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Abstract

Background. Multiple treatments are effective for major depressive disorder (MDD), but the
outcomes of each treatment vary broadly among individuals. Accurate prediction of outcomes
is needed to help select a treatment that is likely to work for a given person. We aim to exam-
ine the performance of machine learning methods in delivering replicable predictions of treat-
ment outcomes.
Methods. Of 7732 non-duplicate records identified through literature search, we retained 59
eligible reports and extracted data on sample, treatment, predictors, machine learning method,
and treatment outcome prediction. A minimum sample size of 100 and an adequate validation
method were used to identify adequate-quality studies. The effects of study features on predic-
tion accuracy were tested with mixed-effects models. Fifty-four of the studies provided accur-
acy estimates or other estimates that allowed calculation of balanced accuracy of predicting
outcomes of treatment.
Results. Eight adequate-quality studies reported a mean accuracy of 0.63 [95% confidence
interval (CI) 0.56–0.71], which was significantly lower than a mean accuracy of 0.75
(95% CI 0.72–0.78) in the other 46 studies. Among the adequate-quality studies, accuracies
were higher when predicting treatment resistance (0.69) and lower when predicting remission
(0.60) or response (0.56). The choice of machine learning method, feature selection, and the
ratio of features to individuals were not associated with reported accuracy.
Conclusions. The negative relationship between study quality and prediction accuracy,
combined with a lack of independent replication, invites caution when evaluating the poten-
tial of machine learning applications for personalizing the treatment of depression.

Introduction

Major depression disorder (MDD) affects 280 million people globally and ranks among the
top reasons for disability (World Health Organization, 2021). Dozens of antidepressants, aug-
mentation pharmacological agents, psychological therapies, and brain stimulation procedures
are effective for depression (Cipriani et al., 2018; Kennedy et al., 2016; Milev et al., 2016;
Parikh et al., 2016), but the efficacy of these treatments varies across individuals. Fewer
than half of people with MDD achieve remission with the first treatment (Trivedi et al.,
2006). Many have to try multiple treatments before finding an effective one (Malone, 2007;
Rush et al., 2006). Each treatment trial takes between 6 and 12 weeks and the delays are asso-
ciated with the risk of adverse outcomes, including loss of employment and suicide (Al-Harbi,
2012; Crown et al., 2002). If we could predict response to a specific treatment from individual
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characteristics, we could reduce the duration of depression and
improve long-term functional outcomes (Oluboka et al., 2018).
Multiple features have been identified as potential predictors of
treatment outcomes (Fava, 2009; McGrath et al., 2013; Uher
et al., 2012a; Uher, Tansey, Malki, & Perlis, 2012b; Zisook et al.,
2007). None of them has been adopted for treatment selection
in clinical practice (Perlis, 2016). Reasons for the lack of adoption
may be that no single characteristic provides a prediction that is
accurate enough to be clinically meaningful or differential predic-
tion of outcomes with alternative treatments (Simon & Perlis,
2010). Since depression is a complex and heterogeneous disorder
(Fried, 2017; Wray et al., 2018), multiple features will likely have
to be considered in a multivariate model to allow accurate predic-
tion of treatment outcomes (Gillan & Whelan, 2017; Kautzky
et al., 2017; Kessler, 2018).

Machine learning is defined as a combination of algorithms
that explore how computer systems can learn rules from multiple
examples with no need for explicit programming (Samuel, 2000).
The computer gradually improves its performance of a task
through learning from an increasing amount of data. Machine
learning methods can build a model that classifies individuals
into predefined categories (e.g. treatment response) or estimates
a level of a continuous concept (e.g. degree of reduction in depres-
sion severity). The last decade has seen an expansion of machine
learning applications in health care, including the prediction of
depression treatment outcomes (Lee et al., 2018). In this article,
we will synthesize and critically examine the applications of
machine learning to depression treatment outcome prediction,
evaluate the potential of these methods to inform treatment selec-
tion, and propose directions for further research.

