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Abstract We decompose the topological stability (in the sense of P. Walters) into the corresponding
notion for points. Indeed, we define a topologically stable point of a homeomorphism f as a point x such
that for any C0-perturbation g of f there is a continuous semiconjugation defined on the g-orbit closure
of x which tends to the identity as g tends to f . We obtain some properties of the topologically stable
points, including preservation under conjugacy, vanishing for minimal homeomorphisms on compact
manifolds, the fact that topologically stable chain recurrent points belong to the periodic point closure,
and that the chain recurrent set coincides with the closure of the periodic points when all points are
topologically stable. Next, we show that the topologically stable points of an expansive homeomorphism
of a compact manifold are precisely the shadowable ones. Moreover, an expansive homeomorphism of a
compact manifold is topologically stable if and only if every point is topologically stable. Afterwards,
we prove that a pointwise recurrent homeomorphism of a compact manifold has no topologically stable
points. Finally, we prove that every chain transitive homeomorphism with a topologically stable point
of a compact manifold has the pseudo-orbit tracing property. Therefore, a chain transitive expansive
homeomorphism of a compact manifold is topologically stable if and only if it has a topologically stable
point.
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1. Introduction

There are concepts in dynamics admitting pointwise counterparts. This is the case for the
equicontinuous, expansive, distal and persistent homeomorphisms having equicontinuous,
expansive [5,11], distal [3] and persistent points [8] as such counterparts. More recently,
the shadowable points appeared as the pointwise counterpart for the pseudo-orbit trac-
ing property (POTP) [9]. A further example is the entropy point corresponding to the
notion of topological entropy [15]. In light of these examples, it is natural to believe that
pointwise versions of other dynamical notions can be found.
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In this paper, we suggest a definition of topologically stable point for homeomorphisms
on metric spaces. Roughly, we will say that x ∈ X is topologically stable for a homeo-
morphism f : X → X of a metric space X if for any C0-perturbation g of f there is a
continuous semiconjugation defined in the g-orbit closure of x which tends to the identity
as g tends to f . We prove that the set of topologically stable points is f -invariant and
preserved under conjugation. Moreover, such a set is empty for minimal homeomorphisms
on compact manifolds. The chain recurrent points which are topologically stable belong
to the periodic point closure. In particular, the chain recurrent set coincides with the
closure of the periodic points when all points are topologically stable. Next, we show that
the topologically stable points of an expansive homeomorphism of a compact manifold
are precisely the shadowable ones. Moreover, an expansive homeomorphism of a compact
manifold is topologically stable if and only if every point is topologically stable. After-
wards, we prove that a pointwise recurrent homeomorphism of a compact manifold has no
topologically stable points. Finally, we prove that every chain transitive homeomorphism
with a topologically stable point of a compact manifold has the POTP. Therefore, a chain
transitive expansive homeomorphism of a compact manifold is topologically stable if and
only if it has a topologically stable point.

This paper is organized as follows. In § 2 we state the definition of a topologically stable
point, along with some examples and basic properties. In § 3 we state the main results of
this paper. These results relate the topologically stable points to the shadowable points
and the expansive systems.

2. Topologically stable points: definition, examples and properties

Denote by X a metric space and by f : X → X a homeomorphism. The C0-distance
between maps l, r : A ⊆ X → X is defined by

dC0(l, r) = sup
x∈A

d(l(x), r(x)).

Denote by IX the identity of X.

Definition 2.1. We say that f is topologically stable if for every ε > 0 there is
δ > 0 such that for every homeomorphism g : X → X satisfying dC0(f, g) ≤ δ there is
a continuous map k : X → X such that dC0(k, IX) ≤ ε and f ◦ k = k ◦ g.

The main purpose of this paper is to introduce a pointwise version of this definition.
For this we recall some basic concepts. Let Of (x) = {fn(x) : n ∈ Z} be the orbit of x ∈ X

under f , B the closure of B, Of (x) the orbit closure and iB the inclusion B ↪→ X of a
subset B ⊆ X.

Our definition of a topologically stable point starts with the following simple remark.

