that
γi, γμ ≥ τ, with probability 1 − N−D1 , we have

max
i,s1

|ξi(s1)|2 + max
μ,s2

|ζμ(s2)|2 ≤ N−1+ε1 . (2.20)

Proof. By (2.17), with probability 1 − N−D1 , we have max{Im Gii(z), Im Gμμ(z)} = O(1).
Choosing z0 = E + iη0 with η0 = N−1+ε1 and using the spectral decomposition (2.6) yields

N∧M∑
k=1

η0

(E − λk)2 + η2
0

|ξk(i)|2 = Im Gii(z0) = O(1), (2.21)

N∧M∑
k=1

η0

(E − λk)2 + η2
0

|ζk(μ)|2 = Im Gμμ(z0) = O(1), (2.22)

with probability 1 − N−D1 . Choosing E = λk in (2.21) and (2.22) completes the proof. �

3. Singular vectors near the edges

In this section we prove universality for the distributions of the edge singular vectors of
Theorems 1.1 and 1.2, as well as the joint distribution between the singular values and singular
vectors of Corollaries 1.1 and 1.2. The main identities on which we will rely are

G̃ij =
M∧N∑
β=1

η

(E − λβ )2 + η2
ξβ (i)ξβ ( j), G̃μν =

M∧N∑
β=1

η

(E − λβ )2 + η2
ζβ (μ)ζβ (ν), (3.1)

where G̃ij and G̃μν are defined as

G̃ij := 1

2i
(Gij(z) − Gij(z̄)), G̃μν := 1

2i
(Gμν(z) − Gμν(z̄)).

Owing to similarity, we focus our proofs on the right singular vectors. The proofs rely on three
main steps.

1. Writing Nζβ (μ)ζβ (ν) as an integral of G̃μν over a random interval with size O(Nεη),
where ε > 0 is a small constant and η = N−2/3−ε0 , ε0 > 0, will be chosen later.

2. Replacing the sharp characteristic function from step (i) with a smooth cutoff function q
in terms of the Green function.

3. Using the Green function comparison argument to compare the distribution of the
singular vectors between the ensembles XG and XV .
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We will follow the proof strategy of [24, Section 3] and slightly modify the details.
Specifically, the choices of random interval in step (i) and the smooth function q in step (ii)
are different due to the fact that we have more than one bulk component. The Green function
comparison argument is also slightly different as we use the linearization matrix (2.6).

We mainly focus on a single bulk component, first proving the singular vector distribution
and then extending the results to singular values. The results containing several bulk compo-
nents will follow after minor modification. We first prove the following result for the right
singular vector.

Lemma 3.1. Suppose that QV = �1/2XVX∗
V�1/2 satisfies Assumption 1.1. Let EG,EV denote

the expectations with respect to XG and XV . Consider the kth, k = 1, 2, . . . , p, bulk component,
with l defined in (1.11) or (1.12), under Assumptions 1.2 and 1.3 for any choices of indices
μ, ν ∈ I2, there exists a δ ∈ (0, 1) such that, when l ≤ Nδ

k , we have

lim
N→∞ [EV −E

G]θ (Nζα′ (μ)ζα′(ν)) = 0,

where θ is a smooth function in R that satisfies

|θ (3)(x)| ≤ C1(1 + |x|)C1, x ∈R, with some constant C1 > 0. (3.2)

Near the edges, by (2.18) and (2.20), with probability 1 − N−D1 , we have

|λα′ − γα′ | ≤ N−2/3+ε1 , max
μ,s2

|ζμ(s2)|2 ≤ N−1+ε1 . (3.3)

Hence, throughout the proofs of this section, we always use the scale parameter

η = N−2/3−ε0 , ε0 > ε1 is a small constant. (3.4)

3.1. Proof of Lemma 3.1

In a first step, we express the singular vector entries as an integral of Green functions over
a random interval, which is recorded as the following lemma.

Lemma 3.2. Under the assumptions of Lemma 3.1, there exist some small constants ε, δ > 0
satisfying

δ > 2ε, ε > Cε1, δ < C−1ε0, (3.5)

for some large constant C > C1 (recall (3.2) for C1) such that

lim
N→∞ max

l≤Nδ
k

max
μ,ν

∣∣∣EVθ (Nζα′ (μ)ζα′(ν)) −E
Vθ
(N

π

∫
I

G̃μν(z)X (E) dE
)∣∣∣= 0,

where I is defined as

I := [
a2k−1 − N−2/3+ε, a2k−1 + N−2/3+ε

]
(3.6)

when (1.11) holds

I := [
a2k − N−2/3+ε, a2k + N−2/3+ε

]
when (1.12) holds. We define

X (E) := 1(λα′+1 < E− ≤ λα′), (3.7)

where E± := E ± Nεη. The conclusion holds if we replace XV with XG.
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Proof. We first observe that

ζα′ (μ)ζα′ (ν) = η

π

∫
R

ζα′ (μ)ζα′ (ν)

(E − λα′)2 + η2
dE.

Choose a and b such that

a := min{λα′ − Nεη, λα′+1 + Nεη}, b := λα′ + Nεη. (3.8)

We also observe the elementary inequality (see the equation above Equation (6.10) of [18]),
for some constant C > 0, ∫ ∞

x

η

π (y2 + η2)
dy ≤ Cη

x + η
, x > 0. (3.9)

By (3.3), (3.8), and (3.9), with probability 1 − N−D1 , we have

ζα′ (μ)ζα′ (ν) = η

π

∫ b

a

ζα′ (μ)ζα′(ν)

(E − λ′
α)2 + η2

dE + O(N−1−ε+ε1 ). (3.10)

By (3.2), (3.3), (3.5), (3.10), and mean value theorem, we have

E
Vθ (Nζα′ (μ)ζα′(ν)) =E

Vθ
(Nη

π

∫ b

a

ζα′ (μ)ζα′(ν)

(E − λα′ )2 + η2
dE
)

+ o(1). (3.11)

Define λ±
t := λt ± Nεη, t = α′, α′ + 1, and by (3.8), we have

∫ b

a
dE =

∫ λ+
α′

λ+
α′+1

dE + 1
(
λ+

α′+1 > λ−
α′
) ∫ λ+

α′+1

λ−
α′

dE.