Methods

Literature search

We conducted a search of PubMed, Google Scholar,
ScienceDirect, and PsychINFO following the PRISMA guidelines
(Moher et al., 2009), for articles and reports on MDD, treatment
outcomes, and machine learning, published from database incep-
tion to 12 October 2020. We used a combination of terms tagging
machine learning (statistical learning OR machine learning OR
predictive analytics OR deep learning) with terms tagging depres-
sion treatment [antidepressant OR depression OR major depres-
sive disorder (MDD)] and its outcomes (treatment outcome OR
response OR remission).

Two study authors (M.S. and R.U.) screened the studies and
applied the following inclusion criteria: (1) participants with a
diagnosis of MDD; (2) clinical assessment with rating scales
before and after treatment or historical assessment of treatment
resistance; (3) use of a validate machine learning method. The lit-
erature search and selection of eligible reports are shown in Fig. 1.

Data extraction

We extracted the size of training, testing, and validation datasets,
type of treatment, type and number of predictor variables (clinical
variables, demographical variables, treatment history, rating scales
for depression, etc.), outcome definition [response, remission,
treatment-resistant depression (TRD)], methods used for pre-
diction, missing data, feature selection, validation methods
(leave-n-out, k-fold cross-validation, nested cross-validation,
holdout or external validation). We recorded the results as

accuracy, balanced accuracy, or area under the receiver operating
characteristics curve. We transformed available results to the com-
mon metrics of balanced accuracy (the average of the reported
sensitivity and specificity), which is independent of the propor-
tion of individuals with an outcome of interest.

Study quality assessment

In the absence of a validated quality measure for machine learning
studies, we applied minimal requirements for aspects of method-
ology that have been linked to the replicability of results: sample
size and validation procedure. Larger samples are more likely to
generate replicable results because they reduce the problems of
dimensionality and underfitting (Vabalas, Gowen, Poliakoff, &
Casson, 2019). Estimates of the minimal sample size for a
machine learning study range from 100 to 300 (Beleites,
Neugebauer, Bocklitz, Krafft, & Popp, 2013; Luedtke, Sadikova,
& Kessler, 2019). A validation procedure that separates training
and testing sets is essential to avoid overfitting. Non-nested cross-
validation procedures where feature selection and/or parameter
tuning occur in the same loop as predictive accuracy test leads
to overfitting (Cawley & Talbot, 2010). Therefore, we required
either nested cross-validation or an external validation in a held-
out sample with feature selection separated from prediction. We
designated studies with a sample size of 100 or more and adequate
validation methods as ‘adequate-quality’. In addition, a detailed
quality assessment following published guidelines (Yusuf et al.,
2020) is reported in Supplementary Table S1. All of the adequate-
quality papers reported on data sources, data split method, etc.,
however, none of them reported on the distribution of treatment
outcome scores. Moreover, none of the adequate-quality studies
used reporting guidelines.

Data analysis

Most studies used more than one machine learning method and
reported multiple estimates of predictive accuracy. We used linear
mixed-effects models to estimate prediction accuracy and test the
effects of methodological features while accounting for the non-
independence of multiple estimates with a random effect of the
study. In data visualization (e.g. Fig. 2), we plot a single mean esti-
mate of balanced accuracy for each study.

Results

Literature search results

Our literature search retrieved 7732 non-duplicate records. We
retained 59 eligible reports that matched our inclusion criteria
(Fig. 1). These 59 eligible studies varied in focus, size, and method.
The predicted outcomes were remission (19 studies), response (35
studies), and TRD (six studies). The number of individuals ranged
from 6 to 36 902 (mean 410, median 115). The predictive variables
included demographic, clinical, cognitive, neuroimaging, and
molecular genetic variables. The number of features used in predic-
tion ranged from 1 to 4 241 701 (mean 131 660, median 92.5). The
ratio of participants to features ranged from 1:1432 to 3690:1.

Accuracy of prediction

Fifty-four of the 59 eligible studies provided accuracy or other
estimates (sensitivity and specificity) that allowed the calculation
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of balanced accuracy. Across these studies, we extracted 364 esti-
mates of balanced accuracy, ranging from 0.39 to 1.00. Mean
accuracy across estimates within study ranged from 0.48 to 0.91
(mean 0.74, 95% CI 0.71–0.77).