Remark 2.2. A necessary condition for a homeomorphism f : X → X of a metric
space X to be topologically stable is that every x ∈ X satisfies the following property.

(P) For every ε > 0 there is δx > 0 such that for every homeomorphism g : X → X
satisfying dC0(f, g) ≤ δx there is a continuous map h : Og(x) → X such that
dC0(h, i

Og(x)
) ≤ ε and f ◦ h = h ◦ g.
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Proof. Fix x ∈ X, ε > 0 and take δx = δ where δ > 0 is given by the topological sta-
bility of f for this ε. If g : X → X is a homeomorphism with dC0(f, g) ≤ δx, then there
is k : X → X continuous such that dC0(k, IX) ≤ ε and f ◦ k = k ◦ g. By taking h as the
restriction k|

Og(x)
of k to Og(x), we obtain (P). �

This remark motivates the following definition.

Definition 2.3. We say that x ∈ X is a topologically stable point of a homeomorphism
f : X → X of a metric space X if x satisfies (P). Hereafter, T (f) will denote the set of
topologically stable points of f .

Let us present some related examples.

Example 2.4. By Remark 2.2, if f is topologically stable, then every point is. We do
not know whether the converse holds. Corollary 3.5 gives some insight into this question.

Example 2.5. For every metric space X, one has that T (IX) consists of those
points x ∈ X satisfying the following property: for every ε > 0 there is δ > 0 such that
d(x, gn(x)) ≤ ε for every n ∈ Z for every homeomorphism g : X → X with dC0(IX , g) ≤ δ.
This clearly implies that T (IX) contains the isolated points of X. It also implies that
T (IX) = ∅ when X is a manifold. The latter assertion will be generalized in Theorem 3.6.

Example 2.6. Suppose that X is a metric space and that x0 ∈ X is a fixed point for
every homeomorphism f : X → X. Then x0 ∈ T (f) for every homeomorphism f : X →
X. By applying this to the union X of two circles with a common point x0 we have that
T (IX) = {x0}. Hence, there are homeomorphisms on uncountable compact metric spaces
exhibiting a unique topologically stable point.

By the previous example, the set of topologically stable points may not be open. The
following example shows that such a set may also not be closed.

Example 2.7. There is a compact metric space X and a homeomorphism f : X → X
such that T (f) is not closed.

Proof. Define X = S(1) ∪ (
⋃

n∈N+ S(1 + (1/n))) where S(r) is a circle of radius r of
R

2 centred at (0, 0). Define f : X → X by setting fn = f |S(1+(1/n)) to be a Morse–Smale
diffeomorphism with 2 + 4(n − 1) alternating hyperbolic fixed points and f |S(1) = IS(1).
Equipping X with the Euclidean metric, we obtain that X is a compact metric space and
that f : X → X is a homeomorphism. Now, for every x ∈ S(1 + (1/n)) and n ∈ N

+ there
is δx > 0 such that every homeomorphism g : X → X with dC0(f, g) ≤ δx satisfies g(S(1 +
(1/n))) = S(1 + (1/n)). Since the Morse–Smale diffeomorphisms are topologically stable
[14], this implies that x ∈ T (f). On the other hand, by slightly perturbing f we get a
homeomorphism g : X → X close to f such that g|S(1) is an irrational rotation. From this
we get S(1) ∩ T (f) = ∅, proving T (f) =

⋃
n∈N+ S(1 + (1/n)). Therefore, every x ∈ S(1)

lies in Cl(T (f)) \ T (f) and so T (f) is not closed. �

To state properties of T (f) we establish some short definitions. Let f : X → X be a
homeomorphism of a metric space X. We say that f is minimal if Of (x) is dense in X
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for every x ∈ X. We say that x ∈ X is periodic if fn(x) = x for some positive integer n.
Moreover, x is closable (or satisfies the C0-closing lemma [7]) if for every δ > 0 there
is a homeomorphism g : X → X with dC0(f, g) ≤ δ such that x is a periodic point of g.
Denote by CL(f) the set of closable points and by Per(f) the set of periodic points. The
interior of a subset B is denoted by Int(B). We say that B is invariant if f(B) = B.
Given ε > 0, a finite sequence {x0, . . . , xk} is an ε-chain from x to y if x0 = x, xk = y
and d(f(xn), xn+1) ≤ ε for every 0 ≤ n ≤ k. We say that x is chain recurrent if for every
ε there is an ε-chain from x to itself. The chain recurrent set is the set of chain recurrent
points denoted by CR(f).