By (3.2), (3.3), (3.11), and the mean value theorem, we have

E
Vθ (Nζα′ (μ)ζα′ (ν)) =E

Vθ
(Nη

π

∫ λ+
α′

λ+
α′+1

ζα′ (μ)ζα′ (ν)

(E − λα′)2 + η2
dE
)

+ o(1),

where we used (2.18) and (3.5). Next we can, without loss of generality, consider the case
when (1.11) holds. By (3.3) and (3.5), we observe that, with probability 1 − N−D1 , we have
λ+

α′ ≤ a2k−1 + N−2/3+ε and λ+
α′+1 ≥ a2k−1 − N−2/3+ε. By (2.18) and the choice of I in (3.6),

we have

E
Vθ (Nζα′ (μ)ζα′ (ν)) =E

Vθ
(Nη

π

∫
I

ζα′ (μ)ζα′ (ν)

(E − λα′)2 + η2
X (E) dE

)
+ o(1).

Recall (3.1). We can split the summation as

1

η
G̃μν(z) =

∑
β �=α′

ζβ (μ)ζβ (ν)

(E − λβ )2 + η2
+ ζα′ (μ)ζα′ (ν)

(E − λα′ )2 + η2
. (3.12)
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Define A := {β �= α′ : λβ is not in the kth bulk component}. By (3.3), with probability
1 − N−D1 , we have∣∣∣∣ ∑

β �=α′

Nη

π

∫
I

ζβ (μ)ζβ (ν)

(E − λβ )2 + η2
dE

∣∣∣∣
≤ Nε1

π

(∑
β∈A

∫
I

η

η2 + (E − λβ )2
dE +

∑
β∈Ac

∫
I

η

η2 + (E − λβ )2
dE

)
. (3.13)

By Assumption 1.2, with probability 1 − ND1 , we have

Nε1

π

∑
β∈A

∫
I

η

η2 + (E − λβ )2
dE ≤ Nε1

∑
β∈A

N−4/3−ε0+ε. (3.14)

Define

l(β) := β −
∑
t<k

Nt.

By (3.3), with probability 1 − N−D1 , for some small constant 0 < δ < 1, we have

Nε1

π

∑
β∈Ac

∫
I

η

(E − λβ )2 + η2
dE ≤ Nε1+δ + 1

π

∑
β∈Ac, l(β)≥Nδ

k

∫
I

Nε1η

η2 + (E − λβ )2
dE. (3.15)

By Assumption 1.2, (1.9), (2.18), and the assumption that δ > 2ε, it is easy to check that (see
[24, Equation (3.12)])

(E − λβ )2 ≥ c
( l(β)

N

)4/3
, c > 0 is some constant. (3.16)

By (3.16), with probability 1 − N−D1 , we have

1

π

∑
β∈Ac, l(β)≥Nδ

k

∫
I

Nε1η

η2 + (E − λβ )2
dE ≤ Nε1−ε0+ε

∫ N

Nδ−1

1

x4/3
dx ≤ N−δ/3+ε1−ε0+ε.

Recall (3.5). We can restrict ε1 − ε0 + ε < 0, so that, with probability 1 − N−D1 , this yields∑
β∈Ac, l(β)≥Nδ

k

∫
I

Nε1η

η2 + (E − λβ )2
dE ≤ N−δ/3. (3.17)

By (3.13), (3.14), (3.15), and (3.17), with probability 1 − N−D1 , we have∣∣∣∣ ∑
β �=α′

Nη

π

∫
I

ζβ (μ)ζβ (ν)

(E − λβ )2 + η2
dE

∣∣∣∣≤ Nδ+2ε1 . (3.18)

By (3.2), (3.3), (3.12), (3.18), and the mean value theorem, we have∣∣∣EVθ
(Nη

π

∫
I

ζα′ (μ)ζα′(ν)

(E − λα′ )2 + η2
X (E) dE

)
−E

Vθ
(N

π

∫
I

G̃μν(E + iη)X (E) dE
)∣∣∣

≤ NC1(δ+2ε1)
E

V
∑
β �=α′

Nη

π

∫
I

|ζβ (μ)ζβ (ν)|
(E − λβ )2 + η2

X (E) dE, (3.19)
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where C1 is defined in (3.2). To complete the proof, it suffices to estimate the right-hand side
of (3.19). Similarly to (3.14), we have∑

β∈A

∫
I

η

η2 + (E − λβ )2
dE ≤ N−1/3−ε0+ε. (3.20)

Choose a small constant 0 < δ1 < 1 and repeat the estimation in (3.17) to obtain∑
β∈Ac, l(β)≥N

δ1
k

∫
I

η

η2 + (E − λβ )2
dE ≤ N−δ1/3+ε−ε0 . (3.21)

Recall (1.11), (3.3), and (3.9). Using a discussion similar to that above Equation (3.14) of [24],
we conclude that ∑

β∈Ac, l≤l(β)≤N
δ1
k

Nη

π
E

V
∫

I

|ζβ (μ)ζβ (ν)|
(E − λβ )2 + η2

X (E) dE

≤E
V
∫ ∞

λα′+1+Nεη

Nε1η

(E − λα′+1)2 + η2
dE

≤ N−ε+ε1 , (3.22)

where we have used the fact that β ∈Ac and l < l(β) ≤ Nδ1
k imply that λβ ≤ λα′+1. It is notable

that the above bound is independent of δ. It remains to estimate the summation of the terms
when β ∈Ac and l(β) < l. For a given constant, ε′ satisfies

δ > 2ε′, ε′ > Cε1, δ < C−1ε0. (3.23)

We partition I = I1 ∪ I2 with I1 ∩ I2 =∅, where

I1: = {E ∈ I : there exists β, β ∈Ac, l(β) < l, |E − λβ | ≤ Nε′
η}. (3.24)

By (3.3) and (3.24), using a similar discussion to that used for (3.22), we have∑
β∈Ac; l(β)<l

Nη

π
E

V
∫

I2

|ζβ (μ)ζβ (ν)|
(E − λβ )2 + η2

X (E) dE ≤ N−2ε′+ε1 .