Treatments

The treatments included antidepressant medication (36 studies
(61%)), neurostimulation (18 studies (32%)), psychological treat-
ments (four studies (7%)), and other treatments (exercise, psilo-
cybin, blended treatment delivery model; three studies (5%)).
Two studies used a combination of two treatment modalities

(psychotherapy and antidepressants, neurostimulation, and anti-
depressant) (Guilloux et al., 2015; Kambeitz et al., 2020).

The outcome of neurostimulation treatment was predicted
with greater accuracy (mean 0.79, 95% CI 0.74–0.84) than
treatment with antidepressants (mean accuracy 0.70, 95% CI
0.67–0.74) or other treatments (mean accuracy 0.69, 95% CI
0.65–0.73). Most studies predicted outcomes within a single
group of participants who received the same treatment. Three
studies probed the treatment-specificity of outcome prediction
through testing predictive models in groups of participants who
received either the same or a different treatment (Chekroud
et al., 2016; Iniesta et al., 2018; Kambeitz et al., 2020). In one

Fig. 1. Literature search and selection of eligible recoreds for the systematic review and meta-analysis.
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study, a model based on clinical variables developed in a study of
treatment with the antidepressant citalopram significantly pre-
dicted outcomes among individuals who received citalopram,
but not among those who received a combination of venlafaxine
and mirtazapine (Chekroud et al., 2016). Another study used a
combination of clinical and genetic variables to derive two models
predicting outcomes with escitalopram and nortriptyline respect-
ively, which demonstrated treatment-specificity in a held-out test
sample (Iniesta et al., 2018). A third study used clinical and
cognitive variables to develop models predicting outcomes of
antidepressant and neurostimulation treatment and demonstrated
the specificity of predicting escitalopram vs. transcranial direct
current stimulation (tDCS) outcomes (Kambeitz et al., 2020). In
summary, while most studies investigated only one treatment
group, three studies suggest that multivariate prediction of out-
come is treatment-specific (Chekroud et al., 2016; Iniesta et al.,
2018; Kambeitz et al., 2020).

Features contributing to the prediction

The eligible studies used a variety of features as predictors of
depression treatment outcomes. Most used neuroimaging (n =
35), followed by clinical and demographic variables (n = 30).
Relatively few studies used molecular (n = 8), and cognitive (n = 6)
measures. Eighteen studies combined predictors from two modal-
ities: most commonly neuroimaging and clinical (n = 9) (Bartlett
et al., 2018; Jaworska, De La Salle, Ibrahim, Blier, & Knott, 2019).
One study employed a combination of predictors from three
modalities of clinical, cognitive, and neuroimaging features
(Patel et al., 2015). For further details, please see Supplementary
Tables S2 and S4.

There was a significant relationship between feature modality
and sample size. Studies that used neuroimaging had small sam-
ples (mean 85, median 50 individuals), studies using genetic vari-
ables had intermediate sample sizes (mean 307, median 254), and
studies using clinical variables had the largest samples (mean 950,
median 276). All studies with data on 1000 or more individuals
were limited to clinical and demographic variables (Cepeda
et al., 2018; Chekroud et al., 2016; Delgadillo & Salas Duhne,
2020; Nie, Vairavan, Narayan, Ye, & Li, 2018; Perlis, 2013).

There was a significant relationship between data modality
and reported balanced accuracy. Studies using neuroimaging or
genetic data reported significantly higher balanced accuracies
(β = 0.13, 95% CI 0.07–0.18, p < 0.001; β = 0.13, 95% CI 0.08–
0.18, p < 0.001, respectively) than studies using clinical and
demographic variables.

No study tested the added value of neuroimaging to clinical
variables within the same sample. One analysis reported improved
prediction of treatment outcome with the inclusion of a large
number of genetic variables compared to using clinical variables
alone (Iniesta, Stahl, & McGuffin, 2016; Iniesta et al., 2018), but
a study that used genetic information without clinical features
reported prediction not significantly better than chance
(Maciukiewicz et al., 2018). Overall, the use of data from multiple
modalities was not associated with reported prediction accuracy
(β = 0.01, 95% CI −0.02 to 0.04, p = 0.641).