The main result of this section collects some basic properties of T (f).

Theorem 2.8. The following properties hold for every homeomorphism f : X → X of
every compact metric space X.

1. T (f−1) = T (f).

2. If H : X → Y is a homeomorphism of metric spaces, then T (H ◦ f ◦ H−1) =
H(T (f)).

3. T (fk) is an invariant set of f , ∀k ∈ Z. In particular, the set of topologically stable
points is invariant.

4. CL(f) ∩ T (f) ⊆ Per(f). In particular, if X is infinite and f minimal, then CL(f) ∩
T (f) = ∅. Consequently, a minimal homeomorphism of a compact manifold has no
topologically stable points.

5. If X is infinite and f can be C0 approximated by minimal homeomorphisms, then
Int(Per(f)) ∩ T (f) = ∅.

6. If X is a compact boundaryless manifold, then CR(f) ∩ T (f) ⊆ Per(f). In
particular, CR(f) = Per(f) if every point is topologically stable.

Proof. To prove item (1) take x ∈ T (f) and ε > 0. For this ε we let δ′x > 0 be given
by the topological stability of x with respect to f . Since f continuous and X compact,
we have that f is uniformly continuous. It follows that there is δx > 0 such that

d(a, b) ≤ δx =⇒ d(f(a), f(b)) ≤ δ′x.

Take a homeomorphism g : X → X with dC0(f−1, g) ≤ δx. Then the choice of δx implies
dC0(IX , f ◦ g) ≤ δ′x and so dC0(f, g−1) ≤ δ′x. So, the choice of δ′x yields h : Og−1(x) →
X continuous such that dC0(h, i

Og−1 (x)
) ≤ ε and f ◦ h = h ◦ g−1. But clearly Og−1(x) =

Og(x) and so we really have a continuous map h : Og(x) → X with dC0(h, i
Og(x)

) ≤ ε. As
f ◦ h = h ◦ g−1, we also obtain f−1 ◦ h = h ◦ g. Therefore, x ∈ T (f−1) proving T (f) ⊆
T (f−1). By replacing f by f−1 we also get T (f) ⊇ T (f−1), yielding item (1).

Now we prove item (2). Fix x ∈ T (f) and ε > 0. Since X is compact, H is uniformly
continuous and so there is ε′ > 0 such that d(a, b) ≤ ε′ =⇒ d(H(a),H(b)) ≤ ε. For this ε′

we let δ′x be given by x ∈ T (f). Again H−1 is uniformly continuous, so there is δx > 0 such
that d(a, b) ≤ δx =⇒ d(H−1(a),H−1(b)) ≤ δ′x. Take a homeomorphism g : Y → Y such
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that dC0(H ◦ f ◦ H−1, g) ≤ δx. Then, dC0(f ◦ H−1,H−1 ◦ g) ≤ δ′x by the choice of δx and
so dC0(f, h−1 ◦ g ◦ H) ≤ δ′x too. Then, the choice of δ′x provides a continuous map h′ :
OH−1◦g◦H(x) → X satisfying dC0(h′, iOH−1◦g◦H(x)) ≤ ε′ and f ◦ h′ = h′ ◦ H−1 ◦ g ◦ H. On

the other hand, it is clear that H−1(Og(H(x))) = OH−1◦g◦H(x). Since H−1 is continuous
and Og(H(x)) dense in Og(H(x)), we get H−1(Og(H(x))) = OH−1◦g◦H(x). From this we
obtain the map h : Og(H(x)) → X by h = H ◦ h′ ◦ H−1. It is clear that h is continuous.
Moreover,