It is easy to check that on I1 when λα′+1 ≤ λα′ < λβ , we have (see (3.15) of [24])

1

(E − λβ )2 + η2
1(E− ≤ λα′) ≤ N2ε

(λα′+1 − λα′)2 + η2
. (3.25)

By Lemma 2.2, the above equation holds with probability 1 − N−D1 . By (3.3), (3.25), and a
discussion similar to that used in [24, Equation (3.16)], we have

∑
β∈Ac, l(β)≤l

Nη

π
E

V
∫

I1

|ζβ (μ)ζβ (ν)|
(E − λβ )2 + η2

X (E) dE ≤E
V
∫

I1

Nε1+2εη2

(λα′+1 − λα′ )2 + η2
dE

≤E
V1(|λα′+1 − λα′ | ≤ N−1/3η1/2) + N−D1+ε1+3ε

≤ N−ε0/2+3ε. (3.26)
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By (3.20), (3.21), (3.22), (3.23), and (3.26), we conclude the proof of (3.19). It is clear that our
proof still applies when we replace XV with XG. �

In a second step, we write the sharp indicator function of (3.7) as a some smooth function q
of G̃μν . To be consistent with the proof of Lemma 3.2, we consider the bulk edge a2k−1. Define

ϑη(x) := η

π (x2 + η2)
= 1

π
Im

1

x − iη
.

We define a smooth cutoff function q ≡ qα′ : R→R+ as

q(x) =
{

1 if |x − l| ≤ 1
3 ,

0 if |x − l| ≥ 2
3 ,

(3.27)

where l is defined in (1.11). We also let Q1 = Y∗Y .

Lemma 3.3. For ε given in (3.5), define

XE(x) := 1(E− ≤ x ≤ EU), (3.28)

where EU := a2k−1 + 2N−2/3+ε, and define η̃ := N−2/3−9ε0 , where ε0 is defined in (3.4). Then

lim
N→∞ max

l≤Nδ
k

max
μ,ν

∣∣∣EVθ
(

Nζα′ (μ)ζα′(ν)
)

−E
Vθ
(N

π

∫
I

G̃μν(z)q
[
Tr (XE ∗ ϑη̃)(Q1)

]
dE
)∣∣∣= 0,

where I is defined in (3.6) and ‘∗’ is the convolution operator.

Proof. For any E1 < E2, denote the number of eigenvalues of Q1 in [E1, E2] by

N (E1, E2) := #
{

j : E1 ≤ λj ≤ E2
}
. (3.29)

Recall (3.6) and (3.7). It is easy to check that, with probability 1 − N−D1 , we have

N
∫

I
G̃μν(z)X (E) dE = N

∫
I

G̃μν(z)1(N (E−, EU) = l) dE

= N
∫

I
G̃μν(z)q[Tr XE(Q1)] dE, (3.30)

where, for the second equality, we used (2.18) and Assumption 1.2. We use the following
lemma to estimate (3.29) by its delta approximation smoothed on the scale η̃. The proof is
given in the supplementary material [14].

Lemma 3.4. For t = N−2/3−3ε0 , there exists some constant C, and with probability 1 − N−D1 ,
for any E satisfying

|E− − a2k−1| ≤ 3

2
N−2/3+ε,

we have

| Tr XE(Q1) − Tr (XE ∗ ϑη̃)(Q1)| ≤ C
(
N−2ε0 +N (E− − t, E− + t)

)
. (3.31)
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By Equation (A.7) of [26], for any z ∈ D(τ ) defined in (2.1), we have

Im m(z) ∼
⎧⎨
⎩

η√
κ + η

, E /∈ supp (ρ),
√

κ + η, E ∈ supp (ρ),
(3.32)

where κ := |E − a2k−1|. When μ = ν, with probability 1 − N−D1 , we have

sup
E∈I

|G̃μμ(E + iη)| = sup
E∈I

| Im Gμμ(z)|
≤ sup

E∈I

(
Im |Gμμ(z) − m(z)| + | Im m(z)|)

≤ N−1/3+ε0+2ε,

where we have used (2.17) and (3.32). When μ �= ν, we use the identity

G̃μν = η

M+N∑
k=M+1

GμkGνk.

By (2.17) and (3.32), with probability 1 − N−D1 , we have supE∈I |G̃μν(z)| ≤ N−1/3+ε0+2ε.
Therefore, for E ∈ I, with probability 1 − N−D1 , we have

sup
E∈I

|G̃μν(E + iη)| ≤ N−1/3+3ε0/2. (3.33)

Recall (3.27). By (3.30), (3.31), (3.33), and the smoothness of q, with probability 1 − N−D1 ,
we have ∣∣∣N ∫

I
G̃μν(z)X (E) dE − N

∫
I

G̃μν(z)q[Tr (XE ∗ ϑη̃(Q1))] dE
∣∣∣

≤ CN
∑

l(β)≤Nδ
k

∫
I
|G̃μν(z)|1(|E− − λβ | ≤ t) dE + N−ε0/4

≤ CN1+δ|t| sup
z∈I

|G̃μν(z)| + N−ε0/4. (3.34)

By (3.33) and (3.34), we have∣∣∣N ∫
I

G̃μν(z)X (E) dE − N
∫

I
G̃μν(z)q

[
Tr (XE ∗ ϑη̃(Q1))

]
dE
∣∣∣≤ CN−ε0/2+δ + N−ε0/4.

Using a discussion similar to that used for (3.13), by (3.2) and (3.5), we complete the proof. �
In the final step, we use the Green function comparison argument to prove the following

lemma, whose proof is given in Section 3.2.

Lemma 3.5. Under the assumptions of Lemma 3.3, we have

lim
N→∞ max

μ,ν

(
E

V −E
G)θ(N

π

∫
I

G̃μν(z)q
[
Tr (XE ∗ ϑη̃)(Q1)

]
dE
)

= 0.