A minority of studies reported on the contribution of specific
features. In three analyses of the same large trial sample, initial
depression severity and race were among the variables that con-
tributed the most to the predictive models (Chekroud et al.,
2016; Nie et al., 2018; Perlis, 2013). Symptoms of reduced interest
and activity have also ranked among the most strongly

Fig. 2. Balanced accuracy and participant-to-feature ratio in published machine learning studies of outcome prediction in the treatment of MDD. The X-axis plots
the ratio of participants to predictive features. Y-axis plots the mean balanced accuracy within each study. Studies predicting response, remission, and TRD are
plotted as circles, diamonds, and triangles respectively. Adequate-quality studies are highlighted with large, filled symbols. The dark gray horizontal dashed line
shows the mean balanced accuracy of the eight adequate-quality studies. The pale gray horizontal dashed line shows the average balanced accuracy of the other
45 studies.
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contributing variables, consistent with the results of univariate
analyses (Iniesta et al., 2016, 2018; Uher et al., 2012a, 2012b,
2020).

The number of features used for prediction and the
feature-to-observation ratio were unrelated to the reported accur-
acy of prediction (Fig. 2).

Treatment of missing values

In real-world data, missing values appear due to the loss of par-
ticipants to follow-up, missed assessments, and intentional or
accidental failure to complete items or instruments. Depending
on the relationship of missing values to dependent and independ-
ent variables of interest, the mechanisms underlying missing
values can be classified as missing completely at random
(MCAR), missing at random (MAR), and missing not at random
(MNAR). Many machine learning methods do not support miss-
ing values and, consequently, investigators take various options to
deal with missing values outside the machine learning algorithms.
Ways of handling missing data in machine learning studies
include list-wise deletion, replacing with mean/median/mode,
predicting the missing values, or using algorithms that support
missing values imputation, such as k-nearest neighborhood and
random forest. With an increasing number of features, the pro-
portion of individuals with missing data points increases, leading
to the loss of a substantial part of the sample at the cost of
reduced power. Besides, the deletion of observations with missing
values reduces external validity unless the data are MCAR.
Imputation of missing values with the prediction by machine
learning methods performs better than replacing with mean/
median/mode, but care has to be taken to completely separate
the imputation between training and testing sets (Bertsimas,
Pawlowski, & Zhuo, 2018; Schmitt, 2015; Zhang, 2016). Among
the eligible articles, the majority of studies did not address the
handling of missing values (43 studies) and other studies used
case-wise deletion or mean/mode imputation. Only one study
used a machine-learning-based method of handling missing
data, the bagged tree imputation (Iniesta et al., 2018).
Supplementary Tables S3 and S4 provide detailed information
on the treatment of missing values.

Feature selection

Feature selection helps avoid the curse of dimensionality and
reduces training time by decreasing the number of features. It
also provides information on feature importance and increases
generalizability by reducing overfitting (Bermingham et al.,
2015; James, Witten, Hastie, & Tibishirani, 2013). Feature selec-
tion methods are divided into three main classes: wrapper, filter,
and embedded (Guyon, Elisseeff, & Kaelbling, 2003). Wrapper
methods employ a predictive model, including the interactions
between variables. However, these methods risk overfitting if
the number of observations is small and is computationally inten-
sive if the number of variables is large. Filter methods are efficient
in calculation time, but often select redundant variables as they do
not consider the relationship between features. Embedded meth-
ods combine the advantages of wrapper and filter methods.
Irrespective of which feature selection method is used, it must
be implemented in the training set only to avoid overfitting. Of
the 59 included studies, the majority (n = 33) did not use any fea-
ture selection. We found no relationship between the feature

selection method and reported prediction accuracy. For details,
please see Supplementary Figs S1 and S2.

Choice of machine learning method

The majority of included studies reported a single machine learn-
ing method, but 10 compared multiple methods (Supplementary
Fig. S6). The most used methods were regression-based models
and support vector machines (Supplementary Fig. S7). Only
one study used a deep learning method to predict treatment
response (Lin et al., 2018). Within a study, the various methods
often gave moderately consistent estimates of balanced accuracy
(intraclass correlation 0.62, 95% CI 0.51–0.73). Across the
included studies, we found no systematic relationship between
the type of machine learning method and the balanced accuracy
(Supplementary Tables S4 and S5).