(H ◦ f ◦ H−1) ◦ h = H ◦ f ◦ H−1 ◦ H ◦ h′ ◦ H−1

= H ◦ f ◦ h ◦ H−1

= H ◦ h′ ◦ H−1 ◦ g ◦ H ◦ H−1

= H ◦ h′ ◦ H−1 ◦ g

= h ◦ g

yielding (H ◦ f ◦ H−1) ◦ h = h ◦ g. Since dC0(h′, iOH−1◦g◦H(x)) ≤ ε′, one has

d(h′(H−1(w)),H−1(w)) ≤ ε′, ∀w ∈ Og(H(x)).

Then, the choice of ε′ implies d(H(h′(H−1(w))), w) ≤ ε for every w ∈ Og(H(x)), proving
dC0(h, i

Og(H(x))
) ≤ ε. All this together proves

H(T (f)) ⊆ T (H ◦ f ◦ H−1).

Replacing H by H−1 and f by H ◦ f ◦ H−1 in this inclusion, we obtain H−1(T (H ◦ f ◦
H−1)) ⊆ T (H−1 ◦ H ◦ f ◦ H−1 ◦ H) = T (f). Then,

H(T (f)) ⊇ T (H ◦ f ◦ H−1).

This proves item (2).
By taking H = f in item (2) we obtain f(T (fk)) = T (f ◦ fk ◦ f−1) = T (fk), proving

item (3).
To prove item (4), fix x ∈ CL(f) ∩ T (f) and ε > 0. Take δx from the topological

stability of x for this ε. Since x ∈ CL(f), there is a homeomorphism g : X → X with
dC0(f, g) ≤ δx such that x ∈ Per(g). Since dC0(f, g) ≤ δx, there is a continuous map
h : Og(x) → X such that d(h, i

Og(x)
) ≤ ε and f ◦ h = h ◦ g. As x ∈ Per(g), we have

gn(x) = x for some n ∈ N
+ and so fn(h(x)) = h(gn(x)) = h(x) yielding h(x) ∈ Per(f).

Since d(x, h(x)) ≤ dC0(h, i
Og(x)

) ≤ ε, we get a periodic point of f within ε from x. As ε

is arbitrary, x ∈ Per(f), proving the first part of item (4). For the second part, if X is
infinite and f minimal we have Per(f) = ∅ so Per(f) = ∅ , and thus CL(f) ∩ T (f) = ∅
by the first part. The last part follows from the second and the fact that CL(f) = X for
every minimal homeomorphism f : X → X of a compact manifold X (see [7, p. 173]).
This proves item (4).

Now we prove item (5). If the conclusion is not true, there is x ∈ Int(Per(f)) ∩ T (f).
Fix ε > 0 such that y ∈ Per(f) for every y ∈ X with d(x, y) ≤ ε. Now take δx > 0 for
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this ε from the topological stability of x. By hypothesis, there is a minimal homeomor-
phism g : X → X with dC0(f, g) ≤ δx. Hence, there is h : Og(x) → X continuous such
that dC0(h, i

Og(x)
) ≤ ε and f ◦ h = h ◦ g. Again the latter identity implies Of (h(x)) =

h(Og(x)). As g is minimal, Og(x) is dense in X and so is h(Og(x)) by the continuity of
h. It follows that Of (h(x)) is dense in X. However, d(h(x), x) ≤ ε so h(x) ∈ Per(f) by
the choice of ε, thus Of (h(x)) is a finite set. Hence, X has a finite dense subset, which
contradicts that X is infinite. This ends the proof of item (5).

Finally, we prove item (6). We have that CR(f) = CL(f) by the theorem in [7, p. 173],
and so CL(f) ∩ T (f) ⊆ Per(f) by item (4). This proves the first part of item (6). The
last part of this item follows from the first part. �

A first application of this result is as follows.

Example 2.9. Notice that T (f) = ∅ for the circle rotations f . Indeed, the irrational
ones satisfy it by Theorem 2.8(4), since they are minimal and C0-approximated by home-
omorphisms with all points periodic (the rational rotations). The rational ones satisfy it
by Theorem 2.8(5).