The proof of Lemma 3.1 follows from the proof of Lemma 3.3.
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3.2. The Green function comparsion argument

In this section we prove Lemma 3.5 using the Green function comparison argument. At the
end of this section we discuss how we can extend Lemma 3.1 to Theorem 1.1 and Theorem
1.2. By the orthonormal properties of ξ and ζ , and (2.6), we have

G̃ij = η

M∑
k=1

GikGjk, G̃μν = η

M+N∑
k=M+1

GμkGνk. (3.35)

By (2.17), with probability 1 − N−D1 , we have

|Gμμ| = O(1), |Gμν | ≤ N−1/3+2ε0 , μ �= ν. (3.36)

We first drop the all diagonal terms in (3.35).

Lemma 3.6. Recall that EU = a2k−1 + 2N−2/3+ε and η̃ = N−2/3−9ε0 . We have

E
Vθ
[N

π

∫
I

G̃μν(z)q
[
Tr (XE ∗ ϑη̃)(Q1)

]
dE
]
−E

Vθ
[ ∫

I
x(E)q(y(E)) dE

]
= o(1), (3.37)

where

x(E) := Nη

π

M+N∑
k=M+1, k �=μ,ν

Xμν,k(E + iη), y(E) := η̃

π

∫ EU

E−

∑
k

∑
β �=k

Xββ,k(E + iη̃) dE,

(3.38)

and Xμν,k := GμkGνk. The conclusion holds if we replace XV with XG.

Proof. We first observe that, by (3.36), with probability 1 − N−D1 , we have

|x(E)| ≤ N2/3+3ε0 , (3.39)

which implies that ∫
I
|x(E)| dE ≤ N4ε0 . (3.40)

By (3.35) and (3.36), with probability 1 − N−D1 , we have∣∣∣N
π

G̃μν(E + iη) − x(E)
∣∣∣= Nη

π
|GμμGνμ + GμνGνν |

≤ Nη
(
1(μ = ν) + N−1/3+2ε0 1(μ �= ν)

)
. (3.41)

By Equations (5.11) and (6.42) of [16], we have

Tr (XE ∗ ϑη̃(Q1)) = N

π

∫ EU

E−
Im m2(w + iη̃) dw,

∑
μν

|Gμν(w + iη̃)|2 = N Im m2(w + iη̃)

η̃
.

(3.42)

Therefore, we have

Tr (XE ∗ ϑη̃(Q1)) − y(E) = η̃

π

∫ EU

E−

M+N∑
β=M+1

|Gββ |2 dw. (3.43)
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By (3.43), the mean value theorem, and the fact that q is smooth enough, we have∣∣q[Tr (XE ∗ ϑη̃)(Q1)
]− q[y(E)]

∣∣≤ N−1/3−7ε0 . (3.44)

Therefore, by the mean value theorem, (3.2), (3.5), (3.39), (3.40), (3.41), and (3.44), we
complete the proof. �

To prove Lemma 3.5, by (3.37), it suffices to prove that

[EV −E
G]θ

( ∫
I

x(E)q(y(E)) dE
)

= o(1). (3.45)

We use the Green function comparison argument to prove (3.45), where we follow the basic
approach of [16, Section 6] and [24, Section 3.1]. Define a bijective ordering map � on the
index set, where

� :
{
(i, μ1) : 1 ≤ i ≤ M, M + 1 ≤ μ1 ≤ M + N

}→ {1, . . . , γmax = MN}.
Recall that we relabel XV = ((XV )iμ1, i ∈ I1, μ1 ∈ I2), and similarly for XG. For any 1 ≤ γ ≤
γmax, we define the matrix Xγ =

(
xγ

iμ1

)
such that xγ

iμ1
= XG

iμ1
if �(i, μ1) > γ and xγ

iμ1
= XV

iμ1

otherwise. Note that X0 = XG and Xγmax = XV . With the above definitions, we have

[
E

G −E
V]θ( ∫

I
x(E)q(y(E)) dE

)
=

γmax∑
γ=1

[Eγ−1 −E
γ ]θ

( ∫
I

x(E)q(y(E)) dE
)

.

For simplicity, we rewrite the above equation as

E

[
θ
( ∫

I
xGq(yG) dE

)
− θ

( ∫
I

xVq(yV ) dE
)]

=
γmax∑
γ=1

E

[
θ
( ∫

I
xγ−1q(yγ−1) dE

)
− θ

( ∫
I

xγ q(yγ ) dE
)]

.

The key step of the Green function comparison argument is to use the Lindeberg replacement
strategy. We focus on the indices s, t ∈ I; the special case μ, ν ∈ I2 follows. Define Yγ :=
�1/2Xγ and

Hγ :=
(

0 z1/2Yγ

z1/2Y∗
γ 0

)
, Gγ :=

( −zI z1/2Yγ

z1/2Y∗
γ −zI

)−1

. (3.46)

As � is diagonal, for each fixed γ , Hγ and Hγ−1 differ only at the (i, μ1) and (μ1, i) elements,
where �(i, μ1) = γ . Then we define the (N + M) × (N + M) matrices V and W by

Vab = z1/2 (1{(a,b)=(i,μ1)} + 1{(a,b)=(μ1,i)}
)√

σiX
G
iμ1

,

Wab = z1/2 (1{(a,b)=(i,μ1)} + 1{(a,b)=(μ1,i)}
)√

σiX
V
iμ1

,

so that Hγ and Hγ−1 can be written as

Hγ−1 = O + V, Hγ = O + W,
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for some (N + M) × (N + M) matrix O satisfying Oiμ1 = Oμ1i = 0, with O independent of V
and W. Define

S := (Hγ−1 − z)−1, R := (O − z)−1, T := (Hγ − z)−1. (3.47)

With the above definitions, we can write

E

[
θ
(∫

I
xGq(yG) dE

)
− θ

(∫
I

xVq(yV ) dE
)]

=
γmax∑
γ=1

E

[
θ
( ∫

I
xSq(yS) dE

)
− θ

( ∫
I

xTq(yT ) dE
)]