Validation procedures

Validation procedures in machine learning assess the perform-
ance of the classification model and its stability across data sets.
This is typically achieved by repeatedly dividing the available
observations into multiple non-overlapping training and testing
sets, an approach known as cross-validation. Details of cross-
validation determine the stability of results and the degree of pro-
tection against overfitting. Methods with a large overlap between
training datasets (e.g. leave-n-out cross-validation) are known to
provide less stable estimates than methods with random subsamp-
ling (e.g. k-fold cross-validation) whereas the former is less-biased
than the latter assuming all other factors are controlled i.e. this is
a bias-variance trade-off (Kuhn & Johnson, 2013). Overfitting will
occur if the imputation of missing values or feature selection is
performed with the entire dataset because the information from
the testing set is used in feature selection. Significant overfitting
also occurs when feature selection is performed in the same
cycle of cross-validation as parameter tuning, because of informa-
tion leakage between feature selection and parameter tuning
(Cawley & Talbot, 2010). Nested cross-validation offers adequate
protection against overfitting through separating feature selection
from model parameter tuning of the inner and outer cross-
validation loops. Another method that offers an adequate test of
generalizability is holdout validation, which uses an additional
‘unseen’ testing dataset that was not used in any way in the
model development. Of the 59 eligible studies, 18 reported
described validation methods with adequate separation of training
and testing sets, including nested cross-validation, external valid-
ation in a holdout and/or a separately collected test dataset. The
remaining 41 studies used validation methods that may not
adequately protect against overfittings (Supplementary Table S4
and Fig. S8).

Study quality and the accuracy of prediction

We defined study quality as a combination of an adequate sample
size of 100 or more observations and an adequate validation
method with complete separation of training and testing sets at
all stages including feature selection (e.g. nested cross-validation
or external validation). Of the 59 included studies, 26 had 100
or more participants and 17 reported adequate validation meth-
ods. The eight studies that had more than 100 participants and
reported adequate validation methods were designated as
adequate-quality studies (Table 1, Table 2, and Supplementary
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Table 1. Methods for construction of the machine learning model of the eight adequate-quality papers

Study reference Predictor type

Max n of
predictors
used in the

model Prediction method Validation method Variable selection
Additional
methods

Missing data
imputation Outcome

Treatment
procedure

Athreya et al.
(2019)

Pharmacogenomic,
clinical

7 Random forest Nested cross-validation
(inner 10-fold
cross-validation, outer
5-fold cross-validation),
external validation

Clustering No missing data Response Anti-depressant

Cepeda et al.
(2018)

Treatment history,
administrative

10 Decision tree External validation,
cross-validation

Resistance Anti-depressant

Chekroud et al.
(2016)

Clinical 25 Gradient boosting
machine

10-fold cross-validation,
external validation

Elastic net model Including only
patients without
missing
observations

Remission Anti-depressant

Etkin et al.
(2015)

Cognitive emotional
biomarkers, clinical,
demographical

Logistic regression Leave-one-out
cross-validation on
bootstrap subsample,
external validation

Linear
Discriminant
Analysis (LDA)

Were excluded Remission Anti-depressant

Iniesta et al.
(2018)

Genetic, clinical 20 Elastic net regularized
regression

5-fold cross-validation
and holdout external
replication

CAT score Bagged tree
nonparametric
method

Remission Anti-depressant

Maciukiewicz
et al. (2018)

Genotype 38 Support-vector
machine (SVM),
classification and
regression trees
(CART)

Nested cross-validation
(inner 10-fold
cross-validation, outer
5-fold cross-validation)

Logistic regression,
lasso regression

Excluded for
predictors, for
outcome LOCF
was used

Response Anti-depressant

Nie et al. (2018) Clinical and
demographic

700 Random forest,
Gradient boosting
decision tree,
XGBoost, l2 penalized
logistic regression,
elastic net

10-fold cross-validation,
external validation

k-means clustering
followed by χ2 test,
elastic net

Resistance Anti-depressant

Perlis (2013) Clinical, demographic 15 Logistic regression,
random forest, Naive
Bayes classifier, SVM