3. Topologically stable and shadowable points for expansive and chain
transitive systems

In this section we will present the main results of this paper. They deal with the topologi-
cally stable points for expansive homeomorphisms on compact manifolds. The relationship
between the topologically stable and shadowable points will be also explored.

3.1. Definitions and statement of the results

We say that a homeomorphism f : X → X of a metric space X is expansive [12] if
there is e > 0 (called the expansivity constant) such that x = y whenever x, y ∈ X satisfy
d(fn(x), fn(y)) ≤ e for every n ∈ Z. Given δ > 0, a bi-infinite sequence (xn)n∈Z of X is
a δ-pseudo-orbit of f if d(f(xn), xn+1) ≤ δ for all n ∈ Z. We say that the sequence can
be δ-shadowed if there is x ∈ X such that d(fn(x), xn) ≤ δ for all n ∈ Z.

Definition 3.1 (see [9]). A point x ∈ X is shadowable if for every ε > 0 there is
δx > 0 such that every δx-pseudo-orbit (xn)n∈Z with x0 = x can be ε-shadowed.

With these definitions, we have the following result.

Theorem 3.2. The topologically stable points of an expansive homeomorphism of a
compact manifold are precisely the shadowable ones.

The following definition is a natural subproduct of Example 2.4.

Definition 3.3. We call a homeomorphism f : X → X pointwise topologically stable
if T (f) = X (i.e. if every point is topologically stable).

Example 3.4. As reported in Example 2.4, every topologically stable homeomor-
phism is pointwise topologically stable, but we do not know whether the converse holds.
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On the other hand, Theorem 2.8(6) implies that every pointwise topologically stable
homeomorphism of a compact boundaryless manifold has a periodic point.

By Theorem 3.2 we obtain the following corollary.

Corollary 3.5. An expansive homeomorphism of a compact manifold is topologically
stable if and only if it is pointwise topologically stable.

Define the omega-limit set of x ∈ X with respect to a homeomorphism f : X → X
by ω(x) = {y ∈ X : y = limk→∞ fnk(x) for some sequence nk → ∞}. We say that f is
pointwise recurrent if x ∈ ω(x) for every x ∈ X. Examples of such homeomorphisms are
the distal ones [3]. For these homeomorphisms we obtain the following result.

Theorem 3.6. A pointwise recurrent homeomorphism of a compact manifold has no
topologically stable points.

Given a homeomorphism f : X → X, a finite sequence of points (xn)k
n=0 in X is called

a δ-chain if d(f(xn), xn+1) ≤ δ for every 0 ≤ n ≤ k − 1. Then we say that f is chain
transitive if, for any x, y ∈ X and δ > 0, there is a δ-chain (xn)k

n=0 such that x0 = x and
xk = y. Recall that a homeomorphism f : X → X of a metric space X has the POTP if
for every ε > 0 there is δ > 0 such that every δ-pseudo-orbit can be ε-shadowed [10].

Theorem 3.7. Every chain transitive homeomorphism with a topologically stable
point of a compact manifold has the POTP.

Therefore, we obtain the following corollary.

Corollary 3.8. A chain transitive expansive homeomorphism of a compact manifold
is topologically stable if and only if it has a topologically stable point.

3.2. Preliminaries

We introduce an auxiliary definition.

Definition 3.9. Let f : X → X be a homeomorphism of a metric space X. We say
that x ∈ X is finitely shadowable if for every ε > 0 there is δ > 0 such that for every finite
set {x0, . . . , xk} satisfying x0 = x and d(f(xn), xn+1) ≤ δ for every 0 ≤ n ≤ k − 1 there
is y ∈ X such that dist(fn(y), xn) ≤ ε for every 0 ≤ n ≤ k − 1.

Every shadowable point is clearly finitely shadowable. The converse is true on compact
metric spaces, as in [13, Lemma 8]. More precisely, we obtain the following result.

Lemma 3.10. Every finitely shadowable point of a homeomorphism of a compact
metric space is shadowable.