. (3.48)

The comparison argument is based on the resolvent expansion

S = R − RVR + (RV)2R − (RV)3R + (RV)4S. (3.49)

For any integer m > 0, by Equation (6.11) of [16], we have

([RV]mR)ab =
∑

(ai,bi)∈{(i,μ1),(μ1,i)}, 1≤i≤m

(z)m/2(σi)
m/2(XG

iμ1

)m
Raa1 Rb1a2 . . . Rbmb, (3.50)

([RV]mS)ab =
∑

(ai,bi)∈{(i,μ1),(μ1,i)}, 1≤i≤m

(z)m/2(σi)
m/2(XG

iμ1

)m
Raa1 Rb1a2 . . . Sbmb. (3.51)

Define

�Xμν,k := SμkSνk − RμkRνk. (3.52)

In [24], the discussion relied on a crucial parameter (see [24, Equation (3.32)]), which counts
the maximum number of diagonal resolvent elements in �Xμν,k. We will follow this strategy
using a different counting parameter, and, furthermore, use (3.50) and (3.51) as our key
ingredients. Our discussion is slightly easier due to the loss of a free index (i.e. i �= μ1).

Inserting (3.49) into (3.52), by (3.50) and (3.51), we find that there exists a random variable
A1, which depends on the randomness only through O and the first two moments of XG

iμ1
.

Taking the partial expectation with respect to the (i, μ1)th entry of XG(recall they are i.i.d.), by
(1.2), we have the following result.

Lemma 3.7. Recall (2.7), and let Eγ be the partial expectation with respect to XG
iμ1

. Then

there exists some constant C > 0, and with probability 1 − N−D1 , we have∣∣Eγ �Xμν,k − A1
∣∣≤ N−3/2+Cε0�(z)3−s, M + 1 ≤ k �= μ, ν ≤ M + N,

where s counts the maximum number of resolvent elements in �Xμν,k involving the index μ1
and is defined as

s := 1
(
({μ, ν} ∩ {μ1} �=∅) ∪ ({k = μ1})

)
. (3.53)

Proof. Inserting (3.49) into (3.52), the terms in the expansion containing XG
iμ1

and (XG
iμ1

)2

will be included in A1; we consider only the terms containing (XG
iμ1

)m, m ≥ 3. We consider
m = 3 and discuss the terms

Rμk[(RV)3R]νk, [RVR]μk[(RV)2R]νk.
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By (3.50), we have

Rμk[(RV)3R]νk = Rμk

(∑
(σi)

3/2(XG
iμ1

)3(z)3/2Rνa1 Rb1a2Rb2a3Rb3k

)
.

In the worst scenario, Rb1a2 and Rb2a3 are assumed to be the diagonal entries of R. Similarly,
we have

[RVR]μk[(RV)2R]νk =
(∑

z1/2σ
1/2
i XG

iμ1
Rμa1 Rb1k

)(∑
σi(X

G
iμ1

)2zRνa1 Rb1a2Rb2k

)
,

and the worst scenario is the case when Rb1a2 is a diagonal term. As μ, ν �= i always holds and
there are only a finite number of terms in the summation, by (1.2) and (3.36), for some constant
C, we have

Eγ |Rμk[(RV)3R]νk| ≤ N−3/2+Cε0�(z)3−s.

Similarly, we have

Eγ |[RVR]μk[(RV)2R]νk| ≤ N−3/2+Cε0�(z)3−s.

The cases in which 4 ≤ m ≤ 8 can be handled similarly. This completes the proof. �

Lemma 3.5 follows from the following lemma. Recall (3.38), and define

�x(E) := xS(E) − xR(E), �y(E) := yS(E) − yR(E).

Lemma 3.8. For any fixed μ, ν, and γ , there exists a random variable A, which depends on
the randomness only through O and the first two moments of XG, such that

Eθ
( ∫

I
xSq(yS) dE

)
−Eθ

( ∫
I

xRq(yR) dE
)

= A + o(N−2+t), (3.54)

where t := |μ, ν ∩ μ1|.
The proof of Lemma 3.8 given in the supplementary material [14]. We now show how

Lemma 3.8 implies Lemma 3.5.

Proof of Lemma 3.5. It is easy to check that Lemma 3.8 still holds when we replace S with
T . Note that in (3.48) there are O(N) terms when t = 1 and O(N2) terms when t = 0. By (3.54),
we have

E

[
θ
( ∫

I
xGq(yG) dE

)
− θ

( ∫
I

xVq(yV ) dE
)]

= o(1),

where we have used the assumption that the first two moments of XV are the same as those of
XG. Combine with (3.37) to complete the proof. �

It is clear that our proof can be extended to the left singular vectors. For the proof of
Theorem 1.1, the only difference is that we use the mean value theorem in R

2 whenever it
is needed. Moreover, for the proof of Theorem 1.2, we need to use n intervals defined by

Ii := [
a2ki−1 − N−2/3+ε, a2ki−1 + N−2/3+ε

]
, i = 1, 2, . . . , n.

https://doi.org/10.1017/apr.2019.10 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.10


Singular vector distribution 259

3.3. Extension to singular values

In this section we discuss how the arguments of Section 3.2 can be applied to the general
function θ defined in (1.15) containing singular values. We mainly focus on discussing the
proof of Corollary 1.1.

On the one hand, similarly to Lemma 3.3, we can write the singular values in terms of an
integral of smooth functions of Green functions. Using the comparison argument with θ ∈R

3

and the mean value theorem in R
3 completes our proof. Similar discussions and results have

been derived in [18, Corollary 6.2 and Theorem 6.3]. For completeness, we basically follow
the strategy in [24, Section 4] to prove Corollary 1.1. The basic idea is to write the function θ

in terms of Green functions by using integration by parts. We mainly look at the right edge of
the kth bulk component.