10-fold cross-validation,
external validation

Cross-validation in
logistic regression
model

Mean and mode
imputation

Resistance Anti-depressant
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Table S4). The adequate-quality designation was significantly
negatively related to reported accuracy (b =−0.05, 95% CI
−0.10 to −0.004, p = 0.035). Among the adequate-quality studies,
the mean balanced accuracy was 0.63 (95% CI 0.56–0.71). Among
the remaining 46 studies, the mean balanced accuracy was 0.75
(95% CI 0.72–0.78). The difference in accuracy between adequate-
quality and other studies was primarily driven by sample size. The
33 studies with samples smaller than 100 reported a mean
balanced accuracy of 0.76 (95% CI 0.73–0.80). The 21 studies
with samples of 100 or greater reported a mean balanced accuracy
of 0.68 (0.63–0.72). Sample size greater than 100 was significantly
negatively related to reported accuracy (b =−0.05; 95% CI −0.08
to −0.01, p = 0.005). The relationship between adequate validation
method and reported balanced accuracy was not significant
(−0.02, 95% CI −0.07 to 0.03, p = 0.469). Moreover, the adequate-
quality studies reported the following range of accuracy for each
depression treatment outcome (the confidence intervals of these
estimates are relatively broad because of the small number of
contributing studies):

(a) response with mean balanced accuracy 0.56 (95% CI 0.43–
0.68) based on 17 estimates from three studies;

(b) remission with mean balanced accuracy 0.60 (95% CI 0.51–
0.70) based on 16 estimates from five studies;

(c) treatment resistance with mean balanced accuracy 0.69 (95%
CI 0.60–0.77) based on 26 estimates from three studies.

Replicability of classification

The likelihood that a prediction will generalize to individuals who
were not included in model derivation can be inferred from
differences in prediction accuracy between internal cross-
validation and external validation or from independent replica-
tion in new samples. Only five studies reported accuracy from
both internal validation and external validation (Athreya et al.,
2019; Browning et al., 2019; Chekroud et al., 2016; Crane et al.,
2017; Guilloux et al., 2015). In these studies, the mean balanced
accuracy in internal validation was 0.77 and the mean balanced
accuracy in external validation was 0.69. The relatively small
internal−external drop in accuracy would suggest adequate gener-
alizability, but only a small minority of studies reported relevant
data. The preferred way to assess generalizability is independent
replication. We found only one attempt at replication in the pub-
lished literature. One study (Browning et al., 2021) replicated pre-
vious work by the same authors predicting antidepressant
treatment outcome from measures of symptoms and attentional
bias after 1 week of treatment (Browning et al., 2019). The predic-
tion in replication was statistically significant, but the accuracy of
the prediction was reduced from 0.80 in the first study to 0.67 in
replication (Browning et al., 2019, 2021).

There is an available benchmark dataset that researchers can
use to test the generalizability of their algorithms, for example,
the Sequenced Treatment Alternatives to Relieve Depression
(STAR*D) (Sinyor, Schaffer, & Levitt, 2010).

Discussion

This review synthesizes the rapidly expanding literature on the
implementation of machine learning to predict treatment out-
comes in depression. Some studies reported promising results,
including increased prediction accuracy with the inclusion ofTa
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multi-modal data, treatment-specific predictions, and positive
results from external validation data sets. However, a pattern
observed across studies suggests that smaller studies and studies
using inadequate validation methods tend to report higher pre-
dictive accuracy. This systematic relationship between method
and result, coupled with a lack of independent replication, sug-
gests caution in interpreting existing results and the need for care-
ful methodological development.