With this lemma, we obtain the following one. Hereafter, we denote by Sh(f) the set
of shadowable points of a homeomorphism f .
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Lemma 3.11. Every topologically stable point of a homeomorphism of a compact
manifold of dim ≥ 2 is shadowable.

Proof. By Lemma 3.10, it suffices to prove that every topologically stable point of a
homeomorphism of a compact manifold of dim ≥ 2 is finitely shadowable.

Let f : X → X be a homeomorphism of a compact manifold X of dim ≥ 2, and let
x ∈ X be a topologically stable point. Fix ε > 0 and let δx > 0 be given by the topological
stability of x for ε/2. Take {x0, . . . , xk} satisfying x0 = x and d(f(xn), xn+1) ≤ (δx/4π)
for every 0 ≤ n ≤ k − 1.

By [13, Lemma 9] there are points {x′
0, . . . , x

′
k} such that x′

0 = x, d(xn, x′
n) < (ε/2)

(0 ≤ n ≤ k), d(f(x′
n), x′

n+1) < δx/2π (0 ≤ n ≤ k − 1), x′
n �= x′

m (and so f(x′
n) �= f(x′

m))
if n �= m (0 ≤ n ≤ k, 0 ≤ m ≤ k).

Then, by [13, Lemma 10], there is a diffeomorphism s : X → X with d(s, IX) < δx and
s(f(x′

n)) = x′
n+1 (0 ≤ n ≤ k − 1).

Defining g = s ◦ f we obtain a homeomorphism g : X → X satisfying dC0(f, g) < δx

and g(x′
n) = x′

n+1 (0 ≤ n ≤ k − 1).
In particular, gn(x) = gn(x′

0) = x′
n (0 ≤ n ≤ k).

Since dC0(f, g) < δx, the choice of δx yields h : Og(x) → X such that d(h, i
Og(x)

) ≤ ε/2
and f ◦ h = h ◦ g. Then,

d(fn(h(x)), xn) = d(h(gn(x′
0)), xn)

= d(h(x′
n), xn)

≤ d(h(x′
n), x′

n) + d(x′
n, xn)

≤ ε

2
+

ε

2
= ε, ∀0 ≤ n ≤ k − 1.

Taking y = h(x) we have d(fn(y), xn) ≤ ε for every 0 ≤ n ≤ k − 1. It follows that x is
finitely shadowable. �

Walters Shadowing Lemma [13] establishes that every topologically stable homeomor-
phism of a compact manifold of dim ≥ 2 has the POTP. The following result is a pointwise
version of this result.

Corollary 3.12. Let f : X → X be a homeomorphism of a compact manifold X of
dim ≥ 2. If every point x ∈ X is topologically stable, then f has the POTP.

Proof. If every point of X is topologically stable, then T (f) = X and so Sh(f) = X
by Lemma 3.11. Therefore, f has the POTP by [9, Theorem 1.3]. �

Now we introduce another auxiliary definition.

Definition 3.13. Let f : X → X be a homeomorphism of a metric space X. We say
that x ∈ X is α-persistent if for every ε > 0 there is δx > 0 such that for every home-
omorphism g : X → X with dC0(f, g) ≤ δx there is y ∈ X such that d(fn(y), gn(x)) ≤ ε
for every n ∈ Z.

In other words, x is α-persistent if and only if the g-orbit of x can be seen in f for
every C0-perturbation g of f (see [8, p. 8]). This is the pointwise counterpart of the
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α-persistence homeomorphisms of [4]. The following elementary lemma gives examples
of such points.

Lemma 3.14. Both the shadowable and topologically stable points are α-persistent.

Proof. Let f : X → X be a homeomorphism of a metric space X and x ∈ X. First,
suppose that x is shadowable. Fix ε > 0 and let δx > 0 be given by the shadowableness of
x for this ε. Take a homeomorphism g : X → X such that dC0(f, g) ≤ δx. It follows that

d(f(gn(x)), gn+1(x)) = d(f(gn(x)), g(gn(x))) ≤ dC0(f, g) ≤ δx, ∀n ∈ Z.