Proof of Corollary 1.1. Let FV be the law of λα′ , and consider a smooth function
θ : R→R. For δ defined in Lemma 3.2, when l ≤ Nδ

k , by (1.14) and (2.18), it is easy to check
that

E
Vθ
(N2/3

�
(λα′ − a2k−1)

)
=
∫

I
θ
(N2/3

�
(E − a2k−1)

)
dFV (E) + O(N−D1 ), (3.55)

where � := �2k−1 and I is defined in (3.6). Using integration by parts on (3.55), we have

[EV −E
G]θ

(N2/3

�
(λα′ − a2k−1)

)

= −[EV −E
G]
∫

I

N2/3

�
θ ′(N2/3

�
(E − a2k−1)

)
1(λα′ ≤ E)dE + O(N−D1 ), (3.56)

where we have used (1.14) and (2.18). Similarly to (3.27), recalling (1.11), choose a smooth
nonincreasing function fl that vanishes on the interval [l + 2

3 , ∞) and is equal to 1 on the
interval ( − ∞, l + 1

3 ]. Recall that EU = a2k−1 + 2N−2/3+ε and N (E, EU) denotes the number
of eigenvalues of Q1 located in the interval [E, EU]. By (3.56), we have

[EV −E
G]θ

(N2/3

�
(λα′ − a2k−1)

)

= −[EV −E
G]
∫

I

N2/3

�
θ ′(N2/3

�
(E − a2k−1)

)
fl(N (E, EU))dE + O(N−D1 ).

Recall that η̃ = N−2/3−9ε0 . Similarly to the discussion of (3.31), with probability 1 − N−D1 ,
we have

N2/3
∫

I

∣∣ Tr
(
1[E,EU ] ∗ ϑη̃(Q1))

)− Tr (1[E,EU ](Q1))
∣∣ dE ≤ N−ε0 .

This yields

[EV −E
G]θ

(N2/3

�
(λα′ − a2k−1)

)

= −[EV −E
G]
∫

I

N2/3

�
θ ′(N2/3

�
(E − a2k−1)

)
fl
(

Tr (1[E,EU ] ∗ ϑη̃(Q1))
)

dE + O(N−D1 ).
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Integration by parts yields

[EV −E
G]θ

(N2/3

�
(λα′ − a2k−1)

)

= N

π
[EV −E

G]
∫

I
θ
(N2/3

�
(λα′ − a2k−1)

)
× f ′

l

(
Tr (1[E,EU ] ∗ ϑη̃(Q1))

)
Im m2(E + iη̃) dE + o(1),

where we have used (3.42). Now we extend θ to the general case defined in (1.15). By Theorem
1.1, it is easy to check that

[EV −E
G]θ

(N2/3

�
(λα′ − a2k−1), Nξα′ (i)ξα′( j), Nζα′ (μ)ζα′(ν)

)

= 1

π
[EV −E

G]
∫

I
θ
(N2/3

�
(λα′ − a2k−1), φα′ , ϕα′

)
× f ′

l

(
Tr (1[E,EU ] ∗ ϑη̃(Q1))

)
N Im m2(E + iη̃) dE + o(1), (3.57)

where

φα′ = N

π

∫
I

G̃ij(Ẽ + iη)q1
[
Tr (1[Ẽ−,EU ] ∗ ϑη̃(Q1))

]
dẼ,

ϕα′ = N

π

∫
I

G̃μν(Ẽ + iη)q2
[
Tr (1[Ẽ−,EU ] ∗ ϑη̃(Q1))

]
dẼ,

and q1 and q2 are the functions defined in (3.27). Therefore, the randomness on the right-hand
side of (3.57) is expressed in terms of Green functions. Hence, we can apply the Green function
comparison argument to (3.57) as in Section 3.2. The complications are notational and we will
not reproduce the details here. �

Finally, the proof of Corollary 1.2 is very similar to that of Corollary 1.1 except that we use
n different intervals and a multidimensional integral. We will not reproduce the details here.

4. Singular vectors in the bulks

In this section we prove the bulk universality Theorems 1.3 and 1.4. Our key ingredients,
Lemmas 2.1 and 2.4 and Corollary 2.1, are proved for N−1+τ ≤ η ≤ τ−1 (recall (2.1)). In the
bulks, recalling Lemma 2.3, the eigenvalue spacing is of order N−1. The following lemma
extends the above controls for a small spectral scale all the way down to the real axis. The
proof relies on Corollary 2.1 and the details can be found in [24, Lemma 5.1].

Lemma 4.1. Recall (2.19). For z ∈ Db
k with 0 < η ≤ τ−1, when N is large enough, with

probability 1 − N−D1 , we have

max
μ,ν

|Gμν − δμνm(z)| ≤ Nε1�(z). (4.1)

Once Lemma 4.1 is established, Lemmas 2.3 and 2.4 will follow. Next we follow the basic
proof strategy for Theorem 1.1, but use a different spectral window size. Again, we provide
only the proof of Lemma 4.2 below, which establishes the universality for the distribution of
ζα′ (μ)ζα′ (ν) in detail. Throughout this section, we use the scale parameter

η = N−1−ε0 , ε0 > ε1 is a small constant. (4.2)
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Therefore, the following bounds hold with probability 1 − N−D1 .

max
μ

|Gμμ(z)| ≤ N2ε0 , max
μ�=ν

|Gμν(z)| ≤ N2ε0 , max
μ,s

|ζμ(s)|2 ≤ N−1+ε0 . (4.3)

The following lemma states the bulk universality for ζα′ (μ)ζα′(ν).

Lemma 4.2. Suppose that QV = �1/2XVX∗
V�1/2 satisfies Assumption 1.1. Assume that the

third and fourth moments of XV agree with those of XG, and consider the kth, k = 1, 2, . . . , p
bulk component, with l defined in (1.11) or (1.12). Under Assumptions 1.2 and 1.3, for any
choices of indices μ, ν ∈ I2, there exists a small δ ∈ (0, 1) such that, when δNk ≤ l ≤ (1 − δ)Nk,

we have

lim
N→∞ [EV −E

G]θ (Nζα′ (μ)ζα′(ν)) = 0,

where θ is a smooth function in R that satisfies

|θ (5)(x)| ≤ C1(1 + |x|)C1 with some constant C1 > 0. (4.4)

4.1. Proof of Lemma 4.2

The proof strategy is very similar to that of Lemma 3.1. Our first step is an analogue of
Lemma 3.2. The proof is quite similar (actually easier as the window size is much smaller).
We omit further details.