Several studies suggest that it is possible to derive a multivari-
ate predictive model that is both replicable and treatment-specific.
A model developed in a study of nearly 2000 participants based
on demographic and clinical variables significantly predicted out-
comes in an independent sample of 151 individuals from a study
using similar treatment and assessment procedures (Chekroud
et al., 2016). While the accuracy of less than 0.60 may not be suf-
ficient for clinical application (Chekroud et al., 2016), other stud-
ies suggest that prediction may be improved if data from more
modalities are included. In a study of 280 individuals randomly
allocated to one of two antidepressant medications, a combination
of clinical and molecular genetic features allowed the develop-
ment of drug-specific prediction models that replicated in a held-
out sample of 150 individuals with prediction accuracy over 0.70
(Iniesta et al., 2018). In both studies, the algorithms predicted
outcomes in individuals treated with the same type of antidepres-
sant but not among individuals treated with a different type of
antidepressant than was used in model development (Chekroud
et al., 2016; Iniesta et al., 2018). These promising results of two
adequate-quality studies suggest that treatment-specific prediction
can be achieved and may be applied to a personalized selection of
treatment (Kessler, 2018). However, only a minority of reviewed
studies included multiple treatments, limiting the application of
results to personalized treatment selection.

While the results of individual studies may be promising, it is
important to examine patterns in the literature and consistency
across studies. Notably, the machine learning method, feature
selection, or features-to-observations ratio were not associated
with the reported prediction accuracy. Instead, the sample size
and validation design proved essential to the understanding of
differences among published studies. We found that some of
the highest accuracy estimates had been reported from studies
with fewer than 100 participants and/or studies using methods
prone to overfitting. While an individual study with fewer than
100 participants may well achieve replicable results, a systematic
relationship between study size or quality, and the strength of
reported results may indicate bias. The distribution of study size
and quality may be partly a result of an early stage in the applica-
tions of machine learning methodology to clinical problems and
lack of access to large datasets. The largest available datasets are
limited to demographic and clinical data (Cepeda et al., 2018;
Chekroud et al., 2016; Delgadillo & Salas Duhne, 2020; Nie
et al., 2018; Perlis, 2013). Therefore, it is not possible to separate
the effect of bias due to low study quality from the potential
advantages of additional data modalities. In the next decade, it
will be essential to establish large datasets with optimized multi-
modal assessments that will allow examining the contribution of
biomarkers to prediction with adequate methodology.

The success of any machine learning model is defined by its
ability to generalize and replicate on a truly independent sample.
In recent years, the inability to reproduce the results of many
studies has turned into a growing concern among researchers
(Baker, 2016). In this context, it is worrying that no full independ-
ent replication attempt has been reported for machine learning

prediction of depression treatment outcomes. The findings of
the present review should make replication a priority for the
field of depression treatment outcome prediction.

Criteria for the applicability of machine learning approaches in
healthcare

The recent years have seen rapid growth in the publications of
studies using machine learning approaches in the prediction of
treatment outcomes. However, the methodological rigor of these
studies is variable. The present review raises a concern that highly
optimistic results might be correlated with insufficient scrutiny of
machine learning procedures. The applicability of machine learn-
ing algorithms in healthcare will depend on multiple factors,
including predictive performance, robustness in calibration across
a variety of samples, and proof of an impact on relevant outcomes
in practice. Tutorials on how to develop an efficient and reliable
machine learning algorithm are now available (Faes et al., 2020;
Tohka & van Gils, 2021). In addition, the essential role of using
an external validation dataset to prevent overfitting in high-
dimensional classification algorithms should be taken into con-
sideration (Park & Han, 2018). Consensus criteria and checklists
are now available that allow assessing the adequacy of predictive
model development and its applicability (Scott, Carter, &
Coiera, 2021; Vollmer et al., 2020).

Future directions

The next decade is expected to see an expansion in open data shar-
ing. Coupled with mature machine learning methodology, the avail-
ability of large samples with multimodal measurements will allow
separating potential information advantage of adding objective
measurement modalities, such as neuroimaging, from publication
bias. New data collection in large samples with multiple alternative
treatments will improve the clinical applicability of results.
Replicability and generalizability are essential features of clinical
research and prerequisite to implementation. External validation of
a predictive algorithm in a sample that was not available at the
time of model development is needed to prove that a machine learn-
ing prediction model is reproducible and generalizable.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291721003871.
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