Hence (gn(x))n∈Z is a δx-pseudo orbit of f . It follows that there exists y ∈ X satisfying
d(fn(y), gn(x)) ≤ ε for every n ∈ Z. From this we conclude that x is α-persistent.

Now suppose that x is topologically stable. Fix ε > 0 and let δx > 0 be given by the
topological stability of x. Then, if g : X → X is a homeomorphism with dC0(f, g) ≤ δx,
there is a map h : Og(x) → X such that dC0(h, i

Og(x)
) ≤ ε and f ◦ h = h ◦ g. Since x ∈

Og(x), we can take y = h(x), yielding

d(fn(y), gn(x)) = d(fn(h(x)), gn(x))

= d(h(gn(x)), gn(x)) ≤ dC0(h, i
Og(x)

) ≤ ε, ∀n ∈ Z.

Therefore, x is α-persistent and the proof follows. �

The question now is whether every α-persistent point is topologically stable.
A possible solution for this problem is as follows.
Let x be an α-persistent point of a homeomorphism f : X → X. Take ε′ > 0 and let

δ > 0 be given by the α-persistence of x. Then, if g : X → X is a homeomorphism with
dC0(f, g) ≤ δ, we can select y ∈ X satisfying d(fn(y), gn(x)) ≤ ε′ for every n ∈ Z.

Suppose for a while that the map

h : Og(x) −→ X
gn(x) �−→ fn(y) (3.1)

is well defined.
Since

(f ◦ h)(gn(x)) = f(fn(y)) = fn+1(y) = h(gn+1(x)) = h(g(gn(x))) = (h ◦ g)(gn(x))

and
d(h(gn(x)), gn(x)) = d(fn(y), gn(x)) ≤ ε′, ∀n ∈ Z,

one would have

dC0(h, iOg(x)) ≤ ε′ and f ◦ h = h ◦ g in Og(x). (3.2)

However, there is no guarantee that the map h will be well defined. Another problem is
whether we can extend h continuously to the g-orbit closure Og(x).

The following lemma, which can be seen as a pointwise version of [4, Theorem 2],
tackles such problems in the expansive case.
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Lemma 3.15. The following properties are equivalent for every expansive homeomor-
phism of a compact metric space f : X → X and every x ∈ X:

(1) x is α-persistent;

(2) x is topologically stable.

Proof. By Lemma 3.14 it suffices to prove that every α-persistent point is topologically
stable.

Let x be an α-persistent point of f . Fix ε > 0 and let δ be given by the α-persistence of
x for ε′ = ((min{ε, e})/4), where e is an expansivity constant of f . Take a homeomorphism
g : X → X such that dC0(f, g) ≤ δ. Then there is y ∈ X such that

d(fn(y), gn(x)) ≤ ε′, ∀n ∈ Z.

Define h : Og(x) → X as in (3.1).
Let us use the expansivity of f to prove that h is well defined. Indeed, suppose that

gn(x) = gm(x) for n,m ∈ Z. Then gr+n(x) = gr+m(x) for every r ∈ Z, and so

d(fr(fn(y)), fr(fm(y))) ≤ d(fr+n(y), gr+n(x)) + d(gr+n(x), gr+m(x))

+ d(fr+m(y), gr+m(x))

= d(fr+n(y), gr+n(x)) + d(fr+m(y), gr+m(x))

≤ 2ε′ < e, ∀r ∈ Z.

Since e is an expansivity constant, we obtain fn(y) = fm(y), proving the assertion. As
previously remarked, we have that h satisfies (3.2).