Lemma 4.3. Under the assumptions of Lemma 4.2, there exists a 0 < δ < 1 such that

lim
N→∞ max

δNk≤l≤(1−δ)Nk

max
μ,ν

∣∣∣EVθ (Nζα′ (μ)ζα′(ν)) −E
Vθ
[N

π

∫
I

G̃μν(z)X (E) dE
]∣∣∣= 0, (4.5)

where X (E) is defined in (3.7) and, for ε satisfying (3.5),

I := [
γα′ − N−1+ε, γα′ + N−1+ε

]
. (4.6)

Next we express the indicator function in (4.5) using Green functions. Recall (3.28), a key
observation is that the size of [E−, EU] is of order N−2/3 due to (3.4). As we now use (4.2) and
(4.6) in the bulks, the size here is of order 1. So we cannot use the delta approximation function
to estimate X (E). Instead, we use Helffer–Sjöstrand functional calculus. This has been used
many times when the window size η takes the form of (4.2), for example, in the proofs of
rigidity of eigenvalues in [16], [18], and [33].

For any 0 < E1, E2 ≤ τ−1, let f (λ) ≡ fE1,E2,ηd (λ) be the characteristic function of [E1, E2]
smoothed on the scale

ηd := N−1−dε0 , d > 2,

where f = 1 when λ ∈ [E1, E2] and f = 0 when λ ∈R \ [E1 − ηd, E2 + ηd], and

| f ′| ≤ Cη−1
d , | f ′′| ≤ Cη−2

d , (4.7)

for some constant C > 0. By Equation (B.12) of [19], with fE ≡ fE−,EU ,ηd , we have

fE(λ) = 1

2π

∫
R2

iσ f ′′
E (e)χ (σ ) + i fE(e)χ ′(σ )−σ f ′

E(e)χ ′(σ )

λ − e − iσ
de dσ, (4.8)

where χ (y) is a smooth cutoff function with support [−1, 1] and χ (y) = 1 for |y| ≤ 1
2 with

bounded derivatives. Using a similar argument to that used for Lemma 3.3, we have the
following result, whose proof is given in the supplementary material [14].
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Lemma 4.4. Recall the smooth cutoff function q defined in (3.27). Under the assumptions of
Lemma 4.3, there exists a 0 < δ < 1 such that

lim
N→∞ max

δNk≤l≤(1−δ)Nk

max
μ,ν

∣∣∣EVθ
(N

π

∫
I

G̃μν(z)X (E)
)

dE

−E
Vθ
(N

π

∫
I

G̃μν(z)q( Tr fE(Q1))
)

dE
∣∣∣

= 0. (4.9)

Finally, we apply the Green function comparison argument, where we will follow the
basic approach of Section 3.2 and [24, Section 5]. The key difference is that we will use
(4.2) and (4.3).

Lemma 4.5. Under the assumptions of Lemma 4.4, there exists a 0 < δ < 1 such that

lim
N→∞ max

δNk≤l≤(1−δ)Nk

max
μ,ν

[EV −E
G]θ

[N

π

∫
I

G̃μν(E + iη)q(Tr fE(Q1)) dE
]
= 0. (4.10)

Proof. Recall (4.8). By (2.5), we have

Tr fE(Q1) = N

2π

∫
R2

(
iσ f ′′

E (e)χ (σ ) + i fE(e)χ ′(σ )−σ f ′
E(e)χ ′(σ )

)
m2(e + iσ ) de dσ . (4.11)

Define η̃d := N−1−(d+1)ε0 . We can decompose the right-hand side of (4.11) as

Tr fE(Q1) = N

2π

∫ ∫
R2

(i fE(e)χ ′(σ )−σ f ′
E(e)χ ′(σ ))m2(e + iσ ) de dσ

+ iN

2π

∫
|σ |>η̃d

σχ (σ )
∫

f ′′
E (e)m2(e + iσ ) dσ de

+ iN

2π

∫ η̃d

−η̃d

σχ (σ )
∫

f ′′
E (e)m2(e + iσ ) dσ de.

By (4.3) and (4.7), for some constant C > 0, with probability 1 − N−D1 , we have∣∣∣ iN

2π

∫ η̃d

−η̃d

σχ (σ )
∫

f ′′
E (e)m2(e + iσ ) dσ de

∣∣∣≤ N−Cε0 . (4.12)

Recall (3.35) and (3.38). Similarly to Lemma 3.6, we first drop the diagonal terms. By (4.1),
with probability 1 − N−D1 , we have (recall (3.41))∫

I

∣∣∣N
π

G̃μν(E + iη) − x(E)
∣∣∣ dE ≤ N−1+Cε0

for some constant C > 0. Hence, by the mean value theorem, we need only prove that

lim
N→∞ max

δNk≤l≤(1−δ)Nk

max
μ,ν

[EV −E
G]θ

( ∫
I

x(E)q(Tr fE(Q1)) dE
)

= o(1).

Furthermore, by Taylor’s expansion, (4.12), and the definition of χ , it suffices to prove that

lim
N→∞ max

δNk≤l≤(1−δ)Nk

max
μ,ν

[EV −E
G]θ

( ∫
I

x(E)q(y(E) + ỹ(E)) dE
)

= o(1), (4.13)
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where

y(E) := N

2π

∫
R2

iσ f ′′
E (e)χ (σ )m2(e + iσ )1(|σ | ≥ η̃d) de dσ, (4.14)

ỹ(E) := N

2π

∫
R2

(i fE(e)χ ′(σ )−σ f ′
E(e)χ ′(σ ))m2(e + iσ ) de dσ . (4.15)

Next we will use the Green function comparison argument to prove (4.13). In the proof of
Lemma 3.5, we used the resolvent expansion until an order of four. However, due to the larger
bounds in (4.3), we will use the expansion

S = R − RVR + (RV)2R − (RV)3R + (RV)4R − (RV)5S. (4.16)

Recall (3.47) and (3.48). We have

[EV −E
G]θ

( ∫
I

x(E)q(y(E) + ỹ(E)) dE
)

=
γmax∑
γ=1

E

(
θ
(( ∫

I
xSq(yS + ỹS)

))
− θ

(( ∫
I

xTq(yT + ỹT )
)))

. (4.17)

We still use the same notation �x(E) := xS(E) − xR(E). We basically follow the approach of
Section 3.2, where the control (3.36) is replaced by (4.3). We first deal with x(E). Let �x(k)(E)
denote the summations of the terms in �x(E) containing k numbers of XG

iμ1
. Similarly to the

discussion of Lemma 3.7, recalling (3.52), by (1.2) and (4.3), with probability 1 − N−D1 , we
have

|�x(5)(E)| ≤ N−3/2+Cε0 , M + 1 ≤ k �= μ, ν ≤ M + N.

This yields

�x(E) =
4∑

p=1

�x(p)(E) + O(N−3/2+Cε0 ). (4.18)

Let

�ỹ(E) = ỹS(E) − ỹR(E), �m2 := mS
2 − mR

2 = 1

N

M+N∑
μ=M+1

(Sμμ − Rμμ).

We first deal with (4.15). By the definition of χ, we need to restrict 1
2 ≤ |σ | ≤ 1; hence, by

(2.17), with probability 1 − N−D1 , we have

max
μ

|Gμμ| ≤ Nε1 , max
μ�=ν

|Gμν | ≤ N−1/2+ε1 . (4.19)

By (3.50), (3.51), (4.16), and (4.19), with probability 1 − N−D1 , we have |�m(5)
2 | ≤ N−7/2+9ε1 .

This yields the decomposition

�ỹ(E) =
4∑

p=1

�ỹ(p)(E) + O(N−5/2+Cε0 ). (4.20)
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Next we will control (4.14). Define �y(E) := yS(E) − yR(E). By (3.50), (3.51) and (4.1), using
a similar discussion to that used for Equation (5.22) of [24], with probability 1 − N−D1 , for
σ ≥ η̃d, we have

|�m(5)
2 | ≤ N−5/2+Cε0 (N−1 + �2

σ ), (4.21)

where �σ := sup|e|≤τ−1 maxμ�=ν |Gμν(e + iσ )|, recalling that μ, ν ∈ I2. In order to estimate
�y(E), we integrate (4.14) by parts, first in e then in σ . By Equation (5.24) of [24], with
probability 1 − N−D1 , we have

∣∣∣ N

2π

∫
R2

iσ f ′′
E (e)χ (σ )�(5)m2(e + iσ )1(|σ | ≥ η̃d) de dσ

∣∣∣
≤ CN

∣∣∣ ∫ f ′
E(e)η̃d�m(5)

2 (e + iη̃d) de
∣∣∣+ CN

∣∣∣ ∫ f ′
E(e) de

∫ ∞

η̃d

χ ′(σ )σ�m(5)(e+iσ )
2 dσ

∣∣∣
+ CN

∣∣∣ ∫ f ′
E(e) de

∫ ∞

η̃d

χ (σ )�m(5)
2 (e + iσ ) dσ

∣∣∣. (4.22)

By (4.21), with probability 1 − N−D1 , the first two items of (4.22) can be easily bounded by
N−5/2+Cε0 . For the last item, by (4.21), (4.1), and a similar discussion to the equation below
[24, Equation (5.24)], it can be bounded by

CN
∫ 1

η̃d

( 1

Nσ
+ 1

(Nσ )2
+ 1

N

)
N−5/2+Cε0 ≤ N−5/2+Cε0 .

Hence, with probability 1 − N−D1 , we have the decomposition

�y(E) =
4∑

p=1

�y(p)(E) + O(N−5/2+Cε0 ). (4.23)

Similarly to the discussion of (4.18), (4.20), and (4.23), it is easy to check that, with probability
1 − N−D1 , we have∫

I
|�x(p)(E)| dE ≤ N−p/2+Cε0 , |�ỹ(p)(E)| ≤ N−p/2+Cε0 ,

|�y(p)(E)| ≤ N−p/2+Cε0 ,

(4.24)

where p = 1, 2, 3, 4 and C > 0 is some constant. Furthermore, by (4.1), with probability
1 − ND1 , we have ∫

I
|x(E)| dE ≤ NCε0 . (4.25)

Due to the similarity of (4.20) and (4.23), letting ȳ = y + ỹ, we have

�ȳ =
4∑

p=1

�ȳ(p)(E) + O(N−5/2+Cε0 ). (4.26)
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By (4.24), (4.26), and Taylor’s expansion, we have

q(ȳS) = q(ȳR) + q′(ȳR)

( 4∑
p=1

�ȳ(p)(E)

)
+ 1

2
q′′(ȳR)

( 3∑
p=1

�ȳ(p)(E)

)2

+ 1

6
q(3)(ȳR)

( 2∑
p=1

�ȳ(p)(E)

)3

+ 1

24
q(4)(ȳR)

(
�ȳ(1)(E)

)4

+ o(N−2). (4.27)

By (4.4), we have

θ
( ∫

I
xSq(ȳS) dE

)
− θ

( ∫
I

xRq(ȳR) dE
)

=
4∑

s=1

1

s!θ
(s)
( ∫

I
xRq(ȳR) dE

)[ ∫
I

xSq(ȳS) dE −
∫

I
xRq(ȳR)dE

]s + o(N−2). (4.28)

Inserting xS = xR +∑4
p=1 �x(p) and (4.27) into (4.28), using the partial expectation argument

as in Section 3.2, by (4.4), (4.24), and (4.25), we find that there exists a random variable B that
depends on the randomness only through O and the first four moments of XG

iμ1
such that

Eθ
( ∫

I
xSq(y + ỹ)S dE

)
−Eθ

( ∫
I

xRq(y + ỹ)R dE
)

= B + o(N−2).

Hence, together with (4.17), this proves (4.13), which implies (4.10). This completes
our proof. �
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