Let us use the expansivity once more to prove that h is uniformly continuous. Fix Δ > 0.
Since e is an expansivity constant and X is compact, we have from [13, Lemma 2] that
there is N ∈ N such that d(a, b) ≤ Δ whenever a, b ∈ X satisfy d(fn(a), fn(b)) ≤ e for
every −N ≤ n ≤ N . Since g is continuous and X is compact, we have that g is uniformly
continuous. Hence, there is ρ > 0 such that d(gn(a), gn(b)) ≤ (e/2) for all −N ≤ n ≤ N
whenever a, b ∈ X satisfy d(a, b) ≤ ρ. Now take a, b ∈ Og(x) with d(a, b) ≤ ρ. It follows
that

d(fn(h(a)), fn(h(b))) = d(h(gn(a)), h(gn(b)))

≤ d(h(gn(a)), gn(a)) + d(gn(a), gn(b)) + d(h(gn(b)), gn(b))

≤ 2ε′ +
e

2
< e, ∀ − N ≤ n ≤ N.

By the choice of N we conclude that d(h(a), h(b)) ≤ Δ, and so h is uniformly continuous.
Then we can extend h continuously to the orbit closure Og(x) to obtain a continuous
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map, still denoted by h : Og(x) → X. Since ε′ < ε, (3.2) implies

dC0(h, i
Og(x)

) ≤ ε and f ◦ h = h ◦ g in Og(x).

As ε is arbitrary, x is topologically stable and the proof follows. �

Walters Stability Theorem [13] asserts that every expansive homeomorphism with the
POTP of a compact metric space is topologically stable. Combining Lemmas 3.14 and
3.15 we obtain a pointwise version of this result.

Corollary 3.16. Every shadowable point of an expansive homeomorphism of a
compact metric space is topologically stable.

Lemmas 3.11 and 3.15 imply the following result.

Proposition 3.17. Every α-persistent point of a homeomorphism of a compact
manifold of dim ≥ 2 is shadowable.

3.3. Proof of Theorems 3.2, 3.6, 3.7 and Corollary 3.5

Proof of Theorem 3.2. Let f : X → X be an expansive homeomorphism of a com-
pact manifold X. Then, Sh(f) ⊆ T (f) by Corollary 3.16. On the other hand, since there is
an expansive homeomorphism on X, one has dim ≥ 2 (see [1] or [8]). Then T (f) ⊆ Sh(f)
by Lemma 3.11, yielding T (f) = Sh(f). �

Proof of Corollary 3.5. Let f : X → X be an expansive homeomorphism of a com-
pact manifold X. If every point is topologically stable, then f has the POTP by
Corollary 3.12. Therefore, f is topologically stable by Walters Stability Theorem [13]. �

Proof of Theorem 3.6. Let f : X → X be a pointwise recurrent homeomorphism of
a compact manifold. If dim (X) = 1, then X is the circle and f is topologically conjugated
to a circle rotation. In such a case, T (f) = ∅ by Theorem 2.8(2) and Example 2.9. Oth-
erwise, T (f) ⊆ Sh(f) by Lemma 3.11. Since Sh(f) = ∅ by [9, Corollary 1.6], T (f) = ∅ in
this case too, proving the result. �

Proof of Theorem 3.7. Let f : X → X be a chain transitive homeomorphism with
topologically stable points of a compact manifold X. We claim that dim (X) ≥ 2. Oth-
erwise, since f is chain transitive, X is the circle and f is topologically conjugated to an
irrational rotation R. Since f has a topologically stable point, R also has such a point by
Theorem 2.8(2), contradicting Example 2.9. Then the claim holds, so T (f) ⊆ Sh(f) by
Lemma 3.11, and thus Sh(f) �= ∅. Since f is chain transitive, Kawaguchi [6, Theorem 1.1]
implies that Sh(f) = X, and then f has the POTP by [9, Theorem 1.3]. This completes
the proof. �
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3.4. Final remarks

By using Theorem 3.2 and Lemma 3.15, we obtain that the following properties are
equivalent for every expansive homeomorphism of a compact manifold X and every x ∈
X:

1. x is α-persistent;

2. x is topologically stable;

3. x is shadowable.

On the other hand, it is known that Sh(f) is measurable for every homeomorphism f :
X → X of a metric space X (see [6]). Then, by Theorem 3.2, T (f) is measurable for every
expansive homeomorphism f : X → X of a compact manifold X. Is T (f) measurable for
every homeomorphism of every metric space?

Some of the result in this paper have been extended to flows by Aponte [2].